
Mapcode C/C++ Library – Mapcode Foundation 

 1 

C/C++ library to convert between  
mapcodes and latitude/longitude 

Version 2.5.0 
Copyright ©2003-2016, Mapcode Foundation 

 
Introduction: how to use this library ...................................................................................... 2	
1. Converting a coordinate into a mapcode ............................................................................ 3	

encodeLatLonToSingleMapcode() ........................................................................................... 3	
encodeLatLonToMapcodes() ................................................................................................... 4	

2. Converting a mapcode into a coordinate ............................................................................ 6	
decodeMapcodeToLatLonUtf8() .............................................................................................. 6	
decodeMapcodeToLatLonUtf16() ............................................................................................ 6	

2.1 Recognizing an input as a mapcode ................................................................................ 11	
compareUtf8WithMapcodeFormat() ...................................................................................... 11	
compareUtf16WithMapcodeFormat() .................................................................................... 11	

2.2 Higher precision mapcodes .............................................................................................. 12	
3. Routines related to territories ............................................................................................ 13	

getTerritoryCode() .................................................................................................................. 13	
getTerritoryIsoName() ............................................................................................................ 13	
getParentCountryOf () ............................................................................................................ 14	

4. Routines related to distance ............................................................................................... 15	
distanceInMeters () ................................................................................................................. 15	
maxErrorInMeters() ................................................................................................................ 15	

5. Routines related to Unicode and/or foreign alphabets .................................................... 16	
convertMapcodeToAlphabetUtf8() ........................................................................................ 16	
convertMapcodeToAlphabetUtf16() ...................................................................................... 16	
getFullTerritoryNameEnglish() .............................................................................................. 17	
getFullTerritoryNameLocal () ................................................................................................ 17	
getFullTerritoryNameLocalInAlphabet () .............................................................................. 18	
getAlphabetsForTerritory() .................................................................................................... 19	

6. Data changes ........................................................................................................................ 20	
6.1 Data changes in version 2.0 .............................................................................................. 20	
6.1 Data changes in version 2.2 .............................................................................................. 22	

7. C library version history .................................................................................................... 24	

 



Mapcode C/C++ Library – Mapcode Foundation 

 2 

Introduction: how to use this library 
The key use of this library is to 

• Take a string (for example, some user input), recognize whether it specifies a valid 
mapcode, and decode it into a coordinate (a WGS84 latitude/longitude). 

• Take a coordinate, and encode it into a mapcode. 

Given any string, there is a very lightweight routine (compare…WithMapcodeFormat) 
which will identify whether the string looks like a valid mapcode. There is also a routine 
(decode…MapcodeToLatLon) to actually do the decoding. 

There are also routines of the form encodeLatLonTo…Mapcode which will take a 
coordinate and produce one or more mapcodes to represent the coordinate. Such mapcodes 
are always in the latin alphabet. To represent the result in a different form, use a 
convertMapcodeToUtf…Alphabet routine. 

 

There are several supporting routines. For example, users in The Netherlands may habitually 
leave out the “NLD” code, and users in California may abbreviate “US-CA” to just “CA”. To 
help the decode… routine to “fill in the blanks”, you can pass a context. To convert between 
the internal representation (like TERRITORY_NLD), the official ISO3166 name (like 
“NLD”) and the full name (like “The Netherlands” or “Nederland”), use 

 getTerritoryCode() 

 getTerritoryIsoName() 

 getFullTerritoryName…() 

 



Mapcode C/C++ Library – Mapcode Foundation 

 3 

1. Converting a coordinate into a mapcode 

encodeLatLonToSingleMapcode() 
int encodeLatLonToSingleMapcode(  // find shortest mapcode 
  char*   result,  
  double  lat,  
  double  lon,  
  enum Territory territory,       // cannot be TERRITORY_UNKNOWN 
  int     extraDigits) 

Input 

• lat: Latitude in degrees, capped to -90.0 to 90.0 by method. 

• lon: Longitude in degrees, wrapped to -180.0 to 180.0 by method. 

• territory: Territory to encode in (must be a valid territory). 

• extraDigits: The number of high-precision extra "digits" to add to the generated 
mapcode. The preferred default is 0). See section 2.2 below. 

Output 

• return value: Number of results (0 or negative if no mapcode was found, 1 
otherwise). 

• result: A string representing the full mapcode found, including territory code; the 
caller must allocate the memory for the result string 
(MAX_MAPCODE_RESULT_LEN). 

Example 

double lat              = 52.376514; 
double lon              =  4.908542; 
const char* countryabbr = "NLD"; 
 
char result[MAX_MAPCODE_RESULT_LEN]; 
enum Territory tc = getTerritoryCode(countryabbr, TERRITORY_UNKNOWN); 
int nr = encodeLatLonToSingleMapcode(result, lat, lon, tc, 0); 
if (nr > 0) 
  printf("%0.6f,%0.6f has mapcode %s\n", lat, lon, result); 
else 
  printf("No results\n"); 

Example output 
52.376514,4.908542 has mapcode NLD 49.4V 

Thus, getTerritoryCode is used to enumerate the territory “NLD”. Then 
encodeLatLonToSingleMapcode is used to determine the mapcode for the coordinate 
52.376514,4.908542.  



Mapcode C/C++ Library – Mapcode Foundation 

 4 

encodeLatLonToMapcodes() 
If you are not sure of the territory, and/or if you are interested in alternative (longer) 
mapcodes for the same coordinate in the same territory, you can also generate all possible 
mapcodes for a coordinate: 

int encodeLatLonToMapcodes(  // find all mapcodes 
  Mapcodes* mapcodes, 
  double    lat,  
  double    lon,  
  enum Territory territory,  // TERRITORY_UNKNOWN gets ALL territories 
  int       extraDigits) 

where 
typedef struct { 
  int count; 
  char mapcodes[count][MAX_MAPCODE_RESULT_LEN]; 
} Mapcodes; 

Input 

• mapcodes: A structure capable of storing the results. The x-th result will be in 
mapcodes.mapcode[x] and will have a territory name followed by a space 
followed by a mapcode, or just the mapcode if it is international. 

• lat: Latitude in degrees, capped to -90.0 to 90.0 by method. 

• lon: Longitude in degrees, wrapped to -180.0 to 180.0 by method. 

• territory: territory to encode in, or pass TERRITORY_UNKNOWN to encode in 
all possible territories. 

• extraDigits: The number of high-precision extra "digits" to add to the generated 
mapcode. The preferred default is 0. See section 2.2 below. 

Output 

• return value: The number of results. 

Example 

int i; 
double lat = 51; 
double lon =  5; 
int precision = 0; // normal precision 
Mapcodes m;        // storage 
encodeLatLonToMapcodes(&m, lat, lon, TERRITORY_UNKNOWN, precision); 
 
printf("%d mapcodes for %0.6f,%0.6f:\n", m.count, lat, lon);  
for (i = 0; i < m.count; i++)  
  printf("  %s\n", m.mapcode[i]); 

Example output 

4 mapcodes for 51.000000,5.000000: 
  BEL C17.DF3 
  BEL P6CG.MRQ 
  FRA P6CG.MRQ 
  VHXP4.M457 



Mapcode C/C++ Library – Mapcode Foundation 

 5 

Since 0 was passed as territory, mapcodes are generated for any territory for which the 
mapcode rectangle contains the coordinate. This includes not only Belgium (where the 
coordinate belongs), but also France.  

The mapcodes are grouped per territory. The territories themselves are listed in no particular 
order, except that the international mapcode is always the last code in the list. 

Furthermore, there are two mapcodes generated in Belgium, both correct. The first mapcode 
generated in a particular territory is always the shortest mapcode in that territory, and is 
always the mapcode that would be generated by encodeLatLonToMapcodes for that 
territory. 

Finally, note that passing 0 as territory is guaranteed to return at least one result (an 
international mapcode).  



Mapcode C/C++ Library – Mapcode Foundation 

 6 

2. Converting a mapcode into a coordinate 

decodeMapcodeToLatLonUtf8() 
int decodeMapcodeToLatLonUtf8( 
double*     lat,  
double*     lon,  
const char* mapcode,  
enum Territory optionalTerritory, 
MapcodeElements *optionalMapcodeElements) 

decodeMapcodeToLatLonUtf16() 
int decodeMapcodeToLatLonUtf8( 
double*     lat,  
double*     lon,  
const UWORD* mapcode,  
enum Territory optionalTerritory, 
MapcodeElements *optionalMapcodeElements) 
 

Input 

• mapcode: A “free-form” user input, which may be recognized if it is of the form 
 [whitespace] [xxx[-yyy]] [whitespace] PPP.QQQ [-RR] [whitespace] 

where: 

xxx: A country code (2 or 3 characters). 

yyy: A state code (2 or 3 characters). 

PPP : Mapcode prefix (between 2 and 5 characters). 

QQQ: Mapcode postfix (between 2 and 4 characters). 

RR: High-precision addendum (up to 8 characters). 

• optionalTerritory: a territory to help disambiguate asciiString does not contain an 
(unambiguous) ISO3166 territory code. Pass TERRITORY_UNKNOWN if not 
available. Examples:  

User input “US-CA XX.XX” needs no disambiguation and returns a location in 
California. 

User input “IN XX.XX” can be decoded without a territoryCode, but it is 
unpredictable whether it decodes to a location in Indiana, USA or in the 
Ingushetia, Russia. 

User input “XX.XX” is impossible to decode unless a valid territory code is 
provided. 

Output 

• Return value: Returns nonzero in case of error. Otherwise, lat and lon are filled 
with the decoded coordinates. Latitudes are always in the range [-90, 90] and 
longitudes in range [-180, 180). 



Mapcode C/C++ Library – Mapcode Foundation 

 7 

 

• optionalMapcodeElements: an optional MapcodeElements structure that (if not 
NULL) is filled with the trimmed, disambiguated results of the parsing process, if 
successful. Note that the structure is only correctly filled if the return value is 0. 
It’s structure is: 

typedef struct { 
    char territoryISO[MAX_ISOCODE_LEN + 1]; 
    enum Territory territoryCode;                       
    char properMapcode[MAX_PROPER_MAPCODE_LEN + 1];     
    char precisionExtension[MAX_PRECISION_DIGITS + 1];  
} MapcodeElements; 

     where 

§ territoryISO: the (trimmed and uppercased) characters parsed as 
candidate ISO3166 territory code 

§ territoryCode: the result of recognizing territoryISO as a territory, 
disambiguated with optionalTerritory. TERRITORY_NONE if 
territoryISO is empty and no optionalTerritory is provided. 

§ properMapcode: the trimmed and romanized characters parsed as 
candidate proper mapcode 

§ precisionExtension: the (trimmed and uppercased) characters parsed as 
candidate extension (excluding the hyphen) 

Example 

const char* userinput = "NLD 49.4V"; 
double lat, lon; 
int err = decodeMapcodeToLatLonUtf8( 
  &lat, &lon, userinput, TERRITORY_NONE, 0); 
if (err) 
  printf("\"%s\" is not a valid mapcode\n", userinput); 
else 
  printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon); 

Example output 

"NLD 49.4V" represents 52.376514,4.908543 

Note that the above piece of code will only “accidentally” handle ambiguous partial mapcodes 
correctly. For example, userinput=”IN VY.HV” will either be interpreted as an abbreviation 
of “US-IN VY.HV” or of “RU-IN VY.HV”, and thus either produce a coordinate in Indiana, 
USA, or in Ingushetia, Russia. 

Passing a “default context” improves the chances of ambiguous user input to be interpreted 
“as the user intended”. Thus, if one builds a system that is mostly going to be used in the 
USA, the following hard-codes that preference (i.e. “when in doubt, assume the “USA”): 

Enum Territory defaultcontext =  
  getTerritoryCode("USA", TERRITORY_NONE); 
const char* input = "IN VY.HV"; 
double lat, lon; 
int err = decodeMapcodeToLatLonUtf8(&lat, &lon, input, defaultcontext, 
0); 



Mapcode C/C++ Library – Mapcode Foundation 

 8 

if (err) 
  printf("\"%s\" is not a valid mapcode\n", userinput); 
else  
  printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon); 

Example output 

"IN VY.HV" represents 39.727950,-86.118444 

A more sophisticated system could of course make much better assumptions, for example 
based on the GPS coordinate of the user, or the current cursor position on a world map that is 
being displayed to the user. 

In an interactive system, the best way to handle ambiguity is probably to always use the most 
recent successful, explicitly stated context as default. 

For example, suppose you remembered the previous correctly interpreted user input: 
const char* previous_successful_input = "RU-IN DK.CN0"; 

then the following code snippet will correctly interpret the completely abbreviated mapcode 
“49.4V” as being in the same state (i.e. RU-IN): 

enum Territory previouscontext = 
  getTerritoryCode(previous_successful_input,TERRITORY_NONE); 
const char* userinput = "D6.58"; 
double lat,lon; 
int err = decodeMapcodeToLatLonUtf8(&lat, &lon, userinput, 
                                    previouscontext, 0); 
if (err) 
  printf("\"%s\" is not a valid mapcode\n", userinput); 
else  
  printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon); 

The output is: 
"D6.58" represents 43.259275,44.771980 

which is in  Ingushetia Republic. And in fact, had we written 
userinput=“AL D6.58” 

this would generate the output 
“AL D6.58" represents 51.977856,85.935367 

which is in the Russian republic of Altai: because of the context RU-IN, the territory has been 
interpreted as RU-AL, instead of the equally likely US-AL (Alabama, USA) or BR-AL 
(Alagoas, Brazil). 

Here is an example that decodes consecutive user inputs, some of them wildly ambiguous. 
With the exception of the very first input, all are probably interpreted as the user intended: 

enum Territory context = TERRITORY_NONE; // no initial context 
const char* userinput[] = {   // simulated user input 
  "49.4V",          "US-IN 49.4V",    "49.4V",          "AL 49.4V", 
  "RU-IN 49.4V",    "AL 49.4V",       "NLD XXX.YYY",    "49.4V", 
  "CCCCC.CCCC",     "49.4V",          0 
}; 
 
int i; 
for (i = 0; userinput[i] != 0; i++) { 
  double lat, lon; 



Mapcode C/C++ Library – Mapcode Foundation 

 9 

  int err = decodeMapcodeToLatLonUtf8(&lat, &lon,   
                                      userinput[i], context, 0); 
  if (err) 
    printf("\"%s\" is not a valid mapcode\n", userinput[i]); 
  else { 
    enum Territory c; 
    printf("%12s represents %0.6f,%0.6f\n", userinput[i], lat,lon); 
    c = getTerritoryCode(userinput[i], TERRITORY_UNKNOWN); 
    if (c != TERRITORY_NONE)  
      context = c;         
  } 
} 

The output is: 
"49.4V" is not a valid mapcode 
 US-IN 49.4V represents 39.783750,-86.198832 
       49.4V represents 39.783750,-86.198832 
    AL 49.4V represents 33.532750,-86.836184 
 RU-IN 49.4V represents 43.249285,44.741354 
    AL 49.4V represents 51.967866,85.899261 
 NLD XXX.YYY represents 51.204537,5.541607 
       49.4V represents 52.376514,4.908543 
  CCCCC.CCCC represents -16.326209,-48.016850 
       49.4V represents 52.376514,4.908543 

Explanation: 
"49.4V" is not a valid mapcode 

Since there is no previous context, this ambiguous mapcode can simply not be interpreted. For 
this reason, it may be a good idea to choose a better default context than previouscontext=-1 
(e.g. based on the user’s GPS position).  

 
US-IN 49.4V represents 39.783750,-86.198832 

A complete and unambiguous mapcode, it results in a coordinate in Indiana, USA. 
 
49.4V represents 39.783750,-86.198832 

Since the previous input was in Indiana, this incomplete mapcode is encoded in the same 
context. 

 
AL 49.4V represents 33.532750,-86.836184 

Since the previous input was in the Indiana, USA, the context “AL” is interpreted as another 
state in the USA, and thus results in a coordinate in Alabama (rather than, say, the state of 
Alagoas in Brazil). 

 
RU-IN 49.4V represents 43.249285,44.741353 

A complete and unambiguous mapcode, it results in a coordinate in Ingushetia, Russia. 
 
AL 49.4V represents 51.967866,85.899261 

Unlike two inputs back, AL 49.4V is now interpreted in Russia (the Altai Republic) rather 
than in the USA (Alabama), since the most recent context was Russian. 

 



Mapcode C/C++ Library – Mapcode Foundation 

 10 

NLD XXX.YYY represents 51.204536,5.541607 

A complete and unambiguous mapcode, it results in a coordinate in The Netherlands. 
 
49.4V represents 52.376514,4.908542 

Since the previous input was in The Netherlands, this time 49.4V is interpreted in The 
Netherlands as well. 

 
CCCCC.CCCC represents -16.326209,-48.016851  

A complete and unambiguous international mapcode. Although it decodes to a coordinate 
somewhere in Brazil, the mapcode does not explicitly specify Brazil as a context. Therefore, 
the context for future inputs will remain “The Netherlands”. 

 
49.4V represents 52.376514,4.908542 

Since the most recent explicit context was in The Netherlands, this ambiguous mapcode is 
now also interpreted in The Netherlands. 



Mapcode C/C++ Library – Mapcode Foundation 

 11 

2.1 Recognizing an input as a mapcode 
Sometimes you may wish to allow a user to input something in a “general” search box – an 
address, a coordinate, a mapcode, or something else. 

The following routine is efficient and lightweight, and recognizes if a user input looks like it 
is intended as a mapcode. For example: 

 “NLD 503.XX2” 

is intended as a mapcode, while 

 “St. Jacobs Street 45, London” 

is not. Since anything that looks like a mapcode is very unlikely to represent anything else, we 
would recommend to handle (i.e. decode) anything that looks like a mapcode as a mapcode. If 
it fails to decode, you could still try to interpret as something else, but as has been said: it is 
very unlikely it does represent something else. 

Note: the routine can not guarantee that the input represents a valid mapcode. For example, 
the input “XXX XX.XX” will pass although XXX is not a valid territory. 

compareUtf8WithMapcodeFormat() 
int compareUtf8WithMapcodeFormat(const char* string) 

compareUtf16WithMapcodeFormat() 
int compareUtf16WithMapcodeFormat(const UWORD* string) 

Input 

• string: A “free-form” (user input) string. 

• includesTerritory: An integer: if you pass 1, any mapcode (including optional 
territory context) will be recognized, i.e. inputs of the form 
[whitespace] [xxx[-yyy]] [whitespace] PPP.QQQ [-RR] [whitespace] 

If you pass 0, only mapcodes without territory will be recognized: 
[whitespace] PPP.QQQ [-RR] [whitespace] 

Output 

• Return value: Returns 0 if the string looks like a full/proper mapcode.  Return 
negative in case of error (the special value ERR_MAPCODE_INCOMPLETE is 
returned if the string looks like a partial mapcode, i.e. might become a valid 
mapcode if some more characters were added). 

 



Mapcode C/C++ Library – Mapcode Foundation 

 12 

2.2 Higher precision mapcodes 
Mapcodes are intended for easy, daily use. They were therefore made short, and no more 
precise than is necessary to be useful at the “human” scale: accurate to within a few meters – 
or put another way: inaccurate by up to several meters. 

For special applications, mapcodes can be generated with higher accuracy, by appending extra 
letters. One letter extra decreases the worst-case inaccuracy to less than 162 centimeters (70 
cm on average), two letters decreases it to less than 25 centimeters (13 cm on average), four 
letters to less than a centimeter. 

As an example, consider coordinate 52.3765, 4.90858. When encoded, it yields mapcode 
NLD 49.4V. This mapcode decodes back into 52.376514, 4.908543, a coordinate which is 
2.48 meters off to the west, and 1.56 meters too far north (in combination, the mapcode is 
2.93 meters away from the original coordinate).  

When we encode the same coordinate with an extra digit, we get NLD 49.4V-L, a mapcode 
that decodes into 52.376508, 4.908575, only 95 centimeters off. With two extra digits, we get 
a mapcode that is about 5.7 centimeters off. 

Mapcode: decodes into: error vs original coordinate: 

49.4V 52.376514, 4.908543 2.93 meter 

49.4V-L 52.376491, 4.908574 0.95 meter 

49.4V-LX 52.376497, 4.908584 0.06 meter 

Note that this is just an example. Had we encoded 52.376514, 4.908543, the mapcode 49.4V 
would already be precise to 2.5 centimeters. It is the maximum error that is reduced by adding 
extra letters to a mapcode. 

Please note: the above may make it seem that it is a good idea to always add extra letters. 
This would defeat the core purpose of the mapcode system, which is to be accurate enough for 
daily, human-scale use. The high-precision extension was made for very special applications 
only.  

See section 4 about distance-related routines. 



Mapcode C/C++ Library – Mapcode Foundation 

 13 

3. Routines related to territories 
The mapcode system is based on an official code table, which in turn is based on the ISO 
3166 standards. 

For efficiency, these codes need to be converted into internal “territory codes”. For these, the 
following three support routines are relevant. 

getTerritoryCode() 
enum Territory getTerritoryCode( 
  const char* territoryISO, 
  enum Territory parentTerritory) 

Input 

• territoryISO: A string starting with the “ISO standard” code of a country or a 
state, such as “USA”, “CA”, “US-CA”, or “USA-CA”. 

• parentTerritory: Optional territory to help the routine choose when the 
abbreviation is ambiguous, which can happen if the abbreviation is of a state and 
the state’s country is omitted (For example, “AL” might mean either “US-AL” or 
“BR-AL”). Pass 0 if not available. 

Output 

• Return value: The territory, or negative (TERRITORY_NONE) if not no match 
was found. 

getTerritoryIsoName() 
char *getTerritoryIsoName(  
  char *territoryISO,  
  enum Territory territory, 
  int  useShortName)  

Input 

• Result: A string to store the result in (capable of storing at least 
MAX_ISOCODE_LEN characters plus a zero-terminator); Returns an empty 
string if territoryCode is illegal. 

• territory: A territory 

• useShortName: Specifies the format of the return value: 

0: Return in unambiguous full format: “XXX” for a country, “XX-YY” for a 
state. 

1: Short format: “XXX” or “XX”; especially when a 2 letter (state) code is 
returned, although always unique within its country, it may not be unique in 
the world. 

Output 

• Return value: A pointer to territoryISO.  



Mapcode C/C++ Library – Mapcode Foundation 

 14 

getParentCountryOf () 
enum Territory getParentCountryOf( 
  enum Territory territory) 

Input 

• territory: a territory 

Output 

• Return value: 

• The parent country of the specified territory (>0), or TERRITORY_NONE (<0) if 
the territory is invalid or is not a subdivision of another territory. 



Mapcode C/C++ Library – Mapcode Foundation 

 15 

4. Routines related to distance 

distanceInMeters () 
double distanceInMeters( 
  double latDeg1,  
  double lonDeg1,  
  double latDeg2,  
  double lonDeg2) 

Input 

• latDeg1: Latitude in degrees of first point [-90, 90]. 

• lonDeg1: Longitude in degrees of first point [-180, 180). 

• latDeg2: Latitude in degrees of second point [-90, 90]. 

• lonDeg2: Longitude in degrees of second point [-180, 180). 

Output 

• Return value: Distance between the coordinates, in meters. Please note that this 
value is only correct if coordinates that are within a few kilometers of each other. 

maxErrorInMeters() 
double maxErrorInMeters(int extraDigits) 

Input 

• extraDigits: The number of high-precision "digits" in a mapcode (see section 2.2). 

• Return value: Worst-case distance in meters between the original coordinate and 
the decode location of the mapcode. 



Mapcode C/C++ Library – Mapcode Foundation 

 16 

5. Routines related to Unicode and/or foreign alphabets 

convertMapcodeToAlphabetUtf8() 
char* convertMapcodeToAlphabetUtf8( 
  char*     utf8String,  
  const char *asciiString, 
  enum Alphabet alphabet)  

convertMapcodeToAlphabetUtf16() 
UWORD* convertMapcodeToAlphabetUtf16( 
  UWORD*     utf16String,  
  const char *asciiString, 
  enum Alphabet alphabet)  

This routine takes a zero-terminated string containing a mapcode in roman (latin) alphabet 
(asciiString), and converts it into a zero-terminated utf8String or utf16String in the 
specified alphabet. A pointer to the result is returned. Note that utf16String must be able to 
hold MAX_MAPCODE_RESULT_LEN 2-byte characters (including the 0-terminator), while 
utf8String could potentially be 3 * MAX_MAPCODE_RESULT_LEN characters. 

For example, this routine can convert  

PQ.RS  to  नप.भम (Devanagari alphabet) 

PQ.RS  to  РФ.ЯЦ (Russian alphabet) 

At the date of writing, the following alphabets have been implemented: 
    MAPCODE_ALPHABET_ROMAN = 0, 
    MAPCODE_ALPHABET_GREEK, 
    MAPCODE_ALPHABET_CYRILLIC, 
    MAPCODE_ALPHABET_HEBREW, 
    MAPCODE_ALPHABET_DEVANAGARI, 
    MAPCODE_ALPHABET_MALAYALAM, 
    MAPCODE_ALPHABET_GEORGIAN, 
    MAPCODE_ALPHABET_KATAKANA, 
    MAPCODE_ALPHABET_THAI, 
    MAPCODE_ALPHABET_LAO, 
    MAPCODE_ALPHABET_ARMENIAN, 
    MAPCODE_ALPHABET_BENGALI, 
    MAPCODE_ALPHABET_GURMUKHI, 
    MAPCODE_ALPHABET_TIBETAN, 
    MAPCODE_ALPHABET_ARABIC, 
    MAPCODE_ALPHABET_KOREAN, 
    MAPCODE_ALPHABET_BURMESE, 
    MAPCODE_ALPHABET_KHMER, 
    MAPCODE_ALPHABET_SINHALESE, 
    MAPCODE_ALPHABET_THAANA, 
    MAPCODE_ALPHABET_CHINESE, 
    MAPCODE_ALPHABET_TIFINAGH, 
    MAPCODE_ALPHABET_TAMIL, 
    MAPCODE_ALPHABET_AMHARIC, 
    MAPCODE_ALPHABET_TELUGU, 
    MAPCODE_ALPHABET_ODIA, 
    MAPCODE_ALPHABET_KANNADA, 



Mapcode C/C++ Library – Mapcode Foundation 

 17 

    MAPCODE_ALPHABET_GUJARATI, 
 

getFullTerritoryNameEnglish() 
int getFullTerritoryNameEnglish( 
  char *territoryName, 
  enum Territory territory, 
  int alternative)  

Returns the English name of the given territory.  

Input 

• territoryName: string to store the (ASCII) result, must be capable of storing at 
least MAX_TERRITORY_FULLNAME_LEN characters excluding the 0-
terminator. 

• territory: the territory to get the full name for. 

• alternative: if 0, the most common name for the territory. If some non-zero value 
x, it will return the x-th alternative name for the territory (if any). 

Output 

• Return value: negative in case of error, 0 otherwise, in which case territoryName is 
filled with a name for the territory.  

Example 

char name[MAX_MAPCODE_RESULT_LEN]; 
int i; 
for (i=0; getFullTerritoryNameEnglish(name, TERRITORY_USA, i); i++) { 
  printf("%s\n", name); 
} 

Example output 
USA 
United States of America 
America 

getFullTerritoryNameLocal () 
int getFullTerritoryNameEnglish( 
  char *territoryName, 
  enum Territory territory, 
  int alternative)  

Returns the local name of the given territory, in an alphabet in common use in the territory. 

Input 

• territoryName: string to store the (UTF8) result, must be capable of storing at 
least MAX_TERRITORY_FULLNAME_LEN 8-bit characters excluding the 0-
terminator. 

• territory: the territory to get the full name for. 

• alternative: if 0, the most common name for the territory. If some non-zero value 
x, it will return the x-th alternative name for the territory (if any). 



Mapcode C/C++ Library – Mapcode Foundation 

 18 

Output 

• Return value: negative in case of error, 0 otherwise, in which case territoryName is 
filled with a name for the territory.  

Example 

char name[MAX_MAPCODE_RESULT_LEN]; 
int i; 
for (i=0; getFullTerritoryNameLocal(name, TERRITORY_MAR, i); i++) { 
  printf("%s\n", name); 
} 

Example output 

 المغرب

Morocco 

������� 

 

getFullTerritoryNameLocalInAlphabet () 
int getFullTerritoryNameEnglish( 
  char *territoryName, 
  enum Territory territory, 
  int alternative, 
  enum Alphabet alphabet)  

Returns the local name of the given territory, in the specified alphabet. 

Input 

• territoryName: string to store the (UTF8) result, must be capable of storing at 
least MAX_TERRITORY_FULLNAME_LEN 8-bit characters excluding the 0-
terminator. 

• territory: the territory to get the full name for. 

• alternative: if 0, the most common name for the territory in the alphabet specified 
(if any). If some non-zero value x, it will return the x-th alternative name for the 
territory in the alphabet specified (if any). 

• Alphabet: an alphabet, e.g. ALPHABET_GREEK. 

Output 

• Return value: negative in case of error, 0 otherwise, in which case territoryName is 
filled with a name for the territory.  

Example 

char name[MAX_MAPCODE_RESULT_LEN]; 
getFullTerritoryNameLocalInAlphabet(name, TERRITORY_MAR, 0, 
                                    ALPHABET_ARABIC); 
printf("%s\n", name); 

Example output 

 المغرب



Mapcode C/C++ Library – Mapcode Foundation 

 19 

 

getAlphabetsForTerritory() 
const TerritoryAlphabets *getAlphabetsForTerritory( 
  int territoryCode) 

This routine returns a pointer to a structure listing the most common alphabets in the given 
territory. 

Returns NULL if the territory is invalid, otherwise, returns a pointer t such that 

      t->count  Specifies the number of common alphabets (always > 0). 

      t->alphabet[x] Specifies the x-th alphabet. 

 



Mapcode C/C++ Library – Mapcode Foundation 

 20 

6. Data changes 

6.1 Data changes in version 2.0 
Since version 2.0.0, coordinates are not rounded to the nearest 1,000,000th of a degree (a millionth of a degree 
roughly equals 11 centimeters). This will seldom affect daily life, but decoding an old mapcode may yield 
differences in the 6th coordinate decimal (i.e. on the 11-centimeter scale), and in edge cases, encoding a 
coordinate may yield a different mapcode than before (one that is a few centimeters closer to the original 
coordinate than the mapcode produced with the old code).  

As part of the application process for the International Standards Organisation, a thorough check was done on all 
16,000 territory/population-density rectangles defined in 2001. Some new code ranges were added, mostly for 
remote islands, which means the new rectangles can produce mapcodes that are not recognized on older systems.  

However, a few adjustments had to be made which break compatibility: a mapcode generated by the new 
system would decode to a different coordinate on an old system, and vice versa. This is true for the changes 
listed below under “out-sized cells”. 

1) out-sized cells – The mapcode database divides the territories of the world into cells of at about 10 x 10 
meters. The worst-case error in such cell is at the corners (about 7.1 meters from the center). Our check yielded 
about a dozen cases (out of 16,300) where the cells exceded 10.5 x 10.5 meters and the error could exceed 7.5 
meters. These records were adjusted.  
This adjustments breaks compatibility for the following “mainland” mapcodes: 

a. Codes of the form xx.xx for the small town of Altaysk, Altai Republic, Russia (RU-AL). 

b. Codes of the form xx.xx for the micro-state San Marino. 

c. Codes of the form xxxx.xxx in the Xinjiang Uyghur province, China. 

d. 7-letter codes for Inner Mongolia. 

e. 6-letter codes for state of Chihuahua, Mexico. 

f. 6-letter codes for Bangladesh  and Romania. 

g. Codes of the form xxx.xxxx codes in the far north of Sakha Republic, Russia. 

h. Codes of the form xx.xx for the town of Fargo, in North Dakota, USA. 

i. Codes of the form xx.xxx for the town of Toronto in Canada. 

j. The optional 7-letter code range 6xx.xxxx for Andaman and Nicobar, India (a state fully covered by 
6-character mapcodes). 

k. 7-letter codes for Sudan and South Sudan, which are now contiguous (both countries were furthermore 
given optional 8-character codes). 

and also on the following island territories: 

 

l. Changed the 5-letter codes for Reunion Island (REU) and added optional codes of the form xxx.xxx. 

m. Replaced optional codes of the form xxxx.xxx for Saint Helena, Ascension and Tristan da Cunha 
(SHN) by optional codes of the form xxxx.xxxx (note: all land area is covered by shorter codes); Added 
code range K0.000-PZ.ZZZ to cover Cough Island. 

n. Changed codes of the form xxx.xxx for the Maldives (MDV); added optional 7-letter codes. 

o. Changed codes of the form xx.xxx codes for Saint Vincent and the Grenadines (VCT); added 
optional 6-letter codes. 

p. Changed the mapcodes for the islands of Kiribati (KIR). 



Mapcode C/C++ Library – Mapcode Foundation 

 21 

q. Changed codes of the form xxxx.xx for the South China Sea islands of the Hainan province (CN-
HI). 

r. Changed codes of the form xx.xxx for the o’Ahu island of Hawaii (US-HI). 

s. Changed codes of the form xx.xxx for the British Virgin Islands (VGB). 

t. Improved 4-letter codes for Wallis and Futuna (WLF) to cover almost all of Wallis. 

u. Adjusted 5-letter codes for Turks and Caicos Islands (TCA) to include all land area. 

v. Adjusted 5-letter codes for Comoros (COM) to include all land area. 

w. Adjusted 6-letter codes for Solomon Islands (SLB) to include all land area. 
 

2) Missing islands, atolls and rocks (extra code ranges only) 

Code ranges were added to cover islands, atolls and rocks that were missing from the borders of certain island 
nations. All codes from old mapcode systems are correctly recognized, but the new code ranges are not 
recognized by by old mapcode systems.  

a. ASM (American Samoa) – Code range H0.000-L6.ZPC added for Rose Atoll; Optional codes of the 
form xxxx.xxx added to cover all land area. 

b. VIR (US Virgin Islands) - Codes of the form xxx.xx added to include Savana and French Cap Cay. 

c. FSM (Deferated States of Micronesia) – codes of the form xxx.xxxx added to include the Nukuoro and 
Tokodakaaka Atolls. 

d. MUS (Mauritius) – code range  X00.000-XZZ.ZZZ added to cover some atolls north of Cargados 
Carajos. 

e. SGS (South Georgia and the South Sandwich Islands) – code range P000.00-RZZZ.ZZ added to cover 
Black Rock. 

f. TWN (Taiwan) – added code range Y00.000-YZZ.ZZZ to cover Agincourt, Pinnacle, and Craig 
islands. 

g. EST (Estonia) – added code range X00.000-XZZ.ZZZ to cover Vaindloo island. 

h. GUF (French Guiana) – added code range B000.00-CZZZ.ZZ to include Isle du Grand Connetable 
and Ile du Diable. 

i. PRT (Portugal) – added code ranges S000.00-SZZZ.ZZ and N000.000-NZZZ.ZZZ to cover some 
islands far south of Madeira. 

j. KOR (South koreea) – added code range Z000.00-ZZZZ.ZZ to include the Dongdo-ri islands. 

k. NZL (New Zealand) – added optional code range L000.001-MZZZ.ZZZ to provide 7-letter optional 
equivalents for all 6 letter mapcodes. 

l. JPN (Japan) - added range V000.001-WZZZ.ZZZ to cover the Liancourt Rocks, Oshima Island and 
Aramiko Island. 

m. ALA (Aaland Islands) – optional borders extended to cover Lökharu island. 

n. MDG (Madagascar) – added code range S000.01-SZZZ.ZZ to cover the western sand banks; Optional 
8-character codes added to cover coastal waters. 

o. ZAF (South Africa) – added code range M00.000Y-MZZ.ZZZZ to cover Marion Island and Prince 
Edward island. 

p. Mexico – added code range 800.00A0 – 8ZZ.ZZZZ to include the Arrecife Alacranes islands. 

3) Other improvements (extra code ranges only): 



Mapcode C/C++ Library – Mapcode Foundation 

 22 

a. HUN (Hunagry) – added code range 70.00A0 - DZ.TCZK so that the whole south of the country has 
mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available. 

b. BGR (Bulgaria) – added code range L0.0000-MZ.ZZZZ so that the whole south of the country has 
mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available. 

c. BEN (Benin) - added code range V0.0000-ZZ.ZZZZ so that the whole north of the country has 
mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available. 

d. SUR (Suriname) - added code range Y0.0003-ZZ.ZZZY so that the whole south of the country has 
mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available. 

e. US-IL (Illinois, USA) - added code range X0.0002-ZZ.ZZZZ so that the whole south of the state has 
mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available. 

f. US-NY (New York State, USA) - added code range Z00.000-ZZY.ZZY so that every location in the 
state has a 6-letter code; the mapcodes of the old forms are of course still available. 

g. SYR (Syria) – the country rectangle was incorrectly marked "optional” – for the south-east desert, 7-
letter mapcodes are not optional. 

h. PHL (Phillippines) – added code range of the forms xxx.xxxx and xxxx.xxxx to include Saluag Island 
and Francis Reef. 

i. DNK (Denmark) – added code range Z0.0000-ZZ.ZZZZ to include Falster Islands’s southernmost 
point. 

j. PER (Peru) – added code range of the forms xxx.xxxx and xxxx.xxxx to include the easternmost point. 

k. BR-AC (Acre, Brazil) - added codes of the form xxxx.xxx as alternative for the 8-letter codes for the 
northern jungles. 

l. For Mexico, India, Australia, Brazil, the USA and Russia, national mapcodes are also available as 
regional mapcodes (i.e. within the states and subdivisions). For the following subdivisions, the 
rectangles were slightly enlarged to assure all locations within the subdivision are enclosed: MX-DIF, 
MX-GRO, MX-VER, IN-PB, IN-HR, IN-TN, IN-PY, AU-NSW, AU-NT, AU-SA, AU-VIC, AU-QLD, 
BR-SP, BR-RS, US-NV, RU-AD, RU-AST, RU-VLA, RU-KRS, RU-TA, RU-TT, RU-RYA, RU-
SAM, RU-PSK, RU-KDA and RU-PO. 

m. Added 6-letter codes for Gibraltar (GIB) that overlap with Spain mapcodes; added 6-letter and 7-letter 
codes for San Marino (SMR) that overlap with Italy mapcodes; added 7-letter codes for Isle of Man, 
Jersey and Guernsey that overlap with GBR mapcodes. 

6.1 Data changes in version 2.2 
It was discovered that there were a few micro-degree gaps between the rectangles that define a territory. For 
example, in Sierra Leone, one subarea ended at latitude 8.526879 and the next started at 8.526880. Since 
coordinates are not rounded to 6 decimals any more, locations that fell inside this 11-centimeter-wide gap, such 
as (8.5268795, -12), had no Sierra Leone mapcode! This required a fix to the data.  

Effects: for mapcodes of the forms affected (see table), there will be up to 11 centimeter difference between the 
way an old system decodes such a mapcode, and the coordinate generated by a new mapcode system. 

Territory Affects mapcodes of the form: 

Antarctica xxxx.xxxx 

Austria Bxx.xxx , Cxx.xxx 

Brazil PR xxxx.xx 

Bulgaria Jxx.xxx 

Congo-Kinshasa xxxx.xxx 

Croatia xxx.xxx 



Mapcode C/C++ Library – Mapcode Foundation 

 23 

Czech Republic 8xx.xxx 

Dominican Republic Zxx.xxx 

French Guiana 9xx.xxx , Dxx.xxx 

Ghana xxx.xxx 

India 3xxx.xxx , 4xxx.xxx, Dxx.xxxx, BR xxx.xxx, TN 9xx.xxx,  
JH xxx.xxx , JH xx.xxxx , GJ Zxxx.xx , UP 7xxx.xx 

Iran xxxx.xxx 

Liberia Cxx.xxx , Gxx.xxx 

Malawi 1xx.xxx 

Mexico xxxx.xxx 

Moldova Mxx.xxx 

Pakistan 3xxx.xxx , 4xxx.xxx 

Panama 3xx.xxx 

Saudi Arabia 2xxx.xxx , Nxxx.xxx 

Sierra Leone xxx.xxx , 3x.xxxx 

Tajikistan xx.xxxx 

USA WV xxx.xxx , AR xx.xxxx , NC xxx.xxx , NY xxx.xxx ,  
NY xxxx.xx , FL xxx.xxx , AK 2xxx.xxx , AK 3xxx.xxx 

In a few cases, larger gaps were discovered. Rather than breaking compatibility with old mapcodes beyond 11 
centimeters, new sub-territories were added. 

Effects: old systems will not recognize mapcodes of the forms listed below: 

Territory New mapcodes of the form: 

Croatia Zx.xxxx 

Japan Zxxx.xxx 

Congo-Kinshasa 8xx.xxxx 

India AS Zxx.xxx, AS Txx.xxx, BR Zxx.xxx , 8xx.xxxx 

USA TX Xxxx.xxx, TX Zxxx.xxx 

Mexico 9xx.xxxx 

Xinjiang Uyghur, China Wxxx.xxx 



Mapcode C/C++ Library – Mapcode Foundation 

 24 

7. C library version history 
1.25 Initial release to the public domain. 

1.26 Added alias OD ("Odisha") for Indian state OR ("Orissa"). 

1.27 Improved (faster) implementation of the function isInArea. 

1.28 Bug fix for the needless generation of 7-letter alternatives to short mapcodes in large 
states in India. 

1.29 Also generate country-wide alternative mapcodes for states. 

1.30 Updated the documentation and extended it with examples and suggestions. 

1.31 Added lookslikemapcode(). 

1.32 Added coord2mc1();fixed 1.29 so no country-wide alternative is produced in edge cases; 
prevent FIJI failing to decode at exactly 180 degrees. 

1.33 Fix to not remove valid results just across the edge of a territory; improved interface 
readability and renamed methods to more readable forms. 

1.4 Renamed API to more appropriate convention (.h support legacy calls). 

1.40 Added extraDigits parameter so that high-precision mapcodes can be generated. 

1.41 Added the India state Telangana (IN-TG), until 2014 a region in Adhra Pradesh. 

1.5 Made threadsafe versions of encoding/decoding routines. 

2.0 Added up to 8-character high-precision support (10 micron accuracy), made several 
changes to the raw data (see chapter 6.1). 

2.1 Rewrote fraction floating points to integer arithmetic; significant speed improvements; 
added source code to test the library calls. 

2.2 Fixed micro-degree gap issue in data (see chapter 6.2). 

2.3 Added support for Arabic script; improved Tibetan so it is easier to type on a keyboard; 
Adjusted mapcode generation for “abjad” languages (greek, Hebrew) so there will never be 
more than two consecutive non-digits in a mapcode. 

2.4 Added Korean (Choson'gul / Hangul), Burmese, Khmer, Sinhalese, Thaana (Maldivan), 
Chinese (Zhuyin, Bopomofo), Tifinagh (Berber), Tamil, Amharic, Telugu, Odia, Kannada, 
Gujarati. Changed some Arabic, Devanagari and Bengali characters to support sister 
languages (Urdu, Jawi, Assamese). 

2.4.1 Enumerated territories and alphabets. 

 


