Writing bibliographic tools with
pybliographer

Frédéric Gobry

February 15, 2006

Contents

(I__Introduction|
[1.1 Basic concepts| . . .

(1.2 Manipulating data]

12.1 Loadingandsaving|

122 Using theregistry|.

1.2.3 Updatingrecords|

.24 Sorting| . . .
1.2.5 Searching| .

|_1.3 mporting and exporting L oL

1.4 Citation formatting|

[2 Extending pybliographer|

2.1 Specializing a parser|

NN TGOk bbbk wWWwWwNdN

O ©

Chapter 1

Introduction

pybliographer is a developer-oriented framework for manipulating bibliogra-
phic data. It is written in pytho and uses extensively the dynamic nature of
this language.

pybliographer does not try to define another standard format for bibliogra-
phic data, nor does it solely rely on a single existing standards. Standards are
important in order to allow for interoperability and durability. Unfortunately,
real-world data often contain a great number of mistakes, or reflect certain local
conventions. pybliographer is on the pragmatic side of considering these issues
as part of its business: most of the parsing tasks can be easily overridden and
specialized in order to fit the code to the data, and not the other way around.

1.1 Basic concepts

pybliographer deals with sets of Records, stored in a so-called Database.
This database can be actually implemented on top of different systems. Two are
available today, one based on a single XML file, using a custom XML dialect,
the other based on Berkeley D]fl a very efficient database system.

Each record represents an elementary object you want to describe, and has
a number of attributes. For instance, if you are describing a book, one attribute
will be its title, another its ISBN, etc. Each of these attributes can contain one or
more values, all of the same type. To continue the description of our book, we
probably have the author attribute, which contains as many Person values as
there are authors for the book. All the values of a given attribute are of the
same type.

In some cases, simply having this flat key /value model to describe an object
is not enough. pybliographer allows, for every value of every attribute, to
provide a set of qualifiers. These qualifiers are also attributes which can hold
one or more values. If my book, or information about the book, is available
via the internet, I can provide a link attribute, but for each of the actual URLs
provided, I might wish to add a description qualifier, which will indicate, say,
if the URL points to the editor’s website, or to a review, etc.

This nesting of objects is best described in figure

Iseehttp://python.org/
2seehttp://www.sleepycat.com/

http://python.org/
http://www.sleepycat.com/

"author"
attribute
—C Person
Database
—] " . -
description
Record HH [attribute
3 —— (| urRL
"1ilnk“ Text
attribute __

Figure 1.1: Objects manipulated in pybliographer

pybliographer comes with a set of defined attribute types, like Person,
Text,Date, ID (see the Pyblio.Attribute module for a complete list), and
can be extended to support your own types.

1.1.1 The database schema

Even though attributes are typed, the data model described above is quite flex-
ible. In order for pybliographer to help you checking that your records are
properly typed, it needs to know the database schema you are using. This
schema, usually stored in an XML file with the extension . sip, simply lists
the known attributes with their type and the qualifiers it allows for its values.
Some . sip files are distributed with pybliographer, and can be seen in the
Pyblio.RIP directory.

In addition to validation information, the schema contains human-readable
description of the different fields, possibly in several languages, so that it can
be automatically extracted by user interfaces to provide up-to-date informa-
tion.

1.1.2 Taxonomies

Taxonomies can be used as enumerated values, say for listing the possible types
of a document, or the language in which a text is written. They have however
the extra capability of being hierarchical: you can define subcategories of a
main category. For instance, imagine a doctype taxonomy with the following

values:
Article Peer-reviewed
Published |
Non peer-reviewed

Book

You can tag an article as Peer-reviewed, but you are not required to use
the leaf values in this tree. In the case you don’t know if a publication is re-
viewed or not, you can use the Art icle tag. Similarly, if you search for all the
Published documents, you will retrieve all those that have the Published
tag, but also those that are articles (either peer-reviewed or not), books,...

pybliographer uses the Pyblio.Attribute. Txo object to represent a log-
ical value in a given taxonomy. A record can be tagged with this Txo object
by adding a Pyblio.Attribute.TxoItem value in the corresponding at-
tribute.

Taxonomies can be declared and pre-filled in a database schema, so that
any database created from the schema will at least contain the specified tax-
onomies.

To see how these taxonomies can be further created and modified, please
have a look at the t xo member of a Database object, which is an instance of
the Pyblio.Store.TxoGroup class.

1.1.3 Result sets

Result sets are used to manipulate an explicit list of records, among all the
records kept in a database. They are returned from queries on the database, and
can be manipulated by the user. Result sets are somewhat like mathematical
sets, as you cannot put duplicate values in them, and they have no default
ordering of their elements. You can create result sets via the rs attribute of your
database, which is an instance of the Pyblio.Store.ResultSetStore.

A special result set is available as Pyblio.entries, and contains at every
time all the records of the database.

1.1.4 Views

We have seen that result sets are not ordered. However, in many cases, one
needs to provide the records in a specific order. To do so, you can create a view
on top of a result set. This view is created by calling the view method of the
result set, with an order parameter being the description of the sort order you
wish to have. The module Pyblio.Sort provides elementary constructs to
build such a description.

Once the view is created, modifying the corresponding result set leads to
updating the view accordingly.

1.2 Manipulating data

This section describes some simple operations you can perform on some subset
of a pybliographer database.
1.2.1 Loading and saving

The first thing you need to do is of course actually having a database available.
The following code does the job:

from Pyblio import Store, Schema

schema = Schema.Schema ('myschema.sip’)
store = Store.get (' file’)

db = store.dbcreate('mydb.bip’, schema)

This example relies on the fact that you already have a schema at hand.
There are schemas available in the Pyblio.RIP directory. It the starts by read-
ing the schema. The next step is to select the actual physical store which will
hold your database. We choose to store it in a simple XML file, whose canoni-
cal extension is . bip. The last operation actually creates the database with the
specified schema.

Independently of the selected store, it is always possible to export a database
in the . sip format, by calling the db . xmlwrite (.. .) method of the database.
Such a file can then be reused later on by using store.dbimport (...) in-
stead of store. .dbcreate(...).

When you have finished modifying your database, you can call db . save ()
method to ensure that it is properly saved.

Caution: the bsddb store for instance is updated at every actual modifica-
tion, not only when you call the save method. Don’t rely on it to provide some
kind of rollback feature.

1.2.2 Using the registry

pybliographer has a mechanism to register known schemas, and specify which
import and export filters can properly work with each schema. This mecha-
nism can be used to create our database by asking for a specific schema, as
shown below:

from Pyblio import Store, Registry
Registry.parse_default ()

schema = Registry.getSchema ("org.pybliographer/bibtex/0.1")
store = Store.get (' file’)

db = store.dbcreate('mydb.bip’, schema)

The registry must be first initialized. Then you can ask for a specific schema,
in that case a schema that supports BibTeX databases.
1.2.3 Updating records

The next example will loop over all the records in a database, and add a new
author to the list of authors.

from Pyblio import Attribute
for record in db.entries.itervalues():
person = Attribute.Person(last=u"Gobry",
first=u"Frédéric")
record.add ("author’, person)

db[record.key] = record

db.save ()

We use the itervalues () iterator to loop over all the records stored in
the database. Then, we simply insert a new value in the author attribute. The
record.add(...) method takes care of creating the attribute if it does not
exist yet.

One thing not to forget is to store the record back in the database once the
modification is performed. Without this step, you might experience weird be-
havior where some modifications are not properly kept.

We finish by saving the database.

1.2.4 Sorting

To sort records, you create views (see section on pagef). You can of course
create multiple views on top of a single result set. In order to sort the whole
database, simply create the view on database.entries instead of a result
set. If you want to sort your database by decreasing year and then by author,
you can use a view like that:

from Pyblio.Sort import OrderBy

view = db.entries.view (OrderBy (’'year’, asc=False) &
OrderBy ("author’))

for record in view.itervalues():
do something with the record
#

So, sorting constraints can be arbitrarily chained with the & operator,and
each constraint can be either ascending (the default), or descending. This defines
a very simple Domain Specific Language, or DSL for short. Such languages
also appear in other part of pybliographer (searching, citation formatting), as
they are a convenient way to describe complex abstraction without having to
reinvent a complete environment.

1.2.5 Searching

To search, you call the database.query (...) method. The method takes a
query specification as argument, which is constructed with the help of another
DSL, similar to the one used for sorting. You have access to a certain number
of primitive queries, which are then linked together with the usual boolean
operators, as in the following example:

from Pyblio import Query
article = db.txo[’doctype’].byname ("article’)

result = db.query(~ Query.Txo(’doctype’, article) &
Query.AnyWord ('’ laziness’))

We first get the taxonomy item corresponding to articles, and we then com-
pose the following query: get all the documents that are not articles, and which
contain the word laziness in any attribute.

1.3 Importing and exporting

As pybliographer is not bound to a single data schema, importing and ex-
porting from specific formats (like MARC, BibTeX, Dublin Core,...) cannot be
achieved once for all. In order to avoid the need to recreate a BibTeX parser
for every database schema invented, pybliographer makes a clear separation
between syntactic parsers, located in Pyblio.Parsers.Syntactic and se-
mantic parsers, in Pyblio.Parsers.Semantic. A syntactic parser is only in
charge of analyzing or generating a file format, without any assumption re-
garding the meaning of the fields it reads. These syntactic parsers are then
reused by the semantic code, which relates the meaning of the fields to the
corresponding database.

In addition, the parsers are written so that the handling of separate fields
can be easily overridden in a subclass. This makes it possible to extend them
or take some local specificities into account (if you need to massage data that
contains systematic errors, this proves very useful).

The following example assumes you have created a BibTeX-compatible database,
as explained in the section on pagel5| It will then open a proper BibTeX
file, and merge it into the current database. The list of imported references is
returned as a result set.

from Pyblio.Parsers.Semantic import BibTeX
parser = BibTeX.Reader ()

rs = parser.parse (open (’example.bib’), db)

1.4 Citation formatting

The painful part of writing formatting code is to take into account the missing
fields without multiplying explicit checks that would quickly be boring. In
addition, it is important to make it easy to factor out common operations, like
formatting a list of authors, and reuse them in different contexts.

pybliographer provides a domain specific language that addresses these prob-
lems. However, it is not intended as a complete formatting language, so you
cannot use it for instance to lay out your citations in a complete HTML web
page (but this specific part is comparatively easy).

Back to practice. You can define some citation fragments like this:

from Pyblio.Format import People, all, one

authors = People.lastFirst (all(’author’))
title = one(’'title’) | u’ (no title)’

In this example, the authors variable is composed by taking all the values
in the author field (all (author’)), and pass them through the lastFirst
transformation, which will format them as Last Name, First Name. The Person
module contains other formatting variants for person names.

The t it le variable is built by taking the first value of the title field (via the
one operator), and in case it does not exist, by using the string no title instead.
This | alternative operator can be used everywhere a definition can be invalid.

You can then group these fields together, possibly adding some style infor-
mation in the process:

from Pyblio.Format import B

citation = join(’, ") [B[title], authors]

The join operator with take the parts between square braces and link them
together with the text specified in parameter, a comma in that case. When one
of the composing parts is not available, it is simply ignored, unless no part is
available, in which case the whole expression is invalid (which can be trapped
by using the | operator). In addition, the title is enclosed in a bold B tag.

Once the citation style is defined, it must be compiled on a specific database:

formatter = citation (db)

This operation checks that all the fields accessed are actually part of the
schema. It also pre-computes certain information, so that the actual formatting
of specific records can be a fast process.

Then, you can use the returned formatter and apply it to any number of
records from the corresponding database:

cited = formatter (record)

You still to get a definitive result, as you still need to select the output for-
mat for your citation. If you want it in HTML, you can do this last operation:

from Pyblio.Format import HTML

html = HTML.generate (cited)

Chapter 2

Extending pybliographer

TODO

2.1 Specializing a parser

TODO

	Introduction
	Basic concepts
	The database schema
	Taxonomies
	Result sets
	Views
	Manipulating data
	Loading and saving
	Using the registry
	Updating records
	Sorting
	Searching
	Importing and exporting
	Citation formatting
	Extending pybliographer
	Specializing a parser

