
Creating Neighbours*

Roger Bivand

January 8, 2017

1 Introduction
Creating spatial weights is a necessary step in using areal data, perhaps just to check
that there is no remaining spatial patterning in residuals. The first step is to define
which relationships between observations are to be given a non-zero weight, that is
to choose the neighbour criterion to be used; the second is to assign weights to the
identified neighbour links.

The 281 census tract data set for eight central New York State counties featured
prominently in Waller and Gotway (2004) will be used in many of the examples,1 sup-
plemented with tract boundaries derived from TIGER 1992 and distributed by SEDAC/CIESIN.
This file is not identical with the boundaries used in the original source, but is very
close and may be re-distributed, unlike the version used in the book. Starting from the
census tract queen contiguities, where all touching polygons are neighbours, used in
Waller and Gotway (2004) and provided as a DBF file on their website, a GAL format
file has been created and read into R.
> library(maptools)

> owd <- getwd()

> setwd(system.file("etc/shapes", package = "spdep"))

> NY8 <- readShapeSpatial("NY8_utm18")

> library(spdep)

> setwd(system.file("etc/weights", package = "spdep"))

> NY_nb <- read.gal("NY_nb.gal", region.id = row.names(NY8))

> setwd(owd)

For the sake of simplicity in showing how to create neighbour objects, we work
on a subset of the map consisting of the census tracts within Syracuse, although the
same principles apply to the full data set. We retrieve the part of the neighbour list in
Syracuse using the subset method.
> Syracuse <- NY8[NY8$AREANAME == "Syracuse city",]

> Sy0_nb <- subset(NY_nb, NY8$AREANAME == "Syracuse city")

> summary(Sy0_nb)

Neighbour list object:

Number of regions: 63

Number of nonzero links: 346

Percentage nonzero weights: 8.717561

*This vignette formed pp. 239–251 of the first edition of Bivand, R. S., Pebesma, E. and Gómez-Rubio
V. (2008) Applied Spatial Data Analysis with R, Springer-Verlag, New York. It was retired from the sec-
ond edition (2013) to accommodate material on other topics, and is made available in this form with the
understanding of the publishers.

1The boundaries have been projected from geographical coordinates to UTM zone 18.

1

Average number of links: 5.492063

Link number distribution:

1 2 3 4 5 6 7 8 9

1 1 5 9 14 17 9 6 1

1 least connected region:

164 with 1 link

1 most connected region:

136 with 9 links

2 Creating Contiguity Neighbours
We can create a copy of the same neighbours object for polygon contiguities using the
poly2nb function in spdep. It takes an object extending the SpatialPolygons class as
its first argument, and using heuristics identifies polygons sharing boundary points as
neighbours. It also has a snap argument, to allow the shared boundary points to be a
short distance from one another.
> class(Syracuse)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> Sy1_nb <- poly2nb(Syracuse)

> isTRUE(all.equal(Sy0_nb, Sy1_nb, check.attributes = FALSE))

[1] TRUE

As we can see, creating the contiguity neighbours from the Syracuse object repro-
duces the neighbours from Waller and Gotway (2004). Careful examination of Fig. ??
shows, however, that the graph of neighbours is not planar, since some neighbour links
cross each other. By default, the contiguity condition is met when at least one point
on the boundary of one polygon is within the snap distance of at least one point of
its neighbour. This relationship is given by the argument queen=TRUE by analogy with
movements on a chessboard. So when three or more polygons meet at a single point,
they all meet the contiguity condition, giving rise to crossed links. If queen=FALSE,
at least two boundary points must be within the snap distance of each other, with the
conventional name of a ‘rook’ relationship. Figure 1 shows the crossed line differences
that arise when polygons touch only at a single point, compared to the stricter rook
criterion.
> Sy2_nb <- poly2nb(Syracuse, queen = FALSE)

> isTRUE(all.equal(Sy0_nb, Sy2_nb, check.attributes = FALSE))

[1] FALSE

If we have access to a GIS such as GRASS or ArcGIS™, we can export the Spa-

tialPolygonsDataFrame object and use the topology engine in the GIS to find conti-
guities in the graph of polygon edges – a shared edge will yield the same output as the
rook relationship.

This procedure does, however, depend on the topology of the set of polygons be-
ing clean, which holds for this subset, but not for the full eight-county data set. Not
infrequently, there are small artefacts, such as slivers where boundary lines intersect
or diverge by distances that cannot be seen on plots, but which require intervention to
keep the geometries and data correctly associated. When these geometrical artefacts
are present, the topology is not clean, because unambiguous shared polygon bound-
aries cannot be found in all cases; artefacts typically arise when data collected for one

2

●

●

●

●

●

● ● ● ●

●

●

●
●

●
●

● ●
●

● ●

●

● ●

●
●

●

●
●

●
●

●
● ● ●

●
●

●

● ●

●

● ● ●
●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

a)

●

●

●

●

●

● ● ● ●

●

●

●
●

●
●

● ●
●

● ●

●

● ●

●
●

●

●
●

●
●

●
● ● ●

●
●

●

● ●

●

● ● ●
●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

b)

Figure 1: (a) Queen-style census tract contiguities, Syracuse; (b) Rook-style contiguity
differences shown as thicker lines

purpose are combined with other data or used for another purpose. Topologies are usu-
ally cleaned in a GIS by ‘snapping’ vertices closer than a threshold distance together,
removing artefacts – for example, snapping across a river channel where the correct
boundary is the median line but the input polygons stop at the channel banks on each
side. The poly2nb function does have a snap argument, which may also be used when
input data possess geometrical artefacts.
> library(spgrass6)

> writeVECT6(Syracuse, "SY0")

> contig <- vect2neigh("SY0")

> Sy3_nb <- sn2listw(contig)$neighbours

> isTRUE(all.equal(Sy3_nb, Sy2_nb, check.attributes = FALSE))

Similar approaches may also be used to read ArcGIS™ coverage data by tallying
the left neighbour and right neighbour arc indices with the polygons in the data set,
using either RArcInfo or rgdal.

In our Syracuse case, there are no exclaves or ‘islands’ belonging to the data set,
but not sharing boundary points within the snap distance. If the number of polygons
is moderate, the missing neighbour links may be added interactively using the edit

method for nb objects, and displaying the polygon background. The same method may
be used for removing links which, although contiguity exists, may be considered void,
such as across a mountain range.

3 Creating Graph-Based Neighbours
Continuing with irregularly located areal entities, it is possible to choose a point to
represent the polygon-support entities. This is often the polygon centroid, which is not
the average of the coordinates in each dimension, but takes proper care to weight the
component triangles of the polygon by area. It is also possible to use other points, or if
data are available, construct, for example population-weighted centroids. Once repre-
sentative points are available, the criteria for neighbourhood can be extended from just
contiguity to include graph measures, distance thresholds, and k-nearest neighbours.

3

a) b)

c) d)

Figure 2: (a) Delauney triangulation neighbours; (b) Sphere of influence neighbours
(if available); (c) Gabriel graph neighbours; (d) Relative graph neighbours

The most direct graph representation of neighbours is to make a Delaunay triangu-
lation of the points, shown in the first panel in Fig. 2. The neighbour relationships are
defined by the triangulation, which extends outwards to the convex hull of the points
and which is planar. Note that graph-based representations construct the interpoint re-
lationships based on Euclidean distance, with no option to use Great Circle distances
for geographical coordinates. Because it joins distant points around the convex hull,
it may be worthwhile to thin the triangulation as a Sphere of Influence (SOI) graph,
removing links that are relatively long. Points are SOI neighbours if circles centred on
the points, of radius equal to the points’ nearest neighbour distances, intersect in two
places (Avis and Horton, 1985).2

> coords <- coordinates(Syracuse)

> IDs <- row.names(as(Syracuse, "data.frame"))

> Sy4_nb <- tri2nb(coords, row.names = IDs)

> if (require(rgeos, quietly = TRUE) && require(RANN, quietly = TRUE)) {

+ Sy5_nb <- graph2nb(soi.graph(Sy4_nb, coords), row.names = IDs)

+ } else Sy5_nb <- NULL

> Sy6_nb <- graph2nb(gabrielneigh(coords), row.names = IDs)

> Sy7_nb <- graph2nb(relativeneigh(coords), row.names = IDs)

Delaunay triangulation neighbours and SOI neighbours are symmetric by design
– if i is a neighbour of j, then j is a neighbour of i. The Gabriel graph is also a sub-
graph of the Delaunay triangulation, retaining a different set of neighbours (Matula and
Sokal, 1980). It does not, however, guarantee symmetry; the same applies to Relative
graph neighbours (Toussaint, 1980). The graph2nb function takes a sym argument to
insert links to restore symmetry, but the graphs then no longer exactly fulfil their neigh-
bour criteria. All the graph-based neighbour schemes always ensure that all the points
will have at least one neighbour. Subgraphs of the full triangulation may also have
more than one graph after trimming. The functions is.symmetric.nb can be used to
check for symmetry, with argument force=TRUE if the symmetry attribute is to be over-
ridden, and n.comp.nb reports the number of graph components and the components
to which points belong (after enforcing symmetry, because the algorithm assumes that
the graph is not directed). When there are more than one graph component, the matrix

2Functions for graph-based neighbours were kindly contributed by Nicholas Lewin-Koh.

4

a) b) c)

Figure 3: (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

representation of the spatial weights can become block-diagonal if observations are
appropriately sorted.
> nb_l <- list(Triangulation = Sy4_nb, Gabriel = Sy6_nb, Relative = Sy7_nb)

> if (!is.null(Sy5_nb)) nb_l <- c(nb_l, list(SOI = Sy5_nb))

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE, force = TRUE))

Triangulation Gabriel Relative SOI

TRUE FALSE FALSE TRUE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

Triangulation Gabriel Relative SOI

1 1 1 1

4 Distance-Based Neighbours
An alternative method is to choose the k nearest points as neighbours – this adapts
across the study area, taking account of differences in the densities of areal entities.
Naturally, in the overwhelming majority of cases, it leads to asymmetric neighbours,
but will ensure that all areas have k neighbours. The knearneigh returns an interme-
diate form converted to an nb object by knn2nb; knearneigh can also take a longlat

argument to handle geographical coordinates.
> Sy8_nb <- knn2nb(knearneigh(coords, k = 1), row.names = IDs)

> Sy9_nb <- knn2nb(knearneigh(coords, k = 2), row.names = IDs)

> Sy10_nb <- knn2nb(knearneigh(coords, k = 4), row.names = IDs)

> nb_l <- list(k1 = Sy8_nb, k2 = Sy9_nb, k4 = Sy10_nb)

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE, force = TRUE))

k1 k2 k4

FALSE FALSE FALSE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

k1 k2 k4

15 1 1

Figure 3 shows the neighbour relationships for k = 1,2,4, with many components
for k = 1. If need be, k-nearest neighbour objects can be made symmetrical using the

5

a) b) c)

Figure 4: (a) Neighbours within 1,158 m; (b) neighbours within 1,545 m; (c) neigh-
bours within 2,317 m

make.sym.nb function. The k = 1 object is also useful in finding the minimum distance
at which all areas have a distance-based neighbour. Using the nbdists function, we
can calculate a list of vectors of distances corresponding to the neighbour object, here
for first nearest neighbours. The greatest value will be the minimum distance needed
to make sure that all the areas are linked to at least one neighbour. The dnearneigh

function is used to find neighbours with an interpoint distance, with arguments d1 and
d2 setting the lower and upper distance bounds; it can also take a longlat argument to
handle geographical coordinates.
> dsts <- unlist(nbdists(Sy8_nb, coords))

> summary(dsts)

Min. 1st Qu. Median Mean 3rd Qu. Max.

395.7 587.3 700.1 760.4 906.1 1545.0

> max_1nn <- max(dsts)

> max_1nn

[1] 1544.615

> Sy11_nb <- dnearneigh(coords, d1 = 0, d2 = 0.75 * max_1nn, row.names = IDs)

> Sy12_nb <- dnearneigh(coords, d1 = 0, d2 = 1 * max_1nn, row.names = IDs)

> Sy13_nb <- dnearneigh(coords, d1 = 0, d2 = 1.5 * max_1nn, row.names = IDs)

> nb_l <- list(d1 = Sy11_nb, d2 = Sy12_nb, d3 = Sy13_nb)

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE, force = TRUE))

d1 d2 d3

TRUE TRUE TRUE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

d1 d2 d3

4 1 1

Figure 4 shows how the numbers of distance-based neighbours increase with mod-
erate increases in distance. Moving from 0.75 times the minimum all-included dis-
tance, to the all-included distance, and 1.5 times the minimum all-included distance,
the numbers of links grow rapidly. This is a major problem when some of the first
nearest neighbour distances in a study area are much larger than others, since to avoid

6

a) b) c)

Figure 5: Distance-based neighbours: frequencies of numbers of neighbours by census
tract

no-neighbour areal entities, the distance criterion will need to be set such that many ar-
eas have many neighbours. Figure 5 shows the counts of sizes of sets of neighbours for
the three different distance limits. In Syracuse, the census tracts are of similar areas,
but were we to try to use the distance-based neighbour criterion on the eight-county
study area, the smallest distance securing at least one neighbour for every areal entity
is over 38 km.
> dsts0 <- unlist(nbdists(NY_nb, coordinates(NY8)))

> summary(dsts0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

82.7 1505.0 3379.0 5866.0 8954.0 38440.0

If the areal entities are approximately regularly spaced, using distance-based neigh-
bours is not necessarily a problem. Provided that care is taken to handle the side effects
of “weighting” areas out of the analysis, using lists of neighbours with no-neighbour
areas is not necessarily a problem either, but certainly ought to raise questions. Dif-
ferent disciplines handle the definition of neighbours in their own ways by convention;
in particular, it seems that ecologists frequently use distance bands. If many distance
bands are used, they approach the variogram, although the underlying understanding
of spatial autocorrelation seems to be by contagion rather than continuous.

5 Higher-Order Neighbours
Distance bands can be generated by using a sequence of d1 and d2 argument values for
the dnearneigh function if needed to construct a spatial autocorrelogram as understood
in ecology. In other conventions, correlograms are constructed by taking an input list of
neighbours as the first-order sets, and stepping out across the graph to second-, third-,
and higher-order neighbours based on the number of links traversed, but not permitting
cycles, which could risk making i a neighbour of i itself (O’Sullivan and Unwin, 2003,
p. 203). The nblag function takes an existing neighbour list and returns a list of lists,
from first to maxlag order neighbours.

7

> Sy0_nb_lags <- nblag(Sy0_nb, maxlag = 9)

y
Table1showshowthewaveofconnectednessinthegraphspreadstothethirdorder, re-

ceding to the eighth order, and dying away at the ninth
order – there are no tracts nine steps from each other in this graph. Both the distance
bands and the graph step order approaches to spreading neighbourhoods can be used
to examine the shape of relationship intensities in space, like the variogram, and can
be used in attempting to look at the effects of scale.

6 Grid Neighbours
When the data are known to be arranged in a regular, rectangular grid, the cell2nb

function can be used to construct neighbour lists, including those on a torus. These are
useful for simulations, because, since all areal entities have equal numbers of neigh-
bours, and there are no edges, the structure of the graph is as neutral as can be achieved.
Neighbours can either be of type rook or queen.
> cell2nb(7, 7, type = "rook", torus = TRUE)

Neighbour list object:

Number of regions: 49

Number of nonzero links: 196

Percentage nonzero weights: 8.163265

Average number of links: 4

> cell2nb(7, 7, type = "rook", torus = FALSE)

Neighbour list object:

Number of regions: 49

Number of nonzero links: 168

Table 1: Higher-order contiguities: frequencies of numbers of neighbours by order of
neighbour list

first second third fourth fifth sixth seventh eighth ninth
0 0 0 0 0 0 6 21 49 63
1 1 0 0 0 0 3 7 6 0
2 1 0 0 0 0 0 4 5 0
3 5 0 0 0 1 2 5 2 0
4 9 2 0 0 1 8 9 1 0
5 14 2 0 0 3 2 7 0 0
6 17 0 0 0 1 5 3 0 0
7 9 6 1 0 1 5 5 0 0
8 6 6 3 1 3 4 1 0 0
9 1 11 5 3 7 8 0 0 0

10 0 11 5 5 13 9 0 0 0
11 0 4 7 7 12 5 0 0 0
12 0 3 14 16 8 5 1 0 0
13 0 7 6 16 9 1 0 0 0
14 0 4 8 5 3 0 0 0 0
15 0 6 3 3 1 0 0 0 0
16 0 1 3 3 0 0 0 0 0
17 0 0 0 2 0 0 0 0 0
18 0 0 1 0 0 0 0 0 0
19 0 0 1 1 0 0 0 0 0
20 0 0 1 1 0 0 0 0 0
21 0 0 3 0 0 0 0 0 0
22 0 0 1 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0

8

Percentage nonzero weights: 6.997085

Average number of links: 3.428571

When a regular, rectangular grid is not complete, then we can use knowledge of the
cell size stored in the grid topology to create an appropriate list of neighbours, using a
tightly bounded distance criterion. Neighbour lists of this kind are commonly found in
ecological assays, such as studies of species richness at a national or continental scale.
It is also in these settings, with moderately large n, here n = 3,103, that the use of a
sparse, list based representation shows its strength. Handling a 281× 281 matrix for
the eight-county census tracts is feasible, easy for a 63×63 matrix for Syracuse census
tracts, but demanding for a 3,103×3,103 matrix.
> data(meuse.grid)

> coordinates(meuse.grid) <- c("x", "y")

> gridded(meuse.grid) <- TRUE

> dst <- max(slot(slot(meuse.grid, "grid"), "cellsize"))

> mg_nb <- dnearneigh(coordinates(meuse.grid), 0, dst)

> mg_nb

Neighbour list object:

Number of regions: 3103

Number of nonzero links: 12022

Percentage nonzero weights: 0.1248571

Average number of links: 3.874315

> table(card(mg_nb))

1 2 3 4

1 133 121 2848

References
Avis, D. and Horton, J. (1985). Remarks on the sphere of influence graph. In Goodman,

J. E., editor, Discrete Geometry and Convexity. New York Academy of Sciences,
New York, pp 323–327.

Matula, D. W. and Sokal, R. R. (1980). Properties of Gabriel graphs relevant to ge-
ographic variation research and the clustering of points in the plane. Geographic
Analysis, 12:205–222.

O’Sullivan, D. and Unwin, D. J. (2003). Geographical Information Analysis. Wiley,
Hoboken, NJ.

Toussaint, G. T. (1980). The relative neighborhood graph of a finite planar set. Pattern
Recognition, 12:261–268.

Waller, L. A. and Gotway, C. A. (2004). Applied Spatial Statistics for Public Health
Data. John Wiley & Sons, Hoboken, NJ.

9

	Introduction
	Creating Contiguity Neighbours
	Creating Graph-Based Neighbours
	Distance-Based Neighbours
	Higher-Order Neighbours
	Grid Neighbours

