Mapcode C/C++ Library – Mapcode Foundation
C/C++ library to convert between
mapcodes and latitude/longitude
Version 2.5.2
Copyright ©2003-2016, Mapcode Foundation

Introduction: how to use this library	2
1. Converting a coordinate into a mapcode	3
encodeLatLonToSingleMapcode()	3
encodeLatLonToMapcodes()	4
2. Converting a mapcode into a coordinate	6
decodeMapcodeToLatLonUtf8()	6
decodeMapcodeToLatLonUtf16()	6
2.1 Recognizing an input as a mapcode	11
compareUtf8WithMapcodeFormat()	11
compareUtf16WithMapcodeFormat()	11
2.2 Higher precision mapcodes	12
3. Routines related to territories	13
getTerritoryCode()	13
getTerritoryIsoName()	13
getParentCountryOf ()	14
4. Routines related to distance	15
distanceInMeters ()	15
maxErrorInMeters()	15
5. Routines related to Unicode and/or foreign alphabets	16
convertMapcodeToAlphabetUtf8()	16
convertMapcodeToAlphabetUtf16()	16
getFullTerritoryNameInLocaleUtf8()	17
getFullTerritoryNameInEnglish ()	17
getAlphabetsForTerritory()	18
getFullTerritoryNameLocalUtf8 ()	18
getFullTerritoryNameLocalInAlphabetUtf8 ()	19
6. Data changes	20
6.1 Data changes in version 2.0	20
6.1 Data changes in version 2.2	22
7. C library version history	24

[bookmark: _Toc465975104]Introduction: how to use this library
The key use of this library is to
· Take a string (for example, some user input), recognize whether it specifies a valid mapcode, and decode it into a coordinate (a WGS84 latitude/longitude).
· Take a coordinate, and encode it into a mapcode.
Given any string, there is a very lightweight routine (compare…WithMapcodeFormat) which will identify whether the string looks like a valid mapcode. There is also a routine (decode…MapcodeToLatLon) to actually do the decoding.
There are also routines of the form encodeLatLonTo…Mapcode which will take a coordinate and produce one or more mapcodes to represent the coordinate. Such mapcodes are always in the latin alphabet. To represent the result in a different form, use a convertMapcodeToUtf…Alphabet routine.

There are several supporting routines. For example, users in The Netherlands may habitually leave out the “NLD” code, and users in California may abbreviate “US-CA” to just “CA”. To help the decode… routine to “fill in the blanks”, you can pass a context. To convert between the internal representation (like TERRITORY_NLD), the official ISO3166 name (like “NLD”) and the full name (like “The Netherlands” or “Nederland”), use
	getTerritoryCode()
	getTerritoryIsoName()
	getFullTerritoryName…()

[bookmark: _Toc465975105]1. Converting a coordinate into a mapcode
[bookmark: _Toc465975106]encodeLatLonToSingleMapcode()
int encodeLatLonToSingleMapcode(// find shortest mapcode
 char* result,
 double lat,
 double lon,
 enum Territory territory, // cannot be TERRITORY_UNKNOWN
 int extraDigits)
Input
lat: Latitude in degrees, capped to -90.0 to 90.0 by method.
lon: Longitude in degrees, wrapped to -180.0 to 180.0 by method.
territory: Territory to encode in (must be a valid territory).
extraDigits: The number of high-precision extra "digits" to add to the generated mapcode. The preferred default is 0). See section 2.2 below.
Output
return value: Number of results (0 or negative if no mapcode was found, 1 otherwise).
result: A string representing the full mapcode found, including territory code; the caller must allocate the memory for the result string (MAX_MAPCODE_RESULT_LEN).
Example
double lat = 52.376514;
double lon = 4.908542;
const char* countryabbr = "NLD";

char result[MAX_MAPCODE_RESULT_LEN];
enum Territory tc = getTerritoryCode(countryabbr, TERRITORY_UNKNOWN);
int nr = encodeLatLonToSingleMapcode(result, lat, lon, tc, 0);
if (nr > 0)
 printf("%0.6f,%0.6f has mapcode %s\n", lat, lon, result);
else
 printf("No results\n");
Example output
52.376514,4.908542 has mapcode NLD 49.4V
Thus, getTerritoryCode is used to enumerate the territory “NLD”. Then encodeLatLonToSingleMapcode is used to determine the mapcode for the coordinate 52.376514,4.908542.
[bookmark: _Toc465975107]encodeLatLonToMapcodes()
If you are not sure of the territory, and/or if you are interested in alternative (longer) mapcodes for the same coordinate in the same territory, you can also generate all possible mapcodes for a coordinate:
int encodeLatLonToMapcodes(// find all mapcodes
 Mapcodes* mapcodes,
 double lat,
 double lon,
 enum Territory territory, // TERRITORY_UNKNOWN gets ALL territories
 int extraDigits)
where
typedef struct {
 int count;
 char mapcodes[count][MAX_MAPCODE_RESULT_LEN];
} Mapcodes;
Input
mapcodes: A structure capable of storing the results. The x-th result will be in mapcodes.mapcode[x] and will have a territory name followed by a space followed by a mapcode, or just the mapcode if it is international.
lat: Latitude in degrees, capped to -90.0 to 90.0 by method.
lon: Longitude in degrees, wrapped to -180.0 to 180.0 by method.
territory: territory to encode in, or pass TERRITORY_UNKNOWN to encode in all possible territories.
extraDigits: The number of high-precision extra "digits" to add to the generated mapcode. The preferred default is 0. See section 2.2 below.
Output
return value: The number of results.
Example
int i;
double lat = 51;
double lon = 5;
int precision = 0; // normal precision
Mapcodes m; // storage
encodeLatLonToMapcodes(&m, lat, lon, TERRITORY_UNKNOWN, precision);

printf("%d mapcodes for %0.6f,%0.6f:\n", m.count, lat, lon);
for (i = 0; i < m.count; i++)
 printf(" %s\n", m.mapcode[i]);
Example output
4 mapcodes for 51.000000,5.000000:
 BEL C17.DF3
 BEL P6CG.MRQ
 FRA P6CG.MRQ
 VHXP4.M457
Since 0 was passed as territory, mapcodes are generated for any territory for which the mapcode rectangle contains the coordinate. This includes not only Belgium (where the coordinate belongs), but also France.
The mapcodes are grouped per territory. The territories themselves are listed in no particular order, except that the international mapcode is always the last code in the list.
Furthermore, there are two mapcodes generated in Belgium, both correct. The first mapcode generated in a particular territory is always the shortest mapcode in that territory, and is always the mapcode that would be generated by encodeLatLonToMapcodes for that territory.
Finally, note that passing 0 as territory is guaranteed to return at least one result (an international mapcode).
[bookmark: _Toc465975108]2. Converting a mapcode into a coordinate
[bookmark: _Toc465975109]decodeMapcodeToLatLonUtf8()
int decodeMapcodeToLatLonUtf8(
double* lat,
double* lon,
const char* mapcode,
enum Territory	optionalTerritory,
MapcodeElements *optionalMapcodeElements)
[bookmark: _Toc465975110]decodeMapcodeToLatLonUtf16()
int decodeMapcodeToLatLonUtf8(
double* lat,
double* lon,
const UWORD* mapcode,
enum Territory	optionalTerritory,
MapcodeElements *optionalMapcodeElements)

Input
· mapcode: A “free-form” user input, which may be recognized if it is of the form
 [whitespace] [xxx[-yyy]] [whitespace] PPP.QQQ [-RR] [whitespace]
where:
xxx: A country code (2 or 3 characters).
yyy: A state code (2 or 3 characters).
PPP : Mapcode prefix (between 2 and 5 characters).
QQQ: Mapcode postfix (between 2 and 4 characters).
RR: High-precision addendum (up to 8 characters).
· optionalTerritory: a territory to help disambiguate asciiString does not contain an (unambiguous) ISO3166 territory code. Pass TERRITORY_UNKNOWN if not available. Examples:
User input “US-CA XX.XX” needs no disambiguation and returns a location in California.
User input “IN XX.XX” can be decoded without a territoryCode, but it is unpredictable whether it decodes to a location in Indiana, USA or in the Ingushetia, Russia.
User input “XX.XX” is impossible to decode unless a valid territory code is provided.
Output
Return value: Returns nonzero in case of error. Otherwise, lat and lon are filled with the decoded coordinates. Latitudes are always in the range [-90, 90] and longitudes in range [-180, 180).

optionalMapcodeElements: an optional MapcodeElements structure that (if not NULL) is filled with the trimmed, disambiguated results of the parsing process, if successful. Note that the structure is only correctly filled if the return value is 0. It’s structure is:
typedef struct {
 char territoryISO[MAX_ISOCODE_LEN + 1];
 enum Territory territoryCode;
 char properMapcode[MAX_PROPER_MAPCODE_LEN + 1];
 char precisionExtension[MAX_PRECISION_DIGITS + 1];
} MapcodeElements;
 where
territoryISO: the (trimmed and uppercased) characters parsed as candidate ISO3166 territory code
territoryCode: the result of recognizing territoryISO as a territory, disambiguated with optionalTerritory. TERRITORY_NONE if territoryISO is empty and no optionalTerritory is provided.
properMapcode: the trimmed and romanized characters parsed as candidate proper mapcode
precisionExtension: the (trimmed and uppercased) characters parsed as candidate extension (excluding the hyphen)
Example
const char* userinput = "NLD 49.4V";
double lat, lon;
int err = decodeMapcodeToLatLonUtf8(
 &lat, &lon, userinput, TERRITORY_NONE, 0);
if (err)
 printf("\"%s\" is not a valid mapcode\n", userinput);
else
 printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon);
Example output
"NLD 49.4V" represents 52.376514,4.908543
Note that the above piece of code will only “accidentally” handle ambiguous partial mapcodes correctly. For example, userinput=”IN VY.HV” will either be interpreted as an abbreviation of “US-IN VY.HV” or of “RU-IN VY.HV”, and thus either produce a coordinate in Indiana, USA, or in Ingushetia, Russia.
Passing a “default context” improves the chances of ambiguous user input to be interpreted “as the user intended”. Thus, if one builds a system that is mostly going to be used in the USA, the following hard-codes that preference (i.e. “when in doubt, assume the “USA”):
Enum Territory defaultcontext =
 getTerritoryCode("USA", TERRITORY_NONE);
const char* input = "IN VY.HV";
double lat, lon;
int err = decodeMapcodeToLatLonUtf8(&lat, &lon, input, defaultcontext, 0);
if (err)
 printf("\"%s\" is not a valid mapcode\n", userinput);
else
 printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon);
Example output
"IN VY.HV" represents 39.727950,-86.118444
A more sophisticated system could of course make much better assumptions, for example based on the GPS coordinate of the user, or the current cursor position on a world map that is being displayed to the user.
In an interactive system, the best way to handle ambiguity is probably to always use the most recent successful, explicitly stated context as default.
For example, suppose you remembered the previous correctly interpreted user input:
const char* previous_successful_input = "RU-IN DK.CN0";
then the following code snippet will correctly interpret the completely abbreviated mapcode “49.4V” as being in the same state (i.e. RU-IN):
enum Territory previouscontext =
 getTerritoryCode(previous_successful_input,TERRITORY_NONE);
const char* userinput = "D6.58";
double lat,lon;
int err = decodeMapcodeToLatLonUtf8(&lat, &lon, userinput,
 previouscontext, 0);
if (err)
 printf("\"%s\" is not a valid mapcode\n", userinput);
else
 printf("\"%s\" represents %0.6f,%0.6f\n", userinput, lat, lon);
The output is:
"D6.58" represents 43.259275,44.771980
which is in Ingushetia Republic. And in fact, had we written
userinput=“AL D6.58”
this would generate the output
“AL D6.58" represents 51.977856,85.935367
which is in the Russian republic of Altai: because of the context RU-IN, the territory has been interpreted as RU-AL, instead of the equally likely US-AL (Alabama, USA) or BR-AL (Alagoas, Brazil).
Here is an example that decodes consecutive user inputs, some of them wildly ambiguous. With the exception of the very first input, all are probably interpreted as the user intended:
enum Territory context = TERRITORY_NONE; // no initial context
const char* userinput[] = { // simulated user input
 "49.4V", "US-IN 49.4V", "49.4V", "AL 49.4V",
 "RU-IN 49.4V", "AL 49.4V", "NLD XXX.YYY", "49.4V",
 "CCCCC.CCCC", "49.4V", 0
};

int i;
for (i = 0; userinput[i] != 0; i++) {
 double lat, lon;
 int err = decodeMapcodeToLatLonUtf8(&lat, &lon,
 userinput[i], context, 0);
 if (err)
 printf("\"%s\" is not a valid mapcode\n", userinput[i]);
 else {
 enum Territory c;
 printf("%12s represents %0.6f,%0.6f\n", userinput[i], lat,lon);
 c = getTerritoryCode(userinput[i], TERRITORY_UNKNOWN);
 if (c != TERRITORY_NONE)
 context = c;
 }
}
The output is:
"49.4V" is not a valid mapcode
 US-IN 49.4V represents 39.783750,-86.198832
 49.4V represents 39.783750,-86.198832
 AL 49.4V represents 33.532750,-86.836184
 RU-IN 49.4V represents 43.249285,44.741354
 AL 49.4V represents 51.967866,85.899261
 NLD XXX.YYY represents 51.204537,5.541607
 49.4V represents 52.376514,4.908543
 CCCCC.CCCC represents -16.326209,-48.016850
 49.4V represents 52.376514,4.908543
Explanation:
"49.4V" is not a valid mapcode
Since there is no previous context, this ambiguous mapcode can simply not be interpreted. For this reason, it may be a good idea to choose a better default context than previouscontext=-1 (e.g. based on the user’s GPS position).

US-IN 49.4V represents 39.783750,-86.198832
A complete and unambiguous mapcode, it results in a coordinate in Indiana, USA.

49.4V represents 39.783750,-86.198832
Since the previous input was in Indiana, this incomplete mapcode is encoded in the same context.

AL 49.4V represents 33.532750,-86.836184
Since the previous input was in the Indiana, USA, the context “AL” is interpreted as another state in the USA, and thus results in a coordinate in Alabama (rather than, say, the state of Alagoas in Brazil).

RU-IN 49.4V represents 43.249285,44.741353
A complete and unambiguous mapcode, it results in a coordinate in Ingushetia, Russia.

AL 49.4V represents 51.967866,85.899261
Unlike two inputs back, AL 49.4V is now interpreted in Russia (the Altai Republic) rather than in the USA (Alabama), since the most recent context was Russian.

NLD XXX.YYY represents 51.204536,5.541607
A complete and unambiguous mapcode, it results in a coordinate in The Netherlands.

49.4V represents 52.376514,4.908542
Since the previous input was in The Netherlands, this time 49.4V is interpreted in The Netherlands as well.

CCCCC.CCCC represents -16.326209,-48.016851
A complete and unambiguous international mapcode. Although it decodes to a coordinate somewhere in Brazil, the mapcode does not explicitly specify Brazil as a context. Therefore, the context for future inputs will remain “The Netherlands”.

49.4V represents 52.376514,4.908542
Since the most recent explicit context was in The Netherlands, this ambiguous mapcode is now also interpreted in The Netherlands.
[bookmark: _Toc465975111]2.1 Recognizing an input as a mapcode
Sometimes you may wish to allow a user to input something in a “general” search box – an address, a coordinate, a mapcode, or something else.
The following routine is efficient and lightweight, and recognizes if a user input looks like it is intended as a mapcode. For example:
	“NLD 503.XX2”
is intended as a mapcode, while
	“St. Jacobs Street 45, London”
is not. Since anything that looks like a mapcode is very unlikely to represent anything else, we would recommend to handle (i.e. decode) anything that looks like a mapcode as a mapcode. If it fails to decode, you could still try to interpret as something else, but as has been said: it is very unlikely it does represent something else.
Note: the routine can not guarantee that the input represents a valid mapcode. For example, the input “XXX XX.XX” will pass although XXX is not a valid territory.
[bookmark: _Toc465975112]compareUtf8WithMapcodeFormat()
int compareUtf8WithMapcodeFormat(const char*	string)
[bookmark: _Toc465975113]compareUtf16WithMapcodeFormat()
int compareUtf16WithMapcodeFormat(const UWORD* string)
Input
string: A “free-form” (user input) string.
includesTerritory: An integer: if you pass 1, any mapcode (including optional territory context) will be recognized, i.e. inputs of the form
[whitespace] [xxx[-yyy]] [whitespace] PPP.QQQ [-RR] [whitespace]
If you pass 0, only mapcodes without territory will be recognized:
[whitespace] PPP.QQQ [-RR] [whitespace]
Output
Return value: Returns 0 if the string looks like a full/proper mapcode. Return negative in case of error (the special value ERR_MAPCODE_INCOMPLETE is returned if the string looks like a partial mapcode, i.e. might become a valid mapcode if some more characters were added).

[bookmark: _Toc465975114]2.2 Higher precision mapcodes
Mapcodes are intended for easy, daily use. They were therefore made short, and no more precise than is necessary to be useful at the “human” scale: accurate to within a few meters – or put another way: inaccurate by up to several meters.
For special applications, mapcodes can be generated with higher accuracy, by appending extra letters. One letter extra decreases the worst-case inaccuracy to less than 162 centimeters (70 cm on average), two letters decreases it to less than 25 centimeters (13 cm on average), four letters to less than a centimeter.
As an example, consider coordinate 52.3765, 4.90858. When encoded, it yields mapcode NLD 49.4V. This mapcode decodes back into 52.376514, 4.908543, a coordinate which is 2.48 meters off to the west, and 1.56 meters too far north (in combination, the mapcode is 2.93 meters away from the original coordinate).
When we encode the same coordinate with an extra digit, we get NLD 49.4V-L, a mapcode that decodes into 52.376508, 4.908575, only 95 centimeters off. With two extra digits, we get a mapcode that is about 5.7 centimeters off.
Mapcode:	decodes into:	error vs original coordinate:
49.4V	52.376514, 4.908543	2.93 meter
49.4V-L	52.376491, 4.908574	0.95 meter
49.4V-LX	52.376497, 4.908584	0.06 meter
Note that this is just an example. Had we encoded 52.376514, 4.908543, the mapcode 49.4V would already be precise to 2.5 centimeters. It is the maximum error that is reduced by adding extra letters to a mapcode.
Please note: the above may make it seem that it is a good idea to always add extra letters. This would defeat the core purpose of the mapcode system, which is to be accurate enough for daily, human-scale use. The high-precision extension was made for very special applications only.
See section 4 about distance-related routines.
[bookmark: _Toc465975115]3. Routines related to territories
The mapcode system is based on an official code table, which in turn is based on the ISO 3166 standards.
For efficiency, these codes need to be converted into internal “territory codes”. For these, the following three support routines are relevant.
[bookmark: _Toc465975116]getTerritoryCode()
enum Territory getTerritoryCode(
 const char* territoryISO,
 enum Territory parentTerritory)
Input
territoryISO: A string starting with the “ISO standard” code of a country or a state, such as “USA”, “CA”, “US-CA”, or “USA-CA”.
parentTerritory: Optional territory to help the routine choose when the abbreviation is ambiguous, which can happen if the abbreviation is of a state and the state’s country is omitted (For example, “AL” might mean either “US-AL” or “BR-AL”). Pass 0 if not available.
Output
Return value: The territory, or negative (TERRITORY_NONE) if not no match was found.
[bookmark: _Toc465975117]getTerritoryIsoName()
char *getTerritoryIsoName(
 char *territoryISO,
 enum Territory territory,
 int useShortName)
Input
Result: A string to store the result in (capable of storing at least MAX_ISOCODE_LEN characters plus a zero-terminator); Returns an empty string if territoryCode is illegal.
territory: A territory
useShortName: Specifies the format of the return value:
0: Return in unambiguous full format: “XXX” for a country, “XX-YY” for a state.
1: Short format: “XXX” or “XX”; especially when a 2 letter (state) code is returned, although always unique within its country, it may not be unique in the world.
Output
Return value: A pointer to territoryISO.
[bookmark: _Toc465975118]getParentCountryOf ()
enum Territory getParentCountryOf(
 enum Territory territory)
Input
territory: a territory
Output
· Return value:
The parent country of the specified territory (>0), or TERRITORY_NONE (<0) if the territory is invalid or is not a subdivision of another territory.
[bookmark: _Toc465975119]4. Routines related to distance
[bookmark: _Toc465975120]distanceInMeters ()
double distanceInMeters(
 double latDeg1,
 double lonDeg1,
 double latDeg2,
 double lonDeg2)
Input
latDeg1: Latitude in degrees of first point [-90, 90].
lonDeg1: Longitude in degrees of first point [-180, 180).
latDeg2: Latitude in degrees of second point [-90, 90].
lonDeg2: Longitude in degrees of second point [-180, 180).
Output
Return value: Distance between the coordinates, in meters. Please note that this value is only correct if coordinates that are within a few kilometers of each other.
[bookmark: _Toc465975121]maxErrorInMeters()
double maxErrorInMeters(int extraDigits)
Input
extraDigits: The number of high-precision "digits" in a mapcode (see section 2.2).
Return value: Worst-case distance in meters between the original coordinate and the decode location of the mapcode.
[bookmark: _Toc465975122]5. Generating mapcodes in foreign alphabets
[bookmark: _Toc465975123]convertMapcodeToAlphabetUtf8()
char* convertMapcodeToAlphabetUtf8(
 char* utf8String,
 const char *asciiString,
 enum Alphabet alphabet)
[bookmark: _Toc465975124]convertMapcodeToAlphabetUtf16()
UWORD* convertMapcodeToAlphabetUtf16(
 UWORD* utf16String,
 const char *asciiString,
 enum Alphabet alphabet)
This routine takes a zero-terminated string containing a mapcode in roman (latin) alphabet (asciiString), and converts it into a zero-terminated utf8String or utf16String in the specified alphabet. A pointer to the result is returned. Note that utf16String must be able to hold MAX_MAPCODE_RESULT_LEN 2-byte characters (including the 0-terminator), while utf8String could potentially be 3 * MAX_MAPCODE_RESULT_LEN characters.
For example, this routine can convert
PQ.RS 	to 	नप.भम (Devanagari alphabet)
PQ.RS 	to 	РФ.ЯЦ (Russian alphabet)
At the date of writing, the following alphabets are available:
 MAPCODE_ALPHABET_ROMAN
 MAPCODE_ALPHABET_GREEK
 MAPCODE_ALPHABET_CYRILLIC
 MAPCODE_ALPHABET_HEBREW
 MAPCODE_ALPHABET_DEVANAGARI
 MAPCODE_ALPHABET_MALAYALAM
 MAPCODE_ALPHABET_GEORGIAN
 MAPCODE_ALPHABET_KATAKANA
 MAPCODE_ALPHABET_THAI
 MAPCODE_ALPHABET_LAO
 MAPCODE_ALPHABET_ARMENIAN
 MAPCODE_ALPHABET_BENGALI
 MAPCODE_ALPHABET_GURMUKHI
 MAPCODE_ALPHABET_TIBETAN
 MAPCODE_ALPHABET_ARABIC
 MAPCODE_ALPHABET_KOREAN
 MAPCODE_ALPHABET_BURMESE
 MAPCODE_ALPHABET_KHMER
 MAPCODE_ALPHABET_SINHALESE
 MAPCODE_ALPHABET_THAANA
 MAPCODE_ALPHABET_CHINESE
 MAPCODE_ALPHABET_TIFINAGH
 MAPCODE_ALPHABET_TAMIL
 MAPCODE_ALPHABET_AMHARIC
 MAPCODE_ALPHABET_TELUGU
 MAPCODE_ALPHABET_ODIA
 MAPCODE_ALPHABET_KANNADA
 MAPCODE_ALPHABET_GUJARATI

[bookmark: _Toc465975125]6. Routines to get full territory names
getFullTerritoryNameInLocaleUtf8()
int getFullTerritoryNameInLocale(
 char *territoryName,
 enum Territory territory,
 int alternative,
 const char *locale)
Returns the name of the given territory.
Input
territoryName: string to store the (ASCII) result, must be capable of storing at least MAX_TERRITORY_FULLNAME_UTF8_LEN characters excluding the 0-terminator.
territory: the territory to get the full name for.
alternative: if 0, the most common name for the territory. If some non-zero value x, it will return the x-th alternative name for the territory (if any).
locale: for example “da” for Danish, “en-gb” for “English/Great Britain”. Pass NULL to get names in the language(s) most common to the territory (also see getFullTerritoryNameLocal below).
Output
Return value: nonzero if territoryName is filled with a name for the territory (in UTF8 format), 0 if no (more) names are available (or in case of error).
Example
char name[MAX_MAPCODE_RESULT_LEN];
int i;
for (i=0; getFullTerritoryNameInLocaleUtf8(name,
 TERRITORY_USA, i, “en”); i++) {
 printf("%s\n", name);
}
Example output
USA
United States of America
[bookmark: _GoBack]America

[bookmark: _Toc465975126]getFullTerritoryNameInEnglish ()
Returns the local name of the given territory, in English. In fact short for getFullTerritoryNameInLocaleUtf8(targetStrng, territory, alternative, “en”);

[bookmark: _Toc465975127]
getAlphabetsForTerritory()
const TerritoryAlphabets *getAlphabetsForTerritory(
 int territoryCode)
This routine returns a pointer to a structure listing the most common alphabets in the given territory.
Returns NULL if the territory is invalid, otherwise, returns a pointer t such that
 t->count		Specifies the number of common alphabets (always > 0).
 t->alphabet[x]	Specifies the x-th alphabet.

[bookmark: _Toc465975128]getFullTerritoryNameLocalUtf8 ()
int getFullTerritoryNameLocalUtf8 (
 char *territoryName,
 enum Territory territory,
 int alternative)
Returns the local name of the given territory, in an alphabet in common use in the territory.
Input
territoryName: string to store the (UTF8) result, must be capable of storing at least MAX_TERRITORY_FULLNAME_UTF8_LEN 8-bit characters excluding the 0-terminator.
territory: the territory to get the full name for.
alternative: if 0, the most common name for the territory. If some non-zero value x, it will return the x-th alternative name for the territory (if any).
Output
Return value: nonzero if territoryName is filled with a name for the territory (in UTF8 format), 0 if no (more) names are available (or in case of error).
Example
char name[MAX_MAPCODE_RESULT_LEN];
int i;
for (i=0; getFullTerritoryNameLocal(name, TERRITORY_MAR, i); i++) {
 printf("%s\n", name);
}
Example output
المغرب‎‎
Morocco
ⵍⵎⴰⵖⵔⵉⴱ

[bookmark: _Toc465975129]getFullTerritoryNameLocalInAlphabetUtf8 ()
int getFullTerritoryNameEnglish(
 char *territoryName,
 enum Territory territory,
 int alternative,
 enum Alphabet alphabet)
Returns the local name of the given territory in the specified alphabet (i.e. local names are “filtered” to only those names that are in the specified alphabet).
Input
territoryName: string to store the (UTF8) result, must be capable of storing at least MAX_TERRITORY_FULLNAME_UTF8_LEN 8-bit characters excluding the 0-terminator.
territory: the territory to get the full name for.
alternative: if 0, the most common name for the territory in the alphabet specified (if any). If some non-zero value x, it will return the x-th alternative name for the territory in the alphabet specified (if any).
Alphabet: an alphabet, e.g. ALPHABET_GREEK.
Output
Return value: nonzero if territoryName is filled with a name for the territory (in UTF8 format), 0 if no (more) names are available (or in case of error).
Example
char name[MAX_MAPCODE_RESULT_LEN];
getFullTerritoryNameLocalInAlphabetUtf8(name, TERRITORY_MAR, 0,
 ALPHABET_ARABIC);
printf("%s\n", name);
Example output
المغرب‎‎

[bookmark: _Toc465975130]7. Data changes
[bookmark: _Toc465975131]7.1 Data changes in version 2.0
Since version 2.0.0, coordinates are not rounded to the nearest 1,000,000th of a degree (a millionth of a degree roughly equals 11 centimeters). This will seldom affect daily life, but decoding an old mapcode may yield differences in the 6th coordinate decimal (i.e. on the 11-centimeter scale), and in edge cases, encoding a coordinate may yield a different mapcode than before (one that is a few centimeters closer to the original coordinate than the mapcode produced with the old code).
As part of the application process for the International Standards Organisation, a thorough check was done on all 16,000 territory/population-density rectangles defined in 2001. Some new code ranges were added, mostly for remote islands, which means the new rectangles can produce mapcodes that are not recognized on older systems.
However, a few adjustments had to be made which break compatibility: a mapcode generated by the new system would decode to a different coordinate on an old system, and vice versa. This is true for the changes listed below under “out-sized cells”.
1) out-sized cells – The mapcode database divides the territories of the world into cells of at about 10 x 10 meters. The worst-case error in such cell is at the corners (about 7.1 meters from the center). Our check yielded about a dozen cases (out of 16,300) where the cells exceded 10.5 x 10.5 meters and the error could exceed 7.5 meters. These records were adjusted.
This adjustments breaks compatibility for the following “mainland” mapcodes:
a. Codes of the form xx.xx for the small town of Altaysk, Altai Republic, Russia (RU-AL).
b. Codes of the form xx.xx for the micro-state San Marino.
c. Codes of the form xxxx.xxx in the Xinjiang Uyghur province, China.
d. 7-letter codes for Inner Mongolia.
e. 6-letter codes for state of Chihuahua, Mexico.
f. 6-letter codes for Bangladesh and Romania.
g. Codes of the form xxx.xxxx codes in the far north of Sakha Republic, Russia.
h. Codes of the form xx.xx for the town of Fargo, in North Dakota, USA.
i. Codes of the form xx.xxx for the town of Toronto in Canada.
j. The optional 7-letter code range 6xx.xxxx for Andaman and Nicobar, India (a state fully covered by 6-character mapcodes).
k. 7-letter codes for Sudan and South Sudan, which are now contiguous (both countries were furthermore given optional 8-character codes).
and also on the following island territories:

l. Changed the 5-letter codes for Reunion Island (REU) and added optional codes of the form xxx.xxx.
m. Replaced optional codes of the form xxxx.xxx for Saint Helena, Ascension and Tristan da Cunha (SHN) by optional codes of the form xxxx.xxxx (note: all land area is covered by shorter codes); Added code range K0.000-PZ.ZZZ to cover Cough Island.
n. Changed codes of the form xxx.xxx for the Maldives (MDV); added optional 7-letter codes.
o. Changed codes of the form xx.xxx codes for Saint Vincent and the Grenadines (VCT); added optional 6-letter codes.
p. Changed the mapcodes for the islands of Kiribati (KIR).
q. Changed codes of the form xxxx.xx for the South China Sea islands of the Hainan province (CN-HI).
r. Changed codes of the form xx.xxx for the o’Ahu island of Hawaii (US-HI).
s. Changed codes of the form xx.xxx for the British Virgin Islands (VGB).
t. Improved 4-letter codes for Wallis and Futuna (WLF) to cover almost all of Wallis.
u. Adjusted 5-letter codes for Turks and Caicos Islands (TCA) to include all land area.
v. Adjusted 5-letter codes for Comoros (COM) to include all land area.
w. Adjusted 6-letter codes for Solomon Islands (SLB) to include all land area.

2) Missing islands, atolls and rocks (extra code ranges only)
Code ranges were added to cover islands, atolls and rocks that were missing from the borders of certain island nations. All codes from old mapcode systems are correctly recognized, but the new code ranges are not recognized by by old mapcode systems.	
a. ASM (American Samoa) – Code range H0.000-L6.ZPC added for Rose Atoll; Optional codes of the form xxxx.xxx added to cover all land area.
b. VIR (US Virgin Islands) - Codes of the form xxx.xx added to include Savana and French Cap Cay.
c. FSM (Deferated States of Micronesia) – codes of the form xxx.xxxx added to include the Nukuoro and Tokodakaaka Atolls.
d. MUS (Mauritius) – code range X00.000-XZZ.ZZZ added to cover some atolls north of Cargados Carajos.
e. SGS (South Georgia and the South Sandwich Islands) – code range P000.00-RZZZ.ZZ added to cover Black Rock.
f. TWN (Taiwan) – added code range Y00.000-YZZ.ZZZ to cover Agincourt, Pinnacle, and Craig islands.
g. EST (Estonia) – added code range X00.000-XZZ.ZZZ to cover Vaindloo island.
h. GUF (French Guiana) – added code range B000.00-CZZZ.ZZ to include Isle du Grand Connetable and Ile du Diable.
i. PRT (Portugal) – added code ranges S000.00-SZZZ.ZZ and N000.000-NZZZ.ZZZ to cover some islands far south of Madeira.
j. KOR (South koreea) – added code range Z000.00-ZZZZ.ZZ to include the Dongdo-ri islands.
k. NZL (New Zealand) – added optional code range L000.001-MZZZ.ZZZ to provide 7-letter optional equivalents for all 6 letter mapcodes.
l. JPN (Japan) - added range V000.001-WZZZ.ZZZ to cover the Liancourt Rocks, Oshima Island and Aramiko Island.
m. ALA (Aaland Islands) – optional borders extended to cover Lökharu island.
n. MDG (Madagascar) – added code range S000.01-SZZZ.ZZ to cover the western sand banks; Optional 8-character codes added to cover coastal waters.
o. ZAF (South Africa) – added code range M00.000Y-MZZ.ZZZZ to cover Marion Island and Prince Edward island.
p. Mexico – added code range 800.00A0 – 8ZZ.ZZZZ to include the Arrecife Alacranes islands.
3) Other improvements (extra code ranges only):
a. HUN (Hunagry) – added code range 70.00A0 - DZ.TCZK so that the whole south of the country has mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available.
b. BGR (Bulgaria) – added code range L0.0000-MZ.ZZZZ so that the whole south of the country has mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available.
c. BEN (Benin) - added code range V0.0000-ZZ.ZZZZ so that the whole north of the country has mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available.
d. SUR (Suriname) - added code range Y0.0003-ZZ.ZZZY so that the whole south of the country has mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available.
e. US-IL (Illinois, USA) - added code range X0.0002-ZZ.ZZZZ so that the whole south of the state has mapcodes of the same form (xx.xxxx); the mapcodes of the old forms are of course still available.
f. US-NY (New York State, USA) - added code range Z00.000-ZZY.ZZY so that every location in the state has a 6-letter code; the mapcodes of the old forms are of course still available.
g. SYR (Syria) – the country rectangle was incorrectly marked "optional” – for the south-east desert, 7-letter mapcodes are not optional.
h. PHL (Phillippines) – added code range of the forms xxx.xxxx and xxxx.xxxx to include Saluag Island and Francis Reef.
i. DNK (Denmark) – added code range Z0.0000-ZZ.ZZZZ to include Falster Islands’s southernmost point.
j. PER (Peru) – added code range of the forms xxx.xxxx and xxxx.xxxx to include the easternmost point.
k. BR-AC (Acre, Brazil) - added codes of the form xxxx.xxx as alternative for the 8-letter codes for the northern jungles.
l. For Mexico, India, Australia, Brazil, the USA and Russia, national mapcodes are also available as regional mapcodes (i.e. within the states and subdivisions). For the following subdivisions, the rectangles were slightly enlarged to assure all locations within the subdivision are enclosed: MX-DIF, MX-GRO, MX-VER, IN-PB, IN-HR, IN-TN, IN-PY, AU-NSW, AU-NT, AU-SA, AU-VIC, AU-QLD, BR-SP, BR-RS, US-NV, RU-AD, RU-AST, RU-VLA, RU-KRS, RU-TA, RU-TT, RU-RYA, RU-SAM, RU-PSK, RU-KDA and RU-PO.
m. Added 6-letter codes for Gibraltar (GIB) that overlap with Spain mapcodes; added 6-letter and 7-letter codes for San Marino (SMR) that overlap with Italy mapcodes; added 7-letter codes for Isle of Man, Jersey and Guernsey that overlap with GBR mapcodes.
[bookmark: _Toc465975132]7.1 Data changes in version 2.2
It was discovered that there were a few micro-degree gaps between the rectangles that define a territory. For example, in Sierra Leone, one subarea ended at latitude 8.526879 and the next started at 8.526880. Since coordinates are not rounded to 6 decimals any more, locations that fell inside this 11-centimeter-wide gap, such as (8.5268795, -12), had no Sierra Leone mapcode! This required a fix to the data.
Effects: for mapcodes of the forms affected (see table), there will be up to 11 centimeter difference between the way an old system decodes such a mapcode, and the coordinate generated by a new mapcode system.
	Territory
	Affects mapcodes of the form:

	Antarctica
	xxxx.xxxx

	Austria
	Bxx.xxx , Cxx.xxx

	Brazil
	PR xxxx.xx

	Bulgaria
	Jxx.xxx

	Congo-Kinshasa
	xxxx.xxx

	Croatia
	xxx.xxx

	Czech Republic
	8xx.xxx

	Dominican Republic
	Zxx.xxx

	French Guiana
	9xx.xxx , Dxx.xxx

	Ghana
	xxx.xxx

	India
	3xxx.xxx , 4xxx.xxx, Dxx.xxxx, BR xxx.xxx, TN 9xx.xxx,
JH xxx.xxx , JH xx.xxxx , GJ Zxxx.xx , UP 7xxx.xx

	Iran
	xxxx.xxx

	Liberia
	Cxx.xxx , Gxx.xxx

	Malawi
	1xx.xxx

	Mexico
	xxxx.xxx

	Moldova
	Mxx.xxx

	Pakistan
	3xxx.xxx , 4xxx.xxx

	Panama
	3xx.xxx

	Saudi Arabia
	2xxx.xxx , Nxxx.xxx

	Sierra Leone
	xxx.xxx , 3x.xxxx

	Tajikistan
	xx.xxxx

	USA
	WV xxx.xxx , AR xx.xxxx , NC xxx.xxx , NY xxx.xxx ,
NY xxxx.xx , FL xxx.xxx , AK 2xxx.xxx , AK 3xxx.xxx

In a few cases, larger gaps were discovered. Rather than breaking compatibility with old mapcodes beyond 11 centimeters, new sub-territories were added.
Effects: old systems will not recognize mapcodes of the forms listed below:
	Territory
	New mapcodes of the form:

	Croatia
	Zx.xxxx

	Japan
	Zxxx.xxx

	Congo-Kinshasa
	8xx.xxxx

	India
	AS Zxx.xxx, AS Txx.xxx, BR Zxx.xxx , 8xx.xxxx

	USA
	TX Xxxx.xxx, TX Zxxx.xxx

	Mexico
	9xx.xxxx

	Xinjiang Uyghur, China
	Wxxx.xxx

[bookmark: _Toc465975133]8. C library version history
1.25 Initial release to the public domain.
1.26 Added alias OD ("Odisha") for Indian state OR ("Orissa").
1.27 Improved (faster) implementation of the function isInArea.
1.28 Bug fix for the needless generation of 7-letter alternatives to short mapcodes in large states in India.
1.29 Also generate country-wide alternative mapcodes for states.
1.30 Updated the documentation and extended it with examples and suggestions.
1.31 Added lookslikemapcode().
1.32 Added coord2mc1();fixed 1.29 so no country-wide alternative is produced in edge cases; prevent FIJI failing to decode at exactly 180 degrees.
1.33 Fix to not remove valid results just across the edge of a territory; improved interface readability and renamed methods to more readable forms.
1.4 Renamed API to more appropriate convention (.h support legacy calls).
1.40 Added extraDigits parameter so that high-precision mapcodes can be generated.
1.41 Added the India state Telangana (IN-TG), until 2014 a region in Adhra Pradesh.
1.5 Made threadsafe versions of encoding/decoding routines.
2.0 Added up to 8-character high-precision support (10 micron accuracy), made several changes to the raw data (see chapter 7.1).
2.1 Rewrote fraction floating points to integer arithmetic; significant speed improvements; added source code to test the library calls.
2.2 Fixed micro-degree gap issue in data (see chapter 7.2).
2.3 Added support for Arabic script; improved Tibetan so it is easier to type on a keyboard; Adjusted mapcode generation for “abjad” languages (greek, Hebrew) so there will never be more than two consecutive non-digits in a mapcode.
2.4 Added Korean (Choson'gul / Hangul), Burmese, Khmer, Sinhalese, Thaana (Maldivan), Chinese (Zhuyin, Bopomofo), Tifinagh (Berber), Tamil, Amharic, Telugu, Odia, Kannada, Gujarati. Changed some Arabic, Devanagari and Bengali characters to support sister languages (Urdu, Jawi, Assamese).
2.4.1 Enumerated territories and alphabets.

19

