
StarPU Internal Handbook
for StarPU 1.3.2

Generated by Doxygen.

i

This manual documents the internal usage of StarPU version 1.3.2. Its contents was last updated on 14 June 2019.

Copyright © 2009–2018 Université de Bordeaux
Copyright © 2010-2018 CNRS
Copyright © 2011-2018 Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

ii

Generated by Doxygen

Contents

1 Introduction 3
1.1 Motivation . 3

2 StarPU Core 5
2.1 StarPU Core Entities . 5

2.1.1 Overview . 5
2.1.2 Workers . 5
2.1.3 Scheduling Contexts . 8
2.1.4 Workers and Scheduling Contexts . 8
2.1.5 Drivers . 9
2.1.6 Tasks and Jobs . 9
2.1.7 Data . 9

3 Module Index 11
3.1 Modules . 11

4 Module Documentation 13
4.1 Workers . 13

4.1.1 Detailed Description . 15
4.1.2 Data Structure Documentation . 15
4.1.3 Function Documentation . 22

5 Index 29

2 CONTENTS

Generated by Doxygen

Chapter 1

Introduction

1.1 Motivation

4 Introduction

Generated by Doxygen

Chapter 2

StarPU Core

2.1 StarPU Core Entities

TODO

2.1.1 Overview

Execution entities:

• worker: A worker (see Workers, Workers and Scheduling Contexts) entity is a CPU thread created by StarPU
to manage one computing unit. The computing unit can be a local CPU core, an accelerator or GPU device,
or — on the master side when running in master-slave distributed mode — a remote slave computing node.
It is responsible for querying scheduling policies for tasks to execute.

• sched_context: A scheduling context (see Scheduling Contexts, Workers and Scheduling Contexts) is a
logical set of workers governed by an instance of a scheduling policy. It defines the computing units to which
the scheduling policy instance may assign work entities.

• driver: A driver is the set of hardware-dependent routines used by a worker to initialize its associated com-
puting unit, execute work entities on it, and finalize the computing unit usage at the end of the session.

Work entities:

• task: A task is a high level work request submitted to StarPU by the application, or internally by StarPU itself.

• job: A job is a low level view of a work request. It is not exposed to the application. A job structure may be
shared among several task structures in the case of a parallel task.

Data entities:

• data handle: A data handle is a high-level, application opaque object designating a piece of data currently
registered to the StarPU data management layer. Internally, it is a _starpu_data_state structure.

• data replicate: A data replicate is a low-level object designating one copy of a piece of data registered
to StarPU as a data handle, residing in one memory node managed by StarPU. It is not exposed to the
application.

2.1.2 Workers

A worker is a CPU thread created by StarPU. Its role is to manage one computing unit. This computing unit can
be a local CPU core, in which case, the worker thread manages the actual CPU core to which it is assigned; or it
can be a computing device such as a GPU or an accelerator (or even a remote computing node when StarPU is
running in distributed master-slave mode.) When a worker manages a computing device, the CPU core to which
the worker's thread is by default exclusively assigned to the device management work and does not participate to
computation.

6 StarPU Core

2.1.2.1 States

Scheduling operations related state
While a worker is conducting a scheduling operations, e.g. the worker is in the process of selecting a new task to
execute, flag state_sched_op_pending is set to !0, otherwise it is set to 0.
While state_sched_op_pending is !0, the following exhaustive list of operations on that workers are restricted in the
stated way:

• adding the worker to a context is not allowed;

• removing the worker from a context is not allowed;

• adding the worker to a parallel task team is not allowed;

• removing the worker from a parallel task team is not allowed;

• querying state information about the worker is only allowed while state_relax_refcnt > 0;

– in particular, querying whether the worker is blocked on a parallel team entry is only allowed while
state_relax_refcnt > 0.

Entering and leaving the state_sched_op_pending state is done through calls to _starpu_worker_enter_sched_op()
and _starpu_worker_leave_sched_op() respectively (see these functions in use in functions _starpu_get_worker←↩

_task() and _starpu_get_multi_worker_task()). These calls ensure that any pending conflicting operation deferred
while the worker was in the state_sched_op_pending state is performed in an orderly manner.

Scheduling contexts related states
Flag state_changing_ctx_notice is set to !0 when a thread is about to add the worker to a scheduling
context or remove it from a scheduling context, and is currently waiting for a safe window to do so, until the targeted
worker is not in a scheduling operation or parallel task operation anymore. This flag set to !0 will also prevent
the targeted worker to attempt a fresh scheduling operation or parallel task operation to avoid starving conditions.
However, a scheduling operation that was already in progress before the notice is allowed to complete.
Flag state_changing_ctx_waiting is set to !0 when a scheduling context worker addition or removal
involving the targeted worker is about to occur and the worker is currently performing a scheduling operation to tell
the targeted worker that the initiator thread is waiting for the scheduling operation to complete and should be woken
up upon completion.

Relaxed synchronization related states
Any StarPU worker may participate to scheduling operations, and in this process, may be forced to observe state
information from other workers. A StarPU worker thread may therefore be observed by any thread, even other
StarPU workers. Since workers may observe each other in any order, it is not possible to rely exclusively on the
sched_mutex of each worker to protect the observation of worker state flags by other workers, because worker
A observing worker B would involve locking workers in (A B) sequence, while worker B observing worker A would
involve locking workers in (B A) sequence, leading to lock inversion deadlocks.
In consequence, no thread must hold more than one worker's sched_mutex at any time. Instead, workers implement
a relaxed locking scheme based on the state_relax_refcnt counter, itself protected by the worker's sched←↩

_mutex. When state_relax_refcnt > 0, the targeted worker state flags may be observed, otherwise the
thread attempting the observation must repeatedly wait on the targeted worker's sched_cond condition until
state_relax_refcnt > 0.
The relaxed mode, while on, can actually be seen as a transactional consistency model, where concurrent accesses
are authorized and potential conflicts are resolved after the fact. When the relaxed mode is off, the consistency
model becomes a mutual exclusion model, where the sched_mutex of the worker must be held in order to access
or change the worker state.

Parallel tasks related states
When a worker is scheduled to participate to the execution of a parallel task, it must wait for the whole team of
workers participating to the execution of this task to be ready. While the worker waits for its teammates, it is not
available to run other tasks or perform other operations. Such a waiting operation can therefore not start while
conflicting operations such as scheduling operations and scheduling context resizing involving the worker are on-
going. Conversely these operations and other may query weather the worker is blocked on a parallel task entry with
starpu_worker_is_blocked_in_parallel().

Generated by Doxygen

2.1 StarPU Core Entities 7

The starpu_worker_is_blocked_in_parallel() function is allowed to proceed while and only while state_relax←↩

_refcnt > 0. Due to the relaxed worker locking scheme, the state_blocked_in_parallel flag of the
targeted worker may change after it has been observed by an observer thread. In consequence, flag state_←↩

blocked_in_parallel_observed of the targeted worker is set to 1 by the observer immediately after the
observation to "taint" the targeted worker. The targeted worker will clear the state_blocked_in_parallel←↩

_observed flag tainting and defer the processing of parallel task related requests until a full scheduling operation
shot completes without the state_blocked_in_parallel_observed flag being tainted again. The pur-
pose of this tainting flag is to prevent parallel task operations to be started immediately after the observation of a
transient scheduling state.
Worker's management of parallel tasks is governed by the following set of state flags and counters:

• state_blocked_in_parallel: set to !0 while the worker is currently blocked on a parallel task;

• state_blocked_in_parallel_observed: set to !0 to taint the worker when a thread has ob-
served the state_blocked_in_parallel flag of this worker while its state_relax_refcnt state counter
was >0. Any pending request to add or remove the worker from a parallel task team will be deferred until a
whole scheduling operation shot completes without being tainted again.

• state_block_in_parallel_req: set to !0 when a thread is waiting on a request for the worker to
be added to a parallel task team. Must be protected by the worker's sched_mutex.

• state_block_in_parallel_ack: set to !0 by the worker when acknowledging a request for being
added to a parallel task team. Must be protected by the worker's sched_mutex.

• state_unblock_in_parallel_req: set to !0 when a thread is waiting on a request for the worker
to be removed from a parallel task team. Must be protected by the worker's sched_mutex.

• state_unblock_in_parallel_ack: set to !0 by the worker when acknowledging a request for
being removed from a parallel task team. Must be protected by the worker's sched_mutex.

• block_in_parallel_ref_count: counts the number of consecutive pending requests to enter par-
allel task teams. Only the first of a train of requests for entering parallel task teams triggers the transition of
the state_block_in_parallel_req flag from 0 to 1. Only the last of a train of requests to leave a
parallel task team triggers the transition of flag state_unblock_in_parallel_req from 0 to 1. Must
be protected by the worker's sched_mutex.

2.1.2.2 Operations

Entry point
All the operations of a worker are handled in an iterative fashion, either by the application code on a thread launched
by the application, or automatically by StarPU on a device-dependent CPU thread launched by StarPU. Whether a
worker's operation cycle is managed automatically or not is controlled per session by the field not_launched←↩

_drivers of the starpu_conf struct, and is decided in _starpu_launch_drivers() function.
When managed automatically, cycles of operations for a worker are handled by the corresponding driver specific
starpu<DRV>_worker() function, where DRV is a driver name such as cpu (_starpu_cpu_worker)
or cuda (_starpu_cuda_worker), for instance. Otherwise, the application must supply a thread which will
repeatedly call starpu_driver_run_once() for the corresponding worker.
In both cases, control is then transferred to _starpu_cpu_driver_run_once() (or the corresponding driver specific
func). The cycle of operations typically includes, at least, the following operations:

• task scheduling

• parallel task team build-up

• task input processing

• data transfer processing

• task execution

When the worker cycles are handled by StarPU automatically, the iterative operation processing ends when the
running field of _starpu_config becomes false. This field should not be read directly, instead it should be
read through the _starpu_machine_is_running() function.

Generated by Doxygen

8 StarPU Core

Task scheduling
If the worker does not yet have a queued task, it calls _starpu_get_worker_task() to try and obtain a task. This
may involve scheduling operations such as stealing a queued but not yet executed task from another worker. The
operation may not necessarily succeed if no tasks are ready and/or suitable to run on the worker's computing unit.

Parallel task team build-up
If the worker has a task ready to run and the corresponding job has a size >1, then the task is a parallel job and the
worker must synchronize with the other workers participating to the parallel execution of the job to assign a unique
rank for each worker. The synchronization is done through the job's sync_mutex mutex.

Task input processing
Before the task can be executed, its input data must be made available on a memory node reachable by the worker's
computing unit. To do so, the worker calls _starpu_fetch_task_input()

Data transfer processing
The worker makes pending data transfers (involving memory node(s) that it is driving) progress, with a call to __←↩

starpu_datawizard_progress(),

Task execution
Once the worker has a pending task assigned and the input data for that task are available in the memory node
reachable by the worker's computing unit, the worker calls _starpu_cpu_driver_execute_task() (or the corresponding
driver specific function) to proceed to the execution of the task.

2.1.3 Scheduling Contexts

A scheduling context is a logical set of workers governed by an instance of a scheduling policy. Tasks submitted to a
given scheduling context are confined to the computing units governed by the workers belonging to this scheduling
context at the time they get scheduled.
A scheduling context is identified by an unsigned integer identifier between 0 and STARPU_NMAX_SCHED_CT←↩

XS - 1. The STARPU_NMAX_SCHED_CTXS identifier value is reserved to indicated an unallocated, invalid or
deleted scheduling context.
Accesses to the scheduling context structure are governed by a multiple-readers/single-writer lock (rwlock field).
Changes to the structure contents, additions or removals of workers, statistics updates, all must be done with proper
exclusive write access.

2.1.4 Workers and Scheduling Contexts

A worker can be assigned to one or more scheduling contexts. It exclusively receives tasks submitted to the
scheduling context(s) it is currently assigned at the time such tasks are scheduled. A worker may add itself to or
remove itself from a scheduling context.

Locking and synchronization rules between workers and scheduling contexts
A thread currently holding a worker sched_mutex must not attempt to acquire a scheduling context rwlock, neither
for writing nor for reading. Such an attempt constitutes a lock inversion and may result in a deadlock.
A worker currently in a scheduling operation must enter the relaxed state before attempting to acquire a scheduling
context rwlock, either for reading or for writing.
When the set of workers assigned to a scheduling context is about to be modified, all the workers in the union
between the workers belonging to the scheduling context before the change and the workers expected to belong to
the scheduling context after the change must be notified using the notify_workers_about_changing_ctx_pending()
function prior to the update. After the update, all the workers in that same union must be notified for the update
completion with a call to notify_workers_about_changing_ctx_done().
The function notify_workers_about_changing_ctx_pending() places every worker passed in argument in a state
compatible with changing the scheduling context assignment of that worker, possibly blocking until that worker
leaves incompatible states such as a pending scheduling operation. If the caller of notify_workers_about←↩

_changing_ctx_pending() is itself a worker included in the set of workers passed in argument, it does not
notify itself, with the assumption that the worker is already calling notify_workers_about_changing←↩

_ctx_pending() from a state compatible with a scheduling context assignment update. Once a worker has

Generated by Doxygen

2.1 StarPU Core Entities 9

been notified about a scheduling context change pending, it cannot proceed with incompatible operations such as
a scheduling operation until it receives a notification that the context update operation is complete.

2.1.5 Drivers

Each driver defines a set of routines depending on some specific hardware. These routines include hardware
discovery/initialization, task execution, device memory management and data transfers.
While most hardware dependent routines are in source files located in the /src/drivers subdirectory of the
StarPU tree, some can be found elsewhere in the tree such as src/datawizard/malloc.c for memory
allocation routines or the subdirectories of src/datawizard/interfaces/ for data transfer routines.
The driver ABI defined in the _starpu_driver_ops structure includes the following operations:

• .init: initialize a driver instance for the calling worker managing a hardware computing unit compatible with
this driver.

• .run_once: perform a single driver progress cycle for the calling worker (see Operations).

• .deinit: deinitialize the driver instance for the calling worker

• .run: executes the following sequence automatically: call .init, repeatedly call .run_once until the function
_starpu_machine_is_running() returns false, call .deinit.

The source code common to all drivers is shared in src/drivers/driver_common/driver_←↩

common.[ch]. This file includes services such as grabbing a new task to execute on a worker, managing
statistics accounting on job startup and completion and updating the worker status

2.1.5.1 Master/Slave Drivers

A subset of the drivers corresponds to drivers managing computing units in master/slave mode, that is, drivers
involving a local master instance managing one or more remote slave instances on the targeted device(s). This
includes devices such as discrete manycore accelerators (e.g. Intel's Knight Corners board, for instance), or pseudo
devices such as a cluster of cpu nodes driver through StarPU's MPI master/slave mode. A driver instance on the
master side is named the source, while a driver instances on the slave side is named the sink.
A significant part of the work realized on the source and sink sides of master/slave drivers is identical among all
master/slave drivers, due to the similarities in the software pattern. Therefore, many routines are shared among
all these drivers in the src/drivers/mp_common subdirectory. In particular, a set of default commands to
be used between sources and sinks is defined, assuming the availability of some communication channel between
them (see enum _starpu_mp_command)
TODO

2.1.6 Tasks and Jobs

TODO

2.1.7 Data

TODO

Generated by Doxygen

10 StarPU Core

Generated by Doxygen

Chapter 3

Module Index

3.1 Modules

Here is a list of all modules:
Workers . 13

12 Module Index

Generated by Doxygen

Chapter 4

Module Documentation

4.1 Workers

Data Structures

• struct _starpu_worker
• struct _starpu_combined_worker
• struct _starpu_worker_set
• struct _starpu_machine_topology
• struct _starpu_machine_config
• struct _starpu_machine_config.bindid_workers

Macros

• #define STARPU_MAX_PIPELINE
• #define starpu_worker_get_count
• #define starpu_worker_get_id
• #define _starpu_worker_get_id_check(f, l)
• #define starpu_worker_relax_on
• #define starpu_worker_relax_off
• #define starpu_worker_get_relax_state

Enumerations

• enum initialization { UNINITIALIZED, CHANGING, INITIALIZED }

Functions

• void _starpu_set_argc_argv (int ∗argc, char ∗∗∗argv)
• int ∗ _starpu_get_argc ()
• char ∗∗∗ _starpu_get_argv ()
• void _starpu_conf_check_environment (struct starpu_conf ∗conf)
• void _starpu_may_pause (void)
• static unsigned _starpu_machine_is_running (void)
• void _starpu_worker_init (struct _starpu_worker ∗workerarg, struct _starpu_machine_config ∗pconfig)
• uint32_t _starpu_worker_exists (struct starpu_task ∗)
• uint32_t _starpu_can_submit_cuda_task (void)
• uint32_t _starpu_can_submit_cpu_task (void)
• uint32_t _starpu_can_submit_opencl_task (void)
• unsigned _starpu_worker_can_block (unsigned memnode, struct _starpu_worker ∗worker)
• void _starpu_block_worker (int workerid, starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex)
• void _starpu_driver_start (struct _starpu_worker ∗worker, unsigned fut_key, unsigned sync)
• void _starpu_worker_start (struct _starpu_worker ∗worker, unsigned fut_key, unsigned sync)

14 Module Documentation

• static unsigned _starpu_worker_get_count (void)

• static void _starpu_set_local_worker_key (struct _starpu_worker ∗worker)

• static struct _starpu_worker ∗ _starpu_get_local_worker_key (void)

• static void _starpu_set_local_worker_set_key (struct _starpu_worker_set ∗worker)

• static struct _starpu_worker_set ∗ _starpu_get_local_worker_set_key (void)

• static struct _starpu_worker ∗ _starpu_get_worker_struct (unsigned id)

• static struct _starpu_sched_ctx ∗ _starpu_get_sched_ctx_struct (unsigned id)

• struct _starpu_combined_worker ∗ _starpu_get_combined_worker_struct (unsigned id)

• static struct _starpu_machine_config ∗ _starpu_get_machine_config (void)

• static int _starpu_get_disable_kernels (void)

• static enum _starpu_worker_status _starpu_worker_get_status (int workerid)

• static void _starpu_worker_set_status (int workerid, enum _starpu_worker_status status)

• static struct _starpu_sched_ctx ∗ _starpu_get_initial_sched_ctx (void)

• int starpu_worker_get_nids_by_type (enum starpu_worker_archtype type, int ∗workerids, int maxsize)

• int starpu_worker_get_nids_ctx_free_by_type (enum starpu_worker_archtype type, int ∗workerids, int max-
size)

• static unsigned _starpu_worker_mutex_is_sched_mutex (int workerid, starpu_pthread_mutex_t ∗mutex)

• static int _starpu_worker_get_nsched_ctxs (int workerid)

• static unsigned _starpu_get_nsched_ctxs (void)

• static int _starpu_worker_get_id (void)

• static unsigned __starpu_worker_get_id_check (const char ∗f, int l)

• enum starpu_node_kind _starpu_worker_get_node_kind (enum starpu_worker_archtype type)

• void _starpu_worker_set_stream_ctx (unsigned workerid, struct _starpu_sched_ctx ∗sched_ctx)

• struct _starpu_sched_ctx ∗ _starpu_worker_get_ctx_stream (unsigned stream_workerid)

• static void _starpu_worker_request_blocking_in_parallel (struct _starpu_worker ∗const worker)

• static void _starpu_worker_request_unblocking_in_parallel (struct _starpu_worker ∗const worker)

• static void _starpu_worker_process_block_in_parallel_requests (struct _starpu_worker ∗const worker)

• static void _starpu_worker_enter_sched_op (struct _starpu_worker ∗const worker)

• void _starpu_worker_apply_deferred_ctx_changes (void)

• static void _starpu_worker_leave_sched_op (struct _starpu_worker ∗const worker)

• static int _starpu_worker_sched_op_pending (void)

• static void _starpu_worker_enter_changing_ctx_op (struct _starpu_worker ∗const worker)

• static void _starpu_worker_leave_changing_ctx_op (struct _starpu_worker ∗const worker)

• static void _starpu_worker_relax_on (void)

• static void _starpu_worker_relax_on_locked (struct _starpu_worker ∗worker)

• static void _starpu_worker_relax_off (void)

• static void _starpu_worker_relax_off_locked (void)

• static int _starpu_worker_get_relax_state (void)

• static void _starpu_worker_lock (int workerid)

• static int _starpu_worker_trylock (int workerid)

• static void _starpu_worker_unlock (int workerid)

• static void _starpu_worker_lock_self (void)

• static void _starpu_worker_unlock_self (void)

• static int _starpu_wake_worker_relax (int workerid)

• int starpu_wake_worker_relax_light (int workerid)

• void _starpu_worker_refuse_task (struct _starpu_worker ∗worker, struct starpu_task ∗task)

Variables

• int _starpu_worker_parallel_blocks
• struct _starpu_machine_config _starpu_config STARPU_ATTRIBUTE_INTERNAL

Generated by Doxygen

4.1 Workers 15

4.1.1 Detailed Description

4.1.2 Data Structure Documentation

4.1.2.1 struct _starpu_worker

This is initialized by _starpu_worker_init()

Generated by Doxygen

16 Module Documentation

Data Fields

struct _starpu_machine_config ∗ config

starpu_pthread_mutex_t mutex

enum starpu_worker_archtype arch what is the type of worker ?

uint32_t worker_mask what is the type of worker ?

struct starpu_perfmodel_arch perf_arch in case there are different models
of the same arch

starpu_pthread_t worker_thread the thread which runs the worker

unsigned devid which cpu/gpu/etc is controlled by
the worker ?

unsigned subworkerid which sub-worker this one is for
the cpu/gpu

int bindid which cpu is the driver bound to ?
(logical index)

int workerid uniquely identify the worker among
all processing units types

int combined_workerid combined worker currently using
this worker

int current_rank current rank in case the worker is
used in a parallel fashion

int worker_size size of the worker in case we use a
combined worker

starpu_pthread_cond_t started_cond indicate when the worker is ready

starpu_pthread_cond_t ready_cond indicate when the worker is ready

unsigned memory_node which memory node is the worker
associated with ?

unsigned numa_memory_node which numa memory node is the
worker associated with? (logical
index)

starpu_pthread_cond_t sched_cond condition variable used for passive
waiting operations on worker
STARPU_PTHREAD_COND_B←↩

ROADCAST must be used instead
of STARPU_PTHREAD_COND←↩

_SIGNAL, since the condition is
shared for multiple purpose

starpu_pthread_mutex_t sched_mutex mutex protecting sched_cond

unsigned state_relax_refcnt mark scheduling sections where
other workers can safely access
the worker state

unsigned state_sched_op_pending a task pop is ongoing even though
sched_mutex may temporarily be
unlocked

unsigned state_changing_ctx_waiting a thread is waiting for operations
such as pop to complete before
acquiring sched_mutex and
modifying the worker ctx

unsigned state_changing_ctx_notice the worker ctx is about to change
or being changed, wait for flag to
be cleared before starting new
scheduling operations

unsigned state_blocked_in_parallel worker is currently blocked on a
parallel section

Generated by Doxygen

4.1 Workers 17

Data Fields

unsigned state_blocked_in_parallel_observed the blocked state of the worker has
been observed by another worker
during a relaxed section

unsigned state_block_in_parallel_req a request for state transition from
unblocked to blocked is pending

unsigned state_block_in_parallel_ack a block request has been honored

unsigned state_unblock_in_parallel_req a request for state transition from
blocked to unblocked is pending

unsigned state_unblock_in_parallel_ack an unblock request has been
honored

unsigned block_in_parallel_ref_count cumulative blocking depth

• =0 worker unblocked

• >0 worker blocked

• transition from 0 to 1 triggers
a block_req

• transition from 1 to 0 triggers
a unblock_req

starpu_pthread_t thread_changing_ctx thread currently changing a
sched_ctx containing the worker

struct _starpu_ctx_change_list ctx_change_list list of deferred context changes
when the current thread is a
worker, _and_ this worker is in a
scheduling operation, new ctx
changes are queued to this list for
subsequent processing once
worker completes the ongoing
scheduling operation

struct starpu_task_list local_tasks this queue contains tasks that
have been explicitely submitted to
that queue

struct starpu_task ∗∗ local_ordered_tasks this queue contains tasks that
have been explicitely submitted to
that queue with an explicit order

unsigned local_ordered_tasks_size this records the size of
local_ordered_tasks

unsigned current_ordered_task this records the index (within
local_ordered_tasks) of the next
ordered task to be executed

unsigned current_ordered_task_order this records the order of the next
ordered task to be executed

struct starpu_task ∗ current_task task currently executed by this
worker (non-pipelined version)

struct starpu_task ∗ current_tasks[STARPU_MAX_PIPELINE]tasks currently executed by this
worker (pipelined version)

starpu_pthread_wait_t wait

struct timespec cl_start Codelet start time of the task
currently running

struct timespec cl_end Codelet end time of the last task
running

unsigned char first_task Index of first task in the pipeline

Generated by Doxygen

18 Module Documentation

Data Fields

unsigned char ntasks number of tasks in the pipeline

unsigned char pipeline_length number of tasks to be put in the
pipeline

unsigned char pipeline_stuck whether a task prevents us from
pipelining

struct _starpu_worker_set ∗ set in case this worker belongs to a set

unsigned worker_is_running

unsigned worker_is_initialized

enum _starpu_worker_status status what is the worker doing now ?
(eg. CALLBACK)

unsigned state_keep_awake !0 if a task has been pushed to the
worker and the task has not yet
been seen by the worker, the
worker should no go to sleep
before processing this task

char name[128]

char short_name[32]

unsigned run_by_starpu Is this run by StarPU or directly by
the application ?

struct _starpu_driver_ops ∗ driver_ops

struct _starpu_sched_ctx_list ∗ sched_ctx_list

int tmp_sched_ctx

unsigned nsched_ctxs the no of contexts a worker
belongs to

struct _starpu_barrier_counter tasks_barrier wait for the tasks submitted

unsigned has_prev_init had already been inited in another
ctx

unsigned removed_from_ctx[STARPU_NMAX_SCHED_CTXS+1]

unsigned spinning_backoff number of cycles to pause when
spinning

unsigned nb_buffers_transferred number of piece of data already
send to worker

unsigned nb_buffers_totransfer number of piece of data already
send to worker

struct starpu_task ∗ task_transferring The buffers of this task are being
sent

unsigned shares_tasks_lists[STARPU_NMAX_SCHED_CTXS+1]indicate whether the workers
shares tasks lists with other
workers in this case when
removing him from a context it
disapears instantly

unsigned poped_in_ctx[STARPU_NMAX_SCHED_CTXS+1]boolean to chose the next ctx a
worker will pop into

unsigned reverse_phase[2] boolean indicating at which
moment we checked all ctxs and
change phase for the booleab
poped_in_ctx one for each of the 2
priorities

unsigned pop_ctx_priority indicate which priority of ctx is
currently active: the values are 0
or 1

Generated by Doxygen

4.1 Workers 19

Data Fields

unsigned is_slave_somewhere bool to indicate if the worker is
slave in a ctx

struct _starpu_sched_ctx ∗ stream_ctx

hwloc_bitmap_t hwloc_cpu_set

hwloc_obj_t hwloc_obj

4.1.2.2 struct _starpu_combined_worker

Data Fields

struct starpu_perfmodel_arch perf_arch in case there are different models of
the same arch

uint32_t worker_mask what is the type of workers ?

int worker_size
unsigned memory_node which memory node is associated

that worker to ?
int combined_workerid[STARPU_NMAXWORKERS]

hwloc_bitmap_t hwloc_cpu_set

4.1.2.3 struct _starpu_worker_set

in case a single CPU worker may control multiple accelerators

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_t worker_thread the thread which runs the worker

unsigned nworkers

unsigned started Only one thread for the whole set

void ∗ retval
struct _starpu_worker ∗ workers

starpu_pthread_cond_t ready_cond indicate when the set is ready

unsigned set_is_initialized

4.1.2.4 struct _starpu_machine_topology

Data Fields

unsigned nworkers Total number of workers.

unsigned ncombinedworkers Total number of combined workers.

unsigned nsched_ctxs

hwloc_topology_t hwtopology Topology as detected by hwloc.

struct starpu_tree ∗ tree custom hwloc tree

unsigned nhwcpus Total number of CPU cores, as detected
by the topology code. May be different
from the actual number of CPU workers.

Generated by Doxygen

20 Module Documentation

Data Fields

unsigned nhwpus Total number of PUs (i.e. threads), as
detected by the topology code. May be
different from the actual number of PU
workers.

unsigned nhwcudagpus Total number of CUDA devices, as
detected. May be different from the actual
number of CUDA workers.

unsigned nhwopenclgpus Total number of OpenCL devices, as
detected. May be different from the actual
number of OpenCL workers.

unsigned nhwmpi Total number of MPI nodes, as detected.
May be different from the actual number of
node workers.

unsigned ncpus Actual number of CPU workers used by
StarPU.

unsigned ncudagpus Actual number of CUDA GPUs used by
StarPU.

unsigned nworkerpercuda

int cuda_th_per_stream

int cuda_th_per_dev

unsigned nopenclgpus Actual number of OpenCL workers used
by StarPU.

unsigned nmpidevices Actual number of MPI workers used by
StarPU.

unsigned nhwmpidevices

unsigned nhwmpicores[STARPU_MAXMPIDEVS] Each MPI node has its set of cores.

unsigned nmpicores[STARPU_MAXMPIDEVS]

unsigned nhwmicdevices Topology of MP nodes (MIC) as well as
necessary objects to communicate with
them.

unsigned nmicdevices

unsigned nhwmiccores[STARPU_MAXMICDEVS] Each MIC node has its set of cores.

unsigned nmiccores[STARPU_MAXMICDEVS]

unsigned workers_bindid[STARPU_NMAXWORKERS] Indicates the successive logical PU
identifier that should be used to bind the
workers. It is either filled according to the
user's explicit parameters (from
starpu_conf) or according to the
STARPU_WORKERS_CPUID env.
variable. Otherwise, a round-robin policy
is used to distributed the workers over the
cores.

unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]Indicates the successive CUDA identifier
that should be used by the CUDA driver. It
is either filled according to the user's
explicit parameters (from starpu_conf) or
according to the
STARPU_WORKERS_CUDAID env.
variable. Otherwise, they are taken in ID
order.

Generated by Doxygen

4.1 Workers 21

Data Fields

unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]Indicates the successive OpenCL
identifier that should be used by the
OpenCL driver. It is either filled according
to the user's explicit parameters (from
starpu_conf) or according to the
STARPU_WORKERS_OPENCLID env.
variable. Otherwise, they are taken in ID
order.

unsigned workers_mpi_ms_deviceid[STARPU_NMAXWORKERS]TODO unsigned workers_mic_←↩

deviceid[STARPU_NMAXWORKERS];

4.1.2.5 struct _starpu_machine_config

Data Fields

struct _starpu_machine_topology topology

int cpu_depth

int pu_depth

int current_bindid Where to bind next worker ?
char currently_bound[STARPU_NMAXWORKERS]

char currently_shared[STARPU_NMAXWORKERS]

int current_cuda_gpuid Which GPU(s) do we use for
CUDA ?

int current_opencl_gpuid Which GPU(s) do we use for
OpenCL ?

int current_mic_deviceid Which MIC do we use?
int current_mpi_deviceid Which MPI do we use?

int cpus_nodeid Memory node for cpus, if only one

int cuda_nodeid Memory node for CUDA, if only
one

int opencl_nodeid Memory node for OpenCL, if only
one

int mic_nodeid Memory node for MIC, if only one

int mpi_nodeid Memory node for MPI, if only one

struct _starpu_worker workers[STARPU_NMAXWORKERS] Basic workers : each of this worker
is running its own driver and can
be combined with other basic
workers.

struct _starpu_combined_worker combined_workers[STARPU_NMAX_COMBINEDWORKERS]Combined workers: these worker
are a combination of basic workers
that can run parallel tasks together.

struct _starpu_machine_config bindid_workers Translation table from bindid to
worker IDs

unsigned nbindid size of bindid_workers

uint32_t worker_mask This bitmask indicates which kinds
of worker are available. For
instance it is possible to test if
there is a CUDA worker with the
result of (worker_mask &
STARPU_CUDA).

struct starpu_conf conf either the user given configuration
passed to starpu_init or a default
configuration

Generated by Doxygen

22 Module Documentation

Data Fields

unsigned running this flag is set until the runtime is
stopped

int disable_kernels
int pause_depth Number of calls to starpu_pause()

- calls to starpu_resume(). When
>0, StarPU should pause.

struct _starpu_sched_ctx sched_ctxs[STARPU_NMAX_SCHED_CTXS+1]all the sched ctx of the current
instance of starpu

unsigned submitting this flag is set until the application
is finished submitting tasks

int watchdog_ok

starpu_pthread_mutex_t submitted_mutex

4.1.2.6 struct _starpu_machine_config.bindid_workers

Translation table from bindid to worker IDs

Data Fields

int ∗ workerids
unsigned nworkers size of workerids

4.1.3 Function Documentation

4.1.3.1 _starpu_set_argc_argv()

void _starpu_set_argc_argv (

int ∗ argc,

char ∗∗∗ argv)

Three functions to manage argv, argc

4.1.3.2 _starpu_conf_check_environment()

void _starpu_conf_check_environment (

struct starpu_conf ∗ conf)

Fill conf with environment variables

4.1.3.3 _starpu_may_pause()

void _starpu_may_pause (

void)

Called by the driver when it is ready to pause

4.1.3.4 _starpu_machine_is_running()

static unsigned _starpu_machine_is_running (

void) [inline], [static]

Has starpu_shutdown already been called ?

Generated by Doxygen

4.1 Workers 23

4.1.3.5 _starpu_worker_init()

void _starpu_worker_init (

struct _starpu_worker ∗ workerarg,

struct _starpu_machine_config ∗ pconfig)

initialise a worker

4.1.3.6 _starpu_worker_exists()

uint32_t _starpu_worker_exists (

struct starpu_task ∗)

Check if there is a worker that may execute the task.

4.1.3.7 _starpu_can_submit_cuda_task()

uint32_t _starpu_can_submit_cuda_task (

void)

Is there a worker that can execute CUDA code ?

4.1.3.8 _starpu_can_submit_cpu_task()

uint32_t _starpu_can_submit_cpu_task (

void)

Is there a worker that can execute CPU code ?

4.1.3.9 _starpu_can_submit_opencl_task()

uint32_t _starpu_can_submit_opencl_task (

void)

Is there a worker that can execute OpenCL code ?

4.1.3.10 _starpu_worker_can_block()

unsigned _starpu_worker_can_block (

unsigned memnode,

struct _starpu_worker ∗ worker)

Check whether there is anything that the worker should do instead of sleeping (waiting on something to happen).

4.1.3.11 _starpu_block_worker()

void _starpu_block_worker (

int workerid,

starpu_pthread_cond_t ∗ cond,

starpu_pthread_mutex_t ∗ mutex)

This function must be called to block a worker. It puts the worker in a sleeping state until there is some event that
forces the worker to wake up.

4.1.3.12 _starpu_driver_start()

void _starpu_driver_start (

struct _starpu_worker ∗ worker,

unsigned fut_key,

unsigned sync)

This function initializes the current driver for the given worker

4.1.3.13 _starpu_worker_start()

void _starpu_worker_start (

struct _starpu_worker ∗ worker,

Generated by Doxygen

24 Module Documentation

unsigned fut_key,

unsigned sync)

This function initializes the current thread for the given worker

4.1.3.14 _starpu_set_local_worker_key()

static void _starpu_set_local_worker_key (

struct _starpu_worker ∗ worker) [inline], [static]

The _starpu_worker structure describes all the state of a StarPU worker. This function sets the pthread key which
stores a pointer to this structure.

4.1.3.15 _starpu_get_local_worker_key()

static struct _starpu_worker∗ _starpu_get_local_worker_key (

void) [static]

Returns the _starpu_worker structure that describes the state of the current worker.

4.1.3.16 _starpu_set_local_worker_set_key()

static void _starpu_set_local_worker_set_key (

struct _starpu_worker_set ∗ worker) [inline], [static]

The _starpu_worker_set structure describes all the state of a StarPU worker_set. This function sets the pthread
key which stores a pointer to this structure.

4.1.3.17 _starpu_get_local_worker_set_key()

static struct _starpu_worker_set∗ _starpu_get_local_worker_set_key (

void) [static]

Returns the _starpu_worker_set structure that describes the state of the current worker_set.

4.1.3.18 _starpu_get_worker_struct()

static struct _starpu_worker∗ _starpu_get_worker_struct (

unsigned id) [static]

Returns the _starpu_worker structure that describes the state of the specified worker.

4.1.3.19 _starpu_get_sched_ctx_struct()

static struct _starpu_sched_ctx∗ _starpu_get_sched_ctx_struct (

unsigned id) [static]

Returns the starpu_sched_ctx structure that describes the state of the specified ctx

4.1.3.20 _starpu_get_machine_config()

static struct _starpu_machine_config∗ _starpu_get_machine_config (

void) [static]

Returns the structure that describes the overall machine configuration (eg. all workers and topology).

4.1.3.21 _starpu_get_disable_kernels()

static int _starpu_get_disable_kernels (

void) [inline], [static]

Return whether kernels should be run (<=0) or not (>0)

4.1.3.22 _starpu_worker_get_status()

static enum _starpu_worker_status _starpu_worker_get_status (

int workerid) [inline], [static]

Retrieve the status which indicates what the worker is currently doing.

Generated by Doxygen

4.1 Workers 25

4.1.3.23 _starpu_worker_set_status()

static void _starpu_worker_set_status (

int workerid,

enum _starpu_worker_status status) [inline], [static]

Change the status of the worker which indicates what the worker is currently doing (eg. executing a callback).

4.1.3.24 _starpu_get_initial_sched_ctx()

static struct _starpu_sched_ctx∗ _starpu_get_initial_sched_ctx (

void) [static]

We keep an initial sched ctx which might be used in case no other ctx is available

4.1.3.25 starpu_worker_get_nids_ctx_free_by_type()

int starpu_worker_get_nids_ctx_free_by_type (

enum starpu_worker_archtype type,

int ∗ workerids,

int maxsize)

returns workers not belonging to any context, be careful no mutex is used, the list might not be updated

4.1.3.26 _starpu_get_nsched_ctxs()

static unsigned _starpu_get_nsched_ctxs (

void) [inline], [static]

Get the total number of sched_ctxs created till now

4.1.3.27 _starpu_worker_get_id()

static int _starpu_worker_get_id (

void) [inline], [static]

Inlined version when building the core.

4.1.3.28 __starpu_worker_get_id_check()

static unsigned __starpu_worker_get_id_check (

const char ∗ f,

int l) [inline], [static]

Similar behaviour to starpu_worker_get_id() but fails when called from outside a worker This returns an unsigned
object on purpose, so that the caller is sure to get a positive value

4.1.3.29 _starpu_worker_request_blocking_in_parallel()

static void _starpu_worker_request_blocking_in_parallel (

struct _starpu_worker ∗const worker) [inline], [static]

Send a request to the worker to block, before a parallel task is about to begin.
Must be called with worker's sched_mutex held.

4.1.3.30 _starpu_worker_request_unblocking_in_parallel()

static void _starpu_worker_request_unblocking_in_parallel (

struct _starpu_worker ∗const worker) [inline], [static]

Send a request to the worker to unblock, after a parallel task is complete.
Must be called with worker's sched_mutex held.

4.1.3.31 _starpu_worker_process_block_in_parallel_requests()

static void _starpu_worker_process_block_in_parallel_requests (

struct _starpu_worker ∗const worker) [inline], [static]

Called by the the worker to process incoming requests to block or unblock on parallel task boundaries.

Generated by Doxygen

26 Module Documentation

Must be called with worker's sched_mutex held.

4.1.3.32 _starpu_worker_enter_sched_op()

static void _starpu_worker_enter_sched_op (

struct _starpu_worker ∗const worker) [inline], [static]

Mark the beginning of a scheduling operation by the worker. No worker blocking operations on parallel tasks and
no scheduling context change operations must be performed on contexts containing the worker, on contexts about
to add the worker and on contexts about to remove the worker, while the scheduling operation is in process. The
sched mutex of the worker may only be acquired permanently by another thread when no scheduling operation
is in process, or when a scheduling operation is in process _and_ worker->state_relax_refcnt!=0. If a scheduling
operation is in process _and_ worker->state_relax_refcnt==0, a thread other than the worker must wait on condition
worker->sched_cond for worker->state_relax_refcnt!=0 to become true, before acquiring the worker sched mutex
permanently.
Must be called with worker's sched_mutex held.

4.1.3.33 _starpu_worker_apply_deferred_ctx_changes()

void _starpu_worker_apply_deferred_ctx_changes (

void)

Mark the end of a scheduling operation by the worker.
Must be called with worker's sched_mutex held.

4.1.3.34 _starpu_worker_enter_changing_ctx_op()

static void _starpu_worker_enter_changing_ctx_op (

struct _starpu_worker ∗const worker) [inline], [static]

Must be called before altering a context related to the worker whether about adding the worker to a context, removing
it from a context or modifying the set of workers of a context of which the worker is a member, to mark the beginning
of a context change operation. The sched mutex of the worker must be held before calling this function.
Must be called with worker's sched_mutex held.

4.1.3.35 _starpu_worker_leave_changing_ctx_op()

static void _starpu_worker_leave_changing_ctx_op (

struct _starpu_worker ∗const worker) [inline], [static]

Mark the end of a context change operation.
Must be called with worker's sched_mutex held.

4.1.3.36 _starpu_worker_relax_on()

static void _starpu_worker_relax_on (

void) [inline], [static]

Temporarily allow other worker to access current worker state, when still scheduling, but the scheduling has not yet
been made or is already done

4.1.3.37 _starpu_worker_relax_on_locked()

static void _starpu_worker_relax_on_locked (

struct _starpu_worker ∗ worker) [inline], [static]

Same, but with current worker mutex already held

4.1.3.38 _starpu_worker_lock()

static void _starpu_worker_lock (

int workerid) [inline], [static]

lock a worker for observing contents
notes:

• if the observed worker is not in state_relax_refcnt, the function block until the state is reached

Generated by Doxygen

4.1 Workers 27

4.1.3.39 _starpu_worker_refuse_task()

void _starpu_worker_refuse_task (

struct _starpu_worker ∗ worker,

struct starpu_task ∗ task)

Allow a worker pulling a task it cannot execute to properly refuse it and send it back to the scheduler.

Generated by Doxygen

28 Module Documentation

Generated by Doxygen

Chapter 5

Index

Index

__starpu_worker_get_id_check
Workers, 25

_starpu_block_worker
Workers, 23

_starpu_can_submit_cpu_task
Workers, 23

_starpu_can_submit_cuda_task
Workers, 23

_starpu_can_submit_opencl_task
Workers, 23

_starpu_combined_worker, 19
_starpu_conf_check_environment

Workers, 22
_starpu_driver_start

Workers, 23
_starpu_get_disable_kernels

Workers, 24
_starpu_get_initial_sched_ctx

Workers, 25
_starpu_get_local_worker_key

Workers, 24
_starpu_get_local_worker_set_key

Workers, 24
_starpu_get_machine_config

Workers, 24
_starpu_get_nsched_ctxs

Workers, 25
_starpu_get_sched_ctx_struct

Workers, 24
_starpu_get_worker_struct

Workers, 24
_starpu_machine_config, 21
_starpu_machine_config.bindid_workers, 22
_starpu_machine_is_running

Workers, 22
_starpu_machine_topology, 19
_starpu_may_pause

Workers, 22
_starpu_set_argc_argv

Workers, 22
_starpu_set_local_worker_key

Workers, 24
_starpu_set_local_worker_set_key

Workers, 24
_starpu_worker, 15
_starpu_worker_apply_deferred_ctx_changes

Workers, 26
_starpu_worker_can_block

Workers, 23

_starpu_worker_enter_changing_ctx_op
Workers, 26

_starpu_worker_enter_sched_op
Workers, 26

_starpu_worker_exists
Workers, 23

_starpu_worker_get_id
Workers, 25

_starpu_worker_get_status
Workers, 24

_starpu_worker_init
Workers, 22

_starpu_worker_leave_changing_ctx_op
Workers, 26

_starpu_worker_lock
Workers, 26

_starpu_worker_process_block_in_parallel_requests
Workers, 25

_starpu_worker_refuse_task
Workers, 27

_starpu_worker_relax_on
Workers, 26

_starpu_worker_relax_on_locked
Workers, 26

_starpu_worker_request_blocking_in_parallel
Workers, 25

_starpu_worker_request_unblocking_in_parallel
Workers, 25

_starpu_worker_set, 19
_starpu_worker_set_status

Workers, 24
_starpu_worker_start

Workers, 23

starpu_worker_get_nids_ctx_free_by_type
Workers, 25

Workers, 13
__starpu_worker_get_id_check, 25
_starpu_block_worker, 23
_starpu_can_submit_cpu_task, 23
_starpu_can_submit_cuda_task, 23
_starpu_can_submit_opencl_task, 23
_starpu_conf_check_environment, 22
_starpu_driver_start, 23
_starpu_get_disable_kernels, 24
_starpu_get_initial_sched_ctx, 25
_starpu_get_local_worker_key, 24
_starpu_get_local_worker_set_key, 24
_starpu_get_machine_config, 24

INDEX 31

_starpu_get_nsched_ctxs, 25
_starpu_get_sched_ctx_struct, 24
_starpu_get_worker_struct, 24
_starpu_machine_is_running, 22
_starpu_may_pause, 22
_starpu_set_argc_argv, 22
_starpu_set_local_worker_key, 24
_starpu_set_local_worker_set_key, 24
_starpu_worker_apply_deferred_ctx_changes, 26
_starpu_worker_can_block, 23
_starpu_worker_enter_changing_ctx_op, 26
_starpu_worker_enter_sched_op, 26
_starpu_worker_exists, 23
_starpu_worker_get_id, 25
_starpu_worker_get_status, 24
_starpu_worker_init, 22
_starpu_worker_leave_changing_ctx_op, 26
_starpu_worker_lock, 26
_starpu_worker_process_block_in_parallel_←↩

requests, 25
_starpu_worker_refuse_task, 27
_starpu_worker_relax_on, 26
_starpu_worker_relax_on_locked, 26
_starpu_worker_request_blocking_in_parallel, 25
_starpu_worker_request_unblocking_in_parallel,

25
_starpu_worker_set_status, 24
_starpu_worker_start, 23
starpu_worker_get_nids_ctx_free_by_type, 25

Generated by Doxygen

	1 Introduction
	1.1 Motivation

	2 StarPU Core
	2.1 StarPU Core Entities
	2.1.1 Overview
	2.1.2 Workers
	2.1.3 Scheduling Contexts
	2.1.4 Workers and Scheduling Contexts
	2.1.5 Drivers
	2.1.6 Tasks and Jobs
	2.1.7 Data

	3 Module Index
	3.1 Modules

	4 Module Documentation
	4.1 Workers
	4.1.1 Detailed Description
	4.1.2 Data Structure Documentation
	4.1.3 Function Documentation

	5 Index

