The Backpack Manual

December 19, 2014

What is this? This is an in-depth technical specification of all of the new components associated with
Backpack, a new module system for Haskell. This is not a tutorial, and it assumes you are familiar with the
basic motivation and structure of Backpack.

How to read this manual This manual is split into three sections, in dependency order. The first section
describes the new features added to GHC, e.g., new compilation flags and input formats. In principle, a
user could take advantage of Backpack using just these features, without using Cabal or cabal-install; thus,
we describe it first. The next section describes the new features added to the library Cabal, and the last
section describes how cabal-install drives the entire process. A downside of this approach is that we start
off by describing low-level GHC features which are quite dissimilar from the high-level Backpack interface,
but we’re not really trying to explain Backpack to complete new users. Red indicates features which are not
implemented yet.

1 GHC

1.1 Signatures

An hsig file represents a (type) signature for a Haskell module, containing type signatures, data declarations,
type classes, type class instances, but not value deﬁnitionsEl The syntax of an hsig file is similar to an
hs-boot file. Here is an example of a module signature representing an abstract map type:

module Map where

type role Map nominal representational
data Map k v

instance Functor (Map k)

empty :: Map k a

For entities that can be explicitly exported and imported, the export list of a module signature behaves
in the same way as the export list for a normal module (e.g., if no list is provided, only entities defined in
the signature are made available.)

However, type class instances and type family instances operate differently: an instance is only exported
if it is directly defined in the signature. This is in contrast to the module behavior, where an instance is
implicitly brought into scope if it is imported in any way (even with an empty import list.)

Even if an instance is “hidden” (i.e., not exported by a signature but in the implementation), we still take
it into account when calculating conflicting instances (e.g., the soundness checks for type families). Thus,
some compilation errors may only occur when linking an implementation and user, even if they compiled
individually fine against the signature in question.

An hsig file can either be type-checked or compiled against some backing implementation, an hs module
which provides all of the declarations that a signature advertises.

1Signatures are the backbone of the Backpack module system. A signature can be used to type-check client code which uses
a module (without the module implementation), or to verify that an implementation upholds some signature (without a client
implementation.)

Typechecking A signature file can be type-checked in the same way as an ordinary Haskell file:
$ ghc -c Map.hsig -fno-code -fwrite-interface

This procedure generates an interface file, which can be used to type check other modules which depend
on the signature, even if no backing implementation is available. By default, this generated interface file is
given fresh original names for everything in the signature. For example, if data T is defined in two signature
files A.hsig and B.hsig, they would not be considered type-equal, and could not be used interconvertibly,
even if they had the same structure.

To explicitly specify what original name should be assigned (e.g., to make the previous example type-
equal) the -shape-of flag can be used:

$ ghc -c Map.hsig -shape-of "Map is containers_KEY:Data.Map.Map" \
-fno-code -fwrite-interface

-shape-of is comma separated list of name is origname entries, where name is an unqualified name
and origname is an original name, of the form package KEY:Module.name, where package KEY is a package
key identifying the origin of the identifier (or a fake identifier for a symbol whose provenance is not known).
Each instance of origname in the signature is instead assigned the original name origname, instead of the
default original name.

(ToDo: This interface will work pretty poorly with --make)

Compiling We can specify a backing implementation for a signature and compile the signature against it
using the -sig-of flag:

$ ghc -c Map.hsig -sig-of "package_KEY:Module"

The -sig-of flag takes as an argument a module, specified as a package key, a colon, and then the
module name. This module must be a proper, exposed-module, and not a reexport or signature.

Compilation of a signature entails two things. First, a consistency check is performed between the
signature and the backing implementation, ensuring that the implementation accurately implements all of
the types in the signature. For every declaration in the signature, there must be an equivalent one in the
backing implementation with an identical type (this check is quite similar to the one used for hs-boot).
Second, an interface file is generated which reexports the set of identifiers from the backing implementation
that were specified in the signature. A file which imports the signature will use this interface ﬁleEl

ToDo: In what cases is a type class instance/type family instance reexported? Currently, type classes
from the backing implementation leak through. We also need to fix #9422.

1.2 Extended format in the installed package database

After a set of Haskell modules has been compiled, they can be registered as a package in the installed package
database using ghc-pkg. An entry in the installed package database specifies what modules and signatures
from the package itself are available for import. It can also re-export modules and signatures from other

packagesﬂ
There are three fields of an entry in the installed package database of note.

2This interface file is similar to a module which reexports identifiers from another module, except that we also record the
backing implementation for the purpose of handling imports, described in the next section.

3Signature reexports are essential for creating signature packages in a modular way; module reexports are very useful for
backwards-compatibility packages and also taking an package that has been instantiated multiple ways and giving its modules
unique names.

exposed-modules A comma-separated list of module names which this package makes available for im-
port, possibly with two extra, optional pieces of information about the module in question: what the original
module/signature is (from MODULE)H7 and what the backing implementation is (is MDDULE)E

exposed-modules:
A, # original module
B from ipid:B, # reexported module
C is ipid:CImpl, # exposed signature
D from ipid:D is ipid:DImpl, # reexported signature
D from ipid:D2 is ipid:DImpl # duplicates can be 0K

If no reexports or signatures are used, the commas can be omitted (making this syntax backwards
compatible with the original syntax.)ﬁ

instantiated-with A map from hole name to the original module which instantiated the hole (i.e., what
-sig-of parameters were used during compilation.)

key The package key of a package, an opaque identifier identifying a package which serves as the basis for
type identity and linker symbolsm When files are compiled as part of a package, the package key must be
specified using the -this-package-key ﬂagﬁ

The package key is programatically generated by Caba]ﬂ While GHC doesn’t specify what the format
of the package key is, Cabal’s must choose distinct package keys if any of the following fields in the installed
package database are distinct:

e name (e.g., containers)
e version (e.g., 0.8)
e depends (with respect to package keys)

e instantiated-with (with respect to package keys and module names)

1.3 Module thinning and renaming

The command line flag -package pkgname causes all exposed modules of pkgname (from the installed package
database) to become visible under their original names for imports. The -package flag and its variants
(-package-id and -package-key) support “thinning and renaming” annotations, which allows a user to
selectively expose only certain modules from a package, possibly under different namesm

4Knowing the original module/signature makes it possible for GHC to directly load the interface file, without having to
follow multiple hops in the package database.

5Knowing the backing implementation makes it possible to tell if an import is unambiguous without having to load the
interface file first.

6 Actually, the parser is a bit more lenient than that and can figure out commas when it’s omitted. But it’s better to just
put commas in.

"Informally, you might think of a package as a package name and its version, e.g., containers-0.9; however, sometimes, it
is necessary to distinguish between installed instances of a package with the same name and version which were compiled with
different dependencies.

8The package key is different from an installed package ID, which is a more fine-grained identifier for a package. Identical
installed package IDs imply identical package keys, but not vice versa. However, within a single run of GHC, we enforce that
package keys and (non-shadowed) installed package IDs are in one-to-one correspondence.

91n practice, a package key looks something like conta_GtvvBIboSRuDmyUQfSZoAx. In this document, we’ll use containers KEY
as a convenient shorthand to refer to some package key for the containers package.

10This feature has utility both with and without Backpack. The ability to rename modules makes it easier to deal with
third-party packages which export conflicting module names; under Backpack, this situation becomes especially common when
an indefinite package is instantiated multiple time with different dependencies.

Thinning and renaming can be applied using the extended syntax -package "pkgname (rns)", where
rns is a comma separated list of module renamings 01dName as NewName. Bare module names are also
accepted, where Name is shorthand for Name as Name. A package exposed this way only causes modules
(specified before the as) explicitly listed in the renamings to become visible under their new names (specified
after the as). For example, -package "containers (Data.Set, Data.Map as Map)" makes Data.Set and
Map (pointing to Data.Map) available for importﬂ
When the ~hide-all-packages flag is applied, uses of the —package flag are cumulative; each argument is
processed and its bindings added to the global module map. For example, ~hide-all-packages -package containers -pac
brings both the default exposed modules of containers and a binding for Map into scope[7]

1.4 Disambiguating imports

With module thinning and renaming, as well as the installed package database, it is possible for GHC to
have multiple bindings for a single module name. If the bindings are ambiguous, GHC will report an error
when the user attempts to use the identifier.

Define the true module associated with a binding to be the backing implementation, if the binding is for
a signatureE and the original module otherwise. A binding is unambiguous if the true modules of all the
bindings are equal. Here is an example of an unambiguous set of exposed modules:

exposed-modules:
A from pkg:AImpl,
A is pkg:AImpl,
A from other-pkg:Sig is pkg:AlImpl

This mapping says that this package reexports pkg:AImpl as A, has an A.hsig which was compiled
against pkg: AImpl, and reexports a signature from other-pkg which itself was compiled against pkg: AImpl.

When Haskell code makes an import, we either load the backing implementation, if it is available as a
direct reexport or original definition, or else load all of the interface files available as signatures. Loading all
of the interfaces is guaranteed to not cause conflicts, as the backing implementation of all the signatures is
guaranteed to be identical (assuming that it is unambiguous.)

Home package signatures In some circumstances, we may both define a signature in the home package,
as well as import a signature with the same name from an external package. While multiple signatures from
external packages are always merged together, in some cases, we will ignore the external package signature
and only use the home package signature: in particular, if an external signature is not exposed from an
explicit -package flag, it is not merged in.

Package imports A package import, e.g.,
import "foobar" Baz

operates as follows: ignore all exposed modules under the name which were not directly exposed by the
package in question. If the same package name was included multiple times, all instances of it are considered
(thus, package imports cannot be used to disambiguate between multiple versions or instantiations of the
same package. For complex disambiguation, use thinning and renaming.)

In particular, package imports consider the immediate package which exposed a module, not the original
package which defined the module.

1See also Cabal files for a twist on this syntax.

12The previous behavior, and the current behavior when -hide-all-packages is not set, is for a second package flag for the
same package name to override the first one.

13We defer discussion of what happens when a module name is bound multiple times until we have discussed signatures,
which have interesting behavior on this front.

14This implements signature merging, as otherwise, we would not necessarily expect original signatures to be equal

Typechecking When typechecking only, there is not necessarily a backing implementation associated with
a signature. In this case, even if the original names match up, we must perform an additional check to ensure
declarations have compatible types. This check is not necessary during compilation, because -sig-of will
ensure that the signatures are compatible with a common, unique backing implementation.

User-interface A number of operations in the compiler accept a module name, and perform some oper-
ation assuming that, if the name successfully resolves, it will identify a unique module. In the presence of
signatures, this assumption no longer holds. In this section, we describe how to adjust the behavior of these
various operations:

e ghc —-abi-hash M fails if M resolves to multiple signatures. Same rules for home/external package
resolution apply, so in the absence of any other flags we will hash the signature interface in the home
package.

1.5 Indefinite external packages
Not implemented yet.

2 Backpack

This entire section is a proposed and has not been implemented.

In this section, we describe an expanded version of the package language described in the Backpack
paper which GHC accepts as input. Given a Backpack file, GHC performs shaping analysis, typechecking,
compilation and registration of multiple packages (whose source code is specified by the Backpack file). A
Backpack file replaces use of -shape-of, -sig-of and -package ﬂagsm

A Backpack file consists of a list of named packages, each of which is composed of fields (similar to fields
in Cabal package description) which specify various aspects of the package. A package may optionally be
an installed package (specified by the installed keyword), in which case the package refers to an existing
package (with no holes) in the installed package database; in this case, all fields are omitted except for id,
which identifies the specific package in use.

All packages in a Backpack file live in the global namespace. A possible future addition would be the
ability to specify private packages which are not exposed.

backpack ::= package_0O
I;;lékage_n
package ::= ["installed"] "package" pkgname
field_0
field.n
pkgname ::= /* package name, e.g. containers (no version!) */

15Backpack files are generated by Cabal. Cabal is responsible for downloading source files, resolving what versions of packages
are to be used, executing conditional statements. Once the Cabal files are compiled into a Backpack file, it is passed to GHC,
which is responsible for instantiating holes and compiling the packages. The package descriptions in a Backpack file are not
full Cabal packages, but contain the minimum information necessary for GHC to work: they are more akin to entries in the
installed package database (with some differences).

160ne design goal of this separate package language from Cabal is that it can more easily be incorporated into a language
specification, without needing the specification to pull in a full description of Cabal.

field ::= "includes:" includes
| "exposed-modules:" modnames
| "other-modules:" modnames
| "exposed-signatures:" modnames
| "required-signatures:" modnames
| "reexported-modules:" reexports
| "source-dir:" path
| "installed-ids:" ipids
|

pkgdb_field

We now describe the package fields in more detail.

2.1 includes
includes ::= include_O "," "," include_n
include ::= pkgname ["(" renames ")"]
renames ::= rename_O "," ... "," rename_n
rename = modname

| modname "as" modname

The includes field consists of a comma-separated list of packages to include. This field is similar to
the Cabal build-depends field, except that no version numbers are allowed. Each package has all exposed
modules and signatures are brought into scope under their original names, unless there is a parenthesized,
comma-separated thinning and renaming specification which causes only the specified modules are brought
into scope (under new names, if the as keyword is used).

Package inclusion is the mechanism by which holes are instantiated: a hole and an implementation which
are brought in the same scope with the same name are linked together. If a package is included multiple
times, it is treated as a separate instantiation for the purpose of filling holes.

2.2 exposed-modules, other-modules, exposed-signatures, required-signatures

modnames ::= modname_0 . modname_n

The exposed-modules, other-modules, exposed-signatures and required-signatures are exactly
analogous to their Cabal counterparts, and consist of lists of module names which are to be compiled from
the package’s source directory.

2.3 reexported-modules

reexports ::= modname "as" modname

The reexported-modules field is exactly analogous to its Cabal counterpart, and allows reexporting an

in-scope module under a different name["|

2.4 source-dir

path ::= /% file path, e.g. /home/alice/src/containers */

The source-dir field specifies where the source files of the package in question live, e.g. if source-dir:
/foo then we expect the hs file for module A to live in /foo/A.hs.

7This is different from aliasing in the original Backpack language, since reexported modules are not visible in the current
package.

2.5 installed-ids

ipids ::= ipid_0 ... ipid_n
ipid ::= /* installed package ID, e.g. containers-0.8-HASH */

The installed-ids field specifies existing, compiled packages in the installed package database, which
should be used when possible instead of recompiling the package in question. If the package in question is
an indefinite package (with holes), there may be multiple installed-ids, corresponding to compilations of
the package with different hole instantiations.

The installed-ids field is mandatory for an installed package: it specifies the installed package
database entry which can be used to find the omitted installed package database fields.

2.6 Installed package database fields

GHC’s installed package database supports a number of other fields which are necessary for GHC to build
some packages, e.g., the extraLibraries field which specifies operating system libraries which also have to
be linked in. Backpack packages accept any fields which are valid in the installed package database, except
for: name, id, key and instantiated-with (which are computed by GHC itself).

2.7 Structure of a Backpack file

In general, a Backpack file must contain the package descriptions of all packages which are transitively
depended on (in case one of those packages must be rebuilt.) However, if we know a specific version of a
package is already in the installed package database, its description may be replaced with an installed
package entry, in which case the description (and description of its dependencies) can be omitted. An
alternative is to have an indefinite package database, in which case this database is simply always in scope.
This might be better if we want to save interface files associated with indefinite packages.

It should be emphasized that while the Backpack file leaves the instantiation of holes implicit (to be
resolved by looking at the included packages and linking modules together), all package versions must be
resolved prior to writing a Backpack file. A Backpack file assumes that the versions of all packages are
consistent (e.g., any reference to foo will always be a reference to foo-1.2).

3 Cabal
3.1 Fields in the Cabal file

The Cabal file is a user-facing description of a package, which is converted into an InstalledPackageInfo
during a Cabal build. Backpack extends the Cabal files with four new fields, all of which are only valid in
the library section of a package:

required-signatures A space-separated list of module names specifying internal signatures (in hsig files)
of the package. Signatures specified in this field are not put in the exposed-modules field in the installed
package database and are not available for external import; however, in order for a package to be compiled,
implementations for all of its signatures must be provided (so they are not completely hidden in the same
way other-modules are).

exposed-signatures A space-separated list of module names specifying externally visible signatures (in
hsig files) of the package. It is represented in the installed package database as an exposed-module with a
non-empty backing implementation (Sig is Impl). Signatures exposed in this way are available for external
import. In order for a package to be compiled, implementations for all exposed signatures must be provided.

indefinite A package is indefinite if it has any uninstantiated required-signatures or exposed-signatures,
or it depends on an indefinite package without instantiating all of the holes of that package. In principle,
this parameter can be calculated by Cabal, but it serves a documentory purpose for packages which do not
have any signatures themselves, but depend on packages which are indefinite. Actually, this field is in the
top-level at the moment.

reexported-modules A comma-separated list of module or signature reexports. It is represented in the
installed package database as a module with a non-empty original module/signature: the original module is
resolved by Cabal. There are three valid syntactic forms:

e Orig, which reexports any module with the name Orig in the current scope (e.g., as specified by
build-depends).

e Orig as New, which reexports a module with the name Orig in the current scope. Orig can be a home
module and doesn’t necessarily have to come from build-depends.

e package:0rig as New, which reexports a module with name Orig from the specific source package
package.

If multiple modules with the same name are in scope, we check if it is unambiguous (the same check
used by GHC); if they are we reexport all of the modules; otherwise, we give an error. In this way, packages
which reexport multiple signatures to the same name can be valid; a package may also reexport a signature
onto a home hsig signature.

3.2 build-depends

This field has been extended with new syntax to provide the access to GHC’s new thinning and renaming
functionality and to have the ability to include an indefinite package multiple times (with different instanti-
ations for its holes).

Here is an example entry in build-depends: foo >= 0.8 (ASig as Al, B as Bl; ASig as A2, ...).
This statement includes the package foo twice, once with ASig instantiated with A1 and B renamed as B1,
and once with ASig instantiated with A2, and all other modules imported with their original names. As-
suming that the key of the first instance of foo is foo KEY1 and the key of the second instance is foo KEY2,
and that ASig is an exposed-signature, then this build-depends would turn into these flags for GHC:
-package-key "foo_KEY1 (ASig as Al, B as B1)" -package-key "foo_KEY2" -package-key "foo_KEY2 (ASig a

Syntactically, the thinnings and renamings are placed inside a parenthetical after the package name
and version constraints. Semicolons distinguish separate inclusions of the package, and the inner comma-
separated lists indicate the thinning/renamings of the module. You can also write . . ., which simply includes
all of the default bindings from the package. This is not implemented. Should this only refer to modules
which were not referred to already? Should it refer only to holes?

There are two remarks that should be made about separate instantiations of the package. First, Cabal will
automatically “de-duplicate” instances of the package which are equivalent: thus, foo (A; B) is equivalent
to foo (A, B) when foo is a definite package, or when the holes instantiation for each instance is equivalent.
Second, when merging two build-depends statements together (for example, due to a conditional section
in a Cabal file), they are considered separate inclusions of a package.

3.3 Setup flags

There is one new flag for the Setup script, which can be used to manually provide instantiations for holes
in a package: --instantiate-with NAME=PKG:MOD, which binds a module NAME to the implementation MOD
provided by installed package ID PKG. The flag can be specified multiply times to provide bindings for all
signatures. The module in question must be the original module, not a re-export.

3.4 Metadata in the installed package database

Cabal records
instantiated-with

4 cabal-install

4.1 Indefinite package instantiation

	GHC
	Signatures
	Extended format in the installed package database
	Module thinning and renaming
	Disambiguating imports
	Indefinite external packages

	Backpack
	includes
	exposed-modules, other-modules, exposed-signatures, required-signatures
	reexported-modules
	source-dir
	installed-ids
	Installed package database fields
	Structure of a Backpack file

	Cabal
	Fields in the Cabal file
	build-depends
	Setup flags
	Metadata in the installed package database

	cabal-install
	Indefinite package instantiation

