
LMS API

- Quick start guide -

Document version: 1
Document revision: 03
Last modified: 7-28-2017 03:36:40 PM

1

Contents

1 Introduction..4
2 LMS API...5

2.1 LMS API compilation...5
2.2 LMS API function documentation..5

3 LMS API Examples..6
3.1 Example 1: basicRX..6

3.1.1 Opening a device..7
3.1.2 Device configuration..8
3.1.3 Sample streaming setup..9
3.1.4 Receiving samples..10
3.1.5 Closing the device..10
3.1.6 Application output..11

3.2 Example 2: singleRX...12
3.2.1 Opening a device..12
3.2.2 Device configuration..13
3.2.3 Sample streaming setup..16
3.2.4 Receiving samples..16
3.2.5 Application output..18

3.3 Example 3: dualRXTX...19
3.3.1 Opening a device..19
3.3.2 Device configuration..20
3.3.3 Sample streaming setup..21
3.3.4 Streaming samples..22
3.3.5 Application output..24

2

Revision History

Version v01r01
Started: 23 Apr, 2016
Initial version

Version v01r02
Started: 19 Apr, 2017
Updated LimeSuite installation instructions

Version v01r03
Started: 28 July 2017
Added source code and detailed descriptions of examples

1

11
Introduction

The scope of this document is compilation of the LMS API and detailed description of the
example applications that utilize LMS API.

2

22
LMS API

This chapter contains brief description of LMS API.

2.1 LMS API compilation

LMS API and examples are part of LimeSuite software. It can be downloaded using git :
git clone https://github.com/myriadrf/LimeSuite.git

To compile LMS API and examples follow the instructions provided in
‘docs/Lime_Suite_Compilation_Guide.pdf.pdf’ file. Note that wxWidgets library is not
required to compile LMS API and examples.

2.2 LMS API function documentation

LMS API function definitions and descriptions can be found in LimeSuite.h file
(scr/lime/LimeSuite.h). They are documented using Doxygen comments. Doxygen HTML
documentation can also be generated while building LimeSuite. Generating of doxygen
documentation is automatically enabled in CMake if doxygen is detected in the system

3

https://github.com/myriadrf/LimeSuite.git

33
LMS API Examples

This chapter contains description of 3 example applications that demonstrate usage of
LMS API. The source code of the example applications can be found in ‘src/examples/’
directory. After compilation the executable files of the examples should be located in
‘build/bin/Release/’ directory on Windows systems or in ‘build/bin/’ directory on Linux
systems.

On Linux systems with GNU plot installed, all examples should plot received samples.
The sub-sections of this chapter contain the source code of each example. The source code

is broken down to smaller parts and description of each part is provided.

3.1 Example 1: basicRX

Demonstrates basic functionality required to receive data from one channel:
• Open device
• Set center frequency
• Set sample rate
• Configure data stream
• Receive samples
• Close device

The example application connects to the first detected LimeSDR device, configures it and
receives samples for 5 seconds. The number of samples received per read call is printed while
receiving samples.

4

3.1.1Opening a device

First of all, there is some code before main() function that is common to all examples. At
the top of the source file there are some include files. Among them, the file of most interest is
'lime/LimeSuite.h' that provides API for interfacing with LimeSDR. Other includes are
standard includes for the console output and timing functions, also header for using GNUPlot
in case it is enabled.

#include "lime/LimeSuite.h"
#include <iostream>
#include <chrono>
#ifdef USE_GNU_PLOT
#include "gnuPlotPipe.h"
#endif

using namespace std;

After includes there is a declaration of device handle (lms_device_t*) that is used by
various API calls later in code. Initially, it has to be set to 'NULL' and will be modified when
device is opened.

There is also helper function for printing error messages in case some API call fails. It is
used in the examples after API function calls to do error reporting. The function calls
LMS_GetLastErrorMessage() to get the last error message from LimeSuite libraty and then
prints it to the console. After that the device is closed by calling LMS_Close() and the
program exits.

lms_device_t* device = NULL; //Device structure, should be initialize to NULL

int error()
{
 //print last error message
 cout << "ERROR:" << LMS_GetLastErrorMessage();
 if (device != NULL)
 LMS_Close(device);
 exit(-1);

}

To connect to a device, at first a device list is obtained and then the program connect to
one of the devices from the list. The code bellow does the following:

• Creates a device list of size 8 (this should be large enough)
• Populates the device list using LMS_GetDeviceList(). This function returns number of

devices found and fills the device list that is passed to it. 'Null' can be passed as device
list parameter in order to obtain device count only.

• The number of devices found is printed to the console.
• The first device from the list is opened using LMS_Open().

int main(int argc, char** argv)
{
 //Find devices
 int n;
 lms_info_str_t list[8]; //should be large enough to hold all detected devices
 if ((n = LMS_GetDeviceList(list)) < 0) //NULL can be passed to only get number of devices
 error();
 cout << "Devices found: " << n << endl; //print number of devices
 if (n < 1) return -1;

 if (LMS_Open(&device, list[0], NULL)) //open the first device
 error();

5

 After connecting to the device, the example loads device with working configuration
using LMS_Init(). This is not always necessary. It can be skipped to retain the current
configuration of the device or LMS_LoadConfig() can be used to load configuration from a
file.

 //Initialize device with default configuration
 //Do not use if you want to keep existing configuration
 //Use LMS_LoadConfig(device, "/path/to/file.ini") to load config from INI
 if (LMS_Init(device) != 0)
 error();

3.1.2Device configuration

The example is using single (first) RX channel. Note that channels are indexed starting
from '0' in LMS API. The code snippet bellow does the following:

• Enables the first Rx channel by calling LMS_EnableChannel(). It makes sure that all
LMS7 modules required for the first channel are powered up. In this case it is not
really necessary as required modules should be enabled after LMS_Init().

• Sets Rx center frequency to 800 MHz using LMS_SetLOFrequency().
• Sets the sample rate to 8 MHz. API function LMS_SetSampleRate() sets sample rate

for all channels (Tx and Rx). It also allows to specify oversampling that should be
used in hardware. In this case oversampling is 2, which means that hardware will be
sampling RF signal at 16 MHz rate and downsampling it to 8 MHz before sending
samples to PC.

 //Enable RX channel
 //Channels are numbered starting at 0
 if (LMS_EnableChannel(device, LMS_CH_RX, 0, true) != 0)
 error();

 //Set center frequency to 800 MHz
 if (LMS_SetLOFrequency(device, LMS_CH_RX, 0, 800e6) != 0)
 error();

 //Set sample rate to 8 MHz, ask to use 2x oversampling in RF
 //This set sampling rate for all channels
 if (LMS_SetSampleRate(device, 8e6, 2) != 0)
 error();

Before proceeding to streaming setup, the example also enables test signal in Rx using
LMS_SetTestSignal(). The example code bellow configures LMS7 to produce NCO generated
signal with 8 point constellation in Rx. Note that to receive data from RF, test signal should to
be disabled by removing LMS_SetTestSignal() entirely (it is disabled after LMS_Init()) or
passing 'LMS_TESTSIG_NONE' instead of 'LMS_TESTSIG_NCODIV8'. The selected
antenna port after LMS_Init() should be LNA_H.

 //Enable test signal generation
 //To receive data from RF, remove this line or change signal to LMS_TESTSIG_NONE
 if (LMS_SetTestSignal(device, LMS_CH_RX, 0, LMS_TESTSIG_NCODIV8, 0, 0) != 0)

 error();

6

3.1.3Sample streaming setup

Data stream is configured by passing a configuration structure (lms_stream_t) to
SetupStream() function. The configuration structure (lms_stream_t) also serves as a stream
handle that is used by the other LMS API streaming functions. The example configures the
stream as follows:

• Use the first channel (channel=0).
• Set the size of FIFO buffer to ~1 Msample (fifosize = 1024*1024). This sets the size

of LMS API buffer for this stream on host PC. The actual size may not be exactly as
requested.

• Optimize for a higher data throughput (throughputVsLatency=1.0). This parameter
hints whether a lower latency (lower value) or a higher throughput (higher value) is
preferred. It affects the size of data transfers from hardware.

• Set up Rx stream (isTx=false),
• Use 12-bit data format (streamId.dataFmt=lms_stream_t::LMS_FMT_I12). Using this

format, the samples received from LMS API are 16-bit integer values that range from
-2048 to 2047. Data between hardware and PC is transferred using 3 bytes (I(12-bit)
+Q(12-bit)) per sample.

 //Streaming Setup

 //Initialize stream
 lms_stream_t streamId; //stream structure
 streamId.channel = 0; //channel number
 streamId.fifoSize = 1024 * 1024; //fifo size in samples
 streamId.throughputVsLatency = 1.0; //optimize for max throughput
 streamId.isTx = false; //RX channel
 streamId.dataFmt = lms_stream_t::LMS_FMT_I12; //12-bit integers
 if (LMS_SetupStream(device, &streamId) != 0)
 error();

After setting up the stream, basicRX example allocates some buffers for receiving samples
and starts streaming by calling LMS_StartStream(). Note that allocated buffers have 16-bit
integer data type as it will be receiving 16-bit integers from LMS API. Also, the example is
going to read 5000 samples to the buffer at once and one sample has two 16-bit values (I+Q),
so buffer that can hold twice as many 16-bit values is required.

 //Initialize data buffers
 const int sampleCnt = 5000; //complex samples per buffer
 int16_t buffer[sampleCnt * 2]; //buffer to hold complex values (2*samples))

 //Start streaming
 LMS_StartStream(&streamId);

7

3.1.4Receiving samples

Receiving samples is done in a while() loop. The loop in basicRX example runs for 5
seconds. The only LMS API functions in the loop is LMS_RecvStream() that read samples
from the stream FIFO into the buffer and returns the number of samples read. In this example
'NULL' is passed in place of a metadata structure, therefore timestamps are not obtained. The
other code in the loop prints the number of samples read and plots the samples using GNUplot
(if enabled.)

//Streaming
#ifdef USE_GNU_PLOT
GNUPlotPipe gp;
 gp.write("set size square\n set xrange[-2050:2050]\n set yrange[-2050:2050]\n");
#endif
auto t1 = chrono::high_resolution_clock::now();
while (chrono::high_resolution_clock::now() - t1 < chrono::seconds(5)) //run for 5 seconds
{
 //Receive samples
 int samplesRead; = LMS_RecvStream(&streamId, buffer, sampleCnt, NULL, 1000);
 //I and Q samples are interleaved in buffer: IQIQIQ...
 printf("Received %d samples\n", samplesRead);

/*
INSERT CODE FOR PROCESSING RECEIVED SAMPLES

*/
#ifdef USE_GNU_PLOT
 //Plot samples
 gp.write("plot '-' with points\n");
 for (int j = 0; j < samplesRead; ++j)
 gp.writef("%i %i\n", buffer[2 * j], buffer[2 * j + 1]);
 gp.write("e\n");
 gp.flush();
#endif
}

3.1.5Closing the device

At the end of the program streaming is stopped and the device is closed using the
following sequence:

• LMS_StopStream() - stops the stream. It does not deallocate the stream so if there is
something in the stream FIFO, it can still be read. Also, the stream can be quickly
started again using LMS_StartStream().

• LMS_DestroyStream() - deallocates the stream from memory. After this the stream
structure can no longer be used.

• LMS_Close() - disconnects from the device and deallocates the device from memory.

//Stop streaming
LMS_StopStream(&streamId); //stream is stopped but can be started again with LMS_StartStream()
LMS_DestroyStream(device, &streamId); //stream is deallocated and can no longer be used
//Close device
LMS_Close(device);
return 0;
}

8

3.1.6Application output

The application outputs the number of samples received with each call to
LMS_RecvStream() to console (Figure 1). If GNUplot is enabled it also plots constellation of
IQ samples (Figure 2).

Figure 1: console output of basixRX example

Figure 2: GNUplot output of basicRX example

9

3.2 Example 2: singleRX

More in-depth Rx example than basicRX. Additionally shows how to:
• Obtain the allowed value range from a device
• Obtain currently set device parameters
• Set gains
• Perform auto-calibration
• Set up a low-pass filter
• Select antenna port
• Get a stream status (data rate, FIFO size).

The example application connects to the first detected LimeSDR device, configures it and
receives samples for 10 seconds. The data transfer rate and FIFO status is printed every
second while streaming is active.

3.2.1Opening a device

The code at the beginning of singleRX examples is the same as in basicRX example, so it
is not detailed again in this section.

#include "lime/LimeSuite.h"
#include <iostream>
#include <chrono>
#ifdef USE_GNU_PLOT
#include "gnuPlotPipe.h"
#endif

using namespace std;

lms_device_t* device = NULL; //Device structure, should be initialize to NULL

int error() {
 cout << "ERROR:" << LMS_GetLastErrorMessage(); //print last error message
 if (device != NULL)
 LMS_Close(device);
 exit(-1);
}

int main(int argc, char** argv) {

This example uses a little different sequence to connect to a device compared to basicRX.
It shows how to obtain the number of devices before filling the device list. The code bellow
does the following:

• Obtains the number of devices connected to the system by calling
LMS_GetDeviceList() and passing 'NULL' as a device list parameter.

• Prints number of devices found to the console.
• Allocates the list based on the number of devices found
• Populates the device list by calling LMS_GetDeviceList()
• Prints the device list to the console
• Opens the first device from the list using LMS_Open().
• Deallocates the device list

10

 /Find devices
 //First we find number of devices, then allocate large enough list, and then populate the list
 int n;
 if ((n = LMS_GetDeviceList(NULL)) < 0) //Pass NULL to only obtain number of devices
 error();
 cout << "Devices found: " << n << endl;
 if (n < 1)
 return -1;

 lms_info_str_t* list = new lms_info_str_t[n]; //allocate device list
 if (LMS_GetDeviceList(list) < 0) //Populate device list
 error();

 for (int i = 0; i < n; i++) //print device list
 cout << i << ": " << list[i] << endl;
 cout << endl;

 //Open the first device
 if (LMS_Open(&device, list[0], NULL))
 error();

 delete [] list; //free device list

After connecting to the device, an initial configuration is loaded using LMS_Init() and the
first Rx channel is enabled using LMS_EnableChannel().

 //Initialize device with default configuration
 //Do not use if you want to keep existing configuration
 //Use LMS_LoadConfig(device, "/path/to/file.ini") to load config from INI
 if (LMS_Init(device) != 0)
 error();
 //Enable RX channel
 //Channels are numbered starting at 0
 if (LMS_EnableChannel(device, LMS_CH_RX, 0, true) != 0)
 error();

3.2.2Device configuration

In this example it is shown how to set and obtain values of commonly used parameters:
• Center frequency
• Antenna port
• Sample rate
• Analog filter bandwidth
• Gain
• Perform calibration

First of all center frequency is set using LMS_SetLOFrequency() and a read-back is
performed using LMS_GetLOFrequency() right after that. Then, the center frequency
obtained from the device is printed to the console.

 //Set center frequency to 800 MHz
 if (LMS_SetLOFrequency(device, LMS_CH_RX, 0, 800e6) != 0)
 error();
 //print currently set center frequency
 float_type freq;
 if (LMS_GetLOFrequency(device, LMS_CH_RX, 0, &freq) != 0)
 error();
 cout << "\nCenter frequency: " << freq / 1e6 << " MHz\n";

11

The setup continues with Rx RF port selection. The related code that is shown bellow
does the following:

• Creates a list for antenna (RF port) names
• Fills the list with the names of Rx RF ports by calling LMS_GetAntennaList()
• Prints the obtained port names to the console
• Obtains the currently set RF port index of the first RX channel using

LMS_GetAntenna() and outputs its name to the console.
• Selects RF port for first Rx channel by calling LMS_SetAntenna() and requesting to

set RF port to LNAW.
• Obtains the currently set RF port index again and prints its name to the console.

 //select antenna port
 lms_name_t antenna_list[10]; //large enough list for antenna names.
 //Alternatively, NULL can be passed to LMS_GetAntennaList() to obtain number of antennae

 if ((n = LMS_GetAntennaList(device, LMS_CH_RX, 0, antenna_list)) < 0)
 error();

 cout << "Available antennae:\n"; //print available antennae names
 for (int i = 0; i < n; i++)
 cout << i << ": " << antenna_list[i] << endl;

 if ((n = LMS_GetAntenna(device, LMS_CH_RX, 0)) < 0) //get currently selected antenna index
 error();
 //print antenna index and name
 cout << "Automatically selected antenna: " << n << ": " << antenna_list[n] << endl;

 if (LMS_SetAntenna(device, LMS_CH_RX, 0, LMS_PATH_LNAW) != 0) // manually select antenna
 error();

 if ((n = LMS_GetAntenna(device, LMS_CH_RX, 0)) < 0) //get currently selected antenna index
 error();
 //print antenna index and name
 cout << "Manually selected antenna: " << n << ": " << antenna_list[n] << endl;

The example sets the sample rate to 8 MHz with 8 times oversampling in RF. The
resulting sample rates are then obtained using LMS_GetSampleRate(). This function obtains
sample rate of the data stream to PC as well as the rate at which the RF signal is sampled in
hardware. If only one of those rates is of interest, a 'NULL' can be safely passed in place of
the other. In the example code bellow both rates are obtained and printed to the console.

 //Set sample rate to 8 MHz, preferred oversampling in RF 8x
 //This set sampling rate for all channels
 if (LMS_SetSampleRate(device, 8e6, 8) != 0)
 error();
 //print resulting sampling rates (interface to host , and ADC)
 float_type rate, rf_rate;
 if (LMS_GetSampleRate(device, LMS_CH_RX, 0, &rate, &rf_rate) != 0) //NULL can be passed
 error();
 cout<<"\nHost interface sample rate: "<<rate/1e6<<" MHz\nRF ADC sample rate: "<<rf_rate/
1e6<<"MHz\n\n";

The next step that is performed is low-pass filter (LPF) configuration. At first, the
example obtains a valid Rx LPF range via LMS_GetLPFBWRange() and prints it to the
console. Then the LPF bandwidth for the first Rx channel is set to 8 MHz by calling
LMS_SetLPFBW(). Note that the bandwidth passed to this function is bandwidth in RF.

12

 //Example of getting allowed parameter value range
 //There are also functions to get other parameter ranges (check LimeSuite.h)

 //Get allowed LPF bandwidth range
 lms_range_t range;
 if (LMS_GetLPFBWRange(device,LMS_CH_RX,&range)!=0)
 error();
 cout<<"RX LPF bandwitdh range: "<< range.min/1e6<<" - "<<range.max/1e6 << " MHz\n\n";

 //Configure LPF, bandwidth 8 MHz
 if (LMS_SetLPFBW(device, LMS_CH_RX, 0, 8e6) != 0)
 error();

The gain for the first Rx channel is set using normalized gain function
LMS_SetNormalizedGain(). The gain range used by normalized gain functions is from 0.0
(minimum) to 1.0 (maximum). The gain can also be set in dB using LMS_SetGaindB(). Gain
values are then read-back using GetNormalizedGain() to obtain normalized gain and
GetGaindB() to obtain gain in dB. In functions that set/get gain in dB, '0' represents the
minimum gain and the larger values should result in the RF signal being higher by
approximately that value in dB.

 //Set RX gain
 if (LMS_SetNormalizedGain(device, LMS_CH_RX, 0, 0.7) != 0)
 error();
 //Print RX gain
 float_type gain; //normalized gain
 if (LMS_GetNormalizedGain(device, LMS_CH_RX, 0, &gain) != 0)
 error();
 cout << "Normalized RX Gain: " << gain << endl;

 unsigned int gaindB; //gain in dB
 if (LMS_GetGaindB(device, LMS_CH_RX, 0, &gaindB) != 0)
 error();
 cout << "RX Gain: " << gaindB << " dB" << endl;

At the end of the configuration stage, automatic calibration of the first RX channel is
performed via LMS_Calibrate(). In this example calibrations is performed for 8 MHz RF
bandwidth. Test signal is also enabled in this example before streaming setup.

 //Perform automatic calibration
 if (LMS_Calibrate(device, LMS_CH_RX, 0, 8e6, 0) != 0)
 error();

 //Enable test signal generation
 //To receive data from RF, remove this line or change signal to LMS_TESTSIG_NONE
 if (LMS_SetTestSignal(device, LMS_CH_RX, 0, LMS_TESTSIG_NCODIV8, 0, 0) != 0)
 error();

13

3.2.3Sample streaming setup

Streaming setup in singleRX is very similar to the setup in basicRX. The main difference
is that floating-point format is used for samples (dataFmt=lms_stream_t::LMS_FMT_F32).
Note that buffer allocated for samples is also of float type. Floating-point format is not native
for LimeSDR hardware and it is there only for convenience. The conversion is done in
software.

 //Streaming Setup

 //Initialize stream
 lms_stream_t streamId;
 streamId.channel = 0; //channel number
 streamId.fifoSize = 1024 * 1024; //fifo size in samples
 streamId.throughputVsLatency = 1.0; //optimize for max throughput
 streamId.isTx = false; //RX channel
 streamId.dataFmt = lms_stream_t::LMS_FMT_F32; //32-bit floats
 if (LMS_SetupStream(device, &streamId) != 0)
 error();

 //Data buffers
 const int bufersize = 10000; //complex samples per buffer
 float buffer[bufersize * 2]; //must hold I+Q values of each sample
 //Start streaming
 LMS_StartStream(&streamId);

3.2.4Receiving samples

Receiving samples is done in a while() loop. The loop in this example runs for 10 seconds
and is very similar to the one in basicRX example. It reads samples from the stream FIFO via
LMS_RecvStream() and plots them using GNUplot (if enabled). However, this example
additionally prints some stream statistics every second. LMS_GetStreamStatus() is used to
obtain information about the stream (link data, FIFO status, error counts). The example code
bellow prints the link data rate and the percentage of FIFO filled to the console. Note that the
error counters returned by LMS_GetStreamStatus() are reset each time this functions is
called, so it returns the number of errors since the last call.

#ifdef USE_GNU_PLOT
 GNUPlotPipe gp;
 gp.write("set size square\n set xrange[-1:1]\n set yrange[-1:1]\n");
#endif
 auto t1 = chrono::high_resolution_clock::now();
 auto t2 = t1;

 while (chrono::high_resolution_clock::now() - t1 < chrono::seconds(10)) //run for 10 seconds
 {
 int samplesRead;
 //Receive samples
 samplesRead = LMS_RecvStream(&streamId, buffer, bufersize, NULL, 1000);
 //I and Q samples are interleaved in buffer: IQIQIQ...

/*
INSERT CODE FOR PROCESSING RECEIVED SAMPLES

*/
 //Plot samples
#ifdef USE_GNU_PLOT
 gp.write("plot '-' with points\n");
 for (int j = 0; j < samplesRead; ++j)
 gp.writef("%f %f\n", buffer[2 * j], buffer[2 * j + 1]);
 gp.write("e\n");

14

 gp.flush();
#endif
 //Print stats (once per second)
 if (chrono::high_resolution_clock::now() - t2 > chrono::seconds(1))
 {
 t2 = chrono::high_resolution_clock::now();
 lms_stream_status_t status;
 //Get stream status
 LMS_GetStreamStatus(&streamId, &status);
 cout << "RX rate: " << status.linkRate / 1e6 << " MB/s\n"; //link data rate
 cout << "RX fifo: " << 100 * status.fifoFilledCount / status.fifoSize << "%" << endl;
//percentage of FIFO filled
 }
 }

At the end of the program, the device is closed the same way as in basicRX example.

//Stop streaming
LMS_StopStream(&streamId); //stream is stopped but can be started again with LMS_StartStream()
LMS_DestroyStream(device, &streamId); //stream is deallocated and can no longer be used

//Close device
LMS_Close(device);

return 0;
}

15

3.2.5Application output

In setup stage application outputs parameter values that are obtained by API functions to
console. Also, link data rate and percentage of stream FIFO filled is printed every second
while streaming is running. Console output is shown in Figure 3. If GNUplot is enabled
constellation of IQ samples is also plotted (Figure 4).

Figure 3: Console output of singleRX example

Figure 4: GNUplot output of singleRX example

16

3.3 Example 3: dualRXTX

Demonstrates receiving and sending of data using 2 RX and 2 TX channels. Compared to
previous examples additionally demonstrates:

• Usage of multiple channels
• Transmitting data samples
• RX and TX synchronizations based on hardware timestamps

The example application connects to the first detected LimeSDR device, configures it and
receives and sends samples for 10 seconds. The application retransmits received samples
using synchronization based on timestamps to keep a constant offset between TX and RX at
RF. The data transfer rate and FIFO status is printed every second while streaming is active.

3.3.1Opening a device

The code at the beginning of dualRXTX example is the same as in basicRX example. The
device is opened via LMS_Open() and working configuration is loaded by LMS_Init(). For
more details refer to description of basicRX example.

#include "lime/LimeSuite.h"
#include <iostream>
#include <chrono>
#ifdef USE_GNU_PLOT
#include "gnuPlotPipe.h"
#endif

using namespace std;

//Device structure, should be initialize to NULL
lms_device_t* device = NULL;

int error()
{
 //print last error message
 cout << "ERROR:" << LMS_GetLastErrorMessage();
 if (device != NULL)
 LMS_Close(device);
 exit(-1);
}

int main(int argc, char** argv)
{
 //Find devices
 int n;
 lms_info_str_t list[8]; //should be large enough to hold all detected devices
 if ((n = LMS_GetDeviceList(list)) < 0) //NULL can be passed to only get number of devices
 error();

 cout << "Devices found: " << n << endl; //print number of devices
 if (n < 1)
 return -1;

 //open the first device
 if (LMS_Open(&device, list[0], NULL))
 error();

17

3.3.2Device configuration

This example is meant to demonstrate usage of multiple channels, so at first it shows how
to obtain the number of Rx/Tx channels. The code below obtains the number of channel via
LMS_GetNumChannels() and prints it to the console.

 //Get number of channels
 if ((n = LMS_GetNumChannels(device, LMS_CH_RX)) < 0)
 error();
 cout << "Number of RX channels: " << n << endl;
 if ((n = LMS_GetNumChannels(device, LMS_CH_TX)) < 0)
 error();
 cout << "Number of TX channels: " << n << endl;

After that goes the device configuration. The functions used in the configuration code
bellow are described in previous examples and are not detailed in this section. The following
steps are done:

• Modules required for 2 Rx and 2 Tx channels are enabled
• The Rx frequency for both channels is set to 1 GHz while Tx frequency is set to 1.2

GHz. Note that setting different frequencies for the first and the second channel is not
supported as LMS7 uses single oscillator for both channels .

• Sample rate for all channels is set to 10 MHz.
• Gains are set for Rx and Tx channels
• Generation of test signals is enabled for RX channels.

 //Enable RX channel
 //Channels are numbered starting at 0
 if (LMS_EnableChannel(device, LMS_CH_RX, 0, true) != 0)
 error();
 if (LMS_EnableChannel(device, LMS_CH_RX, 1, true) != 0)
 error();
 //Enable TX channels
 if (LMS_EnableChannel(device, LMS_CH_TX, 0, true) != 0)
 error();
 if (LMS_EnableChannel(device, LMS_CH_TX, 1, true) != 0)
 error();

 //Set RX center frequency to 1 GHz
 if (LMS_SetLOFrequency(device, LMS_CH_RX, 0, 1e9) != 0)
 error();
 if (LMS_SetLOFrequency(device, LMS_CH_RX, 1, 1e9) != 0)
 error();
 //Set TX center frequency to 1 GHz
 //Automatically selects antenna port
 if (LMS_SetLOFrequency(device, LMS_CH_TX, 0, 1.2e9) != 0)
 error();
 if (LMS_SetLOFrequency(device, LMS_CH_TX, 1, 1.2e9) != 0)
 error();

 //Set sample rate to 10 MHz, preferred oversampling in RF 4x
 //This set sampling rate for all channels
 if (LMS_SetSampleRate(device, 10e6, 4) != 0)
 error();

 //Set RX gain
 if (LMS_SetNormalizedGain(device, LMS_CH_RX, 0, 0.7) != 0)
 error();
 if (LMS_SetNormalizedGain(device, LMS_CH_RX, 1, 0.7) != 0)
 error();
 //Set TX gain

18

 if (LMS_SetNormalizedGain(device, LMS_CH_TX, 0, 0.4) != 0)
 error();
 if (LMS_SetNormalizedGain(device, LMS_CH_TX, 1, 0.4) != 0)
 error();

 //Enable test signals generation in RX channels
 //To receive data from RF, remove these lines or change signal to LMS_TESTSIG_NONE
 if (LMS_SetTestSignal(device, LMS_CH_RX, 0, LMS_TESTSIG_NCODIV4, 0, 0) != 0)
 error();
 if (LMS_SetTestSignal(device, LMS_CH_RX, 1, LMS_TESTSIG_NCODIV8F, 0, 0) != 0)
 error();

3.3.3Sample streaming setup

In this example four streams are set-up in total (2 Rx and 2 Tx). Note that, all streams
should be set-up before starting the streaming. The stream setup has already been explained in
previous examples. The notable differences in this example are:

• Multiple Rx/Tx streams are configured. They have different channel parameter, while
in previous examples only the first (0) channel was used.

• Previous examples were only dealing with Rx stream. Tx stream is set-up by setting
'isTx=true', while all other configuration is the same as for Rx stream.

• Parameter 'throughputVsLatency' is set to '0.5' instead of 1.0. This should provide
good balance between throughput and latency.

• Also, this example is going to use a constant offset between Tx and Rx, so there are a
couple of parameter to consider. If short offset between Rx and Tx is required, the
latency needs to be minimized. On the other hand if delay between Rx and Tx is long,
sufficiently large FIFO buffers are required as samples will be staying in them waiting
to be sent.

 //Streaming Setup

 const int chCount = 2; //number of RX/TX streams
 lms_stream_t rx_streams[chCount];
 lms_stream_t tx_streams[chCount];
 //Initialize streams
 //All streams setups should be done before starting streams. New streams cannot be set-up if at
least stream is running.
 for (int i = 0; i < chCount; ++i)
 {
 rx_streams[i].channel = i; //channel number
 rx_streams[i].fifoSize = 1024 * 1024; //fifo size in samples
 rx_streams[i].throughputVsLatency = 0.5; //something in the middle
 rx_streams[i].isTx = false; //RX channel
 rx_streams[i].dataFmt = lms_stream_t::LMS_FMT_I12; //12-bit integers
 if (LMS_SetupStream(device, &rx_streams[i]) != 0)
 error();
 tx_streams[i].channel = i; //channel number
 tx_streams[i].fifoSize = 1024 * 1024; //fifo size in samples
 tx_streams[i].throughputVsLatency = 0.5; //something in the middle
 tx_streams[i].isTx = true; //TX channel
 tx_streams[i].dataFmt = lms_stream_t::LMS_FMT_I12; //12-bit integers
 if (LMS_SetupStream(device, &tx_streams[i]) != 0)
 error();
 }

 //Initialize data buffers
 const int bufersize = 1024 * 8; //complex samples per buffer
 int16_t * buffers[chCount];
 for (int i = 0; i < chCount; ++i)

19

 {
 buffers[i] = new int16_t[bufersize * 2]; //buffer to hold complex values (2*samples))
 }

 //Start streaming
 for (int i = 0; i < chCount; ++i)
 {
 LMS_StartStream(&rx_streams[i]);
 LMS_StartStream(&tx_streams[i]);
 }

3.3.4Streaming samples

The streaming code in this section has a lot of similarities to the code in singleRX
example. Once again only the things that were not covered by previous examples are
explained in this section.

First of all, there are metadata structures for Tx and Rx. They are going to be passed to
LMS_RecvStream() and LMS_SendStream() functions. In Rx metadata structure is going to
be used to obtain hardware timestamp of the samples received. In Tx metadata structure will
be used to signal that samples should be sent at s specific hardware timestamp. To do that
'waitForTimestamp' parameter is set to 'true' in Tx metadata structure.

 lms_stream_meta_t rx_metadata;//Use metadata for additional control over sample receive
function behavior
 rx_metadata.flushPartialPacket = false; //currently has no effect in RX
 rx_metadata.waitForTimestamp = false; //currently has no effect in RX

 lms_stream_meta_t tx_metadata; //Use metadata for additional control over sample send function
behavior
 tx_metadata.flushPartialPacket = false; //do not force sending of incomplete packet
 tx_metadata.waitForTimestamp = true; //Enable synchronization to HW timestamp

#ifdef USE_GNU_PLOT
 GNUPlotPipe gp;
 gp.write("set size square\n set xrange[-2050:2050]\n set yrange[-2050:2050]\n");
#endif
 auto t1 = chrono::high_resolution_clock::now();
 auto t2 = t1;

The streaming code in while() loop receives samples from two Rx channels and
retransmits them with constant offset to two Tx channels. The following steps are performed
for each channel:

• Samples are read to buffer from the Rx FIFO via LMS_RecvStream(). The number of
samples read is obtained from the function return value and the metadata structure
should contain the hardware timestamp of the first sample in the buffer.

• A constant offset is added to Rx timestamp and the resulting value is written to Tx
metadata structure. Note that if the packet of samples arrives to hardware to late they
are not transmitted to RF at all and 'L' character is printed to the console.

• The received buffer, the number of samples read, and Tx metadata (containing
timestamp at which the samples should be transmitted to RF) are then passed to
LMS_SendStream() function.

20

 while (chrono::high_resolution_clock::now() - t1 < chrono::seconds(10)) //run for 10 seconds
 {
 for (int i = 0; i < chCount; ++i)
 {
 int samplesRead;
 //Receive samples
 samplesRead=LMS_RecvStream(&rx_streams[i], buffers[i], bufersize,&rx_metadata, 1000);
 //Send samples with 1024*256 sample delay from RX (waitForTimestamp is enabled)
 tx_metadata.timestamp = rx_metadata.timestamp + 1024 * 256;
 LMS_SendStream(&tx_streams[i], buffers[i], samplesRead, &tx_metadata, 1000);
 }

The remaining code in the while() loop plots samples using GNUplot (if enabled) as well
as output these parameters:

• RX data link rate
• Filled percentage of the first channel RX FIFO
• TX data link rate
• Filled percentage of the first channel TX FIFO

 //Print stats every 1s
 if (chrono::high_resolution_clock::now() - t2 > chrono::seconds(1))
 {
#ifdef USE_GNU_PLOT
 //Plot samples
 t2 = chrono::high_resolution_clock::now();
 gp.write("plot '-' with points");
 for (int i = 1; i < chCount; ++i)
 gp.write(", '-' with points\n");
 for (int i = 0; i < chCount; ++i)
 {
 for (uint32_t j = 0; j < bufersize / 8; ++j)
 gp.writef("%i %i\n", buffers[i][2 * j], buffers[i][2 * j + 1]);
 gp.write("e\n");
 gp.flush();
 }
#endif
 //Print stats
 lms_stream_status_t status;
 LMS_GetStreamStatus(rx_streams, &status); //Obtain RX stream stats
 cout << "RX rate: " << status.linkRate / 1e6 << " MB/s\n"; //link data rate (both channels))
 cout << "RX 0 FIFO: " << 100 * status.fifoFilledCount / status.fifoSize << "%" << endl;
//percentage of RX 0 fifo filled

 LMS_GetStreamStatus(tx_streams, &status); //Obtain TX stream stats
 cout << "TX rate: " << status.linkRate / 1e6 << " MB/s\n"; //link data rate (both channels))
 cout << "TX 0 FIFO: " << 100 * status.fifoFilledCount / status.fifoSize << "%" << endl;
//percentage of TX 0 fifo filled
 }
 }

Finally, after the loop all streams are stopped and device is closed.

 //Stop streaming
 for (int i = 0; i < chCount; ++i)
 {
 LMS_StopStream(&rx_streams[i]); //stream is stopped but can be started again with
LMS_StartStream()
 LMS_StopStream(&tx_streams[i]);
 }
 for (int i = 0; i < chCount; ++i)
 {

21

 LMS_DestroyStream(device, &rx_streams[i]); //stream is deallocated and can no longer be
used
 LMS_DestroyStream(device, &tx_streams[i]);
 delete[] buffers[i];
 }

 //Close device
 LMS_Close(device);

 return 0;
}

3.3.5Application output

The code at the beginning of dualRXTX example is the same as in basicRX example. The
device is opened via LMS_Open() and working configuration is loaded by LMS_Init(). For
more details refer to description of basicRX example.

Figure 5: Console output of dualRXTX example

Figure 6: GNU plot output of dualRXTX example

22

	Introduction
	LMS API
	2.1 LMS API compilation
	2.2 LMS API function documentation

	LMS API Examples
	3.1 Example 1: basicRX
	3.1.1 Opening a device
	3.1.2 Device configuration
	3.1.3 Sample streaming setup
	3.1.4 Receiving samples
	3.1.5 Closing the device
	3.1.6 Application output
	3.2 Example 2: singleRX
	3.2.1 Opening a device
	3.2.2 Device configuration
	3.2.3 Sample streaming setup
	3.2.4 Receiving samples
	3.2.5 Application output
	3.3 Example 3: dualRXTX
	3.3.1 Opening a device
	3.3.2 Device configuration
	3.3.3 Sample streaming setup
	3.3.4 Streaming samples
	3.3.5 Application output

