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Abstract

Statistical procedures such as Bayes factor model selection and Bayesian model averag-
ing require the computation of normalizing constants (e.g., marginal likelihoods). These
normalizing constants are notoriously difficult to obtain, as they usually involve high-
dimensional integrals that cannot be solved analytically. Here we introduce an R package
that uses bridge sampling (Meng and Wong 1996; Meng and Schilling 2002) to estimate
normalizing constants in a generic and easy-to-use fashion. For models implemented in
Stan, the estimation procedure is automatic. We illustrate the functionality of the package
with three examples.
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1. Introduction

In many statistical applications, it is essential to obtain normalizing constants of the form

Z =

∫

Θ

q(θ) dθ, (1)

where p(θ) = q(θ)/Z denotes a probability density function (pdf) defined on the domain
Θ ⊆ R

p. For instance, the estimation of normalizing constants plays a crucial role in free
energy estimation in physics, missing data analyses in likelihood-based approaches, Bayes
factor model comparisons, and Bayesian model averaging (e.g., Gelman and Meng 1998). In
this article, we focus on the role of the normalizing constant in Bayesian inference; however,
the bridgesampling package can be used in any context where one desires to estimate a
normalizing constant.

In Bayesian inference, the normalizing constant of the joint posterior distribution is involved in
(1) parameter estimation, where the normalizing constant ensures that the posterior integrates
to one; (2) Bayes factor model comparison, where the ratio of normalizing constants quantifies
the data-induced change in beliefs concerning the relative plausibility of two competing models
(e.g., Kass and Raftery 1995); (3) Bayesian model averaging, where the normalizing constant
is required to obtain posterior model probabilities (BMA; Hoeting et al. 1999).

For Bayesian parameter estimation, the need to compute the normalizing constant can usu-
ally be circumvented by the use of sampling approaches such as Markov chain Monte Carlo
(MCMC; e.g., Gamerman and Lopes 2006). However, for Bayes factor model comparison and
BMA, the normalizing constant of the joint posterior distribution – in this context usually
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called marginal likelihood – remains of essential importance. This is evident from the fact
that the posterior model probability of model Mi, i ∈ {1, 2, . . . ,m}, given data y is obtained
as

p(Mi | y)︸ ︷︷ ︸
posterior model probability

=
p(y | Mi)∑m

j=1 p(y | Mj) p(Mj)︸ ︷︷ ︸
updating factor

× p(Mi)︸ ︷︷ ︸
prior model probability

, (2)

where p(y | Mi) denotes the marginal likelihood of model Mi.

If the model comparison involves only two models, M1 and M2, it is convenient to consider
the odds of one model over the other. Bayes’ rule yields:

p(M1 | y)
p(M2 | y)︸ ︷︷ ︸
posterior odds

=
p(y | M1)

p(y | M2)︸ ︷︷ ︸
Bayes factor BF12

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (3)

The change in odds brought about by the data is given by the ratio of the marginal likelihoods
of the models and is known as the Bayes factor (Jeffreys 1961; Kass and Raftery 1995; Etz
and Wagenmakers 2017). Equation 2 and Equation 3 highlight that the normalizing constant
of the joint posterior distribution, that is, the marginal likelihood, is required for computing
both posterior model probabilities and Bayes factors.

The marginal likelihood is obtained by integrating out the model parameters with respect to
their prior distribution:

p(y | Mi) =

∫

Θ

p(y | θ,Mi) p(θ | Mi) dθ. (4)

The marginal likelihood implements the principle of parsimony also known as Occam’s razor
(e.g., Jefferys and Berger 1992; Myung and Pitt 1997; Vandekerckhove et al. 2015). Unfor-
tunately, the marginal likelihood can be computed analytically for only a limited number of
models. For more complicated models (e.g., hierarchical models), the marginal likelihood is
a high-dimensional integral that usually cannot be solved analytically. This computational
hurdle has complicated the application of Bayesian model comparisons for decades.

To overcome this hurdle, a range of different methods have been developed that vary in ac-
curacy, speed, and complexity of implementation: naive Monte Carlo estimation, importance
sampling, the generalized harmonic mean estimator, Reversible Jump MCMC (Green 1995),
the product-space method (Carlin and Chib 1995; Lodewyckx et al. 2011), Chib’s method
(Chib 1995), thermodynamic integration (e.g., Lartillot and Philippe 2006), path sampling
(Gelman and Meng 1998), and others. The ideal method is fast, accurate, easy to implement,
general, and unsupervised, allowing non-expert users to treat it as a “black box”.

In our experience, one of the most promising methods for estimating normalizing constants
is bridge sampling (Meng and Wong 1996; Meng and Schilling 2002). Bridge sampling is a
general procedure that performs accurately even in high-dimensional parameter spaces such
as those that are regularly encountered in hierarchical models. In fact, simpler estimators
such as the naive Monte Carlo estimator, the generalized harmonic mean estimator, and
importance sampling are special sub-optimal cases of the bridge identity described in more
detail below (e.g., Frühwirth–Schnatter 2004; Gronau et al. 2017b).

In this article, we introduce bridgesampling, an R (R Core Team 2016) package that enables
the straightforward and user-friendly estimation of the marginal likelihood (and of normalizing



Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 3

constants more generally) via bridge sampling techniques. In general, the user needs to provide
to the bridge_sampler function four quantities that are readily available:

1. an object with posterior samples (argument samples);

2. a function that computes the log of the unnormalized posterior density for a set of model
parameters (argument log_posterior);

3. a data object that contains the data and potentially other relevant quantities for eval-
uating log_posterior (argument data);

4. lower and upper bounds for the parameters (arguments lb and ub, respectively).

Given these inputs, the bridgesampling package provides an estimate of the log marginal
likelihood.

Figure 1 displays the steps that a user may take when using the bridgesampling package.
Starting from the top, the user provides the basic required arguments to the bridge_sampler
function which then produces an estimate of the log marginal likelihood. With this esti-
mate in hand – usually for at least two different models – the user can compute posterior
model probabilities using the post_prob function, Bayes factors using the bf function, and
approximate estimation errors using the error_measures function. A schematic call of the
bridge_sampler function looks as follows (detailed examples are provided in the next sec-
tions):

R> bridge_sampler(samples = samples, log_posterior = log_posterior,

+ data = data, lb = lb, ub = ub)

The bridge_sampler function is an S3 generic which currently has methods for objects of
class mcmc.list (Plummer et al. 2006), stanfit (Stan Development Team 2016a), matrix,
rjags (Plummer 2016; Su and Yajima 2015), runjags (Denwood 2016), and stanreg (Stan
Development Team 2016b).1 This allows the user to obtain posterior samples in a convenient
and efficient way, for instance, via JAGS (Plummer 2003) or a highly customized sampler.
Hence, bridge sampling does not require users to program their own MCMC routines to
obtain posterior samples; this convenience is usually missing for methods such as Reversible
Jump MCMC (but see Gelling et al. 2017).

When the model is specified in Stan (Carpenter et al. 2017; Stan Development Team 2016a) –
in a way that retains the constants, as described below – obtaining the marginal likelihood is
even simpler: the user only needs to pass the stanfit object to the bridge_sampler function.
The combination of Stan and the bridgesampling package therefore produces an unsupervised,
black box computation of the marginal likelihood.

This article is structured as follows: First we describe the implementation details of the
algorithm from bridgesampling; second, we illustrate the functionality of the package using a
simple Bayesian t-test example where posterior samples are obtained via JAGS. In this section,
we also explain a heuristic to obtain the function that computes the log of the unnormalized
posterior density in JAGS; third, we describe in more detail the interface to Stan which enables
an even more automatized computation of the marginal likelihood. Fourth, we illustrate use of
the Stan interface with two well-known examples from the Bayesian model selection literature.

1We thank Ben Goodrich for adding the stanreg method to our package.
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Figure 1: Flow chart of the steps that a user may take when using the bridgesampling

package. In general, the user needs to provide a posterior samples object (samples), a func-
tion that computes the log of the unnormalized posterior density (log_posterior), the data
(data), and parameter bounds (lb and ub). The bridge_sampler function then produces
an estimate of the log marginal likelihood. This is usually repeated for at least two different
models. The user can then compute posterior model probabilities (using the post_prob func-
tion), Bayes factors (using the bf function), and approximate estimation errors (using the
error_measures function). Note that the summary method for bridge objects automatically
invokes the error_measures function. Figure available at https://tinyurl.com/ybf4jxka
under CC license https://creativecommons.org/licenses/by/2.0/.

2. Bridge sampling: the algorithm

In its original formulation, bridge sampling was intended to estimate a ratio of two normalizing
constants (Meng and Wong 1996). However, the accuracy of the estimator depends in part
on the overlap between the two involved distributions; consequently, the accuracy can be
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increased by estimating one normalizing constant at a time, using as a second distribution a
convenient normalized proposal distribution that closely matches the distribution of interest
(e.g., Gronau et al. 2017b; Overstall and Forster 2010). The bridge sampling estimator of the
marginal likelihood is then given by:2

p(y) =
Eg(θ) [h(θ) p(y | θ) p(θ)]

Ep(θ|y) [h(θ) g(θ)]
≈

1
n2

∑n2
j=1 h(θ̃j) p(y | θ̃j) p(θ̃j)
1
n1

∑n1
i=1 h(θ

∗
i ) g(θ

∗
i )

, (5)

where h(θ) is called the bridge function and g(θ) denotes the proposal distribu-
tion. {θ∗

1,θ
∗
2, . . . ,θ

∗
n1
} denote n1 samples from the posterior distribution p(θ |y) and

{θ̃1, θ̃2, . . . , θ̃n2} denote n2 samples from the proposal distribution g(θ).

A remaining question is how to choose the bridge function h(θ) and the proposal distribution
g(θ). Meng and Wong (1996) showed that the optimal bridge function (in the sense that it
minimizes the relative mean-squared error of the estimator) is given by

h(θ) ∝ 1

s1 p(y | θ) p(θ) + s2 p(y) g(θ)
, (6)

where si =
ni

n1+n2
, i ∈ {1, 2}. This choice is optimal only when the samples are independent

and identically distributed (i.i.d.) which is not the case when the posterior samples are ob-
tained using MCMC procedures. Therefore, by default, the bridgesampling package replaces
n1 in defining the weights s1 and s2 by the effective posterior sample size which is computed
using the coda package (Plummer et al. 2006).3 When the user sets the argument use_neff
= FALSE, the actual obtained sample size is used instead of the effective sample size. Another
method for getting closer to the i.i.d. assumption is to thin the MCMC chains. As detailed
below, the proposal distribution is chosen in such a way that it yields i.i.d. samples.

Note that the expression for the optimal bridge function contains p(y), that is, the marginal
likelihood – the very quantity that we attempt to estimate. Therefore, Meng and Wong (1996)
suggested an iterative updating scheme where an initial guess of the marginal likelihood p̂(y)(0)

is updated until convergence. The estimate at iteration t+ 1 is obtained as follows:

p̂(y)(t+1) =

1
n2

n2∑
j=1

l2,j

s1 l2,j+s2 p̂(y)(t)

1
n1

n1∑
i=1

1
s1 l1,i+s2 p̂(y)(t)

, (7)

where l1,i =
p(y|θ∗

i ) p(θ
∗

i )
g(θ∗

i
) , and l2,j =

p(y|θ̃j) p(θ̃j)

g(θ̃j)
. In practice, a more numerically stable version

of Equation 7 is implemented (e.g., Gronau et al. 2017b, Appendix B). Furthermore, the
Brobdingnag R package (Hankin 2007) is used to avoid numerical underflow.

The iterative scheme usually converges within a few iterations. Note that, crucially, l1,i and
l2,j need only be computed once before the iterative updating scheme is started. In practice,
evaluating l1,i and l2,j takes up most of the computational time. Luckily, l1,i and l2,j can
be computed completely in parallel for each i ∈ {1, 2, . . . , n1} and each j ∈ {1, 2, . . . , n2},
respectively. That is, in contrast to MCMC procedures, the evaluation of, for instance,

2We omit conditioning on the model for enhanced legibility. It should be kept in mind, however, that this
yields the estimate of the marginal likelihood for a particular model Mi, that is, p(y | Mi).

3Specifically, the median effective sample size across all parameters is used.
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l1,i+1 does not require one to evaluate l1,i first (since the posterior samples and proposal
samples are already available). The bridgesampling package enables the user to compute
l1,i and l2,j in parallel by setting the argument cores to an integer larger than one. On
Unix/macOS machines, this parallelization is implemented using the parallel package. On
Windows machines this is achieved using the snowfall package (Knaus 2015).4

After having specified the bridge function, one needs to choose the proposal distribution g(θ).
The bridgesampling package implements two different choices: (1) a multivariate normal
proposal distribution and (2) a standard multivariate normal distribution combined with a
warped posterior distribution. Both choices increase the efficiency of the estimator by making
the proposal and the posterior distribution as similar as possible. Note that under the optimal
bridge function, the bridge sampling estimator is robust to the relative tail behavior of the
posterior and the proposal distribution. This stands in sharp contrast to the importance
and the generalized harmonic mean estimator for which unwanted tail behavior produces
estimators with very large or even infinite variances (e.g., Owen and Zhou 2000; Frühwirth–
Schnatter 2004; Gronau et al. 2017b).

2.1. Option I: the multivariate normal proposal distribution

The first choice for the proposal distribution that is implemented in the bridgesampling pack-
age is a multivariate normal distribution with mean vector and covariance matrix that match
the respective posterior samples quantities. This choice (henceforth “the normal method”)
generalizes to high dimensions and accounts for potential correlations in the joint poste-
rior distribution. This proposal distribution is obtained by setting the argument method =

"normal" in the bridge_sampler function; this is the default setting. This choice assumes
that all parameters are allowed to range across the entire real line. In practice, this assump-
tion may not be fulfilled for all components of the parameter vector, however, it is usually
possible to transform the parameters so that this requirement is met. This is achieved by
transforming the original p-dimensional parameter vector θ (which may contain components
that range only across a subset of R) to a new parameter vector ξ (where all components are
allowed to range across the entire real line) using a diffeomorphic vector-valued function f so
that ξ = f(θ). By the change-of-variable rule, the posterior density with respect to the new
parameter vector ξ is given by:

p(ξ | y) = pθ(f
−1(ξ) | y)

∣∣det
[
Jf−1(ξ)

]∣∣ , (8)

where pθ(f
−1(ξ) | y) refers to the untransformed posterior density with respect to θ evaluated

for f−1(ξ) = θ. Jf−1(ξ) denotes the Jacobian matrix with the element in the i-th row and

j-th column given by ∂θi
∂ξj

. Crucially, the posterior density with respect to ξ retains the

normalizing constant of the posterior density with respect to θ; hence, one can select a
convenient transformation without changing the normalizing constant. Note that in order to
apply a transformation no new samples are required; instead the original samples can simply
be transformed using the function f .

In principle, users can select transformations themselves. Nevertheless, the bridgesampling

package comes with a set of built-in transformations (see Table 1), allowing the user to work
with the model in a familiar parameterization. When the user then supplies a named vector

4Due to technical limitations specific to Windows, this parallelization is not available for the stanfit and
stanreg methods.
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Table 1: Overview of built-in transformations in the bridgesampling package. l denotes a pa-
rameter lower bound and u denotes an upper bound. Φ(·) denotes the cumulative distribution
function (cdf) and φ(·) the probability density function (pdf) of the normal distribution.

Type Transformation Inv.-Transformation Jacobian Contribution

unbounded ξi = θi θi = ξi

∣∣∣∂θi∂ξi

∣∣∣ = 1

lower-bounded ξi = log (θi − l) θi = exp (ξi) + l
∣∣∣∂θi∂ξi

∣∣∣ = exp (ξi)

upper-bounded ξi = log (u− θi) θi = u− exp (ξi)
∣∣∣∂θi∂ξi

∣∣∣ = exp (ξi)

double-bounded ξi = Φ−1
(
θi−l
u−l

)
θi = (u− l) Φ (ξi) + l

∣∣∣∂θi∂ξi

∣∣∣ = (u− l)φ (ξi)

with lower and upper bounds for the parameters (arguments lb and ub, respectively), the
package internally transforms the relevant parameters and adjusts the expressions by the
Jacobian term. Furthermore, as will be elaborated upon below, when the model is fitted in
Stan, the bridgesampling package takes advantage of the rich class of Stan transformations.

The transformations built into the bridgesampling package are useful whenever each com-
ponent of the parameter vector can be transformed separately. In this scenario, there are
four possible cases per parameter: (1) the parameter is unbounded; (2) the parameter has
a lower bound (e.g., variance parameters); (3) the parameter has an upper bound; and (4)
the parameter has a lower and an upper bound (e.g., rate parameters). As shown in Table 1,
in case (1) the identity (i.e., no) transformation is applied. In case (2) and (3), logarithmic
transformations are applied to transform the parameter to the real line. In case (4) a probit
transformation is applied. Note that internally, the posterior density is automatically adjusted
by the relevant Jacobian term. Since each component is transformed separately, the resulting
Jacobian matrix will be diagonal. This is convenient since it implies that the absolute value of
the determinant is the product of the absolute values of the diagonal entries of the Jacobian
matrix:

∣∣det
[
Jf−1(ξ)

]∣∣ =
p∏

i=1

∣∣∣∣
∂θi
∂ξi

∣∣∣∣ . (9)

Once all posterior samples have been transformed to the real line, a multivariate normal
distribution is fitted using method-of-moments. On a side note, bridge sampling may under-
estimate the marginal likelihood when the same posterior samples are used both for fitting
the proposal distribution and for the iterative updating scheme (i.e., Equation 7). Hence,
as recommended by Overstall and Forster (2010), the bridgesampling package divides each
MCMC chain into two halves, using the first half for fitting the proposal distribution and the
second half for the iterative updating scheme.

2.2. Option II: warping the posterior distribution

The second choice for the proposal distribution that is implemented in the bridgesampling

package is a standard multivariate normal distribution in combination with a warped posterior
distribution. The goal is still to match the posterior and the proposal distribution as closely
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as possible. However, instead of manipulating the proposal distribution, it is fixed to a
standard multivariate normal distribution, and the posterior distribution is manipulated (i.e.,
warped). Crucially, the warped posterior density retains the normalizing constant of the
original posterior density. The general methodology is referred to as Warp bridge sampling
(Meng and Schilling 2002).

There exist several variants of Warp bridge sampling; in the bridgesampling package, we
implemented Warp-III bridge sampling (Meng and Schilling 2002; Overstall 2010; Gronau
et al. 2017c) which can be used by setting method = "warp3". This version matches the first
three moments of the posterior and the proposal distribution. That is, in contrast to the
simpler normal method described above, Warp-III not only matches the mean vector and the
covariance matrix of the two distributions, but also the skewness. Consequently, when the
posterior distribution is skewed, Warp-III may result in an estimator that is less variable.
When the posterior distribution is symmetric, both Warp-III and the normal method should
yield estimators that are about equally efficient. Hence, in principle, Warp-III should always
provide estimates that are at least as accurate as the normal method. However, the Warp-III
method also takes about twice as much time to execute as the normal method; the reason for
this is that Warp-III sampling results in a mixture density (for details, see Overstall 2010;
Gronau et al. 2017c) which requires that the unnormalized posterior density is evaluated twice
as often as in the normal method.

Warp-III bridge sampling starts with posterior samples that can range across the entire real
line (i.e., ξ) and is based on the following stochastic transformation:

η = b︸︷︷︸
symmetry

× R−1
︸︷︷︸

covariance I

× (ξ − µ)︸ ︷︷ ︸
mean 0

, (10)

where b ∼ Bernoulli(0.5) on {−1, 1} and µ corresponds to the expected value of ξ (i.e., the
mean vector). The matrix R is obtained via the Cholesky decomposition of the covariance
matrix of ξ, denoted as Σ, hence, Σ = RR⊤. In practical applications, µ and Σ are unknown
and are estimated using the first half of the posterior samples. The iterative scheme in
Equation 7 is then applied with

l1,i =
|R|
2 [p̃ξ(2µ− ξ∗i | y) + p̃ξ(ξ

∗
i | y)]

g (R−1 (ξ∗i − µ))
, (11)

and

l2,j =
|R|
2 [p̃ξ(µ−Rη̃j | y) + p̃ξ(µ+Rη̃j | y)]

g(η̃j)
, (12)

where {ξ∗1, ξ∗2, . . . , ξ∗n1
} are n1 draws from p(ξ | y), and {η̃1, η̃2, . . . , η̃n2} are n2 draws from the

standard normal proposal distribution g(η). Furthermore, p̃ξ(ξ | y) denotes the unnormalized
posterior density of the unbounded (but not warped) posterior samples given by:

p̃ξ(ξ | y) = p(y | ξ) p(ξ) =
∣∣det

[
Jf−1(ξ)

]∣∣ pθ(y | f−1(ξ)) pθ(f
−1(ξ)). (13)

2.3. Estimation error

Once the marginal likelihood has been estimated, the user can obtain an estimate of the es-
timation error in a number of different ways. One method is to use the error_measures
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function which is an S3 generic. Note that the summary method for objects returned
by bridge_sampler internally calls the error_measures function and thus provides a
convenient summary of the estimated log marginal likelihood and the estimation uncer-
tainty. For marginal likelihoods estimated with the "normal" method and repetitions

= 1, the error_measures function provides an approximate relative mean-squared error of
the marginal likelihood estimate, an approximate coefficient of variation, and an approximate
percentage error. The relative mean-squared error of the marginal likelihood estimate is given
by:

RE2 =
E

[(
p̂(y)− p(y)

)2]

p(y)2
. (14)

Frühwirth–Schnatter (2004) provided a derivation of an approximate relative mean-squared
error of the marginal likelihood which takes into account that the samples from the proposal
distribution are independent, whereas the samples from the posterior distribution may be
autocorrelated (e.g., when using MCMC sampling procedures). The approximate relative
mean-squared error is given by:

R̂E
2
=

1

n2

Vg(ξ)

(
f1(ξ)

)

E
2
g(ξ)

(
f1(ξ)

) +
ρf2(0)

n1

Vp(ξ|y)

(
f2(ξ)

)

E
2
p(ξ|y)

(
f2(ξ)

) , (15)

where f1(ξ) = p(ξ|y)
s1p(ξ|y)+s2g(ξ)

, f2(ξ) = g(ξ)
s1p(ξ|y)+s2g(ξ)

, and Vg(ξ)

(
f1(ξ)

)
=∫

Ξ
(f1(ξ)− E [f1(ξ)])

2 g(ξ) dξ denotes the variance of f1(ξ) with respect to the proposal dis-
tribution g(ξ) (the variance Vp(ξ|y)

(
f2(ξ)

)
is defined analogously); ρf2(0) corresponds to the

normalized spectral density of the autocorrelated process f2(ξ) at frequency zero.

The unknown variances and expected values are estimated using sample variances and means.
For instance, to obtain the variance and expected value with respect to g(ξ), we use the n2

samples for ξ̃j from the proposal distribution. Analogously, to evaluate the variance and
expected value with respect to the posterior distribution of the unbounded parameters (i.e.,
ξ), we use the second batch of the n1 to the real line transformed samples ξ∗i from the
posterior distribution which are also used in the iterative updating scheme (i.e., Equation 7).
The second term in Equation 15 is adjusted by the normalized spectral density to account
for potential autocorrelation in the posterior samples. The spectral density at frequency zero
is estimated by fitting an autoregressive model using the spectrum0.ar function from the
coda R package (Plummer et al. 2006). Furthermore, the bridge sampling estimate is used
as a normalizing constant to compute the normalized posterior density for the unbounded
parameter vector ξ which appears in the numerator of f1(ξ) and the denominator of both
f1(ξ) and f2(ξ).

Under the assumption that the bridge sampling estimator p̂(y) is unbiased, the square root of
the expected relative mean-squared error (Equation 14) can be interpreted as the coefficient of
variation (i.e., the ratio of the standard deviation and the mean). To facilitate interpretation,
the bridgesampling package also provides a percentage error which is obtained by simply
converting the coefficient of variation to a percentage.

Note that the error_measures function can currently not be used to obtain approximate
errors for the "warp3" method with repetitions = 1. The reason is that, in our experience,
the approximate errors appear to be unreliable in this case. A reason might be that the
warping transformation in Equation 10 adds a minus sign with probability 0.5 to the posterior
samples which may alter the autocorrelation structure.
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There are two further methods for assessing the uncertainty of the marginal likelihood esti-
mate. These methods are computationally more costly than computing approximate errors,
but are available for both the "normal" method and the "warp3" method. The first option is
to set the repetitions argument of the bridge_sampler function to an integer larger than
one. This allows the user to obtain an empirical estimate of the variability across repeated
applications of the method. Applying the error_measures function to the output of the
bridge_sampler function that has been obtained with repetitions set to an integer large
than one provides the user with the minimum/maximum log marginal likelihood estimate
across repetitions and the interquartile range of the log marginal likelihood estimates. Note
that this procedure assesses the uncertainty of the estimate conditional on the posterior sam-
ples, that is, in each repetition new samples are drawn from the proposal distribution, but
the posterior samples are fixed across repetitions.

In case the user is able to easily draw new samples from the posterior distribution, the
second option is to repeatedly call the bridge_sampler function, each time with new posterior
samples. This way, the user obtains an empirical assessment of the variability of the estimate
which takes into account both uncertainty with respect to the samples from the proposal and
also from the posterior distribution.

After having outlined the underlying bridge sampling algorithm, we next demonstrate the
capabilities of the bridgesampling package using three examples. Additional examples are
available as vignettes at: https://cran.r-project.org/package=bridgesampling

3. Toy example: Bayesian t-test

We start with a simple statistical example: a Bayesian paired-samples t-test (Jeffreys 1961;
Rouder et al. 2009; Ly et al. 2016; Gronau et al. 2017a). We use R’s sleep data set (Cushny
and Peebles 1905) which contains measurements for the effect of two soporific drugs on ten
patients. Two different drugs where administered to the same ten patients and the dependent
measure was the average number of hours of sleep gained compared to a control night in
which no drug was administered. Figure 2 shows the increase in sleep (in hours) of the ten
patients for each of the two drugs. To test whether the two drugs differ in effectiveness, we
can conduct a Bayesian paired-samples t-test.

The null hypothesis H0 states that the n difference scores di, i = 1, 2, . . . , n, where n = 10,
follow a normal distribution with mean zero and variance σ2, that is, di ∼ N (0, σ2). The
alternative hypothesis H1 states that the difference scores follow a normal distribution with
mean µ = σδ, where δ denotes the standardized effect size, and variance σ2, that is, di ∼
N (σδ, σ2). Jeffreys’s prior is assigned to the variance σ2 so that p(σ2) ∝ 1/σ2 and a zero-
centered Cauchy prior with scale parameter r = 1/

√
2 is assigned to the standardized effect

size δ (for details, see Rouder et al. 2009; Ly et al. 2016; Morey and Rouder 2015).

In this example, we are interested in computing the Bayes factor BF10 which quantifies how
much more likely the data are under H1 (i.e., there is a difference between the two drugs)
than under H0 (i.e., there is no difference between the two drugs) by using the bridgesampling

package. For this example, the Bayes factor can also be easily computed using the BayesFactor
package (Morey and Rouder 2015), allowing us to compare the results from the bridgesampling

package to the correct answer.

The first step is to obtain posterior samples for bothH1 and H0. In this example, we use JAGS
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Figure 2: The sleep data set (Cushny and Peebles 1905). The left violin plot displays the
distribution of the increase in sleep (in hours) of the ten patients for the first drug, the right
violin plot displays the distribution of the increase in sleep (in hours) of the ten patients for
the second drug. Boxplots and the individual observations are superimposed. Observations
for the same participant are connected by a line. Figure available at https://tinyurl.com/
yalskr23 under CC license https://creativecommons.org/licenses/by/2.0/.

in order to sample from the models. The easiest way to implement Jeffreys’s prior on the
variance is to approximate it by a gamma prior on the precision (i.e., the inverse of σ2) with
shape and rate parameter close to zero. Furthermore, a Cauchy prior on the standardized
effect size is implemented as a t distribution with one degree of freedom. The JAGS models5

can be implemented as character strings as follows:

R> code_H1 <-

+ "model {

+ delta ~ dt(0, 1 / r ^ 2, 1) # prior

+ inv_sigma2 ~ dgamma(0.0001, 0.0001) # prior

+ sigma <- 1 / sqrt(inv_sigma2) # convert precision to sigma

+ for (i in 1:n) {

+ d[i] ~ dnorm(sigma * delta, inv_sigma2) # likelihood

+ }

5Note that in JAGS, normal distributions are parameterized with respect to the precision, that is, one over
the variance.
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+ }"

R> code_H0 <-

+ "model {

+ inv_sigma2 ~ dgamma(0.0001, 0.0001) # prior

+ for (i in 1:n) {

+ d[i] ~ dnorm(0, inv_sigma2) # likelihood

+ }

+ }"

Posterior samples can then be obtained using the R2jags package (Su and Yajima 2015) as
follows:6

R> library("R2jags")

R> data("sleep")

R> y <- sleep$extra[sleep$group == 1]

R> x <- sleep$extra[sleep$group == 2]

R> d <- x - y # compute difference scores

R> n <- length(d)

R> set.seed(1)

R> jags_H1 <- jags(data = list(d = d, n = n, r = 1 / sqrt(2)),

+ parameters.to.save = c("delta", "inv_sigma2"),

+ model.file = textConnection(code_H1), n.chains = 3,

+ n.iter = 16000, n.burnin = 1000, n.thin = 1)

R> jags_H0 <- jags(data = list(d = d, n = n),

+ parameters.to.save = "inv_sigma2",

+ model.file = textConnection(code_H0), n.chains = 3,

+ n.iter = 16000, n.burnin = 1000, n.thin = 1)

Note the relatively large number of posterior samples; reliable estimates for the quantities
of interest in testing usually necessitate many more posterior samples than are required for
estimation. As a rule of thumb, we suggest that testing requires about an order of magnitude
more posterior samples than estimation.

Next, we need to specify functions that take as input a named vector with parameter values
and a data object, and return the log of the unnormalized posterior density (i.e., the log of
the integrand in Equation 4). These functions are easily specified by inspecting the JAGS

model. As a heuristic, one only needs to consider the model code where a “∼” sign appears.
The log of the densities on the right-hand side of these “∼” symbols needs to be evaluated for
the relevant quantities and then these log density values are summed.7 Using this heuristic,
we obtain the following unnormalized log posterior density functions:

R> log_posterior_H1 <- function(pars, data) {

+ delta <- pars["delta"] # extract parameter

+ inv_sigma2 <- pars["inv_sigma2"] # extract parameter

+ sigma <- 1 / sqrt(inv_sigma2) # convert precision to sigma

6The complete code can be also found on the Open Science Framework: https://osf.io/3yc8q/.
7This heuristic assumes that the model does not include other random quantities that are generated during

sampling, such as posterior predictives.
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+ out <-

+ dcauchy(delta, scale = data$r, log = TRUE) + # prior

+ dgamma(inv_sigma2, 0.0001, 0.0001, log = TRUE) + # prior

+ sum(dnorm(data$d, sigma * delta, sigma, log = TRUE)) # likelihood

+ return(out)

+ }

R> log_posterior_H0 <- function(pars, data) {

+ inv_sigma2 <- pars["inv_sigma2"] # extract parameter

+ sigma <- 1 / sqrt(inv_sigma2) # convert precision to sigma

+ out <-

+ dgamma(inv_sigma2, 0.0001, 0.0001, log = TRUE) + # prior

+ sum(dnorm(data$d, 0, sigma, log = TRUE)) # likelihood

+ return(out)

+ }

Recall that R parameterizes the normal distribution in terms of the standard deviation and
provides a density function for the Cauchy distribution so that we do not need to use the t
distribution with one degree of freedom as in JAGS.

The final step before we can compute the log marginal likelihoods is to specify named vectors
with the parameter bounds:

R> lb_H1 <- rep(-Inf, 2)

R> ub_H1 <- rep(Inf, 2)

R> names(lb_H1) <- names(ub_H1) <- c("delta", "inv_sigma2")

R> lb_H1[["inv_sigma2"]] <- 0

R> lb_H0 <- 0

R> ub_H0 <- Inf

R> names(lb_H0) <- names(ub_H0) <- "inv_sigma2"

The log marginal likelihoods can then be obtained by calling the bridge_sampler function
as follows:

R> library("bridgesampling")

R> set.seed(12345)

R> bridge_H1 <- bridge_sampler(samples = jags_H1,

+ log_posterior = log_posterior_H1,

+ data = list(d = d, n = n, r = 1 / sqrt(2)),

+ lb = lb_H1, ub = ub_H1)

R> bridge_H0 <- bridge_sampler(samples = jags_H0,

+ log_posterior = log_posterior_H0,

+ data = list(d = d, n = n),

+ lb = lb_H0, ub = ub_H0)

We obtain:

R> print(bridge_H1)

Bridge sampling estimate of the log marginal likelihood: -27.17103

Estimate obtained in 5 iteration(s) via method "normal".
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R> print(bridge_H0)

Bridge sampling estimate of the log marginal likelihood: -30.01942

Estimate obtained in 4 iteration(s) via method "normal".

Note that by default, the "normal" bridge sampling method is used.

Next, we can use the error_measures function to obtain approximate percentage errors of
the estimates:

R> error_measures(bridge_H1)$percentage

[1] "0.087%"

R> error_measures(bridge_H0)$percentage

[1] "0.06%"

The small approximate percentage errors indicate that the marginal likelihoods have been
estimated reliably. As mentioned before, we can use the summary method to obtain a conve-
nient summary of the bridge sampling estimate and the estimation error. For instance, for
the bridge sampling estimate for H1, we obtain:

R> summary(bridge_H1)

Bridge sampling log marginal likelihood estimate

(method = "normal", repetitions = 1):

-27.17103

Error Measures:

Relative Mean-Squared Error: 7.564225e-07

Coefficient of Variation: 0.0008697255

Percentage Error: 0.087%

Note:

All error measures are approximate.

We can compute the Bayes factor for H1 over H0 using the bf function:

R> bf(bridge_H1, bridge_H0)

The estimated Bayes factor in favor of x1 over x2 is equal to: 17.26001

Hence, the observed data are about 17 times more likely under H1 (which assigns the stan-
dardized effect size δ a zero-centered Cauchy prior with scale r = 1/

√
2) than under H0 (which

fixes δ to zero). This is strong evidence for a difference in effectiveness between the two drugs
(Jeffreys 1939, Appendix I). Finally, we can confirm that the Bayes factor based on bridge
sampling (i.e., BF10 = 17.260) is almost identical to the one obtained from the BayesFactor

package (i.e., BF10 = 17.259):
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R> library("BayesFactor")

R> extractBF(ttestBF(x = x, y = y, paired = TRUE),

+ onlybf = TRUE, log = FALSE)

[1] 17.25888

4. A “black box” Stan interface

The previous section demonstrated how the bridgesampling package can be used to estimate
the marginal likelihood for models coded in JAGS. For custom samplers, the steps needed to
compute the marginal likelihood are the same. What is required is (1) an object with posterior
samples; (2) a function that computes the log of the unnormalized posterior density; (3) the
data; and (4) parameter bounds. A crucial step is the specification of the unnormalized log
posterior density function. For applied researchers, this step may be challenging and error-
prone, whereas for experienced statisticians it might be tedious and cumbersome, especially
for complex models with a hierarchical structure.

In order to facilitate the computation of the marginal likelihood even further, the bridgesam-

pling package contains an interface to the generic sampling software Stan (Carpenter et al.
2017). Assisted by the rstan package (Stan Development Team 2016a), this interface allows
users to skip steps 2-4 above. Specifically, users who fit their models in Stan (in a way that
retains the constants, as is detailed below) can obtain an estimate of the marginal likelihood
by simply passing the stanfit object to the bridge_sampler function.

The implementation of this “black box” functionality profited from the fact that, just as
the bridgesampling package, Stan’s No-U-Turn sampler internally operates on unconstrained
parameters (Hoffman and Gelman 2014; Stan Development Team 2017). The rstan package
provides access to these unconstrained parameters and the corresponding log of the unnormal-
ized posterior density. This means that users can fit models with parameter types that have
more complicated constraints than those currently built into bridgesampling (e.g., probabil-
ity vectors and covariance/correlation matrices) without having to hand-code the appropriate
transformations.

As mentioned above, in order to use the bridgesampling package in combination with Stan

the models need to be implemented in a way that retains the constants. This can be
achieved relatively easily: instead of writing, for instance, y ~ normal(mu, sigma) or y

~ bernoulli(theta), one needs to write

target += normal_lpdf(y | mu, sigma);

and

target += bernoulli_lpmf(y | theta);

That is, one starts with the fixed expression target += which is then followed by the name
of the distribution (e.g., normal). The name of the distribution is followed by _lpdf for
continuous distributions and _lpmf for discrete distributions. Finally, in parentheses, there
is the variable that was to the left of the “~” sign (here, y), then a “|” sign, and finally the
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arguments of the distribution. This achieves that the user specifies the log target density (in
this case, the log of the unnormalized posterior density) in a way that retains the constants
of the involved distributions.

Note that in case the distributions are truncated, the user needs to code the correct renormal-
ization. For instance, a normal distribution with upper truncation at upper is implemented
as follows

target += normal_lpdf(y | mu, sigma) - normal_lcdf(upper | mu, sigma);

where the function normal_lcdf yields the log of the cumulative distribution function (cdf)
of the normal distribution. Likewise, a normal distribution with lower truncation at lower is
obtained as

target += normal_lpdf(y | mu, sigma) - normal_lccdf(lower | mu, sigma);

where normal_lccdf yields the log of the complementary cumulative distribution function
(ccdf) of the normal distribution (i.e., the log of one minus the cumulative distribution function
of the normal distribution). A normal distribution with lower truncation point lower and
upper truncation point upper can be implemented as follows:

target += normal_lpdf(y | mu, sigma) -

log_diff_exp(normal_lcdf(upper | mu, sigma),

normal_lcdf(lower | mu, sigma));

where log_diff_exp(a, b) is a numerically more stable version of the operation
log (exp (a)− exp (b)). Note that when implementing a truncated distribution, it is of course
also important to give the variable of interest the correct bounds. For instance, for the last
example where y has a lower truncation at lower and an upper truncation at upper the
variable y should be declared as

real<lower = lower, upper = upper> y;

For more details about how to implement truncated distributions in Stan we refer the user to
the Stan manual (Stan Development Team 2017, section 5.3, “Truncated Distributions”).

In sum, the bridgesampling package enables users to obtain an estimate of the marginal
likelihood for any Stan model (programmed to retain the constants) simply by passing the
stanfit object to the bridge_sampler function. Next we demonstrate this functionality
using two prototypical examples in Bayesian model selection.

4.1. Stan example 1: Bayesian GLMM

The first example features a generalized linear mixed model (GLMM) applied to the turtles
data set (Janzen et al. 2000).8 This data set is included in the bridgesampling package and
contains information about 244 newborn turtles from 31 different clutches. For each turtle,
the data set includes information about survival status (0 = died, 1 = survived), birth weight

8Data were obtained from Overstall and Forster (2010) and made available in the bridgesampling package
with permission from the original authors.
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Figure 3: Data for 244 newborn turtles (Janzen et al. 2000). Birth weight is plotted against
clutch membership. The clutches have been ordered according to their mean birth weight.
Dots indicate turtles who survived and red crosses indicate turtles who died. Figure inspired
by Sinharay and Stern (2005). Figure available at https://tinyurl.com/yagfxrbw under
CC license https://creativecommons.org/licenses/by/2.0/.

in grams, and clutch (family) membership (indicated by a number between one and 31).
Figure 3 displays a scatterplot of clutch membership and birth weight. The clutches have
been ordered according to mean birth weight. Dots indicate turtles who survived and red
crosses indicate turtles who died. This data set has been analyzed in the context of Bayesian
model selection before, allowing us to compare the results from the bridgesampling package
to the results reported in the literature (e.g., Sinharay and Stern 2005; Overstall and Forster
2010).

Here we focus on the model comparison that was conducted in Sinharay and Stern (2005).
The data set was analyzed using a probit regression model of the form:

yi ∼ Bernoulli(Φ(α0 + α1xi + bclutchi)), i = 1, 2, . . . , N

bj ∼ N (0, σ2), j = 1, 2, . . . , C,
(16)

where yi denotes the survival status of the i-th turtle (i.e., 0 = died, 1 = survived), xi denotes
the birth weight (in grams) of the i-th turtle, clutchi ∈ {1, 2, . . . , C}, i = 1, 2, . . . , N , indicates
the clutch to which the i-th turtle belongs, C denotes the number of clutches, and bclutchi
denotes the random effect for the clutch to which the i-th turtle belongs. Sinharay and Stern
(2005) investigated the question whether there is an effect of clutch membership, that is, they
tested the null hypothesis H0 : σ2 = 0. The following priors where assigned to the model
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parameters:

α0 ∼ N (0, 10),

α1 ∼ N (0, 10),

p(σ2) =
(
1 + σ2

)−2
.

(17)

Sinharay and Stern (2005) computed the Bayes factor in favor of the null hypothesis H0 : σ
2 =

0 versus the alternative hypothesis H1 : p(σ
2) =

(
1 + σ2

)−2
using different methods and they

reported a “true” Bayes factor of BF01 = 1.273 (based on extensive numerical integration).
Here we implement the above model in Stan and examine the extent to which we can reproduce
the Bayes factor using the bridgesampling package.

The Stan models corresponding to H0 and H1 can be implemented as character strings as
follows:

R> H0_code <-

+ "data {

+ int<lower = 1> N;

+ int<lower = 0, upper = 1> y[N];

+ real<lower = 0> x[N];

+ }

+ parameters {

+ real alpha0_raw;

+ real alpha1_raw;

+ }

+ transformed parameters {

+ real alpha0 = sqrt(10.0) * alpha0_raw;

+ real alpha1 = sqrt(10.0) * alpha1_raw;

+ }

+ model {

+ target += normal_lpdf(alpha0_raw | 0, 1); // prior

+ target += normal_lpdf(alpha1_raw | 0, 1); // prior

+ for (i in 1:N) { // likelihood

+ target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1 * x[i]));

+ }

+ }"

R> H1_code <-

+ "data {

+ int<lower = 1> N;

+ int<lower = 0, upper = 1> y[N];

+ real<lower = 0> x[N];

+ int<lower = 1> C;

+ int<lower = 1, upper = C> clutch[N];

+ }

+ parameters {

+ real alpha0_raw;

+ real alpha1_raw;

+ vector[C] b_raw;
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+ real<lower = 0> sigma2;

+ }

+ transformed parameters {

+ vector[C] b;

+ real<lower = 0> sigma = sqrt(sigma2);

+ real alpha0 = sqrt(10.0) * alpha0_raw;

+ real alpha1 = sqrt(10.0) * alpha1_raw;

+ b = sigma * b_raw;

+ }

+ model {

+ target += - 2 * log(1 + sigma2); // p(sigma2) = 1 / (1 + sigma2) ^ 2

+ target += normal_lpdf(alpha0_raw | 0, 1); // prior

+ target += normal_lpdf(alpha1_raw | 0, 1); // prior

+ target += normal_lpdf(b_raw | 0, 1); // random effects

+ for (i in 1:N) { // likelihood

+ target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1 * x[i] +

+ b[clutch[i]]));

+ }

+ }"

Note that the prior on σ2 is a distribution that is not implemented in Stan. Furthermore,
we use the non-centered parameterization for α0, α1, and bj for better sampling performance
which is the reason why the model code features the parameters alpha0_raw, alpha1_raw, and
b_raw. This makes use of the fact that when a parameter such as α0 is assigned a distribution
that belongs to the location-scale family – here, the normal distributionN (µ, σ2), where µ = 0
and σ2 = 10 – it can be reparameterized as α0 = µ+σαraw

0 , where αraw
0 is in case of a normal

prior distributed as αraw
0 ∼ N (0, 1) (see also Stan Development Team 2017, section 27.6).

The next step is to run Stan and obtain the posterior samples:9

R> library("bridgesampling")

R> library("rstan")

R> data("turtles")

R> set.seed(1)

R> stanfit_H0 <- stan(model_code = H0_code,

+ data = list(y = turtles$y,

+ x = turtles$x, N = nrow(turtles)),

+ iter = 15500, warmup = 500,

+ chains = 4, seed = 1)

R> stanfit_H1 <- stan(model_code = H1_code,

+ data = list(y = turtles$y,

+ x = turtles$x, N = nrow(turtles),

+ C = max(turtles$clutch),

+ clutch = turtles$clutch),

9The complete R code can be found on the Open Science Framework (https://osf.io/3yc8q/) and is also
available at ?turtles. Note that the results are dependent on the compiler and the optimization settings.
Thus, even with identical seeds results can differ slightly from the ones reported here.
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+ iter = 15500, warmup = 500,

+ chains = 4, seed = 1)

With these Stan objects in hand, estimates of the log marginal likelihoods are obtained by
simply passing the objects to the bridge_sampler function:

R> set.seed(1)

R> bridge_H0 <- bridge_sampler(stanfit_H0)

R> bridge_H1 <- bridge_sampler(stanfit_H1)

The Bayes factor in favor of H0 over H1 can then be obtained as follows:

R> bf(bridge_H0, bridge_H1)

The estimated Bayes factor in favor of x1 over x2 is equal to: 1.27438

This value is close to that of 1.273 reported in Sinharay and Stern (2005). The data are only
slightly more likely under H0 than under H1, suggesting that the data do not warrant strong
claims about whether or not clutch membership affects survival.

The precision of the estimates for the marginal likelihoods can be obtained as follows:

R> error_measures(bridge_H0)$percentage

[1] "0.00972%"

R> error_measures(bridge_H1)$percentage

[1] "0.342%"

These error percentages indicate that both marginal likelihoods have been estimated accu-
rately, but – as expected – the marginal likelihood for the more complicated model with
random effects (i.e., H1) has the larger estimation error.

4.2. Stan example 2: Bayesian factor analysis

The second example concerns Bayesian factor analysis. In particular, we determine the num-
ber of relevant latent factors by implementing the Bayesian factor analysis model proposed
by Lopes and West (2004). The model assumes that there are t, t = 1, 2, . . . , T , observations
on each of m variables. That is, each observation yt is an m-dimensional vector. The k-factor
model – where k denotes the number of factors – relates each of the T observations yt to
a latent k-dimensional vector ft which contains for observation t the values on the latent
factors, as follows:10

yt | ft ∼ Nm (βft,Σ)

ft ∼ Nk (0k, Ik) ,
(18)

10Note that the model assumes that the observations are zero-centered.
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where β denotes the m × k factor loadings matrix11, Σ = diag
(
σ2
1, σ

2
2, . . . , σ

2
m

)
denotes the

m×m diagonal matrix with residual variances, 0k denotes a k-dimensional vector with zeros,
and Ik denotes the k × k identity matrix. Hence, conditional on the latent factors, the
observations on the m variables are assumed to be uncorrelated with each other. Marginally,
however, the observations are usually not uncorrelated and they are distributed as

yt ∼ Nm (0m,Ω) , (19)

where Ω = ββ⊤ + Σ.

Here we reanalyze a data set that contains the changes in monthly international exchange rates
for pounds sterling from January 1975 to December 1986 (West and Harrison 1997, pp. 612-
615). Currencies tracked are US Dollar (US), Canadian Dollar (CAN), Japanese Yen (JAP),
French Franc (FRA), Italian Lira (ITA), and the (West) German Mark (GER). Figure 4
displays the data.12 Using different computational methods, including bridge sampling, Lopes
and West (2004) estimated the marginal likelihoods and posterior model probabilities for a
factor model with one, two, and three factors. As before, this allows us to compare the
results from the bridgesampling package to the results reported in the literature. To identify
the model, the factor loading matrix β is constrained to be lower-triangular (Lopes and West
2004). The diagonal elements of β are constrained to be positive by assigning them standard
half-normal priors with lower truncation point zero: βjj ∼ N (0, 1)T (0,), j = 1, 2, . . . , k, and
the lower-diagonal elements are assigned standard normal priors. The residual variances are
assigned inverse-gamma priors of the form σ2

i ∼ Inverse-Gamma(ν/2, νs2/2), i = 1, 2, . . . ,m,
where ν = 2.2 and νs2 = 0.1 (for details, see Lopes and West 2004).

The first step in our reanalysis is to specify the Stan model as a character string:

R> model_code <-

+ "data {

+ int<lower = 1> T; // number of observations

+ int<lower = 1> m; // number of variables

+ int<lower = 1> k; // number of factors

+ matrix[T,m] Y; // data matrix

+ }

+ transformed data {

+ int<lower = 1> r;

+ vector[m] zeros;

+ r = m * k - k * (k - 1) / 2; // number of non-zero factor loadings

+ zeros = rep_vector(0.0, m);

+ }

+ parameters {

+ real beta_lower[r - k]; // lower-diagonal elements of beta

+ real<lower = 0> beta_diag [k]; // diagonal elements of beta

+ vector<lower = 0>[m] sigma2; // residual variances

+ }

11We use the original notation by Lopes and West (2004) who denoted the factor loadings matrix with a
lower-case letter. In the remainder of the article, matrices are denoted by upper-case letters.

12Each series has been standardized with respect to its sample mean and standard deviation. These stan-
dardized data are included in the bridgesampling package.
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Figure 4: Changes in monthly international exchange rates for pounds sterling from January
1975 to December 1986 (West and Harrison 1997, pp. 612 – 615). Currencies tracked are
US Dollar (US), Canadian Dollar (CAN), Japanese Yen (JAP), French Franc (FRA), Italian
Lira (ITA), and the (West) German Mark (GER). Each series has been standardized with
respect to its sample mean and standard deviation. Figure reproduced from Lopes and West
(2004). Figure available at https://tinyurl.com/ybtdddyv under CC license https://

creativecommons.org/licenses/by/2.0/.

+ transformed parameters {

+ matrix[m,k] beta;

+ cov_matrix[m] Omega;
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+ {

+ int index_lower = 1;

+ for (j in 1:k) { // construct lower-triangular factor loadings matrix

+ for (i in 1:m) {

+ if (i == j) {

+ beta[j,j] = beta_diag[j];

+ } else if (i >= j) {

+ beta[i,j] = beta_lower[index_lower];

+ index_lower = index_lower + 1;

+ } else {

+ beta[i,j] = 0.0;

+ }

+ }

+ }

+ }

+ Omega = beta * beta' + diag_matrix(sigma2);

+ }

+ model {

+ target += normal_lpdf(beta_diag | 0, 1) - k * normal_lccdf(0 | 0, 1);

+ target += normal_lpdf(beta_lower | 0, 1); // prior

+ target += inv_gamma_lpdf(sigma2 | 2.2 / 2.0, 0.1 / 2.0); // prior

+ for(t in 1:T) {

+ target += multi_normal_lpdf(Y[t] | zeros, Omega); // likelihood

+ }

+ }"

Note that in order to implement the half-normal priors on the diagonal elements of β cor-
rectly, the prior densities need to be renormalized. Each of the k standard normal priors
needs to be renormalized by the area larger than zero which is achieved by subtracting k

* normal_lccdf(0 | 0, 1). This expression was chosen to illustrate the general case (i.e.,
when the mean of the normal distribution may be different from zero). When the mean is equal
to zero, as in this example, the same could be achieved by replacing k * normal_lccdf(0 |

0, 1) by k * log(0.5). We can then fit the three models corresponding to k = 1, k = 2,
and k = 3 latent factors and estimate the log marginal likelihoods using bridgesampling as
follows:13

R> library("rstan")

R> library("bridgesampling")

R> data("ier")

R> cores <- 4

R> options(mc.cores = cores) # for parallel MCMC chains

R> model <- stan_model(model_code = model_code) # compile model

13Note that we specify initial values using a custom init_fun function. This function may need to be
changed for different applications. Furthermore, it is strongly advised to check that the chains have indeed
converged since we sometimes encountered convergence issues with this model. The complete R code can be
found on the Open Science Framework (https://osf.io/3yc8q/) and is also available at ?ier. Note that the
results are dependent on the compiler and the optimization settings. Thus, even with identical seeds results
can differ slightly from the ones reported here.
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R> init_fun <- function(nchains, k, m) { # generates starting values

+ r <- m * k - k * (k - 1) / 2

+ out <- vector("list", nchains)

+ for (i in seq_len(nchains)) {

+ beta_lower <- array(runif(r - k, 0.05, 1), dim = r - k)

+ beta_diag <- array(runif(k, .05, 1), dim = k)

+ sigma2 <- array(runif(m, .05, 1.5), dim = m)

+ out[[i]] <- list(beta_lower = beta_lower,

+ beta_diag = beta_diag,

+ sigma2 = sigma2)

+ }

+ return(out)

+ }

R> set.seed(1)

R> stanfit <- bridge <- vector("list", 3)

R> for (k in 1:3) {

+ stanfit[[k]] <- sampling(model,

+ data = list(Y = ier, T = nrow(ier),

+ m = ncol(ier), k = k),

+ iter = 11000, warmup = 1000, chains = 4,

+ init = init_fun(nchains = 4, k = k,

+ m = ncol(ier)),

+ cores = cores, seed = 1)

+ bridge[[k]] <- bridge_sampler(stanfit[[k]], method = "warp3",

+ repetitions = 10, cores = cores)

+ }

Note that in this example, we use the "warp3" method instead of the "normal" method.
Furthermore, since the error_measures function cannot be used when the estimate has been
obtained using method = "warp3" with repetitions = 1, we set repetitions = 10 to ob-
tain an empirical estimate of the estimation uncertainty (conditional on the posterior samples).
We also select parallel computation by setting cores = 4. The summary method provides a
convenient overview of the estimate and the estimation uncertainty. For instance, for the
2-factor model, we obtain as output:

R> summary(bridge[[2]])

Bridge sampling log marginal likelihood estimate

(method = "warp3", repetitions = 10):

-903.4509

Error Measures:

Min: -903.4562

Max: -903.4472

Interquartile Range: 0.002325984
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Note:

All error measures are based on 10 estimates.

Table 2 displays for each of the three factor models (i.e., k = 1, k = 2, k = 3) the median
log marginal likelihood (logml) across repetitions, the minimum/maximum log marginal like-
lihood across repetitions, and the log marginal likelihood value reported in Lopes and West
(2004) based on bridge sampling. Note that the negative infinity reported by Lopes and West
(2004) might be due to a numerical problem. For the 1-factor model and the 2-factor model,
the log marginal likelihoods obtained via bridgesampling are very similar to the ones reported
in Lopes and West (2004). Furthermore, the narrow range of the estimates indicates that the
estimation uncertainty is small (conditional on the posterior samples, as described above).

To examine the support for the three different models (i.e., different numbers of latent factors),
we can use the post_prob function to compute posterior model probabilities. By default, the
function assumes that all models are equally likely a priori; this can be adjusted using the
prior_prob argument. Furthermore, the model_names argument can optionally be used to
provide names for the models. Here we use the default of equal prior model probabilities and
we obtain:

R> post_prob(bridge[[1]], bridge[[2]], bridge[[3]],

+ model_names = c("k = 1", "k = 2", "k = 3"))

k = 1 k = 2 k = 3

[1,] 6.283088e-49 0.8469707 0.1530293

[2,] 6.310609e-49 0.8515854 0.1484146

[3,] 6.382763e-49 0.8593477 0.1406523

[4,] 6.492560e-49 0.8731465 0.1268535

[5,] 6.546073e-49 0.8772237 0.1227763

[6,] 6.430437e-49 0.8673352 0.1326648

[7,] 6.401000e-49 0.8660352 0.1339648

[8,] 6.352043e-49 0.8565560 0.1434440

[9,] 6.433428e-49 0.8659839 0.1340161

[10,] 6.447604e-49 0.8650544 0.1349456

Each row presents the posterior model probabilities based on one repetition of the bridge
sampling procedure for all three models (i.e., each row sums to one). Hence, there are as
many rows as repetitions.14 The 2-factor model receives most support from the observed
data. This is in line with Lopes and West (2004), who also preferred the 2-factor model15;
based on the factor loadings, they proposed the presence of a North American factor and a
European Union factor.

5. Discussion

This paper introduced bridgesampling, an R package for computing marginal likelihoods,

14Note that the output of the post_prob function can be directly passed to the boxplot function which
allows one to visualize the estimation uncertainty in the posterior model probabilities across repetitions.

15Note that Lopes and West (2004) report a posterior model probability of 1 for the 2-factor model. However,
this estimate may be inflated by the infinite log marginal likelihood value for the 3-factor model.
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Table 2: Log marginal likelihood (logml) estimates for the k = 1, k = 2, and k = 3 factor
model. The rightmost column displays the values based on bridge sampling reported in Lopes
and West (2004).

Number of Factors Median Logml Min Logml Max Logml Lopes & West

k = 1 -1014.273 -1014.274 -1014.271 -1014.5
k = 2 -903.451 -903.456 -903.447 -903.7
k = 3 -905.312 -905.423 -905.163 −∞

Bayes factors, posterior model probabilities, and normalizing constants in general. We have
demonstrated how researchers can use bridgesampling to conduct Bayesian model comparisons
in a generic, user-friendly way: researchers need only provide posterior samples, a function
that computes the log of the unnormalized posterior density, the data, and lower and upper
bounds for the parameters. Furthermore, we have described the Stan interface which makes it
even easier to obtain the marginal likelihood: researchers need only provide a stanfit object
and the bridgesampling package will automatically produce an estimate of the log marginal
likelihood. In other words, the bridgesampling package makes it possible to obtain marginal
likelihood estimates for any model that can be implemented in Stan (in a way that retains the
constants). By combining the Stan state-of-the-art No-U-Turn sampler with bridgesampling,
researchers are provided with a general purpose, easy-to-use computational solution to the
challenging task of comparing complex Bayesian models.

Even though the bridgesampling package enables researchers to compute the marginal like-
lihoods in an almost black-box manner, this does not imply that the user can mindlessly
exploit the package functionality to conduct Bayesian model comparisons. As is apparent
from Equation 4, Bayesian model comparisons depend on the choice of the parameter prior
distribution. Crucially, the prior distribution has a lasting influence on the results. Hence,
meaningful Bayesian model comparisons require that researchers carefully consider their pa-
rameter prior distribution (e.g., Lee and Vanpaemel in press), engage in sensitivity analyses,
or use default prior choices that have certain desirable properties (e.g., Jeffreys 1961; Bayarri
et al. 2012; Ly et al. 2016).16 Thus, the bridgesampling package removes the computational
hurdle of obtaining the marginal likelihood, thereby allowing researchers to spend more time
and effort on the specification of meaningful prior distributions.

Another note of caution is that the bridgesampling package does not check the validity of
the posterior samples, but simply executes the algorithm. Hence, in case of MCMC sampling
it is crucial that researchers confirm that the chains have converged to the joint posterior
distribution. In addition, researchers need to make sure that the model does not contain any
discrete parameters since those are currently not supported. This may sound more restrictive
than it is. In practice the solution is to marginalize out the discrete parameters, something
that is often possible. Note the similarity to Stan which also deals with discrete parameters
by marginalizing them out (Stan Development Team 2017, section 15). Furthermore, as
demonstrated in the examples, for conducting model comparisons based on bridge sampling,

16Note that in the first example (i.e., the Bayesian t-test) we have used prior distributions which lead to
these desirable properties. However, in the second and third example, we simply used the prior distributions
that have been used in the literature so that we could compare our results to the reported results.
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the number of posterior samples often needs to be an order of magnitude larger than for
estimation. This of course depends on a number of factors such as the complexity of the
model of interest, the number of posterior samples that one usually uses for estimation, the
posterior sampling algorithm used, and also the accuracy of the marginal likelihood estimate
that one desires to achieve.

The accuracy of the estimate is governed not only be the number of samples, but also by
the overlap between the posterior and the proposal distribution (e.g., Meng and Wong 1996;
Meng and Schilling 2002). The bridgesampling package attempts to maximize this overlap
by (1) focusing on one marginal likelihood at a time which allows one to use a convenient
proposal distribution which closely resembles the posterior distribution, (2) using a proposal
distribution which matches the mean vector and covariance matrix of the posterior sam-
ples (i.e., method = "normal") or additionally also the skewness (i.e., method = "warp3").
Nevertheless, in case the posterior distribution exhibits multiple modes, the overlap of the
two distributions may still be subject to improvement. The development of efficient bridge
sampling variants for these cases is subject to ongoing research (e.g., Wang and Meng 2016;
Frühwirth–Schnatter 2004).

It should also be kept in mind that there may be cases in which the bridge sampling proce-
dure may not be the ideal choice for conducting Bayesian model comparisons. For instance,
when the models are nested it might be faster and easier to use the Savage-Dickey density
ratio (Dickey and Lientz 1970; Wagenmakers et al. 2010). Another example is when the com-
parison of interest concerns a very large model space, and a separate bridge sampling based
computation of marginal likelihoods may take too much time. In this scenario, Reversible
Jump MCMC (Green 1995) may be more appropriate. The downside of Reversible Jump
MCMC is that it is usually problem-specific and cannot easily be applied in a generic fashion
to different nested and non-nested model comparison problems (but see Gelling et al. 2017).
The goal with the bridgesampling package, however, was exactly that: to provide users with
a generic way of computing marginal likelihoods which can in principle be applied to any
Bayesian model comparison problem.

In sum, the bridgesampling package provides a generic, accurate, easy-to-use, automatic,
and fast way of computing marginal likelihoods and conducting Bayesian model comparisons.
With the computational challenge all but overcome, researchers can spend more time and
effort on addressing the conceptual challenge that comes with Bayesian model comparisons:
specifying prior distributions that are either robust or meaningful.
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