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1 Introduction

Given a predicted value from a regression model, we often want to know how reliable
that prediction is. Can we trust the prediction? To this end, in earth models a variance
model can be used to estimate prediction intervals. The left plot of Figure 1 shows an
earth fit with prediction intervals estimated by the variance model. (This plot will be
discussed in detail in Section 3.1.)

We tell earth to build the variance model with the varmod.method argument. The
variance model is kept with the earth model (in the varmod field). It models how the
residuals vary with the predicted response.

This internal mechanism is as follows. If we specify varmod.method="lm", for example,
earth first builds a MARS model as usual, then internally applies lm to the model’s
absolute residuals:

residual.model <- lm(abs(residuals) ~ predict(earth.model), ...)

This residual model is in fact the variance model. It is illustrated in the right plot of
Figure 1. The residual model allows us to estimate the average absolute value of the
errors at any predicted value, and thus their standard deviation. The variance models in
the earth package assume that the errors are independent but possibly heteroscedastic.

Limitations of variance models. There is more uncertainty in the variance model
than in the main earth model. The right plot of Figure 1 is typical. It shows how noisy
the residuals are. We expect the R2 of the lm regression here to be quite low. There is
some uncertainty in the exact form of the residual model. Consequently there will be
more uncertainty in the prediction intervals than in the predictions themselves.
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Figure 1: Prediction intervals.
Left: Ozone regressed on temperature. The 95% prediction intervals are shown shaded.
Right: The internal residual model used for estimating prediction intervals.

The plot shows absolute residuals versus fitted values for the model on the left.
The red line is the linear residual model.
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2 Theory and implementation

This section gives some details on the theory and implementation of earth’s variance
models. If you like you can skip this for now and proceed directly to the example in
the next chapter, Chapter 3.

For more on the theory of variance models, Davidian and Carroll [2] and Carroll and
Ruppert [1] are recommended. Galecki and Burzykowski [4] is also helpful.

In the earth implementation, since we are in a non-parametric setting, the methods in
those references are extended to account for model variance (which is estimated with
cross-validation). The methods presented here have currently been implemented only
for earth, although they are in fact quite general.

2.1 Confidence intervals versus prediction intervals

There is an important distinction between the two types of interval for predictions:

(i) intervals for the prediction of the mean response (called confidence intervals)

(ii) intervals for the prediction of a future value (called prediction intervals1).

To understand the distinction, suppose we have a model that predicts the selling price
of homes in a given area based on the number of bedrooms, etc. (This example follows
Section 3.5 of Faraway [3].)

(i) Confidence intervals are for the prediction of a mean response. What
would a house with given characteristics sell for on average? Out best guess is the
value predicted by the model. There will be some uncertainty in the prediction because
of model variance. The confidence interval of the prediction accounts for this model
variance.

Model variance is a measure of how the model varies across training samples. Our
interest is in earth models, but this applies to all models. For example, in a linear
model y = xTβ + ǫ, the predicted value at a given x0 is xT

0
β̂, and model variance is

a measure of the uncertainty in our estimate of β. In an earth model, model variance
includes the uncertainty in the position of the selected knots, which variables were
chosen for the model, etc.

(ii) Prediction intervals are for the prediction of a future value. The actual
value of a specific house with the given characteristics will also typically differ somewhat
from the predicted value. The uncertainty here is worse than that for prediction of the
mean response discussed above.

This noise, or irreducible error, is usually modeled as additive error ǫ. In a linear model,
for instance, this noise is represented by the random value of ǫ in y = xTβ + ǫ. To
figure out a prediction interval the noise variance must be added to the model variance.
Prediction intervals are bigger than confidence intervals.

1This terminology is not quite apt. It is what people use, but in some sense both are prediction
intervals and both are confidence levels. Some call them wide and narrow intervals.
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Another example is a model that estimates flood levels given the characteristics of the
location (previous levels, nearby rivers, etc.). If we plan to build a flood wall, the
confidence interval isn’t enough — to be reasonably safe we need to use at least the
upper 95% prediction interval.

2.2 Data structures

The various models are stored as follows:

earth model Sometimes called the "parent model" in this context

|

varmod The variance model

|

residmod The residual submodel e.g. lm

The residual submodel is the regression of the absolute residuals on the fitted value.
For example, it will be a lm model if varmod.method="lm". Another example would
be varmod.method="gam", to adapt to non-linear changes in residual deviation.

The variance model is a wrapper for the residual submodel. It provides summary and
plot methods, and takes care of rescaling absolute residuals to standard deviations
(Section 2.5), and clamping to min.sd (Section 2.3).

The summary.earth function will display the variance model if present as part of the
earth model.

You probably won’t need to do this, but summary(earth.mod$varmod) will display the
variance model directly (it invokes summary.varmod). And you can display the residual
submodel directly with summary(earth.mod$varmod$residmod). If varmod.method="lm",
the submodel is an lm model, and this call invokes summary.lm.

2.3 Minimum standard deviation

The standard deviation estimated by the variance model in this package is forced to be
at least a small positive value min.sd. This prevents estimated prediction intervals from
being negative or absurdly small. The value of min.sd is determined when building
the variance model as one tenth the average standard deviation:

min.sd <- 0.1 * mean(sd(residuals))

The 0.1 can be changed with earth’s varmod.clamp argument.

2.4 Iteratively Reweighted Least Squares

When building the residual model (as per the R code on page 3), earth uses Iteratively
Reweighted Least Squares (IRLS). That is, it makes the call to lm repeatedly using the

5



variance estimated from the previous call to determine the weights for the current call.
Iteration stops when the lm coefficients change by less than 1%.

Weighted least squares is necessary because in general the residuals of the residual
model are themselves highly heteroscedastic. To determine the weighting we need the
(relative) variance of the residual model predictions. Happily, a characteristic of residual
models is that this can be estimated from the predictions themselves — for regression
on absolute residuals, this variance is proportional to the square of the value predicted
by the residual model (Carroll and Ruppert [1] Table 3.3).

No iteration is necessary when varmod.method="const".

In the current implementation no iteration takes place with varmod.method="earth".

2.4.1 Tracing IRLS

The iterations can be traced by specifying trace=.3 in the call to earth, which will
print something like this:

iter weight.ratio coefchange% (Intercept) x

1 9.9 0.00 1.7 0.17

2 15.5 19.79 1.3 0.20

3 17.0 4.32 1.3 0.21

4 17.4 0.96 1.2 0.21

The (Intercept) and x columns show the estimated intercept and coefficients of the
residual model (the results of the calls to lm). In this example, as is often the case, by
the second iteration the estimates have settled close to their final values.

Note that these are the coefficients for the regression on the absolute residuals, not the
coefficients for standard deviations, which are approximately 1.25 times these values
(Section 2.6 (ii)).

The coefchange% column shows the mean change in these values from the previous
iteration. Iteration stops when the change gets below 1%. You can adjust the conver-
gence criterion with earth’s varmod.conv argument, although you probably won’t need
to.

The weight.ratio column shows the ratio of the maximum to minimum weight. The
weights are artificially clamped if necessary to prevent a few cases completely dominat-
ing.

2.4.2 Warning: varmod did not converge after 50 iters (oscillating-lo)

This warning means that the IRLS didn’t converge.

Non-convergence may not actually be a problem. Run earth with trace=.3 to trace
the IRLS process. Though the iterations don’t converge, the coefficients as printed by
the trace may be stable enough, given the inherent uncertainty in residual models.
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You could also try removing an observation or two before running earth, since small
perturbations of the data can sometimes affect IRLS convergence quite significantly.
(You could start with high leverage observations. To locate these, use plot(earth.mod,
versus=4).)

The oscillating-lo in the above example message is one of several reasons given
for non-convergence. It doesn’t tell us anything we can’t figure out from manually
examining the IRLS trace. (In this particular example, the algorithm is oscillating
between two local minimums on successive iterations.)

2.5 The residual model

As stated on page 3, the residual model is a regression of the absolute residuals of the
parent earth model:

residual.model <- lm(abs(residuals) ∼ predict(earth.model), ...) (1)

Here lm could actually be one of several possibilities such as gam or earth, and the
above regression is repeated several times with different weights (i.e. IRLS as explained
in Section 2.4).

What we call residuals in the above formula are not the raw residuals ǫ̂ = y− ŷ from
the earth model. The raw residuals ǫ̂ underestimate the (unknown) errors ǫ. This is
true for any linear regression (the linear regression for an earth model is of the response
on the earth basis matrix bx). Additionally, we need to include model variance.

We thus estimate the squared error for a future value at i as

ǫ̂2i future =
(yi − ŷi)

2

1− hii

+ modvari (2)

where
yi is the future response,
ŷi is the predicted value,
hii is the point’s leverage, discussed below,
modvari is the estimated model variance at the point.

The absolute residual used in the residual model (1) is the square root of the above
ǫ̂2i future. Working with squared residuals allows us to combine irreducible error and
model variance by simple addition.

The leverage hii is a diagonal entry of the hat matrix from the linear fit of the response
on earth’s basis matrix bx. For homoscedastic linear models, standard theory gives the
formula1 for the variance of a residual as var(ǫ̂i) = σ2(1 − hii). The correction factor
1/(1− hii) in (2) follows naturally from rearranging the formula to estimate σ2. In our
heteroscedastic situation, σ2 is no longer constant at all points and we estimate it at
each point from the single residual at the point.2 Each residual thus gets corrected for

1The process of estimating the model using the normal equations induces a bias to the residuals so
they no longer match the errors. This formula compensates for that bias (e.g. Weisberg [9]).

2The idea here is that we estimate the variance of the residual at the point from the single residual
at the point — a sample size of 1 — and use regression to smooth this highly variable estimate across
all points.
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its leverage. The residuals for high leverage points get corrected the most, since they
tend to underestimate the error the most. The mean value of a leverage is p/n, and if
a leverage has this mean value the correction becomes

1

1− hii

=
1

1− p/n
=

n

n− p
,

which is the conventional degrees-of-freedom correction for error variance in a ho-
moscedastic linear model A leverage may thus be thought of as a partial degree of
freedom.

The model variance modvari for a prediction is its variance over multiple models built on
different training samples. We actually have only one sample at hand, so estimate model
variance as the variance of the out-of-fold predicted values over ncross cross-validations.
(Cross-validation often seems to underestimate model variance. Nevertheless, including
a model variance term gives substantially more accurate prediction intervals in our
simulation studies.)

2.6 Converting absolute residuals to prediction intervals

To estimate the prediction interval at a future observation point, we do the following:

(i) Estimate the mean absolute future error at the point using the residual model
described in Section 2.5.

(i) Assuming normality, rescale the error to an estimated standard deviation with
the formula

sd = 1.2533 mean(abs(error))

where the scaling factor 1.2533 ≈
√

π/2 is the ratio of the standard deviation to
the mean absolute deviation for normal data (Geary [5]). The ratio can also be
estimated (more intuitively) with the R expression

1 / mean(abs(rnorm(1e8))) # evaluates to 1.2533

This scaling factor unfortunately makes the variance model more sensitive to
non-normality of the errors than the main earth model.

(i) Convert the standard deviation to an estimated prediction interval for a given
level α:

interval(ŷ) = ŷ ± zα/2 sd

where we use a normal approximation to the t-distribution. So for example, if
the level is 0.95, the prediction interval will be ŷ ± 1.96 sd.

The above steps take place in predict.varmod, which is invoked by predict.earth

when its interval argument is used.
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2.7 Why regress on the absolute residuals?

For the earth variance model, a regression based approach (rather than a likelihood
approach) was chosen for its conceptual simplicity, and its flexibility given the ease
with which we can plug in different R regression functions. Also, likelihood estimation
in this setting is less robust because it is sensitive to departures from the assumed
distribution (Carroll and Ruppert [1] Section 2.4).

Note that we regress on the absolute residuals. Since our aim is to estimate variance
(or standard deviation), why don’t we regress directly on the squared residuals? That
seems like the right way to go, since the expectation of the square of the residuals is
their variance, up to a degrees-of-freedom correction, and is the approach suggested by
some authors.

However, on simulated data we have found that regressing on the squared residuals
(or log absolute residuals as suggested by some) tends to give results more unstable
than using absolute residuals. An outlying residual when squared becomes even more
outlying, affecting robustness of the residual model. The absolute residuals are better
behaved.

The cube root of the squared residuals is closer to normality than the absolute residuals
(Wilson and Hilferty [10]). But the earth implementation sticks with absolute residuals
because they are close enough in practice, and slightly more intuitive.

2.8 Alternative approaches

There are other methods of forming the residuals for estimating prediction intervals.
Formula (2) on page 7 has the advantage that it separates the contributions of the
irreducible and model errors. This is analogous to the standard method for estimating
prediction intervals in the homoscedastic linear model y = xTβ + ǫ. For that model,
from the usual theory (e.g. [3]) the estimated irreducible variance is σ̂2 = 1

n−p
Σ(yi−ŷi)

2,

the estimated model variance at a given x value x0 is var(xT
0
β̂) = xT

0
(XTX)−1x0σ̂

2,
and we sum these to get the estimated variance at a prediction σ̂2 + xT

0
(XTX)−1x0σ̂

2.

Also, there are other ways of forming the correction factor in formula (2). The correction
1/(1− hii) we use is known as the HC2 correction in the literature on Heteroscedastic
Consistent Covariance Matrices (e.g. Zeileis [11]). MacKinnon and White [6] recom-
mend HC3, a stronger correction 1/(1−hii)

2 based on leave-one-out statistics. However
it isn’t known if these results for covariance matrix estimation carry over to the resid-
ual regression that we use, especially as we already incorporate a model variance term.
(This could be worth looking into. We found that HC3 gave slightly more accurate
prediction intervals than HC2 in a limited simulation study. In that study we used
earth on one to three independent predictors with heteroscedastic gaussian noise.)
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Figure 2: Data generated from a
sine curve (red) with an earth fit
(black).

Note the model bias at the top
part of the curve.

In a residual plot (not shown),
this bias would be manifest as a
divergence of the lowess line from
the center of the plot at high fitted
values.

2.9 Model bias

An ideal modeling algorithm creates models with negligible variance and negligible
bias.1 In general this isn’t possible, and like all flexible modeling techniques, MARS
must balance bias and variance — not too much variance; not too much bias. Therefore
the MARS model will be biased in general, at least a bit. We most often see this at
sharp corners in the response (Figure 2). If we loosened up the algorithm to allow it
to more closely fit the corner, we increase the risk that the curve would be too wiggly
elsewhere — by reducing bias we increase variance.

The squared residuals in Section 2.5 are formed without a bias term. They have to
be, because we can’t reliably estimate conditional bias. Bias is a fundamental prob-
lem for estimation of prediction intervals with non-parametric models. Wasserman [8]
Section 5.7 further discusses this issue.

1This means that if we had many samples of the same size drawn from the same underlying distri-
bution, models trained on those samples would all be about the same, and a prediction averaged over
all those models would be close to the true response.
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3 A variance model example

The code below builds a simple model to estimate the ozone level O3 from the temper-
ature temp. We will use this model as a running example through this document. It is
the model depicted on the left side of Figure 1.

data(ozone1)

set.seed(1) # optional, for cross-validation reproducibility

earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=30, varmod.method="lm")

The varmod.method argument tells earth to generate the variance model, after first gen-
erating the earth model as usual. The nfold and ncross arguments are also necessary
here, because repeated cross-validation is used to estimate the earth model variance.
The ncross argument should be at least 30 in this context, based on the rule-of-thumb
that we need 30 measurements to adequately estimate variance.

We use varmod.method="lm" above with the assumption that the standard deviation
of O3 about its conditional mean increases linearly with temperature. (Actually, the
relationship is probably more complex, but, as can be seen in the right plot of Figure 1,
the residuals are noisy, and determining the exact nature of the relationship may not
be possible from the data alone. A linear regression is a good first choice.)

The left plot of Figure 1 was produced by the following call to plotmo. Note the
level=.95 argument, which tells plotmo to show the 95% prediction intervals.

plotmo(earth.mod, pt.col=1, level=.95)

3.1 Comments on the example plot

In the left plot of Figure 1 on page 3, the prediction intervals are quite big. It’s no
surprise that temperature alone isn’t enough to predict ozone levels. We see some out-
lying points in the 40 to 60 degree temperature range, further evidence that something
else is going on that isn’t accounted for by temperature.

The relatively gentle kink of the main earth model hinge suggests that instead of earth
for the main model, we could use a standard linear regression on say the square or cube
root of temp. But we ignore these issues for our current purposes.

On the far left of the plot the estimated lower prediction limit is below zero, which is
impossible (the ozone level cannot be negative). So we have to be sensible about how
we interpret the prediction intervals.

Residual deviation is somewhat overestimated at low and high temperatures. This may
be a consequence of our decision to use lm for the residual model. A GAM model might
have been a better choice (varmod.method="gam"), although less easily interpretable
and more prone to overfitting.

The residual model assumes that the residuals are symmetric. That assumption may
not be valid for temperatures in the say 70 to 80 degree range, where the points seem
to be dispersed asymmetrically about the regression line — the estimated prediction
band is too big for points below the line, and maybe too small for points above the line.
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The assumption of symmetry follows from the fact that the residual model regresses on
the absolute values of the residuals, thus making no distinction between positive and
negative residuals. (Of course the implementation could be modified to generate one-
sided intervals with separate regressions on the positive and negative residuals. That
may be an option worth adding to the earth code. A disadvantage is that it halves the
data for regression, in an already noisy situation.)

This example is univariate (one predictor). With multivariate models (multiple pre-
dictors), displaying the prediction intervals isn’t so easy (plotmo will do it, but the
results can be confusing). For such models, residual plots are essential to represent a
multidimensional model in two dimensions on a page. Residual plots will be discussed
in Section 5.2.

3.2 Extensions to summary.earth for variance models

A call to summary(earth.mod) shows the variance model for our example:

> summary(earth.mod)

... usual text omitted here ...

varmod: method "lm" min.sd 0.464 iter.rsq 0.139

stddev of predictions:

coefficients iter.stderr iter.stderr%

(Intercept) 1.562 0.341 22

O3 0.262 0.036 14

mean smallest largest ratio

95% prediction interval 18.2 8.57 35.7 4.17

68% 80% 90% 95%

response values in prediction interval 70 82 92 97

The various items in the above summary are described below.

(i) The iter.rsq figure is the R2 of the weighted lm variance model. The low value
of 0.139 isn’t unusual here because of the difficulty of building a model from the
main model residuals, which tend to be noisy (right plot of Figure 1). The R2 of
the main earth model is 0.66, substantially higher.

The prefix iter. reminds us that this R2 is for the final iteration of IRLS (Sec-
tion 2.4). As always with IRLS there is some concern about the validity of this R2

value. This is because the uncertainty in the iterated estimation of the regression
parameters isn’t fully accounted for in the final R2.

(i) The standard deviation estimated by the variance model is never allowed to be
less than min.sd, in this case 0.464. (Section 2.3 describes min.sd.)

(i) The stddev of predictions table gives the standard deviation of the predic-
tions made by the earth model. In this example, it says the standard deviation

12



of the predicted O3 level is estimated to be 1.562 + 0.262 * O3 in units of O3
concentration. This is the core of the variance model.

The iter.stderr shows the standard error of the coefficients, much like the
output of summary.lm. These standard errors are calculated from the final model
of the IRLS iteration. As in iter.rsq above, there is some concern about the
validity of these numbers — they may be too small — and because of this concern,
the formality of t-tests isn’t justified. In general, inference on residual models is
a difficult problem, whether one uses regression based methods, as we do here, or
likelihood based methods (e.g. Galecki and Burzykowski [4] Section 7.8).

The iter.stderr% column shows iter.stderr as a percentage of the coefficient
value. For instance, in the first line of the table:

iter.stderr% = iter.stderr / coefficient = 0.341 / 1.562 = 22%

(i) The 95% prediction interval table shows the mean, smallest, and largest

estimated 95% prediction intervals for the O3 response. In the left plot of Figure 1,
the smallest prediction interval is at the extreme left and the largest is at the
extreme right, since estimated variance increases with the response, as is often
the case.

The ratio of the largest to the smallest prediction interval is also shown. This
is a measure of overall heteroscedasticity. The current figure 4.17 indicates con-
siderable heteroscedasticity.

(i) The response values in prediction interval table is a sanity check of the
variance model. It shows what fraction of the training response values (O3) are in
some standard prediction intervals. The 95% interval corresponds to the bands
in the left plot of Figure 1 because level=.95 was used to generate that plot.
The percentage figures in the current table are acceptable. (We expect only
an approximate match to the theoretical values unless we have a huge training
sample.)

We can print the table for new data by invoking summary.earth with a newdata
argument. This will also print R2 for the main earth model on the new data, as
shown in the following example. (The example uses bogus new data which is just
a subset of the training data.)

> summary(earth.mod, newdata=ozone1[sample.int(nrow(ozone1), 100), ])

RSq 0.642 on newdata (100 cases)

68% 80% 90% 95%

newdata in prediction interval 74 86 94 98

By definition only 5% of the predictions fall out the 95% interval. With 100 cases
this works out to just 5 cases, about two below and two above. You thus need a
fair amount of data to get stable results in the table — ideally much more than
the 100 cases in the above example.
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4 Prediction intervals and predict.earth

Use predict.earth’s interval="pint" and level arguments to get estimated predic-
tion intervals on new data. For example (using the model built on on page 11):

predict(earth.mod, newdata=ozone1[1:3,], interval="pint", level=.95)

Here predict returns a dataframe with three columns showing the fit, and the lower
and upper prediction limits for the given level = .95 (the limits will be at 2.5% and
97.5%):

fit lwr upr

1 4.75 -0.748 10.24

2 5.53 -0.365 11.43

3 6.95 0.325 13.57

The predict.earth function calls predict.varmod internally with the given interval

and level arguments. See help(predict.varmod) for details.

4.1 Plotting the prediction intervals

We can plot the prediction intervals with plotmo (left plot of Figure 1):

plotmo(earth.mod, pt.col=1, level=.95)

We can also plot the intervals manually (Figure 3):

predict <- predict(earth.mod, newdata=ozone1, interval="pint", level=.95)

# x values have to be ordered to plot lines correctly

order <- order(ozone1$temp)

temp <- ozone1$temp[order]

O3 <- ozone1$O3[order]

predict <- predict[order,]

in.interval <- O3 >= predict$lwr & O3 <= predict$upr

plot(temp, O3, pch=20, col=ifelse(in.interval, "black", "red"),

main=sprintf(

"Prediction intervals\n%.0f%% of the training points are in the estimated 95%% band",

100 * sum(in.interval) / length(O3)))

lines(temp, predict$fit) # regression curve

lines(temp, predict$lwr, lty=2) # lower prediction intervals

lines(temp, predict$upr, lty=2) # upper prediction intervals

4.2 The interval argument

The interval argument instructs predict.earth to return prediction intervals. This
argument gets passed internally to predict.varmod as its type argument.

When interval="pint", the prediction intervals are as described in Section 2.6.
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Figure 3: Prediction intervals
using predict.earth.

The plot was produced with the
code on page 14.

It is essentially the same
as the left plot of Figure 1,
which was produced with
plotmo.

When interval="cint", the confidence intervals are returned. Their standard devia-
tions are taken to be the square root of the model variance estimated by cross validation
(Section 2.5). The newdata argument isn’t allowed.
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5 Plotting residuals

This section discusses some of the plots that can be used to plot residuals. They are
important for establishing credibility (or otherwise) of the earth model’s prediction
intervals

5.1 Extensions to plotmo for variance models

As we have already seen, plotmo will show prediction intervals if given the level

argument (pages 11 and 14).

Plotmo also knows how to draw prediction intervals for some other kinds of model, not
just earth models. See its vignette for details.

5.2 plot.earth with variance models

Use the level argument of plot.earth to display prediction bands in the residuals
plot (left plot of Figure 4). We want just the residual plot for this example, so use
which=3, although in general that isn’t necessary.

plot(earth.mod, which=3, level=.95)

In this plot:

• The darker grayish band shows the confidence limits; the wider pink band shows
the prediction limits (Section 2.1 “Confidence levels versus prediction levels”). In
this example the confidence limits widen at low and high fitted values, indicating
greater model uncertainty in those sparsely populated regions.
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Figure 4: plot.earth residuals with a variance model
Left: plot(earth.mod, which=3, level=.95)

Right: plot(earth.mod, which=3, standardize=TRUE)
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• The red line is a lowess fit to the residuals. In this example, the line remains close
to the center line, so indicates that the model is a good fit to the training data.
(Remember that since this is a residual plot, the center line corresponds to the
predicted fit.)

• The pale blue line is the cross-validation oof.meanfit. Once again, in this ex-
ample the line is close to the center line, indicating that the mean out-of-fold
predictions generated by the fold models approximately match those of the final
model on all the data.

If the blue lines are obscuring your plot, remove them by passing col.cv=NA or
0 to plot.earth.

(The oof.meanfit value is the mean of the out-of-fold predictions. These predic-
tions are made from observations not in the data used to build the fold model. In
ncross cross-validations, there will be a total of ncross out-of-fold predictions
for each observation.)

5.3 The standardize argument of plot.earth

Set the standardize argument to standardize the residuals before display (right plot
of Figure 4):

plot(earth.mod, which=3, standardize=TRUE)

In the current example we didn’t display the prediction bands, to make it easier to
visually detect heteroscedasticity, although for your purposes you may want to add a
level argument to the call to plotmo.

The standardized residuals will be homoscedastic when the variance model holds. To
standardize the residual at observation i, we divide it by sd(ǫi)

√
1− hii, where sd(ǫi) is

the error standard deviation as estimated by the variance model, and hii is the residual’s
diagonal entry in the hat matrix. The hat matrix here is from the linear fit on earth’s
basis matrix bx.

We mention that there is some inconsistency in the literature and R documentation on
the precise definition of the term “standardized residuals”.

5.4 The info argument of plot.earth

Figure 5 is the same as the right plot of Figure 4 but also includes the argument
info=TRUE:

plot(earth.mod, which=3, standardize=TRUE, info=TRUE)

This tells plot.earth to display additional information:

(i) The bottom of the plot shows the distribution of fitted values. In this example,
most are bunched near the left of the graph. It becomes apparent that the outlying
points in this region may be less important than they may seem at first — the
outliers represent only a small fraction of the high number of points in the region.
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Figure 5: The info argument of
plot.earth.

Same as the right plot of Figure 4
but includes an info=TRUE argument.

The density is plotted along the bot-
tom.

Also shown is the Spearman Rank
Correlation of absolute residuals with
fitted values.

(i) Also shown is the Spearman Rank Correlation of absolute residuals with the fitted
values. This is a measure of heteroscedasticity: the correlation will be positive if
the residuals tend to increase as the fitted values increase. Similarly, a negative
correlation would indicate decreasing variance (much less common). Remember
that this correlation is subject to sampling variation.

In the current graph, the displayed value 0.05 is small. It indicates virtually
no heteroscedasticity of the residuals after standardization. The displayed text
abs is a reminder that the correlation is measured on the absolute residuals, even
though the plot itself isn’t showing absolute residuals.

If we used info=TRUE on the raw residuals in the left plot of Figure 4 (not shown),
the displayed Spearman correlation would be 0.38, confirming that there is corre-
lation between the absolute residuals and the fitted values, i.e., the raw residuals
are heteroscedastic.

Unlike the more usual Pearson Correlation Coefficient, the Spearman correlation
is insensitive to outliers (since it doesn’t use the actual values, just their ranks). It
is also invariant to monotone transforms to the response. Thus it doesn’t change
if measured on the squared or log absolute residuals.

Correlation measures only monotone variance trends (it won’t detect variance that
increases and then decreases by the same amount), so ultimately your eyeball is
the best detector of heteroscedasticity, although it can be deceived by varying
degrees of density along the horizontal axis.

(i) The linear regression line is drawn if the plot shows absolute residuals (which=5
or 9, so not in this graph, but see the next section and Figure 6).

5.5 Plotting absolute residuals

The plot.earth function can also plot absolute residuals (Figure 6):

plot(earth.mod, which=5, info=TRUE} # which=5 for absolute residuals

See the description of the which argument on the plot.earth help page for further
possibilities.
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spearman abs  0.38    slope 0.16

Figure 6: A plot of the absolute residu-
als plot.earth(..., which=5) with a
lowess line (red).

The info=TRUE argument was also
specified, so we see some additional
information, including a robust linear
regression line (blue) and its slope
(0.16).

With info=TRUE, a robust linear regression line is added to the absolute residual plot,
and its slope displayed. The absolute residuals are regressed against the fitted val-
ues with robust linear regression to show the overall trend unaffected by outliers. A
standard (non-robust) linear fit would be steeper.

At low and high fitted values, the lowess curve estimates less variance than the robust
linear fit. However, it is possible that the lowess curve is overfitting on the right where
the density is low.

5.6 Multimapped variances

Figure 7 shows simulated data where the same value of the response is associated with
more than one value of variance — there is a one-to-many, or multimapped, relationship
between the response and the variance.

A real-world example (not shown): the average rainfall at a certain location is the same
for the months of March and November, but the amount of rain from year to year varies
less in March than in November.

The usual residual plot for the model (left side of Figure 8) isn’t so helpful in exposing
the pattern of heteroscedasticity. The right plot is much more informative. Here the
residuals are plotted against the predictor, instead of the fitted values. We see clearly
that variance increases with the predictor.

The two plots in Figure 8 were generated with the following lines of code. The second
line uses plot.earth’s versus argument to tell it to plot the residuals against the
predictors (in this example there is only one predictor).

plot(earth.mmap, which=3) # default residuals versus fitted

plot(earth.mmap, which=3, versus="") # versus="" residuals versus predictors

Another option is versus="b:" to plot the residuals against the MARS basis functions.
See the plot.earth help page for details.
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Figure 7: Data with multimapped vari-
ances. The black line is an earth fit.

The variance is quite different, for
instance, at x equal to 1 and 3, al-
though the mean response is about the
same.

The variance must be modeled
as a function of x. We used
varmod.method="x.lm" (Section 6.1).

It can’t be modeled as a function
of the mean response (don’t use
varmod.method="lm").

Residuals vs Fitted

Fitted

R
e

s
id

u
a

ls

●●●●●●●●
●●●●●●

●
●
●●●●

●
●
●●

●
●

●●
●●●●

●
●●●

●
●●●●

●
●

●
●
●

●●●
●●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●
●
●●

●
●
●
●
●

●
●●

●

●

●

●

●

●

●

●
●●

●

●●

●●●●

●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●●●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Residuals vs x

x

R
e

s
id

u
a

ls

●●●●●●●●
●●●●●●

●
●
●●●●
●
●
●●
●
●

●●
●●●●
●
●●●
●
●●●●
●
●

●
●
●

●●●
●●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●
●
●●

●
●
●
●
●

●
●●

●

●

●

●

●

●

●

●
●●
●

●●

●●●●

●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●●●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Figure 8: Residual plots for the multimapped data in the above figure.
Left: Residuals versus the fitted values. Not so informative.
Left: Residuals versus the predictor. Better.

Our example in this section has a single predictor and a non-monotonic response. With
multiple predictors, non-monotonicity of the response isn’t necessary for multimapped
variances, although it makes them more likely. With multiple predictors, determining
if multimapping is occurring is difficult. Certainly, non-monotonicity is possible when
predictors interact, even when the effect on the response of each of the predictors in
isolation is monotonic. But non-monotonicity doesn’t necessarily imply multimapping.

5.7 Residuals versus the fitted values or the response?

You will notice that plot.earth plots the residuals against the fitted values ŷ. Some-
times people plot the residuals against the response y instead. Generally, that isn’t a
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Figure 9: Two residual plots with lowess lines for the model in Figure 1. R2 is 0.66.
Left: Residuals versus fitted. Uncorrelated (although heteroscedastic)
Right: Residuals versus response. Correlated as expected. The graph doesn’t really reveal

anything new about the model. Hetero- or homo-scedasticity is hard to detect.

good idea. Even when the errors ǫ are uncorrelated with the response (as ideally they
should be, independence of the errors is one of the standard assumptions for linear and
related models), the residuals ǫ̂ are positively correlated with the response. The lower
the R2, the higher the correlation. Figure 9 illustrates.

5.8 The plot.varmod function

Use plot.varmod to display the variance model embedded in the earth model. For
example (Figure 10):

plot(earth.mod$varmod) # invokes plot.varmod

The top left plot shows the absolute residuals of the main earth model versus the fitted
value of that model (the plotted points are the same as in Figure 6). The term parent
model in these plots refers to the main earth model. The variance model is shown as a
red line — a straight line in this case because we used varmod.method="lm" when we
called earth. The axis on the right of the plot shows the standard deviation. (Section 2.6
explains how the absolute residuals are rescaled to standard deviation.) This plot is
similar to Figure 6, except that Figure 6 shows a robust linear regression line.

The horizontal dashed red line shows the clamping level set by min.sd (Section 2.3).
But in this example is so happens that clamping of predicted standard deviations is
unnecessary because the solid red regression line stays well clear of the dashed red line.

The top right plot shows how variance changes as the first predictor changes. In this
example, the first and only predictor is the temperature temp, but for multivariate
models we can generate similar plots for all predictors as follows. The type argument
gets passed to predict.varmod.

plotmo(earth.mod$varmod, type="abs.residual")
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ParentMod: earth(formula=O3~temp, data=ozone1, ncros...

Figure 10: plot.varmod

The bottom left graph shows the residuals of the variance model (the residuals of the
lm regression on the parent earth model residuals). The red line is a lowess fit. It curves
here in the same way as it curves in Figure 6.

When varmod.method="earth", the model selection plot is also displayed (not in the
current example).

If info=TRUE is passed to plot.varmod, extra information is added, including lowess
fits in the first two plots.
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6 Variance model arguments

This section discusses some aspects of varmod.method and other arguments for the
variance model.

6.1 Variance as a function of x or of ŷ ?

For simplicity, our examples thus far have used varmod.method="lm". There are several
other possibilities, as described on the earth help page.

As a general rule, you should model variance as a function of the fitted response rather
than of the predictors. That is, use the non-x. varmod methods (for example, prefer
varmod.method="lm" to "x.lm"). This allows the main earth model to do the work
of estimating the response from the predictors, leaving the variance model to do the
generally simpler job of estimating the variance from the fitted response.

However, it is worthwhile trying a few different options on your data. For exam-
ple, in our running example of ozone-vs-temperature, replacing varmod="lm" with
varmod="x.lm" gives narrower prediction intervals that appear to fit the residuals bet-
ter.

The x. varmod methods should be used for multimapped variances, where the residual
variance has a many-to-one relationship with the response, and thus cannot be modeled
as a function of the response (Section 5.6). This will often be the case when the response
is non-monotonic (for example, it increases then decreases as a predictor increases).

6.2 varmod.method="power"

In many datasets with a positive response, standard deviation increases as a power of
the mean response, at least approximately:

error.std.dev <- intercept + coef * response ^ exponent

where the parameters intercept, coef, and exponent depend on the distribution of the
data. This is a power-of-the-mean residual model. (More pedantically, it’s a power-of-
the-mean model with an offset. The “mean” here refers to the mean or true response.)
For example, in a Poisson distribution the standard deviation increases with the square
root of the response (exponent = .5). In a Gamma or lognormal distribution, the
standard deviation increases linearly with the response (exponent = 1).

Often when applying earth we don’t know the exact distribution of the errors but can
sometimes estimate them accurately enough using a power-of-the-mean model. Use
varmod.method="power" to estimate the exponent and other parameters. Internally,
earth will make the estimates using a non-linear regression on the absolute residuals by
means of nls in the standard stats package.

We illustrate with simulated data:

set.seed(1) # optional, for reproducibility
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x <- 1:300

y <- x + (10 + 10 * sqrt(x)) * rnorm(length(x)) # y equals x + noise

earth.power <- earth(y~x, linpreds=TRUE,

nfold=10, ncross=30, varmod.method="power")

Note that when generating the data in the code above we (somewhat arbitrarily)
used intercept = 10, coef = 10, and exponent = 0.5 (square root). A call to
summary(earth.power) yields

stddev of predictions:

coefficients iter.stderr iter.stderr%

(Intercept) 9.944 17.35 174

coef 5.417 5.51 102

exponent 0.614 0.17 28

The estimated parameters differ somewhat from those used to generate the data. For
example, the estimated exponent is 0.614 rather than 0.5. Also, even though we have
a decent sized dataset (300 cases), we have large standard errors.

The example illustrates that estimating these parameters accurately isn’t possible from
typically noisy residuals. There is simply not enough information in the residuals
to pinpoint the underlying distribution. So in general we can’t expect too much of
varmod.method="power", although it may give us some understanding of the distribu-
tion. Another problem is that the internal call to nls on noisy residual data sometimes
fails to converge, or causes the message Error in numericDeriv.

Use the special value trace=.31 to trace the nls iterations while estimating the power
model. This will also cause plotting of IRLS weights.

Another option is varmod.method="power0". This is the same as "power" but without
the intercept term, to force a zero offset.

The power-of-the-mean model is for data with a positive response. When estimating
the model, the earth function forces negative predicted responses to zero (because in
general one can’t take the power of a negative number). This allows for some model
error in the main earth model that causes a few negative predictions that in theory are
always non-negative. An error message will be issued if more than 20% of the responses
are negative.

6.3 varmod.exponent

If the power-of-the-mean model described in the previous section applies to the data
and the exponent is known, we can use varmod.method="lm" and specify the exponent
with earth’s varmod.exponent argument. Earth applies the specified exponent to the
right side of the formula before building the residual model.

For example, if you expect the standard deviation to increase with the square root of the
response, use varmod.method="lm" and varmod.exponent=0.5. (Negative predicted
values will be treated as 0, and you will get an error message if more than 20% of them
are negative.)
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Figure 11: Prediction intervals
with two different settings of
varmod.exponent

Large changes to the expo-
nent typically cause relatively
small changes to the estimated
prediction intervals.

The data here were gener-
ated by the code on page 23.
The true value of the exponent
is 0.5.

We can get an estimate of the exponent by generating a preliminary model using
varmod.method="power". We may want to round the estimate from the preliminary
model. For example, an estimated exponent of 0.68, could indicate that the standard
deviation increases with the square root of the response (the difference between 0.68

and 0.5 being due to sampling variance). So we would build our earth model using
varmod.method="lm" and varmod.exponent=0.5. On the other hand, there may be no
compelling reason not to use the exponent 0.68 estimated by the preliminary model.

From the preliminary model, we wouldn’t go so far as to infer that the data has a
known distributional form — all we are hoping to do is solve the practical problem
of estimating prediction intervals. Exact specification of the exponent usually isn’t
important. Changes to the exponent usually make relatively small changes to the
estimated prediction intervals (Figure 11).

6.4 varmod.method="rlm"

The varmod.method="rlm" variance model is like varmod.method="lm", but uses ro-
bust instead of standard linear regression on the absolute residuals. The code uses rlm
in the MASS package [7].

The rlm estimated prediction intervals tend to be narrower than the lm intervals. This
is because a standard linear regression line will be pulled by outlying residuals, whereas
a robust line will tend to follow the general pattern.

However, in our tests on simulated data with gaussian errors, varmod.method="lm"
gives noticeably better results than "rlm", which tends to underestimate the error
variance. When the errors are mostly gaussian but with some outliers, it is difficult to
say which method is better. The robust approach may at first seem better: the general
pattern of residual variation is what we are interested in. However, the outliers might
be the very residuals that matter, and if so the prediction intervals from the robust
model wil be optimistic.
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7 Checking the variance model

When building a variance model, the methods described in this document make the
following assumptions. Basically all the usual assumptions for regression with additive
errors apply (although we allow heteroscedasticity), but when generating a variance
model some of these assumptions become more critical.

(i) The errors are independent.

(i) The errors are symmetric. Dots should be dispersed roughly symmetrically about
the center line of the residuals plot. The residual model uses absolute residuals,
so makes no distinction between positive and negative residuals.

(i) Conditional variance (given x) is approximately gaussian. One instance where
this assumption is used is when converting the absolute residual predicted by the
residual model to a standard deviation (Section 2.6).

(i) The predicted value is close to the true value — if our main earth model is no
good, there’s no hope for a satisfactory variance model.

(i) Cross-validation gives a reasonable estimate of model variance. This isn’t too
important if the model error is much smaller than the irreducible error. (Which
is the case in our running example — not surprisingly, considering that the model
has only one hinge and over 300 cases.) Use the residuals plot of plot.earth to
see the estimated model-variance bands.

(i) There is enough information in the residuals to form a decent residual model.
The residuals are usually quite noisy, and the residual model may have a low R2,
but we assume it is still usable.

(i) The residual model doesn’t overfit. Overfitting is unlikely with varmod.method

"const" or "lm", although a possibility with other methods. Use plots to check
that the residual model has no implausible curves or kinks.

7.1 Checking the variance model

The data may suffice to build an adequate main earth model but not be sufficient to
build a valid variance model. This is especially true with smaller samples. Earth with
the varmod argument will quite happily build a variance model, but we need to check
the validity of that model.

For example, in the right plot of Figure 1, is there really enough information in the
residuals to build a valid residual model? Probably so, but is there enough information
for a non-linear residual model that curves to fit the residuals? Maybe also so, but we
need to verify the model.

The first thing to do is to check earth’s residual plot. The red lowess line should be
approximately straight and on the axis, indicating that the model fits the data. If the
line is too curved, the estimated prediction intervals won’t be trustworthy. (Although
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some curviness where the data is sparse isn’t something to worry about.) The resid-
uals should be dispersed approximately symmetrically about the center line, and the
prediction bands should match the general pattern of the point cloud.

We can check interval coverage by looking at the chart printed by summary.earth. For
example:

68% 80% 90% 95%

Response values in prediction interval 70 83 88< 97

The “<” printed above by summary.earth points out that only 88% of the training
data is covered by the 90% prediction interval. The estimated prediction interval is too
small. This is a hint that there may be some overfitting in the variance model, although
some small variation like is expected and not really an issue.

Remember that this chart is for the training data, and so is only a sanity check for what
would happen with new data. If possible, we should also print and check the table with
new data. Do this by passing a newdata argument to summary.earth (Section 3.2 (v)
on page 13). This is a highly recommended check of the credibility of the variance
model.
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8 Miscellaneous

8.1 Linear models with heteroscedasticity

The standard lm function doesn’t support variance models for heteroscedastic data. (It
does support weights, and thus with manual IRLS you can estimate residual variance,
but only pointwise for observations in the training set.)

Instead we can use earth’s linpreds=TRUE argument to build a linear model with
earth. (There is a chapter on that in the main earth vignette.) Together with the
varmod arguments, this allows us to get prediction intervals for linear models with
heteroscedastic errors.

The gls function in the nlme package should also be considered.

8.2 Heteroscedasticity when building the earth model

Although earth’s variance model estimates heteroscedasticity, it doesn’t actually ac-
count for it when building the MARS model. Although there is loss of efficiency, het-
eroscedasticity generally doesn’t affect estimation of the model much. (Your mileage
may differ.) It does affect inference, which we don’t really do in earth anyway. Weights
aren’t yet fully implemented in earth, so IRLS with earth isn’t yet possible.
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