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Chapter 1

Introduction

This document describes the internals of the CMU implementation of Oaklisp. Although this im-

plementation is designed for portability through the use of a bytecode interpreter written in C, the

fundemental data structures and memory formats would also be suitable for a high performance

implementation. In spite of the fact that Oaklisp has the potential performance penalty of being

uniformly object-oriented, this implementation has proven more than competitive with other byte-

code based implementations of Scheme, such at MIT’s CScheme and Semantic Microsystems’

MacScheme. An abbreviated version of some of the information presented here is available as a

book chapter [2].

1.1 Disclaimer

Warning: this document may contain inaccuracies, and it lags behind the implementation as the

system evolves.
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Chapter 2

Language

This document is a description of one particular implementation of Oaklisp, and therefore contains

information that is subject to change and may not be significant to users in any case. For a de-

scription of the language that does not contain a lot of arbitrary distinctions, refer to The Oaklisp

Language Manual.

2.1 Special Forms

These special forms all work by magic, and can’t be redefined or shadowed.

(%quote x) Special Form

Does what you would expect.

(%if predicate consequent alternative) Special Form

Does what you would expect.

(%labels ((variable value)...)form) Special Form

If all references to the labels are calls from tail recursive positions, this is compiled

using jumps. Otherwise, it is rewritten using let and set!.

(native-catch variable . body) Special Form

Evaluates body within the lexical scope of variable, which is bound to a catch tag that

is valid within the dynamic scope of this form. This is actually macro expanded to

something pretty wierd.

(%add-method (operation (type . ivarlist). arglist)form)Special

Form

Yields the specified method object.

(%make-locative variable) Special Form

Returns a locative pointing to variable.

(%block . forms) Special Form

Making this a primitive special form simplifies the compiler.

2



2.2 Macros

Most constructs that users think of as primitive are actually macros. This simplifies the compiler by

both reducing the number of special forms to be handled and eliminating the need for the compiler

to check whether special forms it encounters are syntactically correct.

(quote x) Macro

≡ (%quote x)

(add-method (operation (type . ivar-list). arg-list). body)Macro

This turns into %add-method, filling in the default type and putting a block around

the body if necessary.

(lambda arglist . body) Macro

≡ (add-method ((make operation) . arglist) . body)

Functions are made by hanging methods off of object. There is an optimization in

the compiler that expands car-position lambdas inline.

(catch var . body) Macro

≡ (native-catch x (let ((var (lambda (y) (throw x y)))) . body))

(define symbol value) Macro

≡ (set! symbol value)

(define (fluid symbol)value) Macro

≡ (set! (fluid symbol) value)

(define (variable . arglist). body) Macro

≡ (set! variable (lambda arglist . body))

(set! symbol value) Macro

≡ (set! (contents (make-locative symbol)) value)

(set! (op a1 . . . an)value) Macro

≡ ((setter op) a1 . . . an value)

(set location value) Macro

An obsolete form with semantics identical to set!.

(make-locative symbol) Macro
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≡ (%make-locative symbol)

(make-locative (op . args)) Macro

≡ ((locater op) . args)

(if test thenform) Macro

≡ (%if test thenform (undefined-value))

(if test thenform elseform) Macro

≡ (%if test thenform elseform)

(fluid symbol) Macro

≡ (%fluid (quote symbol))

(bind-error-handler ) Macro

See the language manual for a semantic definition.

(catch-errors ) Macro

Implemented with bind-error-handler and native-catch.

(bind (((fluid symbol) value)...). body) Macro

Implemented using let and set!. Hacks to native-catch and call/cc are

also necessary. Essentially, the bindings are pushed onto fluid-bindings-alist

for the dynamic scope of the bind. For details, see Section 7.1.

(wind-protect before form after) Macro

≡ (dynamic-wind (lambda () before) (lambda () form) (lambda

() after))

(funny-wind-protect before abnormal-before form after abnormal-after)

Macro

A wind-protect evaluates before, form, and after, returning the value of form.

If form is entered or exited abnormally (due to call/cc or catch) the before and

after forms, respectively, are automatically executed. funny-wind-protect is

the same except that different guard forms are evaluated depending on whether the

dynamic context is entered or exited normally or abnormally.
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The following macro definitions may be found in The Revised3 Report on Scheme [3].

(let ) Macro

(let* ) Macro

(cond ) Macro

(or ) Macro

(and ) Macro

2.3 Primitive Types

The following types are immediates. They have no instance variables, occupy no heap storage, and

are directly manipulated by the micro-engine. Their references have special tag bits. See section

3.1.

fixnum Type

character Type

locative Type

2.4 Open-Coded Operations

Because arithmetic on fixnums is so common, a special mechanism is used to perform opera-

tions for which byte-codes exist. When the compiler sees one of these operations in a program, it

emits the corresponding byte-codes inline. At run-time, the micro-engine checks the tag-bits of the

operands to verify that they are fixnums. If they are, the arithmetic is performed immediately.

Otherwise, a hardware trap occurs which causes the usual search up the type hierarchy to find the

appropriate method to perform the operation. The only restriction this places on the full general-

ity of the usual method system is that new methods cannot be defined for the simple arithmetic

operations on fixnums.

The operations which fall under this restriction are the following:

(zero? number) Operation

(!= number1 number2) Operation

(* number ...) Operation
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(+ number ...) Operation

(- number1 number2 ...) Operation

(1+ number) Operation

(< number1 number2) Operation

(<= number1 number2) Operation

(= number1 number2) Operation

(> number1 number2) Operation

(>= number1 number2) Operation

(ash-left integer1 integer2) Operation

(ash-right integer1 integer2) Operation

(bit-and integer1 integer2) Operation

(bit-andca integer1 integer2) Operation

(bit-equiv integer1 integer2) Operation

(bit-nand integer1 integer2) Operation

(bit-nor integer1 integer2) Operation

(bit-not integer) Operation

(bit-or integer1 integer2) Operation

(bit-xor integer1 integer2) Operation

(object-unhash integer) Operation

(positive? number) Operation

(quotient number1 number2) Operation
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(rot-left fixnum1 fixnum2) Operation

(rot-right fixnum1 fixnum2) Operation

(minus number) Operation

(modulo number1 number2) Operation

(negative? number) Operation

The following operations are also open-coded and take type-mismatch traps if necessary. They

can be add-method’ed to, but only for types that are not handled by the microcode. It should be

clear from the discussion below which types the bytecode expects.

(throw tag value) Operation

Causes control to return from the native-catch form that generated tag.

(contents locative) Locatable Operation

Dereferences locative. ((setter contents) locative value) puts value

in the cell pointed to by locative.

(object-unhash fixnum) Operation

Returns the object that the weak pointer fixnum points to, or #f if the object has been

reclaimed by the garbage collector.

The following operations are open-coded, and the microcode can handle objects of any type,

so they can’t be add-method’ed.

(get-type object) Operation

Returns the type of object.

(eq? x y) Operation

Determines whether x and y are the same object. Implemented by checking if the

references are identical.

(object-hash x) Operation

Returns a “weak pointer” to x.

(cons x y) Operation

Conses x onto y in the usual lisp fashion.

(identity x) Operation

Returns x.

(list . args) Operation
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Constructs a list; (list a b c) ≡ (cons a (cons b (cons c ’()))).

Actually, the list operation is open coded and has backwards-args-mixin

mixed into the type, so its arguments are pushed onto the stack in left to right order.

The code emitted for the operation itself is just a (load-reg nil) followed by a

bunch of reverse-cons instructions, one for each argument.

(list* a1 . . . an) Operation

≡ (cons a1 . . . (cons an−1 an) . . .).

This is open coded in nearly the same way as list.

(not x) Operation

≡ (eq? x #f)

(null? x) Operation

≡ (eq? x ’())

(second-arg x y . rest) Operation

Returns y. Remember, Oaklisp does not guarantee any particular order of evaluation

of arguments.

The following operations are open-coded, but the microcode traps out if the arguments are not

simple cons cells. They can not be add-method’ed to for the type cons-pair.

(car pair) Locatable Operation

(cdr pair) Locatable Operation

(caar pair) Locatable Operation

(cadr pair) Locatable Operation

(cdar pair) Locatable Operation

(cddr pair) Locatable Operation

(caaar pair) Locatable Operation

(caadr pair) Locatable Operation

(cadar pair) Locatable Operation

(caddr pair) Locatable Operation
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(cdaar pair) Locatable Operation

(cdadr pair) Locatable Operation

(cddar pair) Locatable Operation

(cdddr pair) Locatable Operation

(caaaar pair) Locatable Operation

(caaadr pair) Locatable Operation

(caadar pair) Locatable Operation

(caaddr pair) Locatable Operation

(cadaar pair) Locatable Operation

(cadadr pair) Locatable Operation

(caddar pair) Locatable Operation

(cadddr pair) Locatable Operation

(cdaaar pair) Locatable Operation

(cdaadr pair) Locatable Operation

(cdadar pair) Locatable Operation

(cdaddr pair) Locatable Operation

(cddaar pair) Locatable Operation

(cddadr pair) Locatable Operation

(cdddar pair) Locatable Operation

(cddddr pair) Locatable Operation
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2.5 Subprimitives

The following operations should be used only deep within the system. Unless otherwise noted

below, when a subprimitive encounters a domain error normal Oaklisp code is not trapped to.

Rather, you’re lucky if the system dumps core.

(%assq object alist) Operation

Does the usual association list lookup, but assumes that alist is made out of simple

cons pairs. Passing it lazy lists or things like that will crash the system.

(%big-endian?) Operation

Returns #t or #f depending on whether instructions are ordered starting at the high

half of a reference or the low half of a reference, respectively. On all machines that I

know of, this is the same as the endianity of bytes.

(%continue stack-photo) Operation

Resumes stack-photo, abandoning the current stack.

(%fill-continuation empty-stack-photo) Operation

Fills in the template stack snapshot empty-stack-photo with the appropriate informa-

tion, copying sections of the stack into the heap where necessary, and returns its argu-

ment.

(%filltag empty-catch-tag) Operation

Fills in empty-catch-tag with the current stack heights.

(%crunch data tag) Operation

Returns a reference with the data portion data and a tag of tag. Traps if either argument

is not a fixnum.

(%data x) Operation

Returns the non-tag field of x as a fixnum.

(%tag x) Operation

Returns the tag of x as a fixnum.

(%gc) Operation

Forces an immediate normal garbage collection.

(%full-gc) Operation

Forces an immediate full garbage collection. At the end of the full garbage collection,

new space size is set back to its original value.

(%get-length x) Operation

Returns the number of storage cells occupied by x. Zero for immediates.

(%increment-locative locative n) Operation
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Returns a locative to the cell n beyond the cell pointed to by locative.

(%load-bp-i n) Locatable Operation

Loads the contents of self’s instance variable number n. Not for the squeamish, as

who is really “self” and who would be self except that the compiler is compiling away

intermediate lambdas is very implementation specific.

(%make-cell value) Operation

Returns a locative to a new cell containing value. Could be defined with (define

(%make-cell x) (make-locative x)).

(%make-closed-environment a1 . . . an) Operation

Returns a new environment containing a1 . . . an. At least one object is required. To

get an empty environment, look in %empty-environment.

(%print-digit n) Operation

Prints n as a single decimal digit to stdout. Used to indicate various error conditions

during the boot process.

(%push . args) Operation

Pushes args onto the stack, returning (so to speak) the leftmost argument. This would

be about the same as values, if we had multiple value return.

(%read-char) Operation

Returns a character read from stdin. No buffering. For use by the cold load stream.

(%return) Operation

Generates the return bytecode. Doesn’t push anything onto the stack. Will corrupt

the stack unless you really know what you are doing.

(%allocate type size) Operation

Allocates a block of storage size long, filling in the type field with type. Type should

not be variable length.

(%varlen-allocate type size) Operation

Allocates a block of storage size long, filling in the type field with type and the

size field with size. Type should be a variable length type. Using this instead of

%allocate where appropriate avoids a window of gc vulnerability.

(%write-char char) Operation

Writes the character char to stdout. No buffering or anything.

(%↑super-tail type operation object) Operation

Generates the ↑super-tail bytecode, passing it appropriate arguments. This is

used only used in the implementation of ↑super. Once the compiler is modified to

handle the ↑super construct directly this will no longer be needed.
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2.6 Defined Types

The following types are completely defined in Lisp.

object Type

This type is the top of the inheritance hierarchy. Ordinary functions are installed as

methods for this type.

type Type

New types are generated by instantiating this type.

variable-length-mixin Type

This mixin allows each instance of a type to have a vector of anonymous cells tacked

on the end. It also provides several low-level methods for indexed references into such

vectors. Currently, the only variable-length types are vector, %code-vector and

%closed-environment.

open-coded-mixin Type

If this is mixed in to an operation, the compiler will send it a get-byte-code-list

message, and use the result instead of a regular function call whenever the operation

appears in a program.

pair Type

cons-pair Type

null-type Type

vector Type

operation Type

settable-operation Type

locatable-operation Type

%method Type

%code-vector Type

%closed-environment Type

locale Type

12



general-error Type

foldable-mixin Type

2.7 Defined Operations

The methods for these operations are written in low level Oaklisp.

(apply operation a1 . . . an arglist) Operation
Calls operation with arguments a1 . . . an and the contents of arglist. For instance,

(apply + 1 2 ’(3 4))⇒ 10.

(make type . args) Operation
Returns a new instance of type that has been initialized by sending it an initialize

message with the extra arguments args passed along.

(%install-method-with-env type operation code-body environment)

Operation
Adds the specified method to the search table of type. It returns operation, since this

is what some instances of add-method are compiled into. Methods that don’t close

over anything can refer to %empty-environment, whose value is an environment

object whose vector portion has length zero. It takes care of instance variable mapping

conflicts.

(initialize object) Operation
Returns object. This no-op is what is shadowed when you define initialize meth-

ods for new types. (initialize type supertype-list ivar-list) does

the work involved in making a new type. The list of supertypes is used to make a

list of all ancestors that is searched at run time to find methods for operations. The

ancestor tree is considered to be ordered from bottom to top and from left to right

while constructing this list, and duplicates are removed. An error is generated if more

than one top-wired type is found in the resulting ancestor list. The instance-variable

map of the type is created, with any top-wired type appearing at the beginning, and

variable-length-mixin appearing at the end if it is present. Any method you

define to handle an initialize message should return self.

(dynamic-wind before-op main-op after-op) Operation
Calls the operation before-op, calls the operation main-op, calls the operation after-op,

and returns the value returned by main-op. If main-op is exited abnormally, after-op

is called automatically on the way out. Similarly, if main-op is entered abnormally,

before-op is called automatically on the way in.

(call-with-current-continuation operation) Operation
Calls operation with one argument, the current continuation. The synonym call/cc

is provided for those who feel that call-with-current-continuation is ex-

cessively verbose.
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Chapter 3

Internal Data Format

This chapter describes how memory and tags are set up, and how this implements the object se-

mantics of the language.

3.1 Tag Types

In an effort to reduce the complexity of the bytecode interpreter and to simplify the system in

general, there are only four tag types. Tags are stored in the two low order bits of each reference

thus simplifying tag manipulation, particularly in the presence of indexed addressing modes.

31 30 29 28 27 26 . . . 11 10 9 8 7 6 5 4 3 2 1 0 type

twos complement integer 0 0 fixnum

data subtype 1 0 other immediate type

address 0 1 locative (pointer to cell)

address 1 1 reference to boxed object

This tagging scheme, along with our object format, does not allow for arbitrarily scannable

heaps (in which the divisions between objects can be figured out starting the scan at any point in

the heap.) In fact, if solitary cells are permitted, as they are in our implementation, scanning the

heap starting at the begining is not even possible. However, our garbage collector never needs to

scan the heap in such a fashion. Note that there is no extra “gc” bit in every word, but again, our

garbage collector requires no such bit.

3.2 Other Immediate Types

References with a tag of 1 0 use the next six bits to specify a subtype.

31 . . . 24 23 . . . 16 15 . . . 8 7 . . . 2 1 0 type

reserved font ascii code 0 0 0 0 0 0 1 0 character
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Character is currently the only “other immediate type.” More may be added later, in particular

Macintosh handles. (At one time weak pointers were represented as their own immediate type, but

they are now represented using integers for compatibility with the Scheme standard [3].)

3.3 Memory Structure

Memory is a linear array of cells, 32-bit aligned words. These cells are divided into two contiguous

chunks: free cells and allocated cells. The free pointer points to the division between these two

chunks, and it is incremented as memory is allocated. When allocating an object would push the

free pointer beyond the limits of memory, a garbage collection is performed.

The allocated portion of memory is divided into aggregate objects and solitary cells. Each

aggregate object is a contiguous chunk of cells. The first cell of an object is a reference to its type;

if the type is variable length, the second cell holds the length of the object, including the first two

cells. The remainder of the cells hold the instance variables. Solitary cells are cells that are not part

of any object, but are the targets of locatives. Solitary cells are used heavily in the implementation

of mutable variables.

A reference to an object consists of a pointer to that object with a tag of boxed-object. Refer-

ences to solitary cells are locatives. Furthermore, locatives may reference cells that are the instance

variables of objects. If such an object is ever deallocated by the garbage collector, all of the cells

making up the object are made free except for those cells that are referenced by locatives, which

are not deallocated. These become solitary cells.

3.4 Representation of Specific Types

Consider an object of type foo, which is based on bar and baz. Bar had instance variables bar-1

and bar-2, baz has instance variables baz-1, baz-2 and baz-3, and foo has instance variable

foo-1. Foo inherits the instance variables of the types it is based on, but methods defined for type

foo can not refer to these inherited variables.

Each type’s local instance variables are stored contiguously, and in order of lexical definition, in

instances of that type, and of types that inherit it; this allows variable reference to instance variables

to be resolved into offsets from the start of the relevent instance variable frame at compile time.

Here is an instance of foo as it might actually be stored in memory:

reference to type foo

value of foo-1

value of baz-1

value of baz-2

value of baz-3

value of bar-1

value of bar-2
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Observe that instances of type foo are divided into contiguous chunks of instance variables,

each inherited from a different supertype. When a type inherits another type through two different

routes, it still only inherits the instance variables once.1 Furthermore, if the instance variables of

two types inherited by a third have the same names they are still distinct instance variables.2 These

semantics allow us to reference instance variables very quickly, once the local instance variable

block has been located. It also allows us to use the same compiled code for a single method

regardless of whether it is being invoked upon an instance of the type it was added to or on an

instance of an inheriting type.

3.5 System Types

This section describes the format of various objects that are directly referenced by the microcode,3

such as code vectors and catch tags.

It should be emphasized that these system objects are full-fledged objects. They have types

which can be inherited and have their methods overridden, just like any other object. The only

“magic” thing about these types is that their local instance variables (ie. the system ones) must

live at the top of their memory representation, even when inherited. This allows the microcode to

locate the values it needs without going through the type heirarchy.

The only constraint this places on the user is that a type may not inherit two types both of which

are top-wired, for obvious reasons. For example, it is impossible to make a type whose instances

are both operations and types.

3.5.1 Methods

A method has two instance variables which hold the code object containing the code that imple-

ments the method and the environment vector that holds references to variables that were closed

over.4

3.5.2 Environment Vectors

Environment vectors have a block of cells, each of which contains a locative to a cell. When the

running code needs to reference a closed-over variable, it finds the location of the cell by indexing

into the environment vector. This index is calculated at compile time, and such references consume

only one instruction.

Just as it is possible for a number of methods to share the same code, differing only in the

associated environment, it is also possible for a number of methods to share the same environment,

1This aspect of the language is in flux, and should not be relied upon by users.
2This is in marked contrast to ZetaLisp flavors–that’s why variable references in flavors go through mapping tables,

resulting in considerable overhead. There are also important modularity considerations in favor of our scheme which

are beyond the scope of this document, but are discussed in detail in [4].
3Our microcode is C.
4Well, not all closed over variables. Only ones above the locale level. Locale variable references are implemented

as inline references to value cells.

16



differing only in the associated code. Currently the compiler does not generate such sophisticated

constructs.

3.5.3 Code Vectors

Code lives in vectors of integers, which are interpreted as instructions by the bytecode emulator.

This format allows code to be stored in the same space as all other objects, and allows the garbage

collector to be ignorant of its existance, treating code vectors like any other vector. Bytecodes are

16 bits long, with the low 2 bits always 0. Here is an example of some stuff taken from the middle

of a code vector.

...

8 bit inline arg 6 bit opcode 0 0 8 bit inline arg 6 bit opcode 0 0

14 bit instruction 0 0 8 bit inline arg 6 bit opcode 0 0

14 bit relative address 0 0 8 bit inline arg 6 bit opcode 0 0

8 bit inline arg 6 bit opcode 0 0 8 bit inline arg 6 bit opcode 0 0

14 bit instruction 0 0 14 bit instruction 0 0

arbitrary reference used by last instruction of previous word

14 bit instruction 0 0 8 bit inline arg 6 bit opcode 0 0
...

Note the arbitrary reference right in the middle of code. To allow the garbage collector to

properly handle code vectors, as well as to allow the processor to fetch the cell efficiently, this

reference must be cell aligned. When the processor encounters an instruction that requires such

an inline argument, if the pc is not currently pointing to an aligned location then the pc is suitably

incremented. This means that the assembler must sometimes emit a padding instuction, which will

be ignored, between instructions that require inline arguments and their arguments.

An alternative that was used earlier in the design process was to mandate that all instructions

requiring inline arguments occur in a position where the following reference can be fetched with-

out realigning the pc. This requires sometimes inserting a padding noop before an instruction

that requires an inline argument, and analysis showed that the time required to process a noop

instruction is much greater than the time required to check if the low bit of a register is on and

increment that register if so.

3.5.4 Endianity

The logical order of the instructions in a code vector depends on the endianity of the CPU running

the emulator. If the machine is big endian, ie. addresses start at the most significant and of a word

and go down (eg. a 68000 or an IBM 370) then instructions are executed left to right in the picture

above. Conversely, on a littleendian machine (eg. a VAX) instructions are executed right to left. Of

course, the Oaklisp loader has to be able to pack instructions into words in the appropriate order.

The format of cold world loads is insensitive to endianity, but binary world loads are sensitive to
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it, so binary worlds are distributed in both big endian (with extensions beginning with .ol) and

little endian (with extensions beginning with .lo) versions.

(%big-endian?) Operation

This returns the endianity of the machine that Oaklisp is running on. Endianity is

determined by the order in which instructions are fetched, in other words, the order of

two 16-bit words within a 32-bit word. This returns true if the first instruction fetched

is from the more significant half.

3.5.5 Stack Implementation

Although the value and context stacks are logically contiguous, they are sometimes physically

discontinuous. The instructions all assume that stacks live in a designated chunk of memory called

the stack buffer. They check if they are about to overflow or enderflow the stack buffer, and if so

they take appropriate actions to fill or flush it, as appropriate, before proceeding.

If the stack buffer is about to overflow, most of it is copied to a stack segment which is allocated

on the heap. These overflown segments form a linked list, so upon stack underflow the top segment

is removed from this list and copied back to the stack buffer.

There is one more circumstance in which the stack buffer is flushed. The call/cc construct

of Scheme [3] is implemented in terms of stack photos, which are snapshots of the current state

of the two stacks, and which can be restored in the future. A fill-continuation instruction

forces the stack buffers to be flushed and then copies references to the linked lists of overflow

segments into a continuation object.

Actually, in the above treatment we have oversimplified the concept of flushing a stack buffer.

The emulator constant MAX SEGMENT SIZE determines the maximum size of any flushed stack

segment. When flushing the stack, if the buffer has more than that number of references then it is

flushed into a number of segments. This provides some hysteresis, speeding call/cc by taking

advantage of coherence in its usage patterns. A possibility opened by our stack buffer scheme,

which we do not currently exploit, is that of using virtual memory faults to detect stack buffer

overflows, thus eliminating the overhead of explicitly checking for stack overflow and underflow.

As a historical note, an early version did not use a stack buffer but instead implemented stacks

as linked lists of segments which always lived in the heap. When pushing over the top of a segment,

a couple references were copied from the top of that segment onto a newly allocated segment,

providing sufficient hysteresis to prevent repeated pushing and poping along a segment boundary

from incurring inordinate overhead. Regretably, substantial storage is wasted by the hysteresis

and the overflow and underflow limits vary dynamically wereas in the new system these limits are

C link-time constants. Presumably due to these factors, in spite of its old world charm, timing

experiments between the old system and the new system were definitive.

3.5.6 Escape Objects

In our implementation of Oaklisp we provide two different escape facilities: call/cc and catch.

The call/cc construct is that described in the Scheme standard [3]. The catch facility pro-
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vides with user with a second class catch tag, which is valid only within the dynamic extent of the

catch.

The implementation of catch tags is very simple: they contain heights for the value and context

stacks. When a catch tag is thrown to, the value and context stacks are chopped off to the appropri-

ate heights. The slot saved-wind-count is used for unwind protection and saved-fluid-binding-list

is used for fluid variables. Details are given in Sections 7.3 and 7.2.

type: escape-object

value stack height: 25

context stack height: 19

saved wind count: 3

saved fluid binding list: ((print-length . #f) ...)

Actually, there are two variants of catch. In the regular variant, which is compatible with

T, the escape object is invoked by calling it like a procedure, as in (catch a (+ (a ’done)

12)). In the other variant, the escape object is not called but rather thrown to using the throw op-

eration, as in (native-catch a (+ (throw a ’done) 12)). Although the latter con-

struct is slightly faster, the real motivation for its inclusion is to remind the user that the the escape

object being thrown to is not first class. In order to ensure that an escape object is not used out-

side of the extent of its dynamic validity, references to them should not be retained beyond the

appropriate dynamic context.

3.5.7 Types

Type objects are used when tracing up the type heirarchy in order to find appropriate methods

and bp offsets. Since the types are used to find methods, they must be system objects so that

reference to their instance variables can be done without sending them explicit messages. The

operation-method-alist maps from operations to methods handled by the type itself, not

any supertype. The type-bp-alistmaps from types to offsets which are where the appropriate

frame of instance variables may be found. The microengine uses a simple move-to-front heuristic

in an attempt to reduce the overhead of searching these alists. The supertype-list contains a

list of the immediate supertypes. Supertypes by inheritance that have instance variables are present

in type-bp-alist, however.

This is a picture of the cons-pair type, as it actually appears in memory:

type

instance-length: 3

variable-length?: #f

supertype-list: (pair object)

ivar-list: (the-car the-cdr)

ivar-count: 2

type-bp-alist: ((cons-pair . 1))

operation-method-alist: ((car . meth) . . .)

top-wired?: #f
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3.6 Storage Reclamation

Our garbage collector [1] is a variant of Baker’s algorithm, a so-called “stop and copy” collector.

The spaces to be reclaimed are renamed old, all accessible objects in the old spaces are transported

to a new space, and the old spaces are reclaimed. The data present in the initial world is considered

“static” and is not part of old space in normal garbage collections, only in “full” garbage collec-

tions, which also move everything not reclaimed into static space. Due to locatives, the collector

makes an extra pass over the data; a paper with more complete details on this latter complication

is in press. The weak pointer table is scanned at the end of garbage collection, and references to

deallocated objects are discarded.

The user interface to the garbage collector is quite simple. Normally, the user need not be

concerned with storage reclamation; upon the exhaustion of storage, the garbage collector is auto-

matically invoked. When this happens some messages are printed; these messages can be supressed

with the -Q switch. The default size of new space is 1Mb, or 256k references. This can be altered

with the -h size switch, where size is measured in bytes. The operations %gc and %full-gc in-

voke the garbage collector explicitly. Programs that use weak pointers can be effected by garbage

collection; for details, see Section 4.3.

The -G switch indicates that if and when the world is dumped, and if Oaklisp terminates with

an exit code of zero, a full garbage collection should be performed. In full garbage collections

preceding world dumps, the root set does not include the stacks.

New space is resized dynamically, being expanded to RECLAIM FRACTION times the amount

of unreclaimed data if the fraction of unreclaimed data is above more than one RECLAIM FRACTION’th

of new space after a normal garbage collection, or by the minimal amount needed if there is in-

sufficient space available in new space to fulfill the allocation request that triggered the collector.

Currently RECLAIM FRACTION is two. The next newspace size register says how big the

next new space allocated will be, and is accessible to Oaklisp code. Its value should not be lowered

casually, as the garbage collector will fail if new space is too small to hold all of the non-reclaimed

storage from old space. A full garbage collection sets the size of new space back to the value orig-

inally specified by the user when Oaklisp was invoked, or the default value if none was specified.
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Chapter 4

Stack Machine Architecture

4.1 Registers in the Emulator

This section describes the registers that make up the state of the bytecode emulator, called the

processor below.

pc: The program counter points to a half reference address, and can not be accessed by register

instructions.

val stk: The top of the value stack. Can not be accessed by register instructions.

cxt stk: The top of the context stack. Can not be accessed by register instructions.

bp: The base pointer points to the base of the instance variable frame of the current object.

env: The current environment object is indexed into to find locatives to lexically closed variables.

current method: The method whose code is currently being executed. This is maintained

solely to simplify garbage collection and debugging.

nargs: The number of args register is set before a function call and checked as the first action

within each function.

t: Holds the cannonical truth object, #t.

nil: Holds the cannonical false object, #f, which is also used as the empty list, ().

fixnum type: Holds the type of objects with a tag of fixnum.

loc type: Holds the type of objects with a tag of locative.

subtype table: Holds a table of the types of all the immediate subtypes. Currently only the

first entry is used.
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cons type: Holds the cons-pair type, the type of simple conses which are directly manipulated

by the processor.

env type: Holds that type of environment vectors, used when making new environment objects.

object type: Holds the type object which is at the root of the type hierarchy. Used when

calling an operation with no parameters. This should not be necessary in the next version.

segment type: Holds the type of stack segments, for use when the stack is being copied into

the heap.

argless tag trap table: Holds a table of operations to be called when various instructions

fail.

arged tag trap table: Holds a table of operations to be called when various instructions

fail.

boot code: Holds the method to be called first thing at boot time.

uninitialized: Holds the value that gets stuck into newly allocated storage.

free point: Holds the point at which the next heap object will be allocated. Not accessed

directly by even the most internal Oaklisp code, as the processor takes care of initialization

and gc itself.

new.end: Holds the point at which we’ve run out of storage. An attempt to allocate past here

necessitates a garbage collection. Not directly accessed by even the most internal Oaklisp

code.

next newspace size: Holds the size in references of the next new space to be allocated by

the garbage collector. This is dynamically adjusted by the garbage collector, so there is

usually no need for it to be modified from the Oaklisp level.

4.2 Instruction Set

The instructions follow the same argument order conventions as the language itself. For example,

(store-loc loc ref) expects to get loc on the top of the value stack and ref below it. The

instruction format

8 bits 6 bits 2 bits

inline argument opcode 0 0

leaves eight bits for an inline argument. Instructions that do not require any inline argument actu-

ally have “argless instruction” in their instruction field and use the argument field to code for the

actual instruction.
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Some instructions, eg. load-imm, require a complete arbitrary reference as an inline argu-

ment. This in incorporated, aligned, directly in the instruction stream. See Section 3.5.3 for details.

Other instructions, in particular the long branches, require more than an eight bit inline argument

but do not need an entire reference. These instructions get a 14 bit inline argument by using the

space where the next instruction would normally go, with the last two bits set to zero in case the

argument ends up in the low half of a word.

Arithmetic
instruction inline arg initial stack final stack extra cell args

plus 2 (fix,fix) 1 (fix)

minus 1 (fix) 1 (fix)

subtract 2 (fix,fix) 1 (fix)

times 2 (fix,fix) 1 (fix)

mod 2 (fix,fix) 1 (fix)

div 2 (fix,fix) 1 (fix)

log-op n (4 bits) 2 (fix,fix) 1 (fix)

bit-not 1 (fix) 1 (fix)

rot 2 (fix,fix) 1 (fix)

ash 2 (fix,fix) 1 (fix)

Predicates
instruction inline arg initial stack final stack extra cell args

eq? 2 (ref,ref) 1 (bool)

not 1 (ref) 1 (bool)

<0? 1 (fix) 1 (bool)

=0? 1 (fix) 1 (bool)

= 2 (fix,fix) 1 (bool)

< 2 (fix,fix) 1 (bool)

Control
instruction inline arg initial stack final stack extra cell args

branch rel-addr

branch-nil rel-addr 1 (ref)

branch-t rel-addr 1 (ref)

long-branch 0.5

long-branch-nil rel-addr 1 (ref) 0.5

long-branch-t rel-addr 1 (ref) 0.5

return

catch and call/cc Related
instruction inline arg initial stack final stack extra cell args

filltag 1 (tag) 1 (tag)

throw 2 (tag,ref) 1 (ref)

fill-continuation 1 (photo) 1 (photo)

continue 2 (photo,ref) 1 (ref)
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Stack Manipulation

instruction inline arg initial stack final stack extra cell args

All stack references are zero-based. (swap 0) is a noop.

(blast n) ≡(store-stack n)(pop 1).
pop n n (refs)

swap n n (refs) n (refs)

blast n n (refs) n-1 (refs)

blt-stack n,m n+m (refs) n (refs)

8 bit ref splits to 4-bit n and m, which are 1 . . . 16.

Register Manipulation

instruction inline arg initial stack final stack extra cell args

store-reg register 1 (ref) 1 (ref)

load-reg register 1 (ref)

Addressing Modes

instruction inline arg initial stack final stack extra cell args

store-env offset 1 (ref) 1 (ref)

store-stack offset 1 (ref) 1 (ref)

store-bp offset 1 (ref) 1 (ref)

store-bp-i 2 (fix,ref) 1 (ref)

contents 1 (loc) 1 (ref)

set-contents 2 (loc,ref) 1 (ref)

The next two instructions are the same.

load-glo 1 (ref) 1 (ref)

load-imm 1 (ref) 1 (ref)

load-imm-fix n 1 (fix)

load-env offset 1 (ref)

load-stack offset 1 (ref)

load-bp offset 1 (ref)

load-bp-i 1 (fix) 1 (ref)
Make a locative to the location offset in beyond the bp

register:
make-bp-loc offset 1 (loc)

locate-bp-i 1 (fix) 1 (loc)
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Memory Model and Tag Cleaving

instruction inline arg initial stack final stack extra cell args

get-tag 1 (ref) 1 (fix)

get-data 1 (ref) 1 (fix)

crunch 2 (fix,fix:tag) 1 (ref)

load-type 1 (ref) 1 (ref:type)

load-length 1 (ref) 1 (fix)

The next two instructions are not currently used.

peek 1 (fix) 1 (fix:16-bit)

poke 2 (fix,fix:16-bit) 1 (fix:16-bit)

Misc
instruction inline arg initial stack final stack extra cell args

check-nargs n 1 (op)

check-nargs-gte n 1 (op)

store-nargs n

noop

allocate 2 (typ,len) 1 (ref)

vlen-allocate 2 (typ,len) 1 (ref)

funcall-tail 2 (op,obj) 1 (op,obj)

funcall-cxt-br rel-addr 2 (op,obj) 1 (op,obj)

push-cxt rel-addr

push-cxt-long 0.5

big-endian? 1 (bool)

object-hash 1 (ref) 1 (fix)

object-unhash 1 (fix) 1 (ref)

gc 1 (ref)

full-gc 1 (ref)

inc-loc 2 (loc,fix) 1 (loc)

List related instructions
instruction inline arg initial stack final stack extra cell args

cons 2 (ref,ref) 1 (ref)

reverse-cons 2 (ref,ref) 1 (ref)

car 1 (pair) 1 (ref)

cdr 1 (pair) 1 (ref)

set-car 2 (pair,ref) 1 (ref)

set-cdr 2 (pair,ref) 1 (ref)

locate-car 1 (pair) 1 (loc)

locate-cdr 1 (pair) 1 (loc)

assq 2 (ref,alist) 1 (ref:pair/nil)
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4.3 Weak Pointers

Weak pointers allow users to maintain tenuous references to objects, in the following sense. Let

α be a weak pointer to the object foo, found by executing the code (object-hash foo).

This α can be dereferenced to yield a normal reference, (object-unhash α) ⇒ foo. How-

ever, if there is no other way to get a reference to foo then the system is free to invalidate α, so

(object-unhash α) ⇒ #f. In practice, when the garbage collector sees that there are no

references to foo except for weak pointers it reclaims foo and invalidates any weak pointers to it.

Weak pointers are implemented directly by bytecodes because the emulator handles all details

of storage allocation and reclamation directly. Weak pointers are represented by integers. Each

time call call the object-hash is made the argument is looked up in the weak pointer hash

table. If no entry is found, a counter is incremented and the value of that counter is returned. An

entry is made in the weak pointer table at an index corresponding to the current value of the counter,

so that the weak pointer can be used to get back the original reference, and an entry is make in the

weak pointer hash table to ensure that if the weak pointer to the same object is requested twice,

the same number will be returned both times. After a garbage collection the weak pointer table

is scanned and entries to objects which have been reclaimed are discarded, the weak pointer hash

table is cleared, and the data in the weak pointer table is entered into the weak pointer hash table.

Although these algorithms are poor if objects with weak pointers to them are frequently reclaimed,

in practice this has not been a problem.
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Chapter 5

Stack Discipline

This chapter describes how the stacks are organized at the logical level: how temporaries are

allocated, how functions call and return work, how escape objects (used in the implementation of

catch and throw) work, and how stack snapshots (used in the implementation of call/cc) work.

5.1 Stack Overview

The Oaklisp bytecode machine has a two-stack architecture. The value stack contains arbitrary

references and is used for storing temporary variables, passing arguments, and returning results.

The context stack is used for saving non-variable context when calling subroutines. Only context

frames are stored on the context stack. This two stack architecture makes tail recursion particularly

fast, and is in large part responsible for the speed of function call in this implementation.

Most of the bytecodes are the usual sort of stack instructions, and use only value stack, for

instance plus and (swap n). All arguments are passed on the value stack, and the value stack

is not divided into frames. Methods consume their arguments, returning when they have replaced

their arguments with their result or tail recursing when they have replaced their arguments with the

appropriate arguments to the operations they are tail recursing to.

Under the current language definition there is no multiple value return, although the bytecode

architecture admits such a construct. There are facilities for variable numbers of arguments, which

are described in Section 7.9.

5.2 Method Invocation/Return

When a method is to be invoked, the arguments and operation are assembled on the value stack in

right to left order, ie. the rightmost argument is pushed first and the operation is pushed last. Let

us walk through the invokation of (f x y z), where f is on operations which is being passed

three arguments. Since we evaluate right to left, first we push z, thus:

...

z
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continuing, we push the rest of the arguments and the operation, until the stack is of this form.

...

z

y

x

f

A (store-nargs 3) instruction is now executed to place the number of arguments in the

nargs register, and one of the funcall instructions is executed, which variant depending on

whether this is a tail recursive call. If this is not a tail recursive call, the funcall instruction

first pushes a frame containing the contents of the current method, bp and env registers and

a return pc onto the context stack. The instruction then examines the top two values, f and x,

and looks f up in the operation-method-alist of the type of x, potentially also scanning

the supertypes until it finds the appropriate method to be invoked. This method is placed in the

current method register, the method’s environment is placed in the env register, the pc is set

to the beginning of the method’s code block, and the address of the appropriate instance variable

frame within x is placed in the bp register. The funcall instruction leaves the value stack and

nargs register unchanged:

...

z

y

x

f

The first thing the code block of the resultant method executes is one of the check-nargs

instructions, in this case perhaps (check-nargs 3). A (check-nargs n) instruction tests

if nargs is n, trapping if not. After that, it pops the operation f off the stack. By leaving the op-

eration to be popped off by the check-nargs instruction rather than the funcall instruction,

when an an incorrect number of arguments is detected the operation is still available to the error

system. The return instruction pops the top frame off the context stack, loads the popped context

into the processor, and continues execution. Before a return is executed all of the arguments

have been consumed and the result is the only thing left on the stack,

...

(f x y z)

5.3 The Context Stack

The only things that can be stored on the context stack are context frames, which each have four

values, as shown below. The push-cxt instruction pushes a context frame onto the context stack.

It takes an inline argument, which is the relative address of the desired return point. This allows
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a context to be pushed whenever convenient, perhaps before the assembly of arguments begins.

Earlier in the implementation process there was only one variant of the funcall instruction,

which was tail recursive. Non tail recursive calls were compiled as a push-cxt followed by a

funcall-tail, but because this sequence occured so frequently a combined instruction was

implemented to improve code density.

...

pc

bp

env

current method

pc

bp

env

current method

pc

bp

env

current method

Actually, the pc stored in the context stack is not a raw pointer to the next instruction but

rather the offset from the beginning of the current code block, stored as a fixnum. This makes

the return instruction slightly slower, as the actual return pc must be recomputed, but simplifies

the garbage collector. The bp is analogously stored with a tag of locative so that the garbage

collector need not treat it specially. This would cause a problem if the current object were reclaimed

and afterwards had one of its instance variables refered to, as all that would be left of the object

would be the solitary cell that the saved bp was pointing to, and the rest of the relevent instance

variable frame would be gone. This is avoided by having the compiler ensure that a reference to

the object in question is retained long enough.
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Chapter 6

Methods

In this chapter we describe how methods are created, represented, and looked up. This is intimately

related to instance variable reference, so we describe how that works here as well.

6.0.1 Invoking Methods

Methods are looked up by by doing a depth first search of the inheritance tree. Some Oaklisp code

to find a method would look like this,

(define (%find-method op typ)

(let ((here (assq op (type-operation-method-alist typ))))

(if (null? here)

(any? (lambda (typ) (%find-method op typ))

(type-supertype-list typ))

(list typ (cdr here)))))

Once this information is found, we need to find the offset of the appropriate block of instance

variables, put a pointer to the instance variable frame in the bp register, set the other registers

correctly, and branch.

(define (%send-operation op obj)

(let ((typ (get-type obj)))

(destructure (found-typ method) (%find-method op typ)

(set! ((%register ’current-method)) method)

(set! ((%register ’bp))

(increment-locative

(%crunch (%data obj) %loc-tag)

(cdr (assq found-typ (type-bp-offset-alist typ)))))

(set! ((%register ’env)) (method-env method))

(set! ((%register ’pc))

(code-body-instr (method-code (%method))))))
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Of course, the actual code to find a method is written in C and has a number of tricks to improve

efficiency.

• Simple lambdas (operations which have only one method defined at the type object) are

ubiquitous, so the overhead of method lookup is avoided for them by having a lambda? slot

in each operation. This slot holds a zero if no methods are defined for the given operation.

If the only method defined for the operation is for the type object then the lambda? slot

holds that method, and the method is not incorporated in the operation-method-alist

of type object. If neither of these conditions holds, the lambda? slot holds #f.

• To reduce the frequency of full blown method lookup, each operation has three slots devoted

to a method cache. When op is sent to obj, we check if the cache-type slot of op is equal

to the type of obj. If so, instead of doing a method search and finding the instance variable

frame offset, we can use the cached values from cache-method and cache-offset.

In addition, after each full blown method search, the results of the search are inserted into

the cache.

Giving the -M switch to a version of the emulator compiled with FAST not defined will print

an H when there is a method cache hit and an M when there is a miss. The method cache

can be completely disabled by defining NO METH CACHE when compiling the emulator. We

note in passing that we have one method cache for each operation. In contrast, the Smalltalk-

80 system has an analogous cache at each call point. We know of no head to head comparison

of the two techniques, but suspect that if we were to switch to the Smalltalk-80 technique we

would achieve a higher average hit rate at considerable cost in storage.

• In order to speed up full blown method searches, a move to front heuristic reorders the

association lists inside the types. In addition, the C code for method lookup was tuned for

speed, is coded inline, and uses an internal stack to avoid recursion.

For most of this tuning we used the time required to compile compile-bench.oak as our

primary benchmark for determining the speed of generic operations, since the compiler is written

in a highly object-oriented style and makes extensive use of inheritance.

6.0.2 Adding Methods

A serious complication results from the fact that the type field in an add-method form is not

evaluated until the method is installed at run time. Since the target type for the method is unknown

at compile time the appropriate instance variable map is also unknown, and hence the correct

instance variable offsets cannot be determined. Our solution is to have the compiler guess the

order1 or simply invent one, compile the offsets accordingly, and incorporate this map in the header

of the emitted code block. When the add-method form is actually executed at run time, the

assumed instance variable map is compared to the actual map for the type that is the recipient of

the method, and the code is copied and patched if necessary. The code only needs to be copied

1The compiler guesses by attempting to evaluate the type expression at compile time.
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in the rare case when a single add-method is performed on multiple types that require different

offsets.

After instance variable references in the code block have been resolved, which usually involves

no work at all since the compiler almost always guesses correctly, the method can actually be

created and installed. Creating the method involves pairing the code block with an appropriate

environment vector containing references to variables that have been closed over. Because this

environment vector is frequently empty, a special empty environment vector is kept in the global

variable %empty-environment so a new one doesn’t have to be created on such occations.

All other environment vectors are created by pushing the elements of the environment onto the

stack and executing the make-closed-environment opcode. Environment vectors are never

shared in our current implementation, with the exception of the empty environment.

After the method is created it must be installed. The method cache for the involved oper-

ation is invalidated, and the method is either put in the lambda? slot of the operation or the

operation-method-alist of the type it is being installed in. If there is already a value in

the lambda? slot and the new method is not being installed for type object, the lambda? slot

is cleared and the method that used to reside there is added to operation-method-alist of

type object.

(%install-method-with-env type operation code-body environment)

Operation

This flushes the method cache of operation, ensures that the instance variable maps of

code-body and type agree (possibly by copying code-body and remapping the instance

variable references), creates a method out of code-body and environment, and adds this

method to the operation-method-alist of type, modulo the simple lambda

optimization if type is object.

(%install-method type operation code-body) Operation

≡ (%install-method-with-env type operation code-body %empty-environment)

(%install-lambda-with-env code-body environment) Operation

≡ (%install-method-with-env object (make operation) code-body

environment)

but more efficient.

(%install-lambda code-body) Operation

≡ (%install-method-with-env object (make operation) code-body

%empty-environment)

but more efficient.
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Chapter 7

Oaklisp Level Implementation

Once the core of the language is up, the rest of the language is implemented using the language

core. Some of these new language constructs require some support from the bytecode emulator

along with considerable Oaklisp level support. These include such features as call/cc and its

simple cousin catch. Others are implemented entirely in the core language without the use of

special purpose bytecodes; in this latter class fall things like infinite precision integers (so called

bignums), fluid variables, and the error system.

In this chapter we describe the implementation of these constructs, albeit sketchily. For more

details, the source code is publicly available. We do not describe the implementation of locales or

other extremely high level features; read the source for the details, which are quite straightforward.

7.1 Fluid Variables

Our implementation of fluid variables uses deep binding. A shallow bound or hybrid technology

would presumably speed fluid variable reference considerably, but they are used rarely enough that

we have not bothered with such optimizations. In addition, shallow binding interacts poorly with

multiprocessing.

fluid-binding-list Global Variable

Hold an association list which associates fluid variables to their values. The bind

construct simply pushes variable/value pairs onto this list before executing its body

and pops them off afterwards.

It would be easy to implement fluid variables using the unwind protection facilities, but instead

the abnormal control constructs (native-catch and call/cc) are careful to save and restore

fluid-binding-list properly. This avoids the overhead of using the wind facilities and

makes sure that (ignoring wind-protect) fluid-binding-list is only manipulated once

for every abnormal exit, no matter how many bind constructs are exited and entered along the

way.

(%fluid symbol) Locatable Operation
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This looks symbol up on fluid-binding-list. If it is not found an error is

signaled. In contrast, (setter %fluid) silently adds new fluid variables to the

end of the association list, thus creating new top level fluid bindings.

7.2 Unwind Protection

In the presence of call/cc, a simple unwind-protect construct a. la. Common Lisp does not

suffice. Because control can enter a dynamic context which has previously been exited, symmetry

requires that if we have forms that get executed automatically when a context is abnormally exited,

we must also have ones that get executed automatically when a context is abnormally entered. For

this purpose the system maintains some global variables that reflect the state of the current dynamic

context with respect to these automatic actions.

%windings Global Variable

This is a list of wind/unwind action pairs, one of which is pushed on each time we

enter a dynamic-wind and poped off when we leave it. The wind/unwind action

pairs are of the form (after before . saved-fluid-binding-list)

where before and after are operations, guards to be called when leaving and entering

this dynamic context respectively, and saved-fluid-binding-list is the appropriate value

for fluid-binding-list when calling these guard operations.

%wind-count Global Variable

To reduce find-join-point’s complexity from quadratic to linear, we maintain

%wind-count = (length %windings).

7.3 Catch

The format of catch tags is describe in Section 3.5.6. The simplest implementation of native-catch

would have the native-catch macro expand into something that executed the appropriate un-

wind protect actions and restored the fluid binding list before resuming execution. Regretably,

the unwind protect actions can themselves potentially throw, so the stacks must not be chopped

off until after the unwind protect actions have been completed. For this reason the throw oper-

ation doesn’t just call the throw instruction, but first performs all the appropriate unwind pro-

tect actions. Along with stack heights, the catch tag contains saved-wind-count, which

is used to compute how many elements of %windings must be popped off and called, and

saved-fluid-binding-list, which is restored immediately before the stacks are actually

chopped off.

7.4 Call/CC

The call/cc construct is just like native-catch, except that the saved stack state isn’t just

some offsets but is an entire stack photo (see Section 3.5.5), and that not only unwinding but
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also rewinding actions might need to be done. Because the winding actions might throw, it is

necessary for the unwind actions to be executed in the stack context where the continuation is

invoked, and similarly the rewind actions must be executed in the destination stack context.

%%join-count Global Variable

%%new-windings Global Variable

%%new-wind-count Global Variable

%%cleanup-needed Global Variable

These global are used to pass information about which rewind actions need to be

executed by the destination of the continuation, since the normal parameter passing

mechanisms are not available. This would have to be done on a per processor basis in

a multithreaded implementation.

Continuations contain saved-windings and saved-wind-count instance variables,

which have the values of %windings and %wind-count at the time the %call/cc was en-

tered. Before the continuation is actually invoked and the destination stack photos restored, the

highest join point between current and the destination winding lists is found, and all the unwind

actions needed to get down to the join point are executed. Then the stack photo is restored, and in

the destination context the rewinding actions are done to get up from the join point to the destina-

tion point.

7.5 The Error System

The error system is pretty complete, but is actually not only easy to use, but also intuitive and fun,

particularly at the user level.

(error-return message . body) Macro

Evaluates body in a dynamic context in which a restart handler is available that can

force the form to return. The handler is identified by string in the list of choices

printed out by the debugger. If the handler is invoked by calling ret with an argument

in addition to the handler number, the error-return form returns this additional

value; otherwise it returns #f. If no error occurs, an error-return form yields the

value of body.

(error-restart message let-clauses . body) Macro

Acts like a let, binding the let-clauses as you would expect, except that if an error

occurs while evaluating body, the user is given the option of specifying new values

for the variables of the let-clauses and starting body again. This is implemented with

a native-catch and some tricky restart handlers that get pushed onto (fluid

restart-handlers).

(fluid restart-handlers) Fluid Variable
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A list of actions that the user can invoke from the debugger in order to restart the

computation at various places. Not normally manipulated by user code.

(fluid debug-level) Fluid Variable

The number of recursive debuggers we’re inside. Zero for the top level. Not normally

manipulated by user code.

(catch-errors (error-type [error-lambda [non-error-lambda]]). body)

Macro

Evaluates body. If an error which is a subtype of error-type occurs, #f is returned,

unless error-lambda is given, in which case it is called on the error object. If no

error occurs then the result of evaluating body is returned, unless non-error-lambda is

provided in which case it is called on the result of the evaluation of body within the

context of of the error handler, and the resultant value returned.

(bind-error-handler (error-type handler). body) Macro

This binds a handler to errors which are subtypes of error-type. When such an error

occurs, an appropriate error object is created and handler is applied to it.

(invoke-debugger error) Operation

This error handler, when sent to an error object, invokes the debugger.

(remember-context error after-op) Operation

Used to make an error remember the context it occured in, so that even after the context

has been exited the error can still be proceeded from, or the debugger can be entered

back at the error context. This should always be called tail recursively from a handler,

and after it stashes away the continuation it calls after-op on error. Of course, after-op

should never return.

(invoke-in-error-context error operation) Operation

Go back to the context in which error occured and invoke operation there.

(report error stream) Operation

Write a human readable account of the error to stream. Controlled studies have shown

that error messages can never be too verbose.

(proceed error value) Operation

Proceed from error, returning value. Of course, it is actually the call to signal that

returns value.

(signal error-type . args) Operation

This signals creates an error of type error-type with initialization arguments args. It

then scans down (fluid error-handlers) until it finds a type of error which

is a supertype of error-type, at which point it sends the corresponding handler to the

newly minted error object. If the handler returns, that value is returned by the call to

signal. One day we’ll add a way for a handler to refuse to handle an error, in which

case the search for an applicable handler will proceed down the list.
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(fluid error-handlers) Fluid Variable
An association list of mapping error types to error handlers. Users should not touch

this directly.

Of course, there are a large number of types of errors used by the system. A few of the more

useful to know about are:

general-error Type
The supertype of all errors. Abstract.

proceedable-error Type
The supertype of all errors that can be recovered from. Abstract.

fs-error Type
File system error. Abstract. It has all kinds of subtypes for all the different possible

file system error conditions.

error-opening Type
Abstract. Signaled when a file can’t be opened for some reason. Proceeding from this

kind of error with a string lets you try opening a different file.

operation-not-found Type
Signaled when an operation is sent to an object that can’t handle it. Proceeding from

this kind of error will return a value from the failed call.

nargs-error Type
Signaled when there are an incorrect number of arguments passed to a function. Pro-

ceeding from this will return a value from the failed call. Abstract

nargs-exact-error Type
Signaled when there are an incorrect number of arguments passed to a method that

expects a particular number of arguments.

nargs-gte-error Type
Signaled when there are an insufficient number of arguments passed to a method that

can tolerate extra arguments.

infinite-loop Type
Signaled when an infinite loop is entered. User programs may wish to signal this as

well.

read-error Type
Some kind of reader syntax error. Abstract. There are about fifty million subtypes,

corresponding to all the different constructs that can be malformed, and all the different

ways in which they can be malformed. We probably went a little overboard with these.

user-interrupt Type
Oaklisp received a DEL signal. Through a convoluted series of events in which the

UNIX trap handler sets the variable del , which is detected by the bytecode emulator

which pretends that a noop instruction failed and passes the nargs register to the

Oaklisp trap handler which salts the old nargs away for restoration upon return and

signals this error type, the user usually lands in the debugger after typing Control-C.
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7.6 Numbers

Small integers (between −229 and 229−1 inclusive) are represented as immediates of type fixnum

and handled directly by microcode. When arithmetic instructions trap out, due to either their

arguments not being fixnums or to overflow, an Oaklisp operation corresponding to the bytecode

is called. Most of these operations are written in terms of other bytecodes, and should never be

shadowed. For instance,

(add-method (subtract/2 (number) x y)

(+ x (- y)))

defines subtraction in terms of negation and addition. The trap code also handles fixnum overflow,

promoting the operands to bignums and dispatching appropriately. The only really primitive

operations, which must handle all types of numbers, are <, =, minus, negative?, plus/2,

times/2, /, /r, quotient, remainder, quotientm and modulo. Whenever a new type

of number is defined, methods for all of the above operations should be added for it, unless the new

type is not a subtype of real, in which case methods wouldn’t make sense for <, negative?,

and perhaps quotient, remainder, quotientm and modulo.

7.7 Vectors and Strings

Rather than being built into the emulator, vectors are defined entirely within Oaklisp, albeit with

some rather low level constructs.

variable-length-mixin Type

This type provides a variable amount of stuff at the end of its instances. When a

type has this mixed in, whether immediately or deep down in the inheritance tree, it

always takes an extra initialization argument which says has long the variable length

block at the end should be. This is mixed into such system types as %code-vector,

stack-segment, and %closed-environment.

In general, variable-length-mixin is used at the implementation level

only and should never appear in user code. Typically if you think you want a sub-

type of variable-length-mixin, what you really want is an instance variable

bound to a vector.

(%vref variable-length-object n) Locatable Operation

This is the accessor operation to get at the extra cells of subtypes of variable-length-mixin.

It is used in the implementation of variable length structures, and in things like describe

that look at their internals.

simple-vector Type

This is a subtype of vector with variable-length-mixin added and an ap-

propriate nth method defined.
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Characters are packed into strings more densely than one character per ref-

erence, so strings are not just vectors with odd print methods; they also

have accessor methods which unpack characters from their internals. Un-

fortunately, it is not possible to pack four eight bit characters into a sin-

gle reference without violating the memory format conventions by putting

something other than 0 0 in the tag field. We could pack four seven bit

characters into each reference, but some computers use eight bit fonts, and

the characters within the string would not be aligned compatibly with C

strings. We therefore use the following somewhat wasteful format.

string Type

This is a subtype of simple-vector with the nth method shadowed by one that

packs three eight bit characters into the low 24 bits of each fixnum, in littleendian

order. The unused high bits of each word are set to zero to simplify equality testing and

hash key computation. No trailing null character is required, although one is present

two thirds of the time due to padding. Below is the string "Oaklisp Rules!" as

represented in memory.

31 . . . 26 25 . . . 18 17 . . . 10 9 . . . 2 1 0

string

object length: 8 0 0

string length: 14 0 0

0 0 0 0 0 0 #\k #\a #\O 0 0

0 0 0 0 0 0 #\s #\i #\l 0 0

0 0 0 0 0 0 #\R #\space #\p 0 0

0 0 0 0 0 0 #\e #\l #\u 0 0

0 0 0 0 0 0 #\null #\! #\s 0 0

7.8 Symbols

We do not use any of the fancy techniques used by older dialects, like oblists or symbol buckets.

Instead, the standard hash table facility is used for the symbol table.

symbol-table Generic Hash Table

Maps strings to symbols, using string-hash-key to compute the hash and equal?

to compare strings for equality.

(intern string) Operation

Returns a symbol with print name string by looking it up in the symbol-table and

making and installing a new symbol if it isn’t found. Strings passed to intern should

never be side effected afterwards or the symbol table could be corrupted.
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(fluid print-escape) Fluid Variable

This flags whether symbols with weird characters in them should be with the weird

characters escaped. It also applies to strings.

(fluid symbol-slashification-style) Fluid Variable

This flag is only relevent if (fluid print-escape) is on. With the value t-compatible

then the empty symbol is printed as #[symbol ""] and all other symbols requiring

escaping are printed with a \ character preceding every character of the symbol. With

any other value, escaped symbols are delimited by | characters and internal characters

\ and | are preceded by \.

7.9 Variable Numbers of Arguments

The formal parameter list of a method is permitted to be improper, with the terminal atom being a

magic token representing the rest of the arguments. The only legal use for this magic token is as

the terminal member of an improper argument list of a tail recursive call, and as an argument to

the special form rest-length. Methods that accept a variable number of arguments must exit

tail recursively and must pass along their magic token in their tail recursive call, unless they know

that they actually received no extra arguments.

(rest-length varargs-token) Special Form

Returns the number of trailing arguments represented by varargs-token.

For example, this is legal,

(define (okay x y . rest)

(if (zero? (rest-length rest))

’nanu-nanu

(list ’you x y ’sucker . rest)))

while the following are not, the first because it has an exit when there might be extra arguments

which does not pass the extra arguments along tail recursively, and the second because it tries to

pass along the extra arguments in a non tail recursive position.

(define (not-okay x y . rest)

(if (eq? x y)

’nanu-nanu

(list ’you x y ’sucker . rest)))

(define (also-bad x y . rest)

(append (list ’you x ’sucker . rest) y))

The implementation behind this is very simple: extra arguments are ignored by the compiler,

except that it emits a check-nargs-gte in place of a chech-nargs at the top of the method

code body and does a little computation to figure out what the value to put in the nargs register
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when it sees rest argument at the tail of a call. When all the user wishes to do is pass the extra

arguments along in the way that the make method passes extra args along to initialize, this

mechanism is both convenient and efficient. Sometimes the user needs to actually get into the

extra arguments though, so some operations are provided to make handling variable numbers of

arguments easier.

(consume-args value . extra) Operation

Returns value.

(listify-args operation . args) Operation

Calls operation with a single argument, a list of args.

There is also a macro package that implements optional and keyword arguments using these

facilities, and the Scheme compatiblity package redefines add-method so that, as required by

the Scheme standard [3], extra arguments are made into a list.
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Chapter 8

The Compiler

8.0.1 File Types

There are a number of different kinds of object files, distinguished by extension.

extension file type

.oak Oaklisp source file

.omac Macroexpanded Oaklisp source file

.ou Assembly file, not peephole optimized

.oc Assembly file, peephole optimized

.oa Assembled object file

compiler-from-extension Global Variable

The extension of the input files the compiler will read. Default ".oak". This variable

is in the compiler locale.

compiler-to-extension Global Variable

The extension the the output files the compiler will produce. Default ".oa". This

variable is in the compiler locale.

compiler-noisiness Global Variable

The amount of noise the compiler should produce; zero for none, 1 for a little, and 2

for a lot. Default value is 1, but the oakliszt batch file compiler sets it to zero. This

variable is in the compiler locale.

8.0.2 Object File Formats

8.0.3 Compiler Internals

Some compiler internals documentation. Very sketchy, just enough to give people a vague idea of

what the internal program representation is and what the various passes are for.
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Chapter 9

Bootstrapping

In this chapter we describe new versions of Oaklisp are created. Essentially, the process is quite

similar to the way in which a C program is created. First the Oaklisp source files which make up

the cold world load are compiled to produce object files. Then a linker, originally written in T

but now an Oaklisp program, takes these object files and lays them all out in memory, resolving

references to global variables and laying out quoted constants refered to in the code. The linker

also puts a map of where it allocated various globals and such in memory. At this point, the cold

world (named oaklisp.cold) is booted, and the files that the linker layed out in memory are

thereby executed, sequentially. These files gradually build all the infrastructure required for a full

Oaklisp world. The first files are written at an extremely low level, and make things like make and

cons work. Later files bring up more advanced constructs, until finally there is enough for object

files to be loaded. At this point the world is dumped to oaklisp.ol, and then this world is

booted and has files loaded into it using the normal file loading mechanisms until the full Oaklisp

world, oaklisp.olc, is built.

The formats of these files is very simple. They contain a header which gives the length of the

various segments and the values of some registers. This is followed by a memory image, with

pointers given as offsets from the beginning of the image. This is followed by the weak pointer

table.

The cold world is in a hexidecimal format, with each reference represented as a space followed

by a sequence of hexidecimal digits. Carriage returns may optionally preceed spaces. Actually,

the space referred to above can be either a space character or the ↑ character. The later indicates

that the following reference contains bytecodes. Since bytecodes are ordered differently depending

on the endianity of the machine, the hex format world loader swaps the two instructions on little

endian machines but not on big endian machines. This keeps the cold load file independent of

endianity.

The warm world loads are in a binary format and are not independent of endianity. For this

reason, warm world extensions start with .ol for big endian versions and .lo for little endian

versions. The emulator replaces the characters %% in the command line file argument (or the default

world in config.h) with either ol or lo, depending on whether BIG ENDIAN is defined.

To make Oaklisp dump itself upon exiting use the -d -b switches when invoking Oaklisp.

After Oaklisp has exited, the emulator will prompt for a filename to dump the world image to,
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unless this filename has been provided with the -f filename switch. Usually the -G switch is also

given when the world is being dumped.
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Chapter 10

Administrative Details

10.1 Getting a Copy

The most recent released version of Oaklisp, along with the manuals, are available at http://www.

bcl.hamilton.ie/∼barak/oaklisp/, but this is to be superseded by a new site: http://oaklisp.alioth.

debian.org/.

10.2 Bugs

The following are known serious problems and inadequacies of the current implementation. People

are invited to work on remedying them. None of these are fundamental; they’re simply due to lack

of either effort or motivation.

• Floating point numbers are not supported. Rationals can be used to make up for this lack.

• In contrast to the error handling system, which is Industrial Strength, the debugger barely

exists.

• There is no foreign function interface for loading and calling C routines from a running

Oaklisp.

Bug reports, enhancements, and the like should be posted using the facilities on http://oaklisp.

alioth.debian.org/; queries can also be sent to barak+oaklisp@cs.nuim.ie.

We appreciate enhancements (especially in the form of patch files), bug fixes, and bug reports.

We are particularly grateful for porting problem fixes. In a bug report, please include the precise

version of Oaklisp, which is indicated by the date at the end of the tar file. And please try to make

sure that it’s really a bug and not a feature, and pretty please, if at all possible, find a very short

program that manifests your bug. In any case please be aware that we are under no obligation to

respond to bug reports in any way whatsoever.
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10.3 Copyright and Lack of Warranty

The Oaklisp copyright belongs to its authors. It is authorized for distribution under the GNU

General Public License, version 2, copies of which are readily obtainable from the Free Software

Foundation. There is no warranty; use at your own risk. For more precise information, see the

COPYING file in the Oaklisp source distribution.
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bit-not

Operation, 6

bit-or

Operation, 6

bit-xor

Operation, 6

blast, 24

blt-stack, 24

bp, 24, 28–30

branch-nil, 23

branch-t, 23

branch, 23

caaaar

Locatable Operation, 9

caaadr

Locatable Operation, 9

caaar

Locatable Operation, 8

caadar

Locatable Operation, 9

caaddr

Locatable Operation, 9

caadr

Locatable Operation, 8

caar

Locatable Operation, 8

cache-method, 31

cache-offset, 31

cache-type, 31

cadaar

Locatable Operation, 9

cadadr

Locatable Operation, 9

cadar

Locatable Operation, 8

caddar

Locatable Operation, 9

cadddr

Locatable Operation, 9

caddr

Locatable Operation, 8

cadr

Locatable Operation, 8

call-with-current-continuation, 13

call-with-current-continuation

Operation, 13

call/cc, 4, 13, 18, 23, 33, 34

car, 25

car

Locatable Operation, 8

catch-errors

Macro, 4, 36

catch, 4, 18, 19, 23, 33

catch

Macro, 3

cdaaar

Locatable Operation, 9
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cdaadr

Locatable Operation, 9

cdaar

Locatable Operation, 8

cdadar

Locatable Operation, 9

cdaddr

Locatable Operation, 9

cdadr

Locatable Operation, 9

cdar

Locatable Operation, 8

cddaar

Locatable Operation, 9

cddadr

Locatable Operation, 9

cddar

Locatable Operation, 9

cdddar

Locatable Operation, 9

cddddr

Locatable Operation, 9

cdddr

Locatable Operation, 9

cddr

Locatable Operation, 8

cdr, 25

cdr

Locatable Operation, 8

character

Type, 5

chech-nargs, 40

check-nargs-gte, 25, 40

check-nargs, 25, 28

compile-bench.oak, 31

compiler-from-extension

Global Variable, 42

compiler-noisiness

Global Variable, 42

compiler-to-extension

Global Variable, 42

cond

Macro, 5

config.h, 43

cons-pair, 8, 19

cons-pair

Type, 12

consume-args

Operation, 41

cons, 25, 43

cons

Operation, 7

contents, 24

contents

Locatable Operation, 7

continue, 23

crunch, 25

current method, 28, 29

debug-level

Fluid Variable, 36

define

Macro, 3

describe, 38

div, 23

dynamic-wind, 34

dynamic-wind

Operation, 13

env, 28, 29

eq?, 23

eq?

Operation, 7

equal?, 39

error-handlers

Fluid Variable, 37

error-opening

Type, 37

error-restart

Macro, 35

error-return, 35

error-return

Macro, 35

fill-continuation, 18, 23

filltag, 23

find-join-point, 34

51



fixnum, 5, 38

fixnum

Type, 5

fluid-binding-list, 33, 34

fluid-binding-list

Global Variable, 33

fluid-bindings-alist, 4

fluid

Macro, 4

foldable-mixin

Type, 13

fs-error

Type, 37

full-gc, 25

funcall-cxt-br, 25

funcall-tail, 25, 29

funcall, 28, 29

funny-wind-protect, 4

funny-wind-protect

Macro, 4

gc, 25

general-error

Type, 12, 37

get-byte-code-list, 12

get-data, 25

get-tag, 25

get-type

Operation, 7

identity

Operation, 7

if

Macro, 4

inc-loc, 25

infinite-loop

Type, 37

initialize, 13, 41

initialize

Operation, 13

intern, 39

intern

Operation, 39

invoke-debugger

Operation, 36

invoke-in-error-context

Operation, 36

lambda?, 31, 32

lambda

Macro, 3

let*
Macro, 5

let, 2, 4, 35

let

Macro, 5

list*
Operation, 8

listify-args

Operation, 41

list, 8

list

Operation, 7

load-bp-i, 24

load-bp, 24

load-env, 24

load-glo, 24

load-imm-fix, 24

load-imm, 23, 24

load-length, 25

load-reg, 24

load-stack, 24

load-type, 25

locale

Type, 12

locatable-operation

Type, 12

locate-bp-i, 24

locate-car, 25

locate-cdr, 25

locative, 29

locative

Type, 5

log-op, 23

long-branch-nil, 23

long-branch-t, 23

long-branch, 23
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make-bp-loc, 24

make-closed-environment, 32

make-locative

Macro, 3, 4

make, 41, 43

make

Operation, 13

minus, 23, 38

minus

Operation, 7

modulo, 38

modulo

Operation, 7

mod, 23

nargs-error

Type, 37

nargs-exact-error

Type, 37

nargs-gte-error

Type, 37

nargs, 28, 37, 40

native-catch, 4, 7, 33–35

native-catch

Special Form, 2

negative?, 38

negative?

Operation, 7

next newspace size, 20

noop, 17, 25, 37

not, 23

not

Operation, 8

nth, 38, 39

null-type

Type, 12

null?

Operation, 8

oaklisp.cold, 43

oaklisp.olc, 43

oaklisp.ol, 43

oakliszt, 42

object-hash, 25, 26

object-hash

Operation, 7

object-unhash, 25

object-unhash

Operation, 6, 7

object, 3, 31, 32

object

Type, 12

open-coded-mixin

Type, 12

operation-method-alist, 19, 28, 31, 32

operation-not-found

Type, 37

operation

Type, 12

or

Macro, 5

pair

Type, 12

pc, 28, 29

peek, 25

plus/2, 38

plus, 23, 27

poke, 25

pop, 24

positive?

Operation, 6

print-escape

Fluid Variable, 40

proceedable-error

Type, 37

proceed

Operation, 36

push-cxt-long, 25

push-cxt, 25, 28, 29

quote

Macro, 3

quotientm, 38

quotient, 38

quotient

Operation, 6

read-error
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Type, 37

real, 38

remainder, 38

remember-context

Operation, 36

report

Operation, 36

rest-length, 40

rest-length

Special Form, 40

restart-handlers

Fluid Variable, 35

return, 11, 23, 28, 29

ret, 35

reverse-cons, 8, 25

rot-left

Operation, 6

rot-right

Operation, 7

rot, 23

saved-fluid-binding-list, 19, 34

saved-wind-count, 19, 34, 35

saved-windings, 35

second-arg

Operation, 8

self, 13

set-car, 25

set-cdr, 25

set-contents, 24

set!, 2–4

set!

Macro, 3

settable-operation

Type, 12

set

Macro, 3

signal, 36

signal

Operation, 36

simple-vector, 39

simple-vector

Type, 38

stack-segment, 38

stdin, 11

stdout, 11

store-bp-i, 24

store-bp, 24

store-env, 24

store-loc, 22

store-nargs, 25

store-reg, 24

store-stack, 24

string-hash-key, 39

string

Type, 39

subtract, 23

supertype-list, 19

swap, 24

symbol-slashification-style

Fluid Variable, 40

symbol-table, 39

symbol-table

Generic Hash Table, 39

t-compatible, 40

throw, 19, 23, 34, 35

throw

Operation, 7

times/2, 38

times, 23

type-bp-alist, 19

type

Type, 12

unwind-protect, 34

user-interrupt

Type, 37

variable-length-mixin, 13, 38

variable-length-mixin

Type, 12, 38

vector, 12, 38

vector

Type, 12

vlen-allocate, 25

wind-protect, 4, 33

wind-protect
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Macro, 4

zero?

Operation, 5

!=

Operation, 5

↑super-tail, 11

↑super, 11

Smalltalk-80, 31
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