
gpsim

$Date:: 2009-08-24 #$

Contents

1 gpsim - An Overview 6

1.1 Making the executable . 6

1.1.1 Make Details - ./configure options 6

1.1.2 RPMs . 7

1.1.3 Windows . 7

1.2 Running . 7

1.3 Requirements . 8

2 Command Line Interface 9

2.1 attach . 10

2.2 break . 11

2.3 clear . 13

2.4 disassemble . 13

2.5 dump . 14

2.6 echo . 14

2.7 frequency . 14

2.8 help . 15

2.9 icd . 15

2.10 list . 15

2.11 load . 15

2.12 macros . 16

2.13 module . 17

2.14 node . 19

2.15 processor . 19

2.16 quit . 19

2.17 run . 20

2.18 step . 20

1

CONTENTS 2

2.19 symbol . 20

2.20 stimulus . 20

2.21 stopwatch . 21

2.22 trace . 22

2.23 version . 22

2.24 x . 22

3 Graphical User Interface 24

3.1 Main window . 24

3.1.1 Menus . 24

3.1.2 Buttons . 24

3.1.3 Simulation mode . 25

3.2 Source Browsers . 25

3.2.1 .asm Browser . 25

3.2.2 Opcode view - the .obj Browser 26

3.3 Register views . 27

3.4 Symbol view . 28

3.5 Watch view . 29

3.6 Stack viewer . 29

3.7 Breadboard . 30

3.8 Trace viewer . 30

3.9 Profile viewer . 31

3.10 Stopwatch . 32

3.11 Scope Window . 32

4 Scripting and Configuring 33

4.1 Embedded Commands . 33

4.1.1 .sim macro . 33

4.1.2 .command macro . 34

4.1.3 .assert macro . 34

4.2 Sockets . 35

5 Assertions and Extended Breakpoints 36

5.1 Assertions and Embedded Simulation commands 37

6 Trace and Log: What has happen? 38

CONTENTS 3

7 Simulating the Real World: Stimuli 41

7.1 How They Work . 41

7.1.1 Contention among stimuli 42

7.2 I/O Pins . 42

7.3 Asynchronous Stimuli . 43

7.3.1 Analog Asynchronous Stimuli 44

7.4 Extended Stimuli . 44

8 Modules 45

8.1 gpsim Modules . 46

8.1.1 USART . 46

8.1.2 Logic . 47

8.1.3 I2C EEPROM . 48

8.1.4 Switches & Resistors . 49

8.1.5 Voltage Sources, Resistors, and Capacitors 49

8.1.6 LED_7SEGMENTS and LED 49

8.2 Third Party Modules . 50

8.2.1 Character LCD - HD44780 50

8.2.2 Graphic LCD - SED1530 . 51

8.3 Writing new modules . 51

9 Symbolic Debugging 53

10 Macros 54

11 Hex Files 55

12 The ICD- Not Supported in versions 0.21.0 and later 56

13 Examples 58

14 Regression Tests 59

15 Theory of Operation 60

15.1 Background . 60

15.2 Instructions . 60

15.3 General File Registers . 61

15.4 Special File Registers . 61

15.5 Example of an instruction . 61

15.6 Trace . 63

CONTENTS 4

15.7 Breakpoints . 63

15.8 TIMER1 External input . 64

Introduction

gpsim is a full-featured software simulator for Microchip PIC microcontrollers dis-
tributed under the GNU General Public License (see the COPYING section).

gpsim has been designed to be as accurate as possible. Accuracy includes the entire
PIC - from the core to the I/O pins and including ALL of the internal peripherals. Thus
it’s possible to create stimuli and tie them to the I/O pins and test the PIC the same way
you would in the real world.

gpsim has been designed to be as fast as possible. Real time simulation speeds of
20Mhz pics are possible.

gpsim can be controlled from either a graphical user interface (GUI), a command line
interface (CLI) or by a remote process. Typical debugging features like breakpoints,
single stepping, disassembling, memory inspect & change, and so on are all supported.
In addition, complex debugging features like real time tracing, assertions, conditional
breaks, and plugin modules to name a few are also supported.

5

Chapter 1

gpsim - An Overview

If you don’t care to wade through details, this chapter should help you get things up and
running. The INSTALL and README files will provide more up-to-date information
than this document, so please refer to those first.

1.1 Making the executable

gpsim’s executable is created in a manner that’s consistentwith much of the other open
source software:

command description

tar -xvzf gpsim-x.y.z.tar.gz expand the compressed tar file
./configure Create a ’makefile’ unique to your system
make compile gpsim
make install install gpsim

The last step will require root privileges.

1.1.1 Make Details - ./configure options

gui-less

The default configuration will provide a gui (graphical userinterface). The cli (com-
mand line interface) is still available, however many people prefer just to use the cli.
These hardy souls may build a command-line only interface byconfiguring gpsim:./onfigure --disable-gui
debugging

If you want to debug gpsim then you will probably use gdb. Consequently, you will
want to disable shared libraries:

6

CHAPTER 1. GPSIM - AN OVERVIEW 7./onfigure --disable-shared
This will create one, huge monolithic executable with symbolic information.

1.1.2 RPMs

gpsim is also distributed in RPM form. In recent versions, there are two RPMs: gpsim-
devel and gpsim. Both of these must be installed. There is also a RPM for the source
code. This can be used to build a binary RPM unique to your system. Please see the
latest INSTALL and README for the most up to date information.

1.1.3 Windows

gpsim runs on Windows too. Borut Razem maintains the gpsim Windows web site:

http://gpsim.sourceforge.net/gpsimWin32/gpsimWin32.html

You can find detailed instructions there for installing gpsim and its dependencies. Snap
shots can be found:

http://gpsim.sourceforge.net/snap.php

1.2 Running

The executable created above is called: gpsim. The following command line options
may be specified when gpsim is invoked.gpsim [-?℄ [-p <devie> [<hex_file>℄℄ [[-℄ <st_file>℄ [[-s℄ <symbol file>℄-p, --proessor=<proessor name> proessor (e.g. -pp1684 for the '84)-, --ommand=STRING startup ommand file (optional .st files)-s .od symbol file (optional .od files)-L, -- olon separated list of diretories tosearh.-v, --version gpsim version-i, --li ommand line mode only-d, --id=STRING use ICD (e.g. -d /dev/ttyS0).Help options:-?, --help Show this help message--usage Display brief usage message
Typically gpsim will be invoked like:[My-Computer℄$ gpsim mypi-program.od

CHAPTER 1. GPSIM - AN OVERVIEW 8

(The[My-Computer]$text is an example of a typical bash command prompt - you will
only type the text after this prompt). This loads the .cod filegenerated by gputils.

Under Windows, gpsim can also be invoked by navigating through the Start/Program
menu. This will open a DOS window to provide access to the command line interface.
It’s also possible to open a DOS window (or CygWin bash session) and invoke gpsim
from there.

1.3 Requirements

gpsim has been developed under Linux. It should build and runjust fine under the
popular Linux distributions like Fedora, Ubuntu, etc. gpsim has also been ported to the
MAC, MicroSoft Windows, Solaris, and BSD. Two packages gpsim requires that may
not be available with all Linux distributions are readline and gtk (the gimp tool kit).
The ./configure script should tell you if these packages are not installed on your system
or if the revisions that are installed are too old.

There are no minimum hardware requirements to run gpsim. Faster is better though!

gputils, the gnupic utilities package, is also very useful.gpsim will accept straight
hex files, but if you want to do any symbolic debugging then youwill want to use the
.cod1 files that gputils produces. The .cod files are in the same format as the .cod files
MPASM2 produces.

1.cod files are symbol files that were created by ByteCraft and are used by Microchip.
2MPASM is Microchip’s Assembler.

Chapter 2

Command Line Interface

The command line interface is fairly straight-forward. Thetable below summarizes the
available commands. Brief descriptions of these commands can also be displayed by
typinghelpat the command line.

9

CHAPTER 2. COMMAND LINE INTERFACE 10

command summary

attach Attach stimuli to nodes
break Set a break point
bus Add or display node busses

clear Remove a break point
disassemble Disassemble the current cpu

dump Display either the RAM or EEPROM
frequency Set processor frequency

help Type help "command" for more help on a command
icd In Circuit Debugger support.
list Display source and list files
load Load either a hex or command file
log Log/record events to a file

node Add or display stimulus nodes
module Select & Display modules

processor Add/list processors
quit Quit gpsim
reset Reset all or parts of the simulation
run Execute the pic program
set display and control gpsim behavior flags
step Execute one or more instructions

stimulus Create a stimulus
stopwatch Measure time between events
symbol Add/list symbols
trace Dump the trace history

version Display gpsim’s version
x (deprecated) examine and/or modify memory

The built in ’help’ command provides additional online information.

2.1 attachattah node1 stimulus1 [stimulus2 stimulus_N℄
Attach is used to define connections between one or more stimulus and a node. One
node and at least one stimulus must be specified, but in general two or more stimuli
are used. Attach can be viewed as wiring stimuli together, with the node acting as the
wire. A stimulus is either a CPU or module I/O pin or a stimulusname.

Attach_pointN can have one of the following formats

pin(<number>) or pin(<symbol>)

This refers to a pin of the current active CPU.

<number> is the pin number

CHAPTER 2. COMMAND LINE INTERFACE 11

<symbol> is an integer symbol whose value is a pin number

<connection> or pin(<connection>)

These two forms are treated exactly the same (i.e. the pin() has no mean-
ing).

<connection> is a stimulus name or an I/O pin name.

I/O pin name can be just the pin name for the CPU or <module_name>.pin_name
for a module or CPU

Example**gpsim> load instrutions_14bit.od # load ode**gpsim> module library libgpsim_modules #load module lib**gpsim> module load usart U1 # reate USART**gpsim> node n1 # define a node**gpsim> node n2 #define another node**gpsim> symbol TWO=2 #define symbol with value 2**gpsim> attah n1 pin(1) pin(TWO) #attah CPU pins 1 and 2**gpsim> attah n1 U1.RXPIN #add usart pin to n1**gpsim> attah n2 portb0 pin(U1.TXPIN) #onnet portb0 to UASRT TX pin**gpsim> node # show results
2.2 break

The break command is used to set and examine break points. Newbreak points are
assigned a unique number. This number can be used to query or clear the break point.
Break points halt the simulation when the condition associated with them is true. Break
points are ignored during single stepping. See chapter 5 formore examples of break-
points.

Examining break pointsbreak [bp_number℄
Break points can be examined by typing the break command without any options. Spe-
cific breaks can be queried by specifying the break point number.

Program Memory/Execution breaks

The most common break point is an execution break point. Thisone halts execution
whenever the program counter reaches the address at which the break point is set. The
syntax is:break e|r|w ADDRESS [expr℄

CHAPTER 2. COMMAND LINE INTERFACE 12

The simulation halts when the address is executed, read, or written. The ADDRESS
can be a symbol or a number. If the optional expression is specified, then it must
evaluate to true before the simulation will halt. The read and write options only apply
to those processors that can manipulate their own program memory.

Register Memory breaks

gpsim can also associate break points with register accesses. This is useful for cap-
turing bugs that stomp on RAM. E.g. you can say something like“halt execution
whenever bit 4 of register 42 is cleared”. The command line syntax is:break r|w REGISTER [expr℄
The simulation halts whenREGISTERis read or written and the optional expression
evaluates to true. There are two styles of expressions supported. One involves only
expressions of theREGISTER, the other is completely arbitrary. The examples below
illustrate the differences.

Here’s an example of a register write break. This one will halt the simulation if any
value is written to the variable namedtemp1.break w temp1
Here the write is conditioned to happen for only a certain value:break w temp1==0x22
Here the condition applies to specific bits:break w temp1 & 0b11110000 == 0b11000000
This one breaks only if the hex digit ’C’ is written to the upper nibble of temp1.

Boolean Expressions

Sometimes it’s necessary to specify an auxiliary conditionwith a break point. For
example, there may be a temporary variable that is shared throughout the code. You
may wish to trap writes to that variable only while executinga specific subroutine.
For example, the following break point triggers when temp1 is written and while the
program counter is in between the labelsfunc_startandfunc_end:break w temp1 (p >= fun_start && p < fun_end)
TIP: Use this type of break point if you suspect an interrupt routine is over writing a
variable.

Another situation is one where you wish to trap writes to a variable only if some other
variable is a certain value:

CHAPTER 2. COMMAND LINE INTERFACE 13break w temp1 (CurTask & 0x0f != 0b101)
If the firmware writes to the variable temp1 then the simulation will halt if the lower
nibble of CurTask is not equal to 5.

Attribute Breakpoints

gpsim also supports a concept ofattribute breakpoints.Attributes are parameters that
gpsim and its modules expose to the user interface. For example, the simulator stop-
watch exposes attributes which support breakpoints. This feature is intend mainly for
module writers to provide a mechanism for allowing the user to control the module.

Cycle counter Breakpointsbreak yle_number
The cycle counter is gpsim’s time keeper. It increments onceevery instruction cycle.
The ’c’ option to the break command allows a break point to be set at a particular value
of the cycle counter.

2.3 clearlear bp_number
The clear command is used to clear break points. The break point number must be
specified. Thebreak command without any arguments displays all of the currently
defined break points. This can be used to ascertain the break point number. Once
cleared, a break point is deleted.1

2.4 disassembledisassemble [[begin:end℄ | [length℄℄
The disassemble command decodes the program memory opcodesinto their standard
mnemonics. With no options, thedisassemblecommand disassembles instructions
surrounding the current program counter:gpsim> disassembleurrent p = 0x10012 2a03 inf reg3,f,00014 0004 lrwdt0016 5000 movf reg,w,0

1A break point disable/enable feature has been discussed andmay be added a future date.

CHAPTER 2. COMMAND LINE INTERFACE 140018 1001 iorwf reg1,w,0001a 1002 iorwf reg2,w,0==> 001 1003 iorwf reg3,w,0001e e1f4 bnz $-0x16 ;(0x8)0020 d7ff bra $-0x0 ;(0x00020)
With a single numeric option, the disassemble command will

2.5 dumpdump [r | e [module_name [filename℄℄℄
dump r or dump with no options will display all of the file registers and special function
registers.

dump e will display the contents of the processor EEPROM (if the pic being simulated
contains any).

The ’dump e module_name’ command will display the contents of an EEPROM where
module_name can either be the name of a module or processor which contains an
EEPROM.

The ’dump e module_name filename’ command dumps the contentsof a module’s
EEPROM, in Intel hex format, into the file with the given name.The ’load e’ command
can later be used to read the dumped file thus allowing the contents of the EEPROM to
be preserved between runs of gpsim.

See the ’x’ command for examining and modifying individual registers.

2.6 echo

The echo command is used like a print statement within configuration files. It just lets
you display information about your configuration file.

2.7 frequency

This command sets the clock frequency. By default gpsim uses20 MHz as clock. The
clock frequency is used to compute time in seconds. Use this command to adjust this
value. If no value is provided this command prints the current clock. Note that PICs
have an instruction clock that’s a forth of the external clock. This value is the external
clock.

CHAPTER 2. COMMAND LINE INTERFACE 15

2.8 help

By itself, help will display all of the commands along with a brief description on how
they work. ’help <command>’ provides more extensive onlinehelp. The help com-
mand can also display information about attributes.

2.9 icd

icd [open <port>]

The open command is used to enable ICD mode and specify the serial port where the
ICD is. (e.g. "icd open /dev/ttyS0"). Without options (and after the icd is enabled), it
will print some information about the ICD.

2.10 listlist [[s | l℄ [*p℄ [line_number1 [,line_number2℄℄℄Display the ontents of soure and list files.Without any options, list will use the last speified options.list s will display lines in the soure (or .asm) file.list l will display lines in the .lst filelist *p will display either .asm or .lst lines around the p
The list command allows you to view the source code while you are debugging.

2.11 load

The load command is used to load either hex, configuration, or.cod files. A hex file
is usually used to program the physical part. Consequently,it provides no symbolic
information. .cod files on the other hand, do provide symbolic information. The only
reason to use a hex file is when there’s no .cod file available.

The syntax for loading source code files is:load [proessortype℄ file
gpsim will automatically determine if the file is a .hex or .cod file. The optional pro-
cessortype allows one to override the processor specified ina .cod file.

Configuration files are script files containing gpsim commands. These are extremely
useful for creating a debugging environment that will be used repeatedly.load e module_name file

CHAPTER 2. COMMAND LINE INTERFACE 16

This command loads the contents of either a processor’s EEPROM or an EEPROM
module from a file containing the data in Intel hex format. In either case the address
of the first cell of the EEPROM is 0x0000. Used in conjunction with the ’dump e
module_name filename’ command, the contents of an EEPROM canbe carried over
from one run of gpsim to another.

2.12 macros

Macros are defined like:name maro [arg1, arg2, ..., argN℄maro bodyendm
And they’re invoked by:name param1, param2, ..., paramN
Macros are a way of collecting several parameterized commands into one short com-
mand. The first line of a macro definition specifies the macro’sname and optional
arguments. Thenameis used to invoke the macro. The arguments are text string place
holders. When a macro is invoked, the parameters are alignedwith the arguments. I.e.
param1in the invocation can be thought of being assigned toarg1 in the definition.
The parameters replace the arguments in the macro body.

In the following example, a variable or attribute calledmac_flagsis being manipulated
in an expression. The argumentsaddandmaskappear in the macro body and provide
a parameterized way of manipulating this expression.ma_exp maro add, maskma_flags = (ma_flags+add) & maskendm
Note that the indentation is arbitrary. The macro is invokedby:ma_exp 1, 0b00001111 # inrement the lower nibble
The parameteradd is replaced by the number1 while maskis replaced with the binary
number0b00001111.The invocation turns into the gpsim command:ma_flags = (ma_flags+1) & 0b00001111

CHAPTER 2. COMMAND LINE INTERFACE 17

Nested Macros

The macro body can contain any gpsim command. Of particular interest are macro
invocations within other macros. Here’s another macro thatinvokes the one defined
above.# Nested maro examplema1 maro p1, p2runma_exp p1, p2endm
And it could be used like:ma1 1, 0b00001111 # test lower nibblema1 (1<�<4), 0b11110000 # test upper nibble
The first invocation starts the simulator by executing arun command. When a break
point is encountered, control returns to the command line and themac_expmacro is
invoked.

Displaying Defined Macros

All currently defined macros can be displayed by typing the macro command without
a name or arguments:gpsim> maroma1 maro p1 p2runma_exp p1, p2endmma_exp maro add maskma_flags = (ma_flags+add) & maskendm
2.13 module

The modulecommand is used to load and query external modules (see section 8 for
more information about gpsim modules). A module is a specialpiece of software that
can extend gpsim in some manner. LED’s and switches are examples of modules. A
module library is collection of modules.

CHAPTER 2. COMMAND LINE INTERFACE 18

Loading module librariesmodule lib lib_name
Thelib option is used to load a module library. Module libraries aresystem dependent
shared libraries, i.e. on Windows they’re DLL’s and UNIX they’re shared libraries.
This means that either the libraries should reside in a path where the OS knows libraries
exist or that the full path name must be specified along with the lib_name. gpsim
provides a module library with a few modules:gpsim> module lib libgpsim_modules
Displaying available modulesmodule list
The list option will display all of the modules that can be loaded. Here is an example
of gpsim’s built-in modules.gpsim> module listModule Libraries libgpsim_modules.sopulluppulldownusartswithand2or2xor2notled_7segmentsledpulsegenEnoderTTL377
Loading a specific modulemodule load module_type [module_name℄
Once a library has been loaded, specific modules can be instantiated. Themodule_type
is what’s displayed by themodule listcommand. The optional module name specifies
what the instance is called. Here’s an examplegpsim> module load led D1

CHAPTER 2. COMMAND LINE INTERFACE 19

Display loaded modules

Querying modules

2.14 nodenode [new_node1 new_node2 ...℄
Thenodecommand defines or queries “nodes”, used to connect externalsignals to the
simulated PIC. If no new_node is specified then all of the nodes that have been defined
are displayed. If a new_node is specified then it will be addedto the node list. See the
"attach" and "stimulus" commands to see how stimuli are added to the nodes.examples:node // display the node listnode n1 n2 n3 // reate and add 3 new nodes to the list
2.15 processorproessor [new_proessor_type [new_proessor_name℄℄ | [list℄ | [dump℄
Theprocessorcommand is used to either define a new processor or to query onethat
has already been defined. Normally there’s no need to explicitly define the processor
since the symbol file already contains that information. Thetwo exceptions are when
a) the symbolic information is not available or b) you wish tooverride the processor
specified in the symbol file. (See theload command on how the processor in a symbol
file can be overridden.)

To see a list of the processors supported by gpsim, type ’processor list’. To display
the state of the I/O processor, type ’processor pins’. For now, this will display the pin
numbers and their current state.examples:proessor // Display the proessors you've already defined.proessor list // Display the list of proessors supported.proessor pins // Display the proessor pakage and pin stateproessor p16r84 fred // Create a new proessor.proessor p1674 wilma // and another.proessor p1665 // Create one with no name.
2.16 quit

Quit gpsim.

CHAPTER 2. COMMAND LINE INTERFACE 20

2.17 run

Start (or continue) simulation. The simulation will continue until the next break point
is encountered.

2.18 step

Execute a single instruction, or a specified number of instructions.step [over | n℄
With no arguments, the step command executes one instruction of the PIC code. If a
numeric argument is given, this specifies a fixed number of instructions to simulate.
The specific word “over” as an argument to step tells gpsim to run everything involved
in the current instruction. This would normally be used on a CALL instruction, in
which case the whole subroutine runs and the simulation stops after it returns.

2.19 symbolsymbol [symbol_name [symbol_type value℄℄
Thesymbolcommand is used to query and define symbols. If no options are specified,
the whole symbol table is displayed. The creation of user defined symbols is limited at
this time (see the online help for the current state of this command).

2.20 stimulusstimulus [[type℄ options℄
Thestimuluscommand creates a signal that can be tied to a node or an attribute. If no
options are specified then all currently defined stimuli are displayed.

Note that in most cases it is easier to create a stimulus file then to type the command
by hand.

initial_state state at the start and at the rollover
start_cycle simulation cycle when the stimulus will begin

period stimulus period
name specifies the stimulus name

Here’s an example of a stimulus that will generate two pulsesand repeat this in 1000
cycles.

CHAPTER 2. COMMAND LINE INTERFACE 21stimulus asynhronous_stimulus# The initial state AND the state the stimulus is when# it rolls overinitial_state 0start_yle 0# the asynhronous stimulus will roll over in 'period'# yles. Delete this line if you don't want a roll over.period 1000{ 100, 1,200, 0,300, 1,400, 0}# Give the stimulus a name:name two_pulse_repeatend
A stimulus can be queried by typing its name at the command line:gpsim> two_pulse_repeattwo_pulse_repeat attahed to pulse_nodeVth=0V Zth=250 ohms Cth=0 F nodeVoltage= 7.49998e-07VDriving=0 drivingState=0 drivenState=0 bitState=0states = 5100 1200 0300 1400 01000 0initial=0period=1000start_yle=0Next break yle=100
Even though this example uses 1’s and 0’s for the data, one canuse integers, floating
point numbers, or expressions instead. Integers are usefulfor supplying a stimulus to
an attribute. Expressions are useful for abstracting the data. See Chapter 7 for more
discussion and examples of stimuli.

2.21 stopwatch2A timer for monitoring and ontrolling the simulation.
2The stopwatch is really a collection of attributes and not a command. But the behavior is so similar to a

command that it has been included here.

CHAPTER 2. COMMAND LINE INTERFACE 22The units are in simulation yles.stopwath.rollover - speifies rollover value.stopwath.diretion - speifies ount diretion.stopwath.enable - enables ounting if true.
Without any options,stopwatchwill display the contents of the stopwatch timer.stop-
watch is writable, so you may initialize it to whatever value you like. The behavior
of the timer may be manipulated via the three attributes. The.rollover attribute is the
number of cycles at which the stopwatch timer rolls over. The.directionand.enable
attributes are boolean types. When true, the.direction attribute will instruction the
stopwatch to count up.

2.22 tracetrae [dump_amount℄
trace will print out the most recent "dump_amount" traces. If no dump_amount is
specified, then the entire trace buffer will be displayed.

2.23 versionversion
Display gpsim’s version. Note, this command will probably get replaced by an attribute
with the same (or similar) name.

2.24 x

The x command is deprecated. It’s former use was to examine and modify memory.
The preferred way to do this now is with expressions. The helpfor x now indicates
this: x examine ommand -- depreatedInstead of the using a speial ommand to examine and modifyvariables, it's possible to diretly aess them using gpsim'sexpression parsing. For example, to examine a variable:gpsim> my_variablemy_variable [0x27℄ = 0x00 = 0b00000000To modify a variablegpsim> my_variable = 10It's also possible to assign the value of register to anothergpsim> my_variable = portaOr to assign the results of an expression:

CHAPTER 2. COMMAND LINE INTERFACE 23gpsim> my_variable = (porta ^ port) & 0x0f

Chapter 3

Graphical User Interface

FIXME: We could use a few illustrations here!

gpsim also provides a graphical user interface that simplifies some of the drudgery
associated with the cli. It’s possible to open windows to view all the details about your
debug environment. To get the most out of your debugging session, you will want to
assemble your code with gpasm (the gnupic assembler) and usethe symbolic .cod files
it produces.

3.1 Main window

3.1.1 Menus

File->Open .stc or .cod files.

File->Quit Quit gpsim

Windows->* Open/Close the windows.

3.1.2 Buttons

(These are also found as keyboard bindings in the source windows.)

Step Step one instruction

Over Step until pc is after next instruction

Finish Run to return address

Run Run continuously

Stop Stop execution

Reset Reset CPU

24

CHAPTER 3. GRAPHICAL USER INTERFACE 25

3.1.3 Simulation mode

This controls how gpsim simulates, and how the GUI updates.

Never Don’t ever update the GUI when simulating. This is the fastest
mode. You will have to stop simulation by pressing Ctrl-C in the
command line interface.

x cycles Update the GUI every x cycles simulated.

every cycle Update the GUI every cycle. (you see everything,if you have filled
up on coffee :-)

x ms animate Here you can slow down simulation with a delay between every
cycle.

realtime This will make gpsim try to synchronize simulationspeed with wall
clock time.

3.2 Source Browsers

gpsim provides two views of your source: ’.asm’ and ’.obj’ browsers. The ’.asm’
browser is a color coded display of your pic source.

3.2.1 .asm Browser

When a .cod file with source is loaded, there should be something in this display.
(TODO: add section about high level debugging).

There is an area to the left of the source, where symbols representing the program
counter, breakpoints, etc are displayed. Double clicking in this area toggles break-
points. You can drag these symbols up or down in order to move them and change the
PC or move a breakpoint.

A right button click on the source pops up a menu with six items(the word ’here’ in
some menu items denote the line in source the mouse pointer was on when right mouse
button was clicked.):

Menu item Description

Find PC This menu item will find the PC and changed page tab and scroll the
source view to the current PC.

Run here This sets a breakpoint ’here’ and starts running until a breakpoint is
hit.

Move PC here This simply changes PC to the address that line ’here’ in source has.

Breakpoint here Set a breakpoint ’here’.

CHAPTER 3. GRAPHICAL USER INTERFACE 26

Profile start here Set a start marker for routine profiling here.

Profile stop here Set a stop marker. (See the section for the profiling window.)

Select symbol. This menu item is only available when some text is selected in the
text widget. What it does is search the list of symbols for theselected
word, and if it is found it is selected in the symbol window. Depend-
ing of type of symbol other things are also done, the same thing as
when selecting a symbol in the symbol window:

• If it is an address, then the opcode and source views displaythe
address.

• If it’s a register, the register viewer selects the cell.

• If it’s a constant, address, register or ioport, it is selected in the
symbol window.

Find text This opens up a search dialog. Every time you hit the’Find’ button,
the current notebook page is found and the source in that pageis
used.

Settings A dialog with which you can change the fonts used.

Controls A submenu containing the simulation commands. (these are also
found as keyboard bindings (recommended), or in the main window.)

These are the keyboard bindings:

Key command

s,S,F7 Step one instruction.

o,O,F8 Step over instruction

r,R,F9 Run continuously.

Escape Stop simulation.

f,F Run to return address

1..9 Step n instructions

3.2.2 Opcode view - the .obj Browser

This window has two tabs. One with each memory cell on one lineand information
about address, hexadecimal value and decoded instruction (i.e. disassembly), and one
with the program memory

displayed with sixteen memory cells per row and a configurable ASCII column.

CHAPTER 3. GRAPHICAL USER INTERFACE 27

The Assembly tab you can:

• Double click on a line to toggle breakpoints.

• Use the same keyboard commands as the in the source browser.

• Right click to get a menu where you can change the fonts.

The Opcode tab.

Here the program memory is ordered as columns of sixteen memory cells per column
and as many row as needed to contain all memory.

The seventeenth column contains an ASCII representation ofthe program memory.
You can configure this column to use one of three different modes:

• One byte per cell

• Two bytes per cell, MSB first.

• Two bytes per cell, LSB first.

You can change fonts with the menu item ’Settings’.

You can set breakpoints on one or more (drag the mouse to select more cells) addresses
with the right click menu.

3.3 Register views

There are two similar register windows. One for the RAM and one for the EEPROM
data, when available.

Here you see all registers in the current processor. Clicking on a cell displays it’s name
and value above the sheet of registers. You can change valuesby entering it in the entry
(or in the spreadsheet cell).

The following things can be done on one register, or a range ofregisters. (Selecting
a range of registers is done by holding down left mouse button, moving cursor, and
releasing button.)

• Set and clear breakpoints. Use the right mousebutton menu to pop up a menu
where you can select set read, write, read value and write value breakpoints. You
can also "clear breakpoints", notice the s in "clear breakpoints", every breakpoint
on the registers are cleared.

• Set and clear logging of registers. You can log reads, writes, reads/writes of
specific values and to bits selected by a specified mask. You can select a different
file name with ’set log filename...’. Default is "gpsim.log".You can choose LXT
or ASCII format. LXT can be read with the program gtkwave. ASCII is default.

CHAPTER 3. GRAPHICAL USER INTERFACE 28

• Copy cells. You copy cells by dragging the border of the selected cell(s).

• Fill cells. Move mouse to lower right corner of the frame of the selected cell(s),
and drag it. The one cell’s contents will be copied to the other cells.

• Watch them. Select the "Add Watch" menu item.

The cells have different background colors depending on if they represent:

• File Register (e.g. RAM): light cyan.

• Special Function Registers (e.g. STATUS,TMR0): dark cyan

• aliased register (e.g. the INDF located at address 0x80 is the same as the one
located at address 0x00): gray

• invalid register: black. If all sixteen registers in a row are invalid, then the row is
not shown.

• a register with one or more breakpoints: red. Logged registers are also red.

gpsim dynamically updates the registers as the simulation proceeds. Registers that
change value between updates of the window during simulation are highlighted with a
blue foreground color.

The menu also has a ’settings’ item where you can change the font used.

3.4 Symbol view

This window, as its name suggests, displays symbols. All of the special function reg-
isters will have entries in the symbol viewer. If you are using .cod files then you will
additionally have file registers (that are defined in cblocks), equates, and address labels.

You can filter out some symbol types using the buttons in the top of the window, and
you can sort the rows by clicking on the column buttons (the ones reading ’symbol’,
’type’ and ’address’).

You can add the symbol to the watch window by right-clicking and selecting the "Add
to watch window" menu item. This will add the ram register with address equal to the
symbols value to the watch window.

The symbol viewer is linked to the other windows. For example, if you click on a
symbol and:

• If it is an address, then the opcode and source views displaythe address.

• If it’s a register, the register viewer selects the cell.

CHAPTER 3. GRAPHICAL USER INTERFACE 29

3.5 Watch view

This is not a output-only window as the name suggests (changename?). You can both
view and change data. Double-clicking on a bit toggles the bit. You add variables
here by marking them in a register viewer and select “Add watch” from menu. The
right-click menu has the following items:

• Remove watch

• Set register value

• Clear Breakpoints

• Set break on read

• Set break on write

• Set break on read value

• Set break on write value

• Columns...

"Columns...” opens up a window where you can select which of the following data to
display:

• BP

• Type

• Name

• Address

• Dec

• Hex

• Bx (bits of word)

You can sort the list of watches by clicking on the column buttons. Clicking twice sorts
the list backwards.

3.6 Stack viewer

This window displays current stack. Selecting an entry makes the code windows dis-
play the return address. Double clicking sets a breakpoint on the return address.

CHAPTER 3. GRAPHICAL USER INTERFACE 30

3.7 Breadboard

Here you can create/modify and examine the environment around the pic. Pins are
displayed as an arrow. The direction of the arrow indicates if its an input or output pin.
The color of the arrow indicates its state (green=low, red=high).

You can’t instantiate pic processors from here, you will have to do that from the com-
mand line, or from a .stc file.

Your can create nodes by clicking on the "new node" button. (Anode is ’a piece of
wire’ to which you can connect stimulus.) You can see the listof created nodes under
the "nodes" item in the upper-left tree widget.

You can create connections to nodes by clicking on a pin, and then clicking on the
button "Connect stimulus to node". This will bring up a list of nodes. Choose one by
double-clicking on the one you like.

If you click on a pin that is already connected to a node, then you will see the node and
its connections in the lower left part of the window. You can disconnect a stimulus by
clicking on it and pressing the "remove stimulus" button.

When you want to add a module to the simulation, you first have to specify the library
which contains the module you want. Click on the "add library" button and enter
the library name (e.g. "libgpsim_modules.so"). Now you canclick the "add module"
button. Select the module you want from the list by double-clicking on it. Enter a
name for the module (this has to be unique, and not used before). You now have to
position the module. Move the mouse pointer to where you would like the module, and
left-click.

If you middle-click on a pin, you will see how the pin is connected. Press the "trace
all" to see all at

once, and "clear traces" to remove all (you will only remove the graphical trace, not
the connection!). If the tracing doesn’t work, try moving the packages so that there are
more space around the pins.

When you are done, you can save by clicking the "save configuration" button. You can
then load this file from the command line like this (assuming the .cod file with your
source is called "mycode.cod", and the file you just saved wascalled "mynets.stc":gpsim -s myode.od - mynets.st
You can’t load only the .stc file since this doesn’t contain the processor type and code.
You can create (with an editor) your own .stc file (e.g. my_project.stc) and in that file
put a command "load c mynets.stc" after you have loaded the .cod file. You then only
have to load this file (gpsim -c my_project.stc).

3.8 Trace viewer

This window shows the trace of instructions executed. See 6.

CHAPTER 3. GRAPHICAL USER INTERFACE 31

3.9 Profile viewer

This window show execution count for program memory addresses. The profile win-
dow must be opened before starting simulation, because the tracing is not enabled by
default.

Instruction profile

This shows the number of times each instruction are executed.

Instruction range profile

Here you can group ranges of instruction into one entry.

The right click menu contains:

Remove range Remove an entry.

Add range... Open a dialog from where you can add a range of instructions as
an entry.

Add all labels Add all code labels as ranges.

Snapshot to plot Open a window containing a graph of the data.From this new
window you can also save (postscript) or print it.

Register profile

This shows the number of reads or writes the simulator does onregister.

Routine profile

Here you can see statistics about execution time for a selected routine. You mark the
entry and exit points from the source browser (profile start/stop). If the routine you
want to measure have multiple entry and/or exit points, thenyou have to put a marker
on every entry point as well as (and especially) every exit point. Otherwise you will
get bad data.

When you have done that, gpsim will (as simulation goes by) store the execution times
of that routine and calculate min/max/average/etc. You canalso use the menu item
’Plot distribution’ to open a window displaying a histogramof the data. From this new
window you can also save (in postscript) or print it.

You can also measure call period by switching the ’entry’ and’exit’ points. If also
want the time from reset (or some equal point) to the first ’entry’, then you must also
put an ’entry’ point there.

CHAPTER 3. GRAPHICAL USER INTERFACE 32

3.10 Stopwatch

The stopwatch window shows a cycle counter and a re-settablecounter. The cycle
counter is the same as the one in the register window. It basically counts instructions.

The other counter counts at the same rate as the cycle counter, but can be cleared by
clicking the "clear" button (or preset by entering a number in the entry box).

The up/down indicator denotes the direction the counter counts.

The rollover value specifies the range the cycle counter can be in (a modulo counter).
For example, if the rollover value is specified to be 0x42, then whenever the resettable
counter reaches 0x42 it will rollover to zero. If the counteris counting down, then
when it reaches 0 the next state will be 0x41. If you don’t wantis like this, then set the
rollover value to something large.

3.11 Scope Window

FIXME: The scope window still needs some work...

The Scope Window graphs I/O pin states. It is similar to an oscilloscope or logic
analyzer. It can be controlled either from the command line or from the GUI. Currently
only the digital state of I/O pins are supported.

To use the scope window, each scope channel being used must first be connected to the
stimulus being tracked. This can only be done on the command line (or via the .sim
directive in the .asm file). The following example shows how this is done, but note that
in the .sim command the ””s need to be escaped with a ’\’.**gpsim> sope.h0 = �port3�**gpsim> sope.h1 = �port4�
Once the data are caputred, the scope window display may needto be altered to better
see the data. In the GUI, the following keys can be used:

z Zoom In

Z Zoom out

l Pan left

r Pan right

In the command line, zooming and panning can be achieved by modifiying the scope.start
and scope.end variables.

Chapter 4

Scripting and Configuring

gpsim does not have a native scripting language per se. However it is possible to place
gpsim commands into a file and load them later. This is useful for loading modules and
stimuli and connecting various devices together. By convention, gpsim’s configuration
files have the extension.stc, for startupconfiguration.

4.1 Embedded Commands

If you’re using gputils, it is possible to embed configuration commands directly into
your PIC assembly source. The gputils supplied include filecoff.inccontains several
macros that embed simulation command into a COFF and COD files.

4.1.1 .sim macro; Simulator Command.sim maro x.diret "e", xendm
The.sim maro allows gpsim onfiguration ommands to be embedded inthe PIC soure. While gpsim loads a .od file, the ommands in the.sim maros are olleted. After the .od file is loaded, the ommandsare redireted to gpsim's ommand line interpreter in the order theywere reeived.
Here’s an example of switch module being loaded and configured:;# Module libraries:.sim "module library libgpsim_modules".sim "module load swith SW1".sim "SW1.state=false"

33

CHAPTER 4. SCRIPTING AND CONFIGURING 34.sim "SW1.xpos = 216.0".sim "SW1.ypos = 156.0".sim "SW1.Ropen = 1.0e8"
This loads gpsim’s module library, instantiates a switch module, and configures the
switch’s attributes.

4.1.2 .command macro.ommand maro x.diret "", xendm
The.ommand maro is similar to a .sim maro exept that it assoiatesa gpsim ommand with a partiular instrution. This is useful forhanging attribute values at different points of the program.
4.1.3 .assert macro; Assertion.assert maro x.diret "a", xendm
The.assertmacro provides a source code mechanism for setting breakpoints (see chap-
ter 5). An assertion is an expression associated with a specific instruction. It essential
means, “If the expression at this instruction evaluates to false, then halt the simulation.”; Close the swith beause of apaitane port1 will go high after a delay:; R=145, C=4.2e-6 TC=6.11e-4 or 1527 yles 0-2 volts requires 0.51 T.ommand "SW1.state=losed"nop; port0 should be same as port1.assert "(port & 3) == 0, \"SW1 losed, ap holds low\""nop
In this example, the.commandmacro writes to the switch module’s.stateattribute (see
section 8.1.4). Just prior to executing the first nop instruction, the switch will be closed.
The.assertmacro at the very next instruction makes sure that the expected state is seen
on PORTC.

CHAPTER 4. SCRIPTING AND CONFIGURING 35

4.2 Sockets

gpsim supports a socket interface. This is inhibited by default. Advanced users may
wish to study code in theexamples/scriptssubdirectory. This code not distributed and
is only available in the subversion repository.

Chapter 5

Assertions and Extended
Breakpoints

gpsim supports a wide variety of breakpoints and assertions. Many of these were de-
scribed with the break command. This section will illustrate how to extend the break
command even further and introduce simulation assertions.

Breakpoint Messages

A breakpoint message is an ASCII string that is displayed whenever a breakpoint is
encountered. Any break point can have an associated message. The syntax at the
command line isbreak onditions, �This is a breakpoint message�
The conditions are described above in the break command and are the conditions under
which the break occurs.

Breakpoint messages are useful for distinguishing among many different breakpoints.break w ounter & 0xf0 == 0x80, �Counter overflowed!�
In this example, the user is monitoring the upper nibble of the variable counter and
breaking whenever it is equal to 8. When the command is entered, gpsim will display:break when bit pattern 1000XXXX is written to register ounter(0x26). break #: 0x20
The breakpoint can be queried with the break command:gpsim> break 3232: p18f452 register write value: [0x26℄ & 0xf0 == 0x8Message:Counter overflowed!
When the simulation encounters the break, execution halts and the message is printed.

36

CHAPTER 5. ASSERTIONS AND EXTENDED BREAKPOINTS 37

5.1 Assertions and Embedded Simulation commands

gpsim’s breakpoint design is a powerful tool that can catch many problems. The as-
sertion design extends this power even further. An assertion is like a breakpoint that is
associated with a particular instruction. For example, youmay have a routine that re-
quires BANK 0 be selected. A gpsim assertion can be placed at the entry of the routine
to verify that this is the case..assert �(status & 0x60) == 0, \�Bank 0 must be seleted!\��
The syntax is identical to the extended breakpoint command.The expression is the
condition that is checked. If the expression evaluates to false, then the code halts and
prints the message. The.assertis a macro that is part of gputils. It requires a string
as its input argument. Notice that the assertion message is embedded in the argument.
gpasm and MPASM copy C’s method of placing a backslash in front of quotations that
are part of a string.

Command Assertions

A command assertion is a gpsim associated with a particular instruction in your PIC
source code. These are useful for changing the behavior of the simulation based on
where the code executes. Almost any gpsim command can be placed in a command
assertion. However, the most useful ones are assignment commands. For example:.ommand �SW1.state = open�
This assignment writes to the state attribute of a switch module named SW1.

Chapter 6

Trace and Log: What has
happen?

Inspecting the current state of your program is sometimes insufficient to determine the
cause of a bug. Often times it’s useful to know the conditionsthat led up to the current
state. gpsim provides a history or trace of everything that occurs - whether you want it
or not - to help you diagnose these otherwise difficult to analyze bugs.

What’s traced notes

program counter addresses executed
instructions opcode
register read value and location
register write value and location
cycle counter current value

skipped instructions addresses skipped
status register during implicit modification

interrupts
break points type

resets type

The ’trace’ command will dump the contents of the trace buffer.

A large circular buffer (whose size is hard coded) stores theinformation for the trace
buffer. When it fills, it will wrap around and write over the old history. The contents
of the trace buffer are parsed into frames, where one frame corresponds to a simulation
cycle.

Here’s an example of a trace output:

38

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 39gpsim> trae0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0Read: 0x00 from reg3(0x0003)Wrote: 0xE7 to W(0x0FE8) was 0xE7Wrote: 0x18 to status(0x0FD8) was 0x180x00000000000026F7 p18f452 0x001E 0xE1F4 bnz $-0x16 ;(0x8)0x00000000000026F8 p18f452 0x0008 0x3E00 infsz reg,f,0Read: 0xE4 from reg(0x0000)Wrote: 0xE5 to reg(0x0000) was 0xE40x00000000000026F9 p18f452 0x000A 0xD004 bra $+0xa ;(0x00014) 0x00000000000026FA p18f452 0x0014 0x0004 lrwdt0x00000000000026FB p18f452 0x0016 0x5000 movf reg,w,0Read: 0xE5 from reg(0x0000)Wrote: 0xE5 to W(0x0FE8) was 0xE7Wrote: 0x18 to status(0x0FD8) was 0x180x00000000000026FC p18f452 0x0018 0x1001 iorwf reg1,w,0Read: 0x03 from reg1(0x0001)Wrote: 0xE7 to W(0x0FE8) was 0xE5Wrote: 0x18 to status(0x0FD8) was 0x18
Each trace frame begins with a new simulation cycle. Typically this will include a
simulated instruction. Here’s each of the fields:64-bit simulation yle proessor PC opode instrution0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0
Other events that occur during the trace frame are indented.Typically these will be
register read or write traces. The read traces show the valueread. Write traces show
the value written and the value that was previously in the register.

Saving Trace to a file

The trace buffer may contain thousands of entries making it difficult to search. The
trace save feature will allow the trace buffer to be written to a file.gpsim> trae save mytrae.log
The entire contents of the trace buffer are decoded and written to the file. The format
of the trace is the same as it is when displayed at the command line.

Raw Traces

The raw trace buffer is the trace buffer displayed in a minimally decoded form. This
is primarily used for gpsim development. When saved to a file,the raw trace is not

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 40

decoded at all. In addition, the processor’s state is written to the file. Thus third party
tools can be written to create custom trace reports1.

1FIXME - The dynamically created trace type information needs to be written to this file too. Without it,
it is difficult to tell what each traced item is.

Chapter 7

Simulating the Real World:
Stimuli

Stimuli are extremely useful, if not necessary, for simulations. They provides a means
for simulating interactions with the real world.

The gpsim stimuli capability is designed to be accurate, efficient and flexible. The
models for the PIC’s I/O pins mimic the real devices. For example, the open collector
output on port A of a PIC16C84 can only drive low. Multiple I/Opins may be tied to
one another so that the open collector on port A can get a pull up resistor from port B.
The overhead for stimuli only occurs when a stimulus changesstates. In other words,
stimuli are not polled to determine their state.

Analog stimuli are also available. It’s possible to create voltage references and sources
to simulate almost any kind of real world thing. For example,it’s possible to combine
two analog stimuli together to create signals like DTMF tones.

7.1 How They Work

In the simplest case, a stimulus acts a source for an I/O pin ona PIC. For example,
you may want to simulate a clock and measure its period using TMR0. In this case,
the stimulus is the source and the TMR0 input pin on the pic is the load. In gpsim you
would create a stimulus for the clock using the stimulus command and connect it to the
I/O pin using the node command.

In general, you can have several ’sources’ and several ’loads’ that are interconnected
with nodes1. A good analogy is a spice circuit. The spice netlist corresponds to a
node-list in gpsim and the spice elements correspond to the stimuli sources and loads.
This general approach makes it possible to create a variety of simulation environments.
Here’s a list of different ways in which stimuli may be connected:

1Although, gpsim is currently limited to ’one-port’ devices. In other words, it is assumed that ground
serves as a common reference for the sources and the loads.

41

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 42

1. Stimulus connected to one I/O pin

2. Stimulus connected to several I/O pins

3. Several stimuli connected to one I/O pin

4. Several stimuli connected to several I/O pins

5. I/O pins connected to I/O pins

The general technique for implementing stimuli is as follows:

1. Define the stimulus or stimuli.

2. Define a node.

3. Attach the stimuli to the node.

More often than not, the stimulus definition will reside in a file.

7.1.1 Contention among stimuli

One of the problems with this nodal approach to modeling stimuli is that it’s possible
for contention to exist. For example, if two I/O pins are connected to one another and
driving in the opposite directions, there will be contention. gpsim resolves contention
with attribute summing. Each stimulus - even if it’s an input- has an effect on the node.
This effect is characterised by a voltage and an impedance. When a node is updated,
gpsim performs a Thevenin voltage summing of all the stimulitogether. The resultant
voltage is then propagated to all connected stimuli as the current state of the node.

For example, in the port A open collector / port B weak pull-upconnection example,
gpsim assigns a voltage of 5V with an impedance of 20kohms to the pull up resistor,
and a voltage of 0V with an impedance of 150ohms to the open collector if it is active,
or 100Mohms if it’s not driving. The Thevenin sum will be roughly 0.05V if the output
is driving, or 5V otherwise. Capacitive effects are not currently supported.

7.2 I/O Pins

gpsim models I/O pins as stimuli. Thus anywhere a stimulus isused, an I/O pin may
be substituted. For example, you may want to tie two I/O pins to one another; like a
port B pull up resistor to a port A open collector. gpsim automatically creates the I/O
pin stimuli whenever a processor is created. All you need to do is to specify a node and
then attach the stimuli to it. The names of these stimuli are formed by concatenating
the port name with the bit position of the I/O pin. For example, bit 3 in port B is called
portb3.

Here’s a list of the types of I/O pin stimuli that are supported:

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 43

I/O Pin Type Function

INPUT_ONLY Only accepts input (like MCLR)
BI_DIRECTIONAL Can be a source or a load (most I/O pins)

BI_DIRECTIONAL_PU PU=Pullup resistor (PORTB)
OPEN_COLLECTOR Can only drive low (RA4 on c84)

There is no special pin type for analog I/O pins. All pic analog inputs are multiplexed
with digital inputs. The I/O pin definition will always be forthe digital input. gpsim
automatically knows when I/O pin is analog input.

7.3 Asynchronous Stimuli

Asynchronous stimuli are analog or digital stimuli that canchange states at any given
instant (limited to the resolution of the cycle counter). They can be defined to be
repetitive too.

parameter function

start_cycle The # of cycles before the stimulus starts
cycles[] An array of cycle #’s
data[] Stimulus state for a cycle
period The # of cycles for one period

initial_state The initial state before data[0]

When the stimulus is first initialized, it will be driven to the ’initial state’ and will
remain there until the cpu’s instruction cycle counter matches the specified ’start’ cycle.
After that, the two arrays ’cycles[]’ and ’data[]’ define thestimulus’ outputs. The
size of the arrays are the same and correspond to the number ofevents that are to be
created. So the event number, if you will, serves as the indexinto these arrays. The
’cycles[]’ array define when the events occur while the ’data[]’ array defines the states
the stimulus will enter. The ’cycles[]’ are measured with respect to the ’start’ cycle.
The asynchronous stimulus can be made periodic by specifying the number of cycles
in the ’period’ parameter.

Here’s an example that generates three pulses and then repeats:stimulus asynhronous_stimulus # or we ould have used asy# The initial state AND the state the stimulus is when# it rolls overinitial_state 1# all times are with respet to the pu's yle ounterstart_yle 100# the asynhronous stimulus will roll over in 'period'

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 44# yles. Delete this line if you don't want a roll over.period 5000# Now the yles at whih stimulus hanges states are# speified. The initial yle was speified above. So# the first yle speified below will toggle this state.# In this example, the stimulus will start high.# At yle 100 the stimulus 'begins'. However nothing happens# until yle 200+100.{ 200, 0,300, 1,400, 0,600, 1,1000, 0,3000, 1 }# Give the stimulus a name:name asy_test# Finally, tell the ommand line interfae that we're done# with the stimulusend
7.3.1 Analog Asynchronous Stimuli

Analog Asynchronous Stimuli are identical to Synchronous Stimuli except the data
points are floating point numbers.

7.4 Extended Stimuli

Discuss the extended stimuli in the modules/ directory. In particular, describe the
PulseGenmodule and how it can complete replace the asynchronous stimuli. Also
describe thePullUp andPullDownmodules and how they can be manipulated into be-
ing general purpose DC voltage sources (FIXME, would it makesense to rename these
modules?).

Chapter 8

Modules

gpsim has been designed to debug microprocessors. However,microprocessors are
always a part of a system. And invariably, the bugs one often encounters are those
that are a result of interfacing with a system. Modules provide users with a way to
extend gpsim and simulate a system. For example, thesystemmay be a processor with
a few pull up resistors and switches or it may be a processor and an LCD display.
gpsim provides a few modules that one may use either for debugging or as templates
for creating new modules.

Modules reside in a library and are dynamically loaded with the modulecommand.
All modules have I/O pins which can connect to other modules or processors. Most
modules provideattributesthat allow the user to control a module’s behavior or query
its internal state. For example, the USART module has transmit and receive baud rate
attributes that may be configured:gpsim> U1.txbaud = 9600 # set the transmit rategpsim> U1.rxbaud # query the reeiver rate9600
The symbol command can be used to query all attributes of a module.gpsim> symbol U1. # note the periodU1 = USARTModuleU1.onsole = falseU1.rlf = trueU1.loop = trueU1.rx = 0U1.rxbaud = 9600U1.tx = 0U1.txbaud = 9600U1.xpos = 72.00000000000000U1.ypos = 276.0000000000000

45

CHAPTER 8. MODULES 46

Modules may provide only help which can be accessed using thehelp command:gpsim> help U1USARTModuleno desription
Well, the USART module isn’t the best example here! However,a better example is
one of the USART attributes.gpsim> help U1.txbaud9600USART Module Transmitter baud rate
8.1 gpsim Modules

gpsim provides a library of useful modules for simulation. The current version includes
the following modules:

pushbutton
pullup A resistor connected (nominally) to Vdd

pulldown A resistor connected (nominally) to Vss
usart A serial interface with a GUI terminal window

pulsegen
I2C-EEPROM2K A 256 byte I2C serial EEPROM like the 24LC024.
I2C-EEPROM16K A 2k byte I2C serial EEPROM like the 24LC16B.
I2C-EEPROM256K A 32k byte I2C serial EEPROM like the 24LC256.

switch Switch, which connects two nodes together
and2 2-input logical AND gate
or2 2-input logical OR gate
xor2 2-input logical XOR gate
not Inverter (logical NOT gate)

led_7segments A 7-segment LED digit
led A single LED with cathode tied to Vss.

TTL377 A 74HC377 style 8-bit tristate latch
Encoder

8.1.1 USART

The USART module is a full duplex configurable USART. In graphics mode, the US-
ART will display its output in a console. In addition, the console will accept keyboard
input.

CHAPTER 8. MODULES 47

Attributes

.tx - The.tx attribute is the USART transmit register. Data written to this attribute will
initiate a transmission. The USART does not support a transmit FIFO.

.rx - The.rx attribute is the USART receiver register. Data received by the USART is
available for querying through here.

.txbaud - The.txbaudattribute specifies the transmitter baud rate.

.rxbaud - The .rxbaud attribute specifies the receiver baud rate.

.console - When set totrue, the console window will display received data and will
accept keyboard entries for the transmitter.

.crlf - When set totrue, carriage returns and line feeds generate new lines in the console
window.

.hex - When set totrue, the data is assumed to be binary and all bytes are shown in hex.

.loop - When set to true, received characters are looped backto the transmitter.

.xpos - horizontal position in breadboard window.

.ypos - vertical position in breadboard window.

I/O Pins

.TXPIN - transmit pin

.RXPIN - receiver pin

.CTS - Clear to send pin. This can be left unconnected

.RTS - Request to send pin.

8.1.2 Logic

The only attributes supported be the logic devices are the standard.xposand .ypos
breadboard positions. FIXME There should be attributes to specify the switching
characteristics.

and2 - Two input AND gate

I/O pins

.in0 - First input

.in1 - First input

.out - Output

or2 - Two input OR gate

.in0 - First input

.in1 - First input

.out - Output

CHAPTER 8. MODULES 48

xor2 - Two input XOR gate

.in0 - First input

.in1 - First input

.out - Output

not - Inverter

.in0 - Input

.out - Output

8.1.3 I2C EEPROM

There are currently three I2C EEPROMs supported: I2C-EEPROM2k, I2C-EEPROM16k,
and I2C-EEPROM256K.

The commands ’dump e module_name filename’ and ’load e module_name filename’
can be used to save and restore the contents of the EEPROM module. This allows the
contents of the EEPROM to be preserved between runs of gpsim.

The cells of the EEPROM can be examined and modified using the command interface
with the commands ’module_name.eeData[index]’ and ’module_name.eeData[index]
= new_value’. The following example shows loading an EEPROMmodule, setting cell
16 to ’0’ (0x30) and checking that the new value was written.**gpsim> module load I2C-EEPROM16k e2**gpsim>**gpsim> e2.eeData[16℄ = $30**gpsim> e2.eeData[16℄e2.eeData[$10℄ = $30**gpsim>
I/O Pins

.A0 - Chip select to set bit 0 of slave address

.A1 - Chip select to set bit 1 of slave address

.A2 - Chip select to set bit 2 of slave address

.SCL - I2C serial clock

.SDA - I2C serial data

.WP - Hardware write protect

CHAPTER 8. MODULES 49

8.1.4 Switches & Resistors

Theswitchmodule is a model of a simple two terminal switch. It may be controlled
either from the command line or the breadboard GUI. Theswitchmodule’s open and
closed resistance are controlled by attributes. Thus a two terminal resistor can be mod-
eled as a switch that is always closed (or open).

Attributes

.Ropen - Switch resistance in ohms when the switch is opened.

.Rclosed - Switch resistance in ohms when the switch is closed.

.state - Switch state. The switch state takes the values ofopenor closed, although
falsefor open andtrue for closed is supported for backward compatibility. The.state
attribute is writable.

I/O Pins

.A - One side

.B - The other side

8.1.5 Voltage Sources, Resistors, and Capacitors

Thepullup andpulldownmodules are two terminal devices with one terminal tied to
a voltage source. Their voltage, resistance, and pin capacitance are controllable via
attributes.

Attributes

.voltage - DC voltage

.resistance - resistance in ohms between the I/O pin and the voltage source.

.capacitance - capacitance in farads between the I/O pin andground.

I/O Pins

.pin - the only pin exposed.

8.1.6 LED_7SEGMENTS and LED

led_7segments - 7 segment common cathod LED display

The segments are numberd as per the following figure.

CHAPTER 8. MODULES 50___5 | 0 | 1___4 | 6 | 2___3
I/O Pins

.cc - common cathod

.seg0 - segment 0

.seg1 - segment 1

.seg2 - segment 2

.seg3 - segment 3

.seg4 - segment 4

.seg5 - segment 5

.seg6 - segment 6

Led - Simple LED

The simple LED is a single pin module with an implied groundedcathod. The LED is
by default red, but can be made a different color via an attribute.

Attributes

color - LED color, possible values red, green, yellow, orange or blue

I/O Pin

.in - drives LED

8.2 Third Party Modules

In addition to the standard modules, third are separately distribute gpsim modules.

8.2.1 Character LCD - HD44780

This module emulates the ubiquitous HD44780 character LCDs.

CHAPTER 8. MODULES 51

8.2.2 Graphic LCD - SED1530

This module emulates a 100X32 pixel graphics LCD based on dual SED1350 con-
trollers.

8.3 Writing new modules

A module is a library of code. On Windows the library is a .DLL and on Unix a shared
library. There are a few details that a module must adhere to,but in general the module
has full access to gpsim’s API.

The easiest way to write a new module is to start from the source code from one of
the existing modules. For example, suppose your project produces a serial bit-stream
in PPM coding and you want to display the output during the simulation. The external
module you need is similar to the usart module but not the same, so start by making a
copy of the usart module and then modify it to work how you need.

To be able to load your module into gpsim it needs to be in a library. Usually you will be
creating a new library just for one device, but sometimes youwill have a few devices.
Either way, the library must declare to gpsim what devices itcontains. This is achieved
with an array of Module_Types class instances, returned to gpsim by a function named
“get_mod_list”. All gpsim module libraries must declare this function. You can copy
the required template from the gpsim source – probably one ofthe “extras” modules is
slightly cleaner than the main library. For our PPM decoder example, we might have a
module_manager.cc containing the following code:/* IN_MODULE should be defined for modules */#define IN_MODULE#inlude <stdio.h>#inlude <gpsim/modules.h>#inlude "ppm.h"Module_Types available_modules[℄ ={ { "ppm_display", "ppm_rx_ifae", PpmDisplay::onstrut},// No more modules{ NULL,NULL,NULL}};#ifdef __plusplusextern "C" {#endif /* __plusplus *//** get_mod_list - Report all of the modules in this library.** This is a required funtion for gpsim ompliant libraries.*/Module_Types * get_mod_list(void)

CHAPTER 8. MODULES 52{ return available_modules;}#ifdef __plusplus}#endif /* __plusplus */
This declares that this library provides one module, calledppm_display, implemented
by the C++ class PpmDisplay. The class which implements the module must provide a
static method “construct” to create a new instance of the class. For example:Module * PpmDisplay::onstrut(onst har *_new_name=0){ PpmDisplay *ppmd = new PpmDisplay(_new_name);ppmd->reate_iopin_map();ppmd->reate_window(_new_name);return ppmd;}
Your module will need to include stimuli for its I/O connections. You can use the stan-
dard gpsim stimulus classes: IOPIN, io_bidirectional, io_bidirectional_pu, io_open_collector.
In many cases, however, you will want to derive your own classfrom one of them. This
will allow you to customise the actions when the node state changes. For example:lass DeoderPin : publi IOPIN{private:PpmDisplay * Parent;publi:DeoderPin (PpmDisplay * parent, unsigned int b, onst har * name=0);virtual void setDrivenState(bool new_state);};
The only methods we provide here are the constructor and an overridden “setDriven-
State”. This is because our PPM decoder needs to be told when the input pin changes
state.

Chapter 9

Symbolic Debugging

gpsim maintains a symbol table.

<write me>

53

Chapter 10

Macros

<write me>

54

Chapter 11

Hex Files

The target code simulated by gpsim can be supplied by a hex file, or more specifically
an Intel Hex file. gpsim accepts the format of hex provided by gpasm and mpasm. The
hex file does not provide any symbolic information. It’s recommended that hex files
only be used if 1) you suspect there’s a problem with the way .cod files are generated
by your assembler or compiler OR 2) your assembler or compiler doesn’t generate
.cod files. Also, you must supply a processor when loading hexfiles. See the load
command.

55

Chapter 12

The ICD- Not Supported in
versions 0.21.0 and later

gpsim supports (partly) the first version of the ICD (as opposed to ICD2 (the round
hockey-puck shaped one)).

Special configuration of the code

Read the MPLAB ICD USER’s GUIDE.

Here’s the short version:

• disable at least: brown out detection, low voltage programming and all code
protection. It is probably good to turn of the watchdog too. see the MPLAB ICD
USER’s GUIDE for more information.

• have a NOP as the first instruction.

• Don’t touch RB6 or RB7.

• Don’t use the last stack level.

• Don’t use these registers and program words:
Processor Register Program

-870/1/2 0x70, 0xBB-0xBF 0x6E0-0x7FF
-873/4 0x6D, 0x1fD, 0xEB-0xF0, 0x1Eb-0x1F0 0xEE0-0xFFF
-876/7 0x70, 0x1Eb-0x1Ef 0x1F00-0x1FFF

icdprog

Download and install icdprog.

Use icdprog to program the target with the hex file (icdprog mycode.hex).

56

CHAPTER 12. THE ICD- NOT SUPPORTED IN VERSIONS 0.21.0 AND LATER57

ICD usage

Start gpsim like this:

gpsim -d /dev/ttyS0 -s mycode.cod

, assuming the ICD is connected to the first serial port.

Now you can type ’icd’ to see some information:

**gpsim> icd
ICD version "2.31.00" was found.
Target controller is 16F877 rev 13.
Vdd: 5.2 Vpp: 13.3
Debug module is present

2.31 is the firmware version. I have only tried this particular version...

You can step, reset, run, halt, set the breakpoint and read file registers. It works both
from the GUI and the cli.

ICD TODO

• MPLAB has a setting for target CPU frequency, I have only tried with a 20MHz
crystal, so there may be adjustments to be made to the serial port timeout settings
in gpsim.

• The source, disassembly, watch, symbol and RAM windows works. And the rest
doesn’t. I guess the breadboard should be able to work at least for the pic, but it
doesn’t.

• EEPROM support

• modifying data

• Fix the UI to give more feedback about what’s happening during long delays.

• Better error detection. gpsim doesn’t always see that the target is not functional.

Chapter 13

Examples

The examples/subdirectory contains several examples. Theexamples/projects/sub-
directory demonstrate sample projects that can serve as templates for new projects.
In addition, theexamples/modulessubdirectory contains several examples illustrating
how to use gpsim’s various modules. Finally, as described inchapter 14, gpsim’s re-
gression tests illustrate many powerful debugging techniques that have not been fully
documented.

usart_gui example

Each example contains a briefREADMEexplaining its purpose. For example, the
READMEfor theusart_guiexample in theexamples/modulesdirectory containsThe tests the USART module with the GUI fix.The ode for a 16f628 PIC is used. The ode first transmits a string ofharaters, whih are instrutions to the user, to the USART module whihwill then be displayed on its GUI. This verifies that the USART an reeiveserial data.When the fous is on the USART GUI window, haraters typed on the keyboardare sent from the USART to the PIC and then retransmitted from the PIC bakto the USART.If all works, the typed haraters will be displayed in the GUI text windowof the USART. Both transmit and reeive must be funtioning for this tohappen.
Fixme- we really need to document all of the examples!

58

Chapter 14

Regression Tests

Starting with version 0.22.0, gpsim distributes regression tests. The purpose of a re-
gression test is to validate correctness. The tests are designed to exercise many of
the aspects of gpsim and gpsim’s modules. While designed primarily for developers
though, the regression tests also serve as a rich source of examples. There are many
features gpsim’s developers will tuck away into a regression test and fail to document!

59

Chapter 15

Theory of Operation

This section is only provided for those who may be interestedin how gpsim operates.
The information in here is ’mostly’ accurate. However, as gpsim evolves so do the
details of the theory of operation. Use the information provided here as a high level
introduction and use the (well commented :]) source to learnthe details.

15.1 Background

gpsim is written mostly in C++. Why? Well the main reason is toeasily implement
a hierarchical model of a pic. If you think about a microcontroller, it’s really easy to
modularize the various components. C++ lends itself well tothis conceptualization.
Furthermore Microchip, like other microcontroller manufacturers, has created families
of devices that are quite similar to one another. Again, the C++ provides ’inheritance’
that allows the relationships to be shared among the variousmodels of pics.

15.2 Instructions

There’s a base class for the 14-bit instructions (I plan to goone step further and cre-
ate a base class from which all pic instructions can be derived). It primarily serves
two purposes: storage that is common for each instruction and a means for generically
accessing virtual functions. The common information consists of a name - or more
specifically the instruction mnemonic, the opcode, and a pointer to the processor own-
ing the instruction. Some of the virtual functions are ’execute’ and ’name’. As the hex
file is decoded, instances of the instructions are created and stored in an array called
program_memory. The index into this array is the address at which the instruction
resides. To execute an instruction the following code sequence is invoked:

program_memory[pc.value]->execute();

60

CHAPTER 15. THEORY OF OPERATION 61

which says, get the instruction at the current program counter (pc.value) and invoke
via the virtual function execute(). This approach allows execution break points to be
easily set. A special break point instruction can replace the one residing in the program
memory array. When ’execute’ is called the break point can beinvoked.

15.3 General File Registers

A file register is simulated by the ’file_register’ class. There is one instance of a
’file_register’ object for each file register in the PIC. All of the registers are collected
together into an array called ’registers’ which is indexed by the registers’ correspond-
ing PIC addresses. The array is linear and not banked like it is in the PIC. (Banking is
handled during the simulation.)

15.4 Special File Registers

Special file registers are all of the other registers that arenot general file registers.
This includes the core registers like status and option and also the peripheral registers
like eeadr for the EEPROM. The special file registers are derived from the general file
registers and are also stored in the ’registers’ array. There is one instance for each
register - even if the register is accessible in more than onebank. So for example,
there’s only one instance for the ’status’ register, however it may be accessed through
the ’registers’ array in more than one place.

All file registers are accessed by the virtual functions ’put’ and ’get’. This is done
for two main reasons. First, it conveniently encapsulates the breakpoint overhead (for
register breakpoints) in the file register and not in the instruction. Second, and more
important, it allows derived classes to implement the put and get more specifically. For
example, a ’put’ to the indf register is a whole lot differentthan a put to the intcon
register. In each case, the ’put’ initiates an action beyondsimply storing a byte of data
in an array. It also allows the following code sequence to be easily implemented:movlw trisa ;Get the address of trismovwf fsrmovf indf,w ;Read trisa indiretly
15.5 Example of an instruction

Here’s an example of the code for the movf instruction that illustrates what has been
discussed above. Somewhere in gpsim the code sequence:program_memory[p.value℄->exeute();

CHAPTER 15. THEORY OF OPERATION 62

is executed. Let’s say that the pc is pointing to a movf instruction. The ->execute()
virtual function will invoke MOVF::execute. I’ve added extra comments (that aren’t in
the main code) to illustrate in detail what’s happening.void MOVF::exeute(void){ unsigned int soure_value;// All instrutions are 'traed' (disussed below). It's suffiient//to only store the opode. However, even this may be unneessary sine//the program ounter is also traed. Expet this to disappear in the//future...trae.instrution(opode);// 'soure' is a pointer to a 'file_register' objet. It is initialized//by reading the 'registers' array. Note that the index depends on the//'rp' bits (atually just one bit) in the status register. Time is// saved by ahing rp as opposed to deoding the status register.soure = pu->registers[pu->rp | opode®_IN_INSTRUCTION_MASK℄;// We have no idea whih register we are trying to aess and how it//should be aessed or if there's a breakpoint set on it. No problem,//the virtual funtion 'get' will resolve all of those details// and 'do the right thing'.soure_value = soure->get();// If the destination is W, then the onstrutor has already initialized//'destination'. Otherwise the destination and soure are the same.if(opode&DESTINATION_MASK)destination = soure; // Result goes to soure// Write the soure value to the destination. Again, we have no idea// where the destination may be or// or how the data should be written there.destination->put(soure_value);// The movf instrution will set Z (zero) bit in the status register//if the soure value was zero.pu->status.put_Z(0==soure_value);// Finally, advane the p by one.pu->p.inrement();}

CHAPTER 15. THEORY OF OPERATION 63

15.6 Trace

Everything that is simulated is traced -all of the time. The trace buffer is one huge
circular buffer of integers. Information is or’ed with a trace token and then is stored
in the trace buffer. No attempt is made to associate the itemsin the trace buffer while
the simulator is simulating a PIC. Thus, if you look at the rawbuffer you will see stuff
like: cycle counter = ..., opcode fetch = ..., register read =..., register write = ..., etc.
However, this information is post processed to ascertain what happened and when it
happened. It’s also possible to use this information to undothe simulation, or in other
words you can step backwards. I don’t have this implemented yet though.

15.7 Breakpoints

Breakpoints fall into three categories: execution, register, and cycle.

Execution:

For execution breakpoints a special instruction appropriately called ’Breakpoint_Instruction’
is created and placed into the program memory array at the location the break point is
desired. The original instruction is saved in the newly created breakpoint instruction.
When the break point is cleared, the original instruction isfetched from the break point
instruction and placed back into the program memory array.

Note that this scheme has zero overhead. The simulation is only affected when the
breakpoint is encountered.

Register:

There are at least four different breakpoint types that can be set on a register: read any
value, write any value, read a specific value, or write a specific value. Like the execu-
tion breakpoints, there are special breakpoint registers that replace a register object. So
when the user sets a write breakpoint at register 0x20 for example, a new breakpoint
object is created and insert into the file register array at location 0x20. When the sim-
ulator attempts to access register location 0x20, the breakpoint object will be accessed
instead.

Note that this scheme too has zero overhead, accept when a breakpoint is encountered.

Cycle:

Cycle breakpoints allow gpsim to alter execution at a specific instruction cycle. This is
useful for running your simulation for a very specific amountof time. Internally, gpsim
makes extensive use of the cycle breakpoints. For example, the TMR0 object can be
programmed to generate a periodic cycle break point.

CHAPTER 15. THEORY OF OPERATION 64

Cycle break points are implemented with a sorted doubly-linked list. The linked list
contains two pieces of information (besides the links): thecycle at which the break is
to occur and the call back function1 that’s to be invoked when the cycle does occur.
The break logic is extremely simple. Whenever the cycle counter is advanced (that is,
incremented), it’s compared to the next desired cycle breakpoint. If there’s NO match,
then we’re done. So the overhead for cycle breaks is the time required to implement
a comparison. If there IS a match, then the call back functionassociated with this
break point is invoked and the next break point in the doubly-linked list serves as the
reference for the next cycle break.

15.8 TIMER1 External input

The timer1 module can support external input, on some processors, as either a crystal
using two pins or a single pin drive.

External Crystal

If an external crystal, typically 32,768 KHz, is being used,then both T1OSCEN and
TMR1CS in register T1CON should be true. Gpsim will then automatically simulate
timer1 being driven at the crystal frequency which can be changed from the default
frequency by changing the value of the processor symbol called tmr1_freq.

Single pin drive

If the single pin drive is being used, then the T1CON registerbits for T1OSCEN should
be false and TMR1CS true, and the T1CKI pin must be driven manually such as by a
stimuli command.

1A call back function is a pointer to a function. In this context, gpsim is given a pointer to the function
that’s to be invoked (called) whenever a cycle break occurs.

COPYING

The document is part of gpsim.

gpsim is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free SoftwareFoundation; either
version 2, or (at your option) any later version.

gpsim is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public Licensefor more
details.

You should have received a copy of the GNU General Public License along with gpsim;
see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

65

Index

7SEGMENTS, 49

and2, 47
attach, 10

break, 10, 11
bus, 10

Capacitors, 49
clear, 10, 13

disassemble, 10, 13
dump, 10, 14

echo, 14

frequency, 10, 14

GNU, 65

HD44780, 50
help, 10, 15

I2C EEPROM, 48
icd, 10, 15
instructions, 60

LED, 49
License, 65
list, 10, 15
load, 10, 15
log, 10
Logic, 47

macros, 16
module, 10, 17
Modules, 45

NO WARRANTY, 65

node, 10, 19
not, 48

or2, 47

processor, 10, 19

quit, 10, 19

registers, 61
Resistors, 49
run, 10, 20

SED1530, 51
set, 10
step, 10, 20
Stimulus, 41
stimulus, 10, 20
stopwatch, 10, 21
Switches, 49
symbol, 10, 20

trace, 10, 22

USART module, 46

version, 10
Voltage Sources, 49

x, 10, 22
xor2, 48

66

