programmer's documentation
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Functions/Subroutines
bilsct.f90 File Reference

This function adds the explicit part of the convection/diffusion terms of a transport equation of a scalar field $ \varia $ such as the temperature. More...

Functions/Subroutines

subroutine bilsct (idtvar, ivar, iconvp, idiffp, nswrgp, imligp, ircflp, ischcp, isstpp, inc, imrgra, iccocg, ipp, iwarnp, blencp, epsrgp, climgp, extrap, relaxp, thetap, pvar, pvara, coefap, coefbp, cofafp, cofbfp, flumas, flumab, viscf, viscb, xcpp, smbrp)
 

Detailed Description

This function adds the explicit part of the convection/diffusion terms of a transport equation of a scalar field $ \varia $ such as the temperature.

More precisely, the right hand side $ Rhs $ is updated as follows:

\[ Rhs = Rhs + \sum_{\fij \in \Facei{\celli}} \left( C_p\dot{m}_\ij \varia_\fij - \lambda_\fij \gradv_\fij \varia \cdot \vect{S}_\ij \right) \]

Warning: $ Rhs $ has already been initialized before calling bilsct!

Options for the convective scheme:

Function/Subroutine Documentation

subroutine bilsct ( integer  idtvar,
integer  ivar,
integer  iconvp,
integer  idiffp,
integer  nswrgp,
integer  imligp,
integer  ircflp,
integer  ischcp,
integer  isstpp,
integer  inc,
integer  imrgra,
integer  iccocg,
integer  ipp,
integer  iwarnp,
double precision  blencp,
double precision  epsrgp,
double precision  climgp,
double precision  extrap,
double precision  relaxp,
double precision  thetap,
double precision, dimension (ncelet)  pvar,
double precision, dimension(ncelet)  pvara,
double precision, dimension(nfabor)  coefap,
double precision, dimension(nfabor)  coefbp,
double precision, dimension(nfabor)  cofafp,
double precision, dimension(nfabor)  cofbfp,
double precision, dimension(nfac)  flumas,
double precision, dimension(nfabor)  flumab,
double precision, dimension (nfac)  viscf,
double precision, dimension (nfabor)  viscb,
double precision, dimension(ncelet)  xcpp,
double precision, dimension(ncelet)  smbrp 
)
Parameters
[in]idtvarindicator of the temporal scheme
[in]ivarindex of the current variable
[in]iconvpindicator
  • 1 convection,
  • 0 sinon
[in]idiffpindicator
  • 1 diffusion,
  • 0 sinon
[in]nswrgpnumber of reconstruction sweeps for the gradients
[in]imligpclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]ircflpindicator
  • 1 flux reconstruction,
  • 0 otherwise
[in]ischcpindicator
  • 1 centred
  • 0 2nd order
[in]isstppindicator
  • 1 without slope test
  • 0 with slope test
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterativ gradients)
  • 0 otherwise
[in]ippindex of the variable for post-processing
[in]iwarnpverbosity
[in]blencpfraction of upwinding
[in]epsrgprelative precision for the gradient reconstruction
[in]climgpclipping coeffecient for the computation of the gradient
[in]extrapcoefficient for extrapolation of the gradient
[in]relaxpcoefficient of relaxation
[in]thetapweightening coefficient for the theta-schema,
  • thetap = 0: explicit scheme
  • thetap = 0.5: time-centred scheme (mix between Crank-Nicolson and Adams-Bashforth)
  • thetap = 1: implicit scheme
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]coefapboundary condition array for the variable (Explicit part)
[in]coefbpboundary condition array for the variable (Impplicit part)
[in]cofafpboundary condition array for the diffusion of the variable (Explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (Implicit part)
[in]flumasmass flux at interior faces
[in]flumabmass flux at boundary faces
[in]viscf$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]viscb$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]xcpparray of specific heat ( $ C_p $)
[in,out]smbrpright hand side $ \vect{Rhs} $