
zoo: An S3 Class and Methods for Indexed Totally

Ordered Observations

Achim Zeileis
Universität Innsbruck

Gabor Grothendieck
GKX Associates Inc.

Abstract

A previous version to this introduction to the R package zoo has been published as
Zeileis and Grothendieck (2005) in the Journal of Statistical Software.

zoo is an R package providing an S3 class with methods for indexed totally ordered
observations, such as discrete irregular time series. Its key design goals are independence
of a particular index/time/date class and consistency with base R and the "ts" class for
regular time series. This paper describes how these are achieved within zoo and provides
several illustrations of the available methods for "zoo" objects which include plotting,
merging and binding, several mathematical operations, extracting and replacing data and
index, coercion and NA handling. A subclass "zooreg" embeds regular time series into
the "zoo" framework and thus bridges the gap between regular and irregular time series
classes in R.

Keywords: totally ordered observations, irregular time series, regular time series, S3, R.

1. Introduction

The R system for statistical computing (R Core Team 2017, http://www.R-project.org/)
ships with a class for regularly spaced time series, "ts" in package stats, but has no native class
for irregularly spaced time series. With the increased interest in computational finance with R

over the last years several implementations of classes for irregular time series emerged which
are aimed particularly at finance applications. These include the S4 classes "timeSeries"

in package timeSeries (previously fSeries) from the Rmetrics suite (Wuertz 2016), "its" in
package its (Heywood 2009, archived on CRAN) and the S3 class "irts" in package tseries

(Trapletti and Hornik 2017). With these packages available, why would anybody want yet
another package providing infrastructure for irregular time series? The above mentioned
implementations have in common that they are restricted to a particular class for the time
scale: the former implementation comes with its own time class "timeDate" from package
timeDate (previously fCalendar) built on top of the "POSIXct" class available in base R

whereas the latter two use "POSIXct" directly. And this was the starting point for the
zoo project: the first author of the present paper needed more general support for ordered
observations, independent of a particular index class, for the package strucchange (Zeileis,
Leisch, Hornik, and Kleiber 2002). Hence, the package was called zoo which stands for Z’s
ordered observations. Since the first release, a major part of the additions to zoo were provided
by the second author of this paper, so that the name of the package does not really reflect
the authorship anymore. Nevertheless, independence of a particular index class remained the

http://www.R-project.org/

2 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

most important design goal. While the package evolved to its current status, a second key
design goal became more and more clear: to provide methods to standard generic functions
for the "zoo" class that are similar to those for the "ts" class (and base R in general) such
that the usage of zoo is very intuitive because few additional commands have to be learned.
This paper describes how these design goals are implemented in zoo. The resulting package
provides the "zoo" class which offers an extensive (and still growing) set of standard and new
methods for working with indexed observations and ‘talks’ to the classes "ts", "its", "irts"
and "timeSeries". (In addition to these independent approaches, the class "xts" built upon
"zoo" was recently introduced by Ryan and Ulrich 2014, .). zoo also bridges the gap between
regular and irregular time series by providing coercion with (virtually) no loss of information
between "ts" and "zoo". With these tools zoo provides the basic infrastructure for working
with indexed totally ordered observations and the package can be either employed by users
directly or can be a basic ingredient on top of which other more specialized applications can
be built.

The remainder of the paper is organized as follows: Section 2 explains how "zoo" objects
are created and illustrates how the corresponding methods for plotting, merging and binding,
several mathematical operations, extracting and replacing data and index, coercion and NA

handling can be used. Section 3 outlines how other packages can build on this basic infras-
tructure. Section 4 gives a few summarizing remarks and an outlook on future developments.
Finally, an appendix provides a reference card that gives an overview of the functionality
contained in zoo.

2. The class "zoo" and its methods

This section describes how "zoo" series can be created and subsequently manipulated, visual-
ized, combined or coerced to other classes. In Section 2.1, the general class "zoo" for totally
ordered series is described. Subsequently, in Section 2.2, the subclass "zooreg" for regular
"zoo" series, i.e., series which have an index with a specified frequency, is discussed. The
methods illustrated in the remainder of the section are mostly the same for both "zoo" and
"zooreg" objects and hence do not have to be discussed separately. The few differences in
merging and binding are briefly highlighted in Section 2.4.

2.1. Creation of "zoo" objects

The simple idea for the creation of "zoo" objects is to have some vector or matrix of obser-
vations x which are totally ordered by some index vector. In time series applications, this
index is a measure of time but every other numeric, character or even more abstract vector
that provides a total ordering of the observations is also suitable. Objects of class "zoo" are
created by the function

zoo(x, order.by)

where x is the vector or matrix of observations1 and order.by is the index by which the ob-
servations should be ordered. It has to be of the same length as NROW(x), i.e., either the same

1In principle, more general objects can be indexed, but currently zoo does not support this. Development
plans are that zoo should eventually support indexed factors, data frames and lists.

Achim Zeileis, Gabor Grothendieck 3

length as x for vectors or the same number of rows for matrices.2 The "zoo" object created
is essentially the vector/matrix as before but has an additional "index" attribute in which
the index is stored.3 Both the observations in the vector/matrix x and the index order.by

can, in principle, be of arbitrary classes. However, most of the following methods (plotting,
aggregating, mathematical operations) for "zoo" objects are typically only useful for numeric
observations x. Special effort in the design was put into independence from a particular class
for the index vector. In zoo, it is assumed that combination c(), querying the length(),
value matching MATCH(), subsetting [, and, of course, ordering ORDER() work when applied
to the index. In addition, an as.character() method might improve printed output4 and
as.numeric() could be used for computing distances between indexes, e.g., in interpolation.
Both methods are not necessary for working with "zoo" objects but could be used if avail-
able. All these methods are available, e.g., for standard numeric and character vectors and
for vectors of classes "Date", "POSIXct" or "times" from package chron and "timeDate"

in timeDate. Because not all required methods used to be available for "timeDate" in older
versions of fCalendar, Section 3.3 has a rather outdated example how to provide such methods
so that "zoo" objects work with "timeDate" indexes. To achieve this independence of the
index class, new generic functions for ordering (ORDER()) and value matching (MATCH()) are
introduced as the corresponding base functions order() and match() are non-generic. The
default methods simply call the corresponding base functions, i.e., no new method needs to be
introduced for a particular index class if the non-generic functions order() and match() work
for this class. R now also provides a new generic xtfrm() which was not available when the
new generic ORDER() was introduced. If there is a xtfrm() for a class, the default ORDER()
method typically works.

To illustrate the usage of zoo(), we first load the package and set the random seed to make
the examples in this paper exactly reproducible.

R> library("zoo")

R> set.seed(1071)

Then, we create two vectors z1 and z2 with "POSIXct" indexes, one with random observations

R> z1.index <- ISOdatetime(2004, rep(1:2,5), sample(28,10), 0, 0, 0)

R> z1.data <- rnorm(10)

R> z1 <- zoo(z1.data, z1.index)

and one with a sine wave

R> z2.index <- as.POSIXct(paste(2004, rep(1:2, 5), sample(1:28, 10),

+ sep = "-"))

R> z2.data <- sin(2*1:10/pi)

R> z2 <- zoo(z2.data, z2.index)

2The only case where this restriction is not imposed is for zero-length vectors, i.e., vectors that only have
an index but no data.

3There is some limited support for indexed factors available in which case the "zoo" object also has an
attribute "oclass" with the original class of x. This feature is still under development and might change in
future versions.

4If an as.character() method is already defined, but gives not the desired output for printing, then an
index2char() method can be defined. This is a generic convenience function used for creating character
representations of the index vector and it defaults to using as.character().

4 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Furthermore, we create a matrix Z with random observations and a "Date" index

R> Z.index <- as.Date(sample(12450:12500, 10))

R> Z.data <- matrix(rnorm(30), ncol = 3)

R> colnames(Z.data) <- c("Aa", "Bb", "Cc")

R> Z <- zoo(Z.data, Z.index)

In the examples above, the generation of indexes looks a bit awkward due to the fact the
indexes need to be randomly generated (and there are no special functions for random indexes
because these are rarely needed in practice). In “real world” applications, the indexes are
typically part of the raw data set read into R so the code would be even simpler. See Section 3
for such examples.5

Methods to several standard generic functions are available for "zoo" objects, such as print,
summary, str, head, tail and [(subsetting), a few of which are illustrated in the following.

There are three printing code styles for "zoo" objects: vectors are by default printed in
"horizontal" style

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07

0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445

2004-02-12 2004-02-16 2004-02-20 2004-02-24

0.22170438 -2.07607585 -1.78439244 -0.19533304

R> z1[3:7]

2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

-0.2982353 0.6862577 1.9407885 1.2738445 0.2217044

and matrices in "vertical" style

R> Z

Aa Bb Cc

2004-02-02 1.2554339 0.6815732 -0.63292049

2004-02-08 -1.4945833 1.3234122 -1.49442269

2004-02-09 -1.8746225 -0.8732929 0.62733971

2004-02-21 -0.1453861 0.4523490 -0.14597401

2004-02-22 0.2254242 0.5383894 0.23136133

2004-02-29 1.2069552 0.3181422 -0.01129202

2004-03-05 -1.2086102 1.4237978 -0.81614483

2004-03-10 -0.1103956 1.3477425 0.95522468

2004-03-14 0.8420238 -2.7384202 0.23150695

2004-03-20 -0.1901910 0.1230887 -1.51862157

5Note, that in the code above a new as.Date method, provided in zoo, is used to convert days since
1970-01-01 to class "Date". See the respective help page for more details.

Achim Zeileis, Gabor Grothendieck 5

R> Z[1:3, 2:3]

Bb Cc

2004-02-02 0.6815732 -0.6329205

2004-02-08 1.3234122 -1.4944227

2004-02-09 -0.8732929 0.6273397

Additionally, there is a "plain" style which simply first prints the data and then the index.

Above, we have illustrated that "zoo" series can be indexed like vectors or matrices respec-
tively, i.e., with integers correponding to their observation number (and column number).
But for indexed observations, one would obviously also like to be able to index with the index
class. This is also available in [which only uses vector/matrix-type subsetting if its first
argument is of class "numeric", "integer" or "logical".

R> z1[ISOdatetime(2004, 1, c(14, 25), 0, 0, 0)]

2004-01-14 2004-01-25

0.02107873 0.68625772

If the index class happens to be "numeric", the index has to be either insulated in I() like
z[I(i)] or the window() method can be used (see Section 2.6).

Summaries and most other methods for "zoo" objects are carried out column wise, reflecting
the rectangular structure. In addition, a summary of the index is provided.

R> summary(z1)

Index z1

Min. :2004-01-05 00:00:00 Min. :-2.07608

1st Qu.:2004-01-20 12:00:00 1st Qu.:-0.27251

Median :2004-02-01 12:00:00 Median : 0.12139

Mean :2004-02-01 09:36:00 Mean : 0.05364

3rd Qu.:2004-02-15 00:00:00 3rd Qu.: 0.73163

Max. :2004-02-24 00:00:00 Max. : 1.94079

R> summary(Z)

Index Aa Bb Cc

Min. :2004-02-02 Min. :-1.8746 Min. :-2.7384 Min. :-1.51862

1st Qu.:2004-02-12 1st Qu.:-0.9540 1st Qu.: 0.1719 1st Qu.:-0.77034

Median :2004-02-25 Median :-0.1279 Median : 0.4954 Median :-0.07863

Mean :2004-02-25 Mean :-0.1494 Mean : 0.2597 Mean :-0.25739

3rd Qu.:2004-03-08 3rd Qu.: 0.6879 3rd Qu.: 1.1630 3rd Qu.: 0.23147

Max. :2004-03-20 Max. : 1.2554 Max. : 1.4238 Max. : 0.95522

6 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

2.2. Creation of "zooreg" objects

Strictly regular series are such series observations where the distance between the indexes
of every two adjacent observations is the same. Such series can also be described by their
frequency, i.e., the reciprocal value of the distance between two observations. As "zoo" can be
used to store series with arbitrary type of index, it can, of course, also be used to store series
with regular indexes. So why should this case be given special attention, in particular as there
is already the "ts" class devoted entirely to regular series? There are two reasons: First, to
be able to convert back and forth between "ts" and "zoo", the frequency of a certain series
needs to be stored on the "zoo" side. Second, "ts" is limited to strictly regular series and
the regularity is lost if some internal observations are omitted. Series that can be created by
omitting some internal observations from strictly regular series will in the following be refered
to as being (weakly) regular. Therefore, a class that bridges the gap between irregular and
strictly regular series is needed and "zooreg" fills this gap. Objects of class "zooreg" inherit
from class "zoo" but have an additional attribute "frequency" in which the frequency of
the series is stored. Therefore, they can be employed to represent both strictly and weakly
regular series.

To create a "zooreg" object, either the command zoo() can be used or the command
zooreg().

zoo(x, order.by, frequency)

zooreg(data, start, end, frequency, deltat, ts.eps, order.by)

If zoo() is called as in the previous section but with an additional frequency argument,
it is checked whether frequency complies with the index order.by: if it does an object of
class "zooreg" inheriting from "zoo" is returned. The command zooreg() takes mostly the
same arguments as ts().6 In both cases, the index class is more restricted than in the plain
"zoo" case. The index must be of a class which can be coerced to "numeric" (for checking
its regularity) and when converted to numeric the index must be expressable as multiples of
1/frequency. Furthermore, adding/substracting a numeric to/from an observation of the index
class, should return the correct value of the index class again, i.e., group generic functions
Ops should be defined. For regular series with frequency 4 and 12, respectively, the dedicated
time classes "yearqtr" and "yearmon" are used by default (unless the argument calendar
= FALSE is set or options(zoo.calendar = FALSE) is set generally). These time classes are
discussed in more detail in Section 3.4.

The following calls yield equivalent series

R> zr1 <- zooreg(sin(1:9), start = 2000, frequency = 4)

R> zr2 <- zoo(sin(1:9), seq(2000, 2002, by = 1/4), 4)

R> zr1

2000 Q1 2000 Q2 2000 Q3 2000 Q4 2001 Q1 2001 Q2 2001 Q3

0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866

2001 Q4 2002 Q1

0.9893582 0.4121185

6Only if order.by is specified in the zooreg() call, then zoo(x, order.by, frequency) is called.

Achim Zeileis, Gabor Grothendieck 7

R> zr2

2000 Q1 2000 Q2 2000 Q3 2000 Q4 2001 Q1 2001 Q2 2001 Q3

0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866

2001 Q4 2002 Q1

0.9893582 0.4121185

to which methods to standard generic functions for regular series can be applied, such as
frequency, deltat, cycle.

As stated above, the advantage of "zooreg" series is that they remain regular even if an
internal observation is dropped:

R> zr1 <- zr1[-c(3, 5)]

R> zr1

2000 Q1 2000 Q2 2000 Q4 2001 Q2 2001 Q3 2001 Q4 2002 Q1

0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zr1)

[1] "zooreg" "zoo"

R> frequency(zr1)

[1] 4

This facilitates NA handling significantly compared to "ts" and makes "zooreg" a much more
attractive data type, e.g., for time series regression.

zooreg() can also deal with other non-numeric indexes provided that adding "numeric"

observations to the index class preserves the class and does not coerce to "numeric".

R> zooreg(1:5, start = as.Date("2005-01-01"))

2005-01-01 2005-01-02 2005-01-03 2005-01-04 2005-01-05

1 2 3 4 5

To check whether a certain series is (strictly) regular, the new generic function is.regular(x,

strict = FALSE) can be used:

R> is.regular(zr1)

[1] TRUE

R> is.regular(zr1, strict = TRUE)

[1] FALSE

8 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

This function (and also the frequency, deltat and cycle) also work for "zoo" objects if the
regularity can still be inferred from the data:

R> zr1 <- as.zoo(zr1)

R> zr1

2000 Q1 2000 Q2 2000 Q4 2001 Q2 2001 Q3 2001 Q4 2002 Q1

0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zr1)

[1] "zoo"

R> is.regular(zr1)

[1] TRUE

R> frequency(zr1)

[1] 4

Of course, inferring the underlying regularity is not always reliable and it is safer to store a
regular series as a "zooreg" object if it is intended to be a regular series.

If a weakly regular series is coerced to "ts" the missing observations are filled with NAs (see
also Section 2.8). For strictly regular series with numeric or "yearqtr" or "yearmon" index,
the class can be switched between "zoo" and "ts" without loss of information.

R> as.ts(zr1)

Qtr1 Qtr2 Qtr3 Qtr4

2000 0.8414710 0.9092974 NA -0.7568025

2001 NA -0.2794155 0.6569866 0.9893582

2002 0.4121185

R> identical(zr2, as.zoo(as.ts(zr2)))

[1] TRUE

This enables direct use of functions such as acf, arima, stl etc. on "zooreg" objects as these
methods coerce to "ts" first. The result only has to be coerced back to "zoo", if appropriate.

2.3. Plotting

The plot method for "zoo" objects, in particular for multivariate "zoo" series, is based on
the corresponding method for (multivariate) regular time series. It relies on plot and lines

methods being available for the index class which can plot the index against the observations.

By default the plot method creates a panel for each series

Achim Zeileis, Gabor Grothendieck 9

R> plot(Z)

but can also display all series in a single panel

R> plot(Z, plot.type = "single", col = 2:4)

In both cases additional graphical parameters like color col, plotting character pch and line
type lty can be expanded to the number of series. But the plot method for "zoo" objects
offers some more flexibility in specification of graphical parameters as in

R> plot(Z, type = "b", lty = 1:3, pch = list(Aa = 1:5, Bb = 2, Cc = 4),

+ col = list(Bb = 2, 4))

The argument lty behaves as before and sets every series in another line type. The pch

argument is a named list that assigns to each series a different vector of plotting characters
each of which is expanded to the number of observations. Such a list does not necessarily
have to include the names of all series, but can also specify a subset. For the remaining series
the default parameter is then used which can again be changed: e.g., in the above example
the col argument is set to display the series "Bb" in red and all remaining series in blue.
The results of the multiple panel plots are depicted in Figure 2 and the single panel plot in
Figure 1.

In addition to the plot method that uses base graphics for the visualizations, there are also
methods for xyplot and autoplot. The former uses the lattice (Sarkar 2008) package for
visualizations while the latter employs ggplot2 (Wickham 2009). Both methods try to follow
the conventions used by the plot method described above and the style/conventions used in
the respective packages. See ?xyplot.zoo and ?autoplot.zoo for more examples and details.

Feb 01 Feb 15 Mar 01 Mar 15

−
2

−
1

0
1

Index

Z

Figure 1: Example of a single panel plot

10 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

−
1
.5

−
0
.5

0
.5

A
a

−
2

−
1

0
1

B
b

Feb 01 Feb 15 Mar 01 Mar 15

Index

−
1
.5

−
0
.5

0
.5

C
c

Z

−
1
.5

−
0
.5

0
.5

A
a

● ●

−
2

−
1

0
1

B
b

Feb 01 Feb 15 Mar 01 Mar 15

Index

−
1
.5

−
0
.5

0
.5

C
c

Z

Figure 2: Examples of multiple panel plots

Achim Zeileis, Gabor Grothendieck 11

2.4. Merging and binding

As for many rectangular data formats in R, there are both methods for combining the rows
and columns of "zoo" objects respectively. For the rbind method the number of columns of
the combined objects has to be identical and the indexes may not overlap.

R> rbind(z1[5:10], z1[2:3])

2004-01-14 2004-01-19 2004-01-27 2004-02-07 2004-02-12 2004-02-16

0.02107873 -0.29823529 1.94078850 1.27384445 0.22170438 -2.07607585

2004-02-20 2004-02-24

-1.78439244 -0.19533304

The c method simply calls rbind and hence behaves in the same way.

The cbind method by default combines the columns by the union of the indexes and fills the
created gaps by NAs.

R> cbind(z1, z2)

z1 z2

2004-01-03 NA 0.94306673

2004-01-05 0.74675994 -0.04149429

2004-01-14 0.02107873 NA

2004-01-17 NA 0.59448077

2004-01-19 -0.29823529 -0.52575918

2004-01-24 NA -0.96739776

2004-01-25 0.68625772 NA

2004-01-27 1.94078850 NA

2004-02-07 1.27384445 NA

2004-02-08 NA 0.95605566

2004-02-12 0.22170438 -0.62733473

2004-02-13 NA -0.92845336

2004-02-16 -2.07607585 NA

2004-02-20 -1.78439244 NA

2004-02-24 -0.19533304 NA

2004-02-25 NA 0.56060280

2004-02-26 NA 0.08291711

In fact, the cbind method is synonymous with the merge method7 except that the latter
provides additional arguments which allow for combining the columns by the intersection of
the indexes using the argument all = FALSE

R> merge(z1, z2, all = FALSE)

7Note, that in some situations the column naming in the resulting object is somewhat problematic in the
cbind method and the merge method might provide better formatting of the column names.

12 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

z1 z2

2004-01-05 0.7467599 -0.04149429

2004-01-19 -0.2982353 -0.52575918

2004-02-12 0.2217044 -0.62733473

Additionally, the filling pattern can be changed in merge, the naming of the columns can be
modified and the return class of the result can be specified. In the case of merging of objects
with different index classes, R gives a warning and tries to coerce the indexes. Merging
objects with different index classes is generally discouraged—if it is used nevertheless, it is
the responsibility of the user to ensure that the result is as intended. If at least one of the
merged/binded objects was a "zooreg" object, then merge tries to return a "zooreg" object.
This is done by assessing whether there is a common maximal frequency and by checking
whether the resulting index is still (weakly) regular.

If non-"zoo" objects are included in merging, then merge gives plain vectors/factors/matrices
the index of the first argument (if it is of the same length). Scalars are always added for the
full index without missing values.

R> merge(z1, pi, 1:10)

z1 pi 1:10

2004-01-05 0.74675994 3.141593 1

2004-01-14 0.02107873 3.141593 2

2004-01-19 -0.29823529 3.141593 3

2004-01-25 0.68625772 3.141593 4

2004-01-27 1.94078850 3.141593 5

2004-02-07 1.27384445 3.141593 6

2004-02-12 0.22170438 3.141593 7

2004-02-16 -2.07607585 3.141593 8

2004-02-20 -1.78439244 3.141593 9

2004-02-24 -0.19533304 3.141593 10

Another function which performs operations along a subset of indexes is aggregate, which is
discussed in this section although it does not combine several objects. Using the aggregate

method, "zoo" objects are split into subsets along a coarser index grid, summary statistics
are computed for each and then the reduced object is returned. In the following example,
first a function is set up which returns for a given "Date" value the corresponding first of the
month. This function is then used to compute the coarser grid for the aggregate call: in
the first example, the grouping is computed explicitely by firstofmonth(index(Z)) and the
mean of the observations in the month is returned—in the second example, only the function
that computes the grouping (when applied to index(Z)) is supplied and the first observation
is used for aggregation.

R> firstofmonth <- function(x) as.Date(sub("..$", "01", format(x)))

R> aggregate(Z, firstofmonth(index(Z)), mean)

Aa Bb Cc

2004-02-01 -0.1377964 0.40676219 -0.2376514

2004-03-01 -0.1667933 0.03905223 -0.2870087

Achim Zeileis, Gabor Grothendieck 13

R> aggregate(Z, firstofmonth, head, 1)

Aa Bb Cc

2004-02-01 1.255434 0.6815732 -0.6329205

2004-03-01 -1.208610 1.4237978 -0.8161448

The opposite of aggregation is disaggregation. For example, the Nile dataset is an annual
"ts" class series. To disaggregate it into a quarterly series, convert it to a "zoo class series,
insert intermediate quarterly points containing NA values and then fill the NA values using
na.approx, na.locf or na.spline. (More details on NA handling in general can be found in
Section 2.8.)

R> Nile.na <- merge(as.zoo(Nile),

+ zoo(, seq(start(Nile)[1], end(Nile)[1], 1/4)))

R> head(as.zoo(Nile))

1871 1872 1873 1874 1875 1876

1120 1160 963 1210 1160 1160

R> head(na.approx(Nile.na))

1871(1) 1871(2) 1871(3) 1871(4) 1872(1) 1872(2)

1120.00 1130.00 1140.00 1150.00 1160.00 1110.75

R> head(na.locf(Nile.na))

1871(1) 1871(2) 1871(3) 1871(4) 1872(1) 1872(2)

1120 1120 1120 1120 1160 1160

R> head(na.spline(Nile.na))

1871(1) 1871(2) 1871(3) 1871(4) 1872(1) 1872(2)

1120.000 1199.059 1224.985 1208.419 1160.000 1091.970

2.5. Mathematical operations

To allow for standard mathematical operations among "zoo" objects, zoo extends group
generic functions Ops. These perform the operations only for the intersection of the indexes
of the objects. As an example, the summation and logical comparison with < of z1 and z2

yield

R> z1 + z2

2004-01-05 2004-01-19 2004-02-12

0.7052657 -0.8239945 -0.4056304

14 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

R> z1 < z2

2004-01-05 2004-01-19 2004-02-12

FALSE FALSE FALSE

Additionally, methods for transposing t of "zoo" objects—which coerces to a matrix before—
and computing cumulative quantities such as cumsum, cumprod, cummin, cummax which are all
applied column wise.

R> cumsum(Z)

Aa Bb Cc

2004-02-02 1.2554339 0.6815732 -0.6329205

2004-02-08 -0.2391494 2.0049854 -2.1273432

2004-02-09 -2.1137718 1.1316925 -1.5000035

2004-02-21 -2.2591579 1.5840415 -1.6459775

2004-02-22 -2.0337337 2.1224309 -1.4146162

2004-02-29 -0.8267785 2.4405731 -1.4259082

2004-03-05 -2.0353888 3.8643710 -2.2420530

2004-03-10 -2.1457844 5.2121135 -1.2868283

2004-03-14 -1.3037606 2.4736933 -1.0553214

2004-03-20 -1.4939516 2.5967820 -2.5739429

2.6. Extracting and replacing the data and the index

zoo provides several generic functions and methods to work on the data contained in a "zoo"

object, the index (or time) attribute associated to it, and on both data and index.

The data stored in "zoo" objects can be extracted by coredata which strips off all "zoo"-
specific attributes and it can be replaced using coredata<-. Both are new generic functions8

with methods for "zoo" objects as illustrated in the following example.

R> coredata(z1)

[1] 0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445

[7] 0.22170438 -2.07607585 -1.78439244 -0.19533304

R> coredata(z1) <- 1:10

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

1 2 3 4 5 6 7

2004-02-16 2004-02-20 2004-02-24

8 9 10

8The coredata functionality is similar in spirit to the core function in its and value in tseries. However, the
focus of those functions is somewhat narrower and we try to provide more general purpose generic functions.
See the respective manual page for more details.

Achim Zeileis, Gabor Grothendieck 15

The index associated with a "zoo" object can be extracted by index and modified by index<-.
As the interpretation of the index as “time” in time series applications is natural, there are
also synonymous methods time and time<-. Hence, the commands index(z2) and time(z2)

return equivalent results.

R> index(z2)

[1] "2004-01-03 GMT" "2004-01-05 GMT" "2004-01-17 GMT" "2004-01-19 GMT"

[5] "2004-01-24 GMT" "2004-02-08 GMT" "2004-02-12 GMT" "2004-02-13 GMT"

[9] "2004-02-25 GMT" "2004-02-26 GMT"

The index scale of z2 can be changed to that of z1 by

R> index(z2) <- index(z1)

R> z2

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07

0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566

2004-02-12 2004-02-16 2004-02-20 2004-02-24

-0.62733473 -0.92845336 0.56060280 0.08291711

The start and the end of the index/time vector can be queried by start and end:

R> start(z1)

[1] "2004-01-05 GMT"

R> end(z1)

[1] "2004-02-24 GMT"

To work on both data and index/time, zoo provides window and window<- methods for "zoo"
objects. In both cases the window is specified by

window(x, index, start, end)

where x is the "zoo" object, index is a set of indexes to be selected (by default the full index
of x) and start and end can be used to restrict the index set.

R> window(Z, start = as.Date("2004-03-01"))

Aa Bb Cc

2004-03-05 -1.2086102 1.4237978 -0.8161448

2004-03-10 -0.1103956 1.3477425 0.9552247

2004-03-14 0.8420238 -2.7384202 0.2315069

2004-03-20 -0.1901910 0.1230887 -1.5186216

16 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

R> window(Z, index = index(Z)[5:8], end = as.Date("2004-03-01"))

Aa Bb Cc

2004-02-22 0.2254242 0.5383894 0.23136133

2004-02-29 1.2069552 0.3181422 -0.01129202

The first example selects all observations starting from 2004-03-01 whereas the second selects
from the from the 5th to 8th observation those up to 2004-03-01.

The same syntax can be used for the corresponding replacement function.

R> window(z1, end = as.POSIXct("2004-02-01")) <- 9:5

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 8 7 6 5 6 7

2004-02-16 2004-02-20 2004-02-24

8 9 10

Two methods that are standard in time series applications are lag and diff. These are
available with the same arguments as the "ts" methods.9

R> lag(z1, k = -1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16

9 8 7 6 5 6 7

2004-02-20 2004-02-24

8 9

R> merge(z1, lag(z1, k = 1))

z1 lag(z1, k = 1)

2004-01-05 9 8

2004-01-14 8 7

2004-01-19 7 6

2004-01-25 6 5

2004-01-27 5 6

2004-02-07 6 7

2004-02-12 7 8

2004-02-16 8 9

2004-02-20 9 10

2004-02-24 10 NA

R> diff(z1)

9diff also has an additional argument that also allows for geometric and not only allows arithmetic dif-
ferences. Furthermore, note the sign of the lag in lag which behaves like the "ts" method, i.e., by default it
is positive and shifts the observations forward, to obtain the more standard backward shift the lag has to be
negative.

Achim Zeileis, Gabor Grothendieck 17

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16

-1 -1 -1 -1 1 1 1

2004-02-20 2004-02-24

1 1

2.7. Coercion to and from "zoo"

Coercion to and from "zoo" objects is available for objects of various classes, in particular
"ts", "irts" and "its" objects can be coerced to "zoo" and back if the index is of the
appropriate class.10

Coercion between "zooreg" and "zoo" is also available and is essentially dropping the
"frequency" attribute or trying to add one, respectively.

Furthermore, "zoo" objects can be coerced to vectors, matrices, lists and data frames (the
latter dropping the index/time attribute). A simple example is

R> as.data.frame(Z)

Aa Bb Cc

2004-02-02 1.2554339 0.6815732 -0.63292049

2004-02-08 -1.4945833 1.3234122 -1.49442269

2004-02-09 -1.8746225 -0.8732929 0.62733971

2004-02-21 -0.1453861 0.4523490 -0.14597401

2004-02-22 0.2254242 0.5383894 0.23136133

2004-02-29 1.2069552 0.3181422 -0.01129202

2004-03-05 -1.2086102 1.4237978 -0.81614483

2004-03-10 -0.1103956 1.3477425 0.95522468

2004-03-14 0.8420238 -2.7384202 0.23150695

2004-03-20 -0.1901910 0.1230887 -1.51862157

2.8. NA handling

A wide range of methods for dealing with NAs (missing observations) in the observations
are applicable to "zoo" objects including na.omit, na.contiguous, na.approx, na.spline,
and na.locf among others. na.omit—or its default method to be more precise—returns
a "zoo" object with incomplete observations removed. na.contiguous extracts the longest
consecutive stretch of non-missing values. Furthermore, new generic functions na.approx,
na.spline, and na.locf and corresponding default methods are introduced in zoo. The
former two replace NAs by interpolation (using the function approx and spline, respectively)
and the name of the latter stands for last observation carried forward. It replaces missing
observations by the most recent non-NA prior to it. Leading NAs, which cannot be replaced by
previous observations, are removed in both functions by default.

R> z1[sample(1:10, 3)] <- NA

R> z1

10Coercion from "zoo" to "irts" is contained in the tseries package.

18 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 NA 7 6 5 6 NA

2004-02-16 2004-02-20 2004-02-24

8 9 NA

R> na.omit(z1)

2004-01-05 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-16 2004-02-20

9 7 6 5 6 8 9

R> na.contiguous(z1)

2004-01-19 2004-01-25 2004-01-27 2004-02-07

7 6 5 6

R> na.approx(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9.000000 7.714286 7.000000 6.000000 5.000000 6.000000 7.111111

2004-02-16 2004-02-20

8.000000 9.000000

R> na.approx(z1, 1:NROW(z1))

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 8 7 6 5 6 7

2004-02-16 2004-02-20

8 9

R> na.spline(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9.000000 6.766410 7.000000 6.000000 5.000000 6.000000 7.167209

2004-02-16 2004-02-20 2004-02-24

8.000000 9.000000 10.157026

R> na.locf(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 9 7 6 5 6 6

2004-02-16 2004-02-20 2004-02-24

8 9 9

As the above example illustrates, na.approx (and also na.spline) use by default the under-
lying time scale for interpolation. This can be changed, e.g., to an equidistant spacing, by

Achim Zeileis, Gabor Grothendieck 19

setting the second argument of na.approx. Furthermore, a different output time index can
be supplied as well.

In addition to the methods discussed above, there are also other methods for dealing with
missing values in zoo such as na.aggregate, na.fill, na.trim, and na.StructTS.

2.9. Rolling functions

A typical task to be performed on ordered observations is to evaluate some function, e.g., com-
puting the mean, in a window of observations that is moved over the full sample period. The
resulting statistics are usually synonymously referred to as rolling/running/moving statistics.
In zoo, the generic function rollapply11 is provided along with a "zoo" and a "ts" method.
The most important arguments are

rollapply(data, width, FUN)

where the function FUN is applied to a rolling window of size width of the observations data.
The function rollapply by default only evaluates the function for windows of full size width
and then the result has width - 1 fewer observations than the original series and is aligned at
the center of the rolling window. Setting further arguments such as partial, align, or fill
also allows for rolling computations on partial windows with arbitrary aligning and flexible
filling. For example, without partial evaluation the ‘lost’ observations could be filled with NAs
and aligned at the left of the sample.

R> rollapply(Z, 5, sd)

Aa Bb Cc

2004-02-09 1.2814876 0.8018950 0.8218959

2004-02-21 1.2658555 0.7891358 0.8025043

2004-02-22 1.2102011 0.8206819 0.5319727

2004-02-29 0.8662296 0.5266261 0.6411751

2004-03-05 0.9363400 1.7011273 0.6356144

2004-03-10 0.9508642 1.6892246 0.9578196

R> rollapply(Z, 5, sd, fill = NA, align = "left")

Aa Bb Cc

2004-02-02 1.2814876 0.8018950 0.8218959

2004-02-08 1.2658555 0.7891358 0.8025043

2004-02-09 1.2102011 0.8206819 0.5319727

2004-02-21 0.8662296 0.5266261 0.6411751

2004-02-22 0.9363400 1.7011273 0.6356144

2004-02-29 0.9508642 1.6892246 0.9578196

2004-03-05 NA NA NA

11In previous versions of zoo, this function was called rapply. It was renamed because from R 2.4.0 on, base
R provides a different function rapply for recursive (and not rolling) application of functions. The function
zoo::rapply is still provided for backward compatibility, however it dispatches now to rollapply methods.

20 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

2004-03-10 NA NA NA

2004-03-14 NA NA NA

2004-03-20 NA NA NA

To improve the performance of rollapply(x, k, foo) for some frequently used functions foo,
more efficient implementations rollfoo(x, k) are available (and also called by rollapply).
Currently, these are the generic functions rollmean, rollmedian and rollmax which have
methods for "zoo" and "ts" series and a default method for plain vectors.

R> rollmean(z2, 5, fill = NA)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27

NA NA 0.0005792538 0.0031770388 -0.1139910497

2004-02-07 2004-02-12 2004-02-16 2004-02-20 2004-02-24

-0.4185778750 -0.2013054791 0.0087574946 NA NA

3. Combining zoo with other packages

The main purpose of the package zoo is to provide basic infrastructure for working with
indexed totally ordered observations that can be either employed by users directly or can be
a basic ingredient on top of which other packages can build. The latter is illustrated with
a few brief examples involving the packages strucchange, tseries and timeDate/fCalendar in
this section. Finally, the classes "yearmon" and "yearqtr" (provided in zoo) are used for
illustrating how zoo can be extended by creating a new index class.

3.1. strucchange: Empirical fluctuation processes

The package strucchange provides a collection of methods for testing, monitoring and dating
structural changes, in particular in linear regression models. Tests for structural change assess
whether the parameters of a model remain constant over an ordering with respect to a specified
variable, usually time. To adequately store and visualize empirical fluctuation processes
which capture instabilities over this ordering, a data type for indexed ordered observations is
required. This was the motivation for starting the zoo project.

A simple example for the need of "zoo" objects in strucchange which can not be (easily)
implemented by other irregular time series classes available in R is described in the following.
We assess the constancy of the electrical resistance over the apparent juice content of kiwi
fruits.12 The data set fruitohms is contained in the DAAG package (Maindonald and Braun
2015). The fitted ocus object contains the OLS-based CUSUM process for the mean of the
electrical resistance (variable ohms) indexed by the juice content (variable juice).

R> library("strucchange")

R> library("DAAG")

R> data("fruitohms")

R> ocus <- gefp(ohms ~ 1, order.by = ~ juice, data = fruitohms)

12A different approach would be to test whether the slope of a regression of electrical resistance on juice
content changes with increasing juice content, i.e., to test for instabilities in ohms ~ juice instead of ohms ~

1. Both lead to similar results.

Achim Zeileis, Gabor Grothendieck 21

R> plot(ocus)

10 20 30 40 50 60

0
1

2
3

4

juice

E
m

p
ir

ic
a

l
fl
u

c
tu

a
ti
o

n
 p

ro
c
e

s
s

M−fluctuation test

Figure 3: Empirical M-fluctuation process for fruitohms data

This OLS-based CUSUM process can be visualized using the plot method for "gefp" objects
which builds on the "zoo" method and yields in this case the plot in Figure 3 showing the
process which crosses its 5% critical value and thus signals a significant decrease in the mean
electrical resistance over the juice content. For more information on the package strucchange

and the function gefp see Zeileis et al. (2002) and Zeileis (2006).

3.2. tseries: Historical financial data

This section was written when tseries did not yet support "zoo" series directly. For historical
reasons and completeness, the example is still included but for practical purposes it is not
relevant anymore because, from version 0.9-30 on, get.hist.quote returns a "zoo" series
by default.

A typical application for irregular time series which became increasingly important over the
last years in computational statistics and finance is daily (or higher frequency) financial data.
The package tseries provides the function get.hist.quote for obtaining historical financial
data by querying Yahoo! Finance at http://finance.yahoo.com/, an online portal quoting
data provided by Reuters. The following code queries the quotes of Microsoft Corp. starting
from 2001-01-01 until 2004-09-30:

R> library("tseries")

R> MSFT <- get.hist.quote(instrument = "MSFT", start = "2001-01-01",

+ end = "2004-09-30", origin = "1970-01-01", retclass = "ts")

In the returned MSFT object the irregular data is stored by extending it in a regular grid and
filling the gaps with NAs. The time is stored in days starting from an origin, in this case

http://finance.yahoo.com/

22 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

specified to be 1970-01-01, the origin used by the "Date" class. This series can be transformed
easily into a "zoo" series using a "Date" index.

R> MSFT <- as.zoo(MSFT)

R> index(MSFT) <- as.Date(index(MSFT))

R> MSFT <- na.omit(MSFT)

Because this is daily data, the series has a natural underlying regularity. Thus, as.zoo()
returns a "zooreg" object by default. To treat it as an irregular series as.zoo() can be
applied a second time, yielding a "zoo" series. The corresponding log-difference returns are
depicted in Figure 4.

R> MSFT <- as.zoo(MSFT)

3.3. timeDate/fCalendar: Indexes of class "timeDate"

The original version of this section was written when fCalendar (now: timeDate) and
zoo did not yet include enough methods to attach "timeDate" indexes to "zoo" series. For
historical reasons and completeness, we still briefly comment on the communcation between
the packages and their classes.

Although the methods in zoo work out of the box for many index classes, it might be necessary
for some index classes to provide c(), length(), [, ORDER() and MATCH() methods such
that the methods in zoo work properly. Previously, this was the case "timeDate" from the
fCalendar package which is why it was used as an example in this vigntte. Meanwhile however,
both zoo and fCalendar/timeDate have been enhanced: The latter contains the methods for
c(), length(), and [, while zoo has methods for ORDER() and MATCH() for class "timeDate".
The last two functions essentially work by coercing to the underlying "POSIXct" and then
using the associated methods.

The following example illustrates how z2 can be transformed to use the "timeDate" class.

R> library("timeDate")

R> z2td <- zoo(coredata(z2), timeDate(index(z2), FinCenter = "GMT"))

R> z2td

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07

0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566

2004-02-12 2004-02-16 2004-02-20 2004-02-24

-0.62733473 -0.92845336 0.56060280 0.08291711

3.4. The classes "yearmon" and "yearqtr": Roll your own index

One of the strengths of the zoo package is its independence of the index class, such that the
index can be easily customized. The previous section already explained how an existing class
("timeDate") can be used as the index if the necessary methods are created. This section
has a similar but slightly different focus: it describes how new index classes can be created

Achim Zeileis, Gabor Grothendieck 23

R> plot(diff(log(MSFT)))

−
0
.6

−
0
.4

−
0
.2

0
.0

O
p

e
n

−
0
.6

−
0
.4

−
0
.2

0
.0

H
ig

h

−
0
.6

−
0
.4

−
0
.2

0
.0

L
o
w

2001 2002 2003 2004

Index

−
0
.6

−
0
.4

−
0
.2

0
.0

C
lo

s
e

diff(log(MSFT))

Figure 4: Log-difference returns for Microsoft Corp.

addressing a certain type of indexes. These classes are "yearmon" and "yearqtr" (already
contained in zoo) which provide indexes for monthly and quarterly data respectively. As the
code is virtually identical for both classes—except that one has the frequency 12 and the
other 4—we will only discuss "yearmon" explicitly.

Of course, monthly data can simply be stored using a numeric index just as the class "ts"
does. The problem is that this does not have the meta-information attached that this is really

24 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

specifying monthly data which is in "yearmon" simply added by a class attribute. Hence, the
class creator is simply defined as

yearmon <- function(x) structure(floor(12*x + .0001)/12, class = "yearmon")

which is very similar to the as.yearmon coercion functions provided.

As "yearmon" data is now explicitly declared to describe monthly data, this can be exploited
for coercion to other time classes: either to coarser time scales such as "yearqtr" or to finer
time scales such as "Date", "POSIXct" or "POSIXlt" which by default associate the first day
within a month with a "yearmon" observation. Adding a format and as.character method
produces human readable character representations of "yearmon" data and Ops and MATCH

methods complete the methods needed for conveniently working with monthly data in zoo.
Note, that all of these methods are very simple and rather obvious (as can be seen in the zoo

sources), but prove very helpful in the following examples.

First, we create a regular series zr3 with "yearmon" index which leads to improved printing
compared to the regular series zr1 and zr2 from Section 2.2.

R> zr3 <- zooreg(rnorm(9), start = as.yearmon(2000), frequency = 12)

R> zr3

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000 Jun 2000

-0.30969096 0.08699142 -0.64837101 -0.62786277 -0.61932674 -0.95506154

Jul 2000 Aug 2000 Sep 2000

-1.91736406 0.38108885 1.51405511

This could be aggregated to quarterly data via

R> aggregate(zr3, as.yearqtr, mean)

2000 Q1 2000 Q2 2000 Q3

-0.2903569 -0.7340837 -0.0074067

The index can easily be transformed to "Date", the default being the first day of the month
but which can also be changed to the last day of the month.

R> as.Date(index(zr3))

[1] "2000-01-01" "2000-02-01" "2000-03-01" "2000-04-01" "2000-05-01"

[6] "2000-06-01" "2000-07-01" "2000-08-01" "2000-09-01"

R> as.Date(index(zr3), frac = 1)

[1] "2000-01-31" "2000-02-29" "2000-03-31" "2000-04-30" "2000-05-31"

[6] "2000-06-30" "2000-07-31" "2000-08-31" "2000-09-30"

Achim Zeileis, Gabor Grothendieck 25

Furthermore, "yearmon" indexes can easily be coerced to "POSIXct" such that the series
could be exported as a "its" or "irts" series.

R> index(zr3) <- as.POSIXct(index(zr3))

R> as.irts(zr3)

2000-01-01 00:00:00 GMT -0.3097

2000-02-01 00:00:00 GMT 0.08699

2000-03-01 00:00:00 GMT -0.6484

2000-04-01 00:00:00 GMT -0.6279

2000-05-01 00:00:00 GMT -0.6193

2000-06-01 00:00:00 GMT -0.9551

2000-07-01 00:00:00 GMT -1.917

2000-08-01 00:00:00 GMT 0.3811

2000-09-01 00:00:00 GMT 1.514

Again, this functionality makes switching between different time scales or index representa-
tions particularly easy and zoo provides the user with the flexibility to adjust a certain index
to his/her problem of interest.

4. Summary and outlook

The package zoo provides an S3 class and methods for indexed totally ordered observations,
such as both regular and irregular time series. Its key design goals are independence of a
particular index class and compatibility with standard generics similar to the behaviour of
the corresponding "ts" methods. This paper describes how these are implemented in zoo and
illustrates the usage of the methods for plotting, merging and binding, several mathematical
operations, extracting and replacing data and index, coercion and NA handling.

An indexed object of class "zoo" can be thought of as data plus index where the data are
essentially vectors or matrices and the index can be a vector of (in principle) arbitrary class.
For (weakly) regular "zooreg" series, a "frequency" attribute is stored in addition. There-
fore, objects of classes "ts", "its", "irts" and "timeSeries" can easily be transformed into
"zoo" objects—the reverse transformation is also possible provided that the index fulfills the
restrictions of the respective class. Hence, the "zoo" class can also be used as the basis for
other classes of indexed observations and more specific functionality can be built on top of it.
Furthermore, it bridges the gap between irregular and regular series, facilitating operations
such as NA handling compared to "ts".

Whereas a lot of effort was put into achieving independence of a particular index class, the
types of data that can be indexed with "zoo" are currently limited to vectors and matrices,
typically containing numeric values. Although, there is some limited support available for
indexed factors, one important direction for future development of zoo is to add better support
for other objects that can also naturally be indexed including specifically factors, data frames
and lists.

26 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Computational details

The results in this paper were obtained using R 3.5.0 with the packages zoo 1.8–2, strucchange
1.5–1, timeDate 3043.102, tseries 0.10–44 and DAAG 1.22. R itself and all packages used are
available from CRAN at https://CRAN.R-project.org/.

References

Heywood G (2009). its: Irregular Time Series. Portfolio & Risk Advisory Group and Com-
merzbank Securities. R package version 1.1.8, URL https://CRAN.R-project.org/src/

contrib/Archive/its/.

Maindonald J, Braun WJ (2015). DAAG: Data Analysis and Graphics. R package version
1.22, URL https://CRAN.R-project.org/package=DAAG.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan JA, Ulrich JM (2014). xts: Extensible Time Series. R package version 0.9-7, URL
https://CRAN.R-project.org/package=xts.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.

Trapletti A, Hornik K (2017). tseries: Time Series Analysis and Computational Finance.
R package version 0.10-38, URL https://CRAN.R-project.org/package=tseries.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

Wuertz D (2016). Rmetrics: An Environment and Software Collection for Teaching Finan-
cial Engineering and Computational Finance. R packages fArma, fAsianOptions, fAssets,
fBasics, fCalendar, fCopulae, fEcofin, fExoticOptions, fExtremes, fGarch, fImport, fMulti-

var, fNonlinear, fOptions, fPortfolio, fRegression, fSeries, fTrading, fUnitRoots, fUtilities,
URL http://www.Rmetrics.org/.

Zeileis A (2006). “Implementing a Class of Structural Change Tests: An Econometric
Computing Approach.” Computational Statistics & Data Analysis, 50, 2987–3008. doi:

10.1016/j.csda.2005.07.001.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL 10.18637/jss.v014.i06.

Zeileis A, Leisch F, Hornik K, Kleiber C (2002). “strucchange: An R Package for Testing
for Structural Change in Linear Regression Models.” Journal of Statistical Software, 7(2),
1–38. URL 10.18637/jss.v007.i02.

https://CRAN.R-project.org/
https://CRAN.R-project.org/src/contrib/Archive/its/
https://CRAN.R-project.org/src/contrib/Archive/its/
https://CRAN.R-project.org/package=DAAG
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=tseries
http://www.Rmetrics.org/
http://dx.doi.org/10.1016/j.csda.2005.07.001
http://dx.doi.org/10.1016/j.csda.2005.07.001
10.18637/jss.v014.i06
10.18637/jss.v007.i02

Achim Zeileis, Gabor Grothendieck 27

28 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

A. Reference card

Creation

zoo(x, order.by) creation of a "zoo" object from the observations x (a
vector or a matrix) and an index order.by by which
the observations are ordered.
For computations on arbitrary index classes, methods
to the following generic functions are assumed to work:
combining c(), querying length length(), subsetting
[, ordering ORDER() and value matching MATCH(). For
pretty printing an as.character and/or index2char
method might be helpful.

Creation of regular series

zoo(x, order.by, freq) works as above but creates a "zooreg" object which
inherits from "zoo" if the frequency freq complies
with the index order.by. An as.numeric method
has to be available for the index class.

zooreg(x, start, end, freq) creates a "zooreg" series with a numeric index as
above and has (almost) the same interface as ts().

Standard methods

plot plotting (alternatives: xyplot and autoplot)
lines adding a "zoo" series to a plot
print printing

summary summarizing (column-wise)
str displaying structure of "zoo" objects

head, tail head and tail of "zoo" objects

Coercion

as.zoo coercion to "zoo" is available for objects of class "ts",
"its", "irts" (plus a default method).

as.class.zoo coercion from "zoo" to other classes. Currently avail-
able for class in "matrix", "vector", "data.frame",
"list", "irts", "its" and "ts".

is.zoo querying wether an object is of class "zoo"

Merging and binding

merge union, intersection, left join, right join along indexes
cbind column binding along the intersection of the index

c, rbind combining/row binding (indexes may not overlap)
aggregate compute summary statistics along a coarser grid of

indexes

Mathematical operations

Ops group generic functions performed along the intersec-
tion of indexes

t transposing (coerces to "matrix" before)
cumsum compute (columnwise) cumulative quantities: sums

cumsum(), products cumprod(), maximum cummax(),
minimum cummin().

Achim Zeileis, Gabor Grothendieck 29

Extracting and replacing data and index

index, time extract the index of a series
index<-, time<- replace the index of a series

coredata, coredata<- extract and replace the data associated with a "zoo"

object
lag lagged observations
diff arithmetic and geometric differences

start, end querying start and end of a series
window, window<- subsetting of "zoo" objects using their index

NA handling

na.omit omit NAs
na.contiguous compute longest sequence of non-NA observations

na.locf impute NAs by carrying forward the last observation
na.approx impute NAs by interpolation

na.trim remove leading and/or trailing NAs

Rolling functions

rollapply apply a function to rolling margin of an array
rollmean more efficient functions for computing the rolling

mean, median and maximum are rollmean(),
rollmedian() and rollmax(), respectively

Methods for regular series

is.regular checks whether a series is weakly (or strictly if strict
= TRUE) regular

frequency, deltat extracts the frequency or its reciprocal value respec-
tively from a series, for "zoo" series the functions try
to determine the regularity and frequency in a data-
driven way

cycle gives the position in the cycle of a regular series

Affiliation:

Achim Zeileis
Universität Innsbruck
E-mail: Achim.Zeileis@R-project.org

Gabor Grothendieck
GKX Associates Inc.
E-mail: ggrothendieck@gmail.com

mailto:Achim.Zeileis@R-project.org
mailto:ggrothendieck@gmail.com

	Introduction
	The class "zoo" and its methods
	Creation of "zoo" objects
	Creation of "zooreg" objects
	Plotting
	Merging and binding
	Mathematical operations
	Extracting and replacing the data and the index
	Coercion to and from "zoo"
	NA handling
	Rolling functions

	Combining zoo with other packages
	strucchange: Empirical fluctuation processes
	tseries: Historical financial data
	timeDate/fCalendar: Indexes of class "timeDate"
	The classes "yearmon" and "yearqtr": Roll your own index

	Summary and outlook
	Reference card

