
Spline terms in a Cox model

Terry Therneau

November 26, 2018

This is a trio of topics that comes up just often enough in my work that I end up re-discovering
how to do it correctly about once a year. A note showing how may be useful to others, it is
certainly a useful reference for me.

1 Plotting smooth terms

Here is a simple example using the MGUS data. I prefer a simpler color palette than the default
found in termplot.

> require(survival)

> mfit <- coxph(Surv(futime, death) ~ sex + pspline(age, df=4), data=mgus)

> mfit

Call:

coxph(formula = Surv(futime, death) ~ sex + pspline(age, df = 4),

data = mgus)

coef se(coef) se2

sexmale 0.22784 0.13883 0.13820

pspline(age, df = 4), lin 0.06682 0.00703 0.00703

pspline(age, df = 4), non

Chisq DF p

sexmale 2.69335 1.00 0.10

pspline(age, df = 4), lin 90.22974 1.00 <2e-16

pspline(age, df = 4), non 3.44005 3.05 0.34

Iterations: 5 outer, 16 Newton-Raphson

Theta= 0.851

Degrees of freedom for terms= 1.0 4.1

Likelihood ratio test=108 on 5.04 df, p=<2e-16

n= 241, number of events= 225

> termplot(mfit, term=2, se=TRUE, col.term=1, col.se=1)

1

40 50 60 70 80 90

−
4

−
3

−
2

−
1

0
1

2
3

age

P
ar

tia
l f

or
 p

sp
lin

e(
ag

e,
 d

f =
 4

)

Note that the term=2 option is passed directly from the termplot routine to a predict(fit,

type=’terms’) call. For coxph models, the predict function allows terms to be specified either
by position or name. Other routines, e.g. gam, respond only to a name. (This can be a bit of a
pain since it must exactly match the printed call in both spelling and spacing; and the printed
spacing may not match what the user typed.)

Three questions are whether the curve is significantly non-linear, how the curve is centered
and whether we can easily plot it on the hazard as opposed to the log hazard scale. The first
question is answered by the printout, the solution to the others is to use the plot=FALSE option
of termplot, which returns the data points that would be plotted back to the user.

> ptemp <- termplot(mfit, se=TRUE, plot=FALSE)

> attributes(ptemp)

$constant

[1] 3.334793

$names

[1] "sex" "age"

> ptemp$age[1:4,]

x y se

1 34 -2.493101 0.5946620

2 35 -2.365152 0.5301362

3 36 -2.237191 0.4720479

2

4 37 -2.109559 0.4208977

The termplot function depends on a call to predict with type=’terms’, which returns a cen-
tered set of predictions. Like a simple linear model fit, the intercept is a separate term, which
is found in the “constant” attribute above, and each column of the result is centered so that
the average predicted value is zero. Since any given x value may appear multiple times in the
data and thus in the result of predict, and the termplot function removes duplicates, the data
returned by termplot may not be precisely centered at zero.

Now suppose we want to redraw this on log scale with age 50 as the reference, i.e., the risk
is 1 for a 50 year old. Since the Cox model is a relative hazards model we can choose whatever
center we like. (If there were no one of exactly age 50 in the data set the first line below would
need to do an interpolation, e.g. by using the approx function.)

> ageterm <- ptemp$age # this will be a data frame

> center <- with(ageterm, y[x==50])

> ytemp <- ageterm$y + outer(ageterm$se, c(0, -1.96, 1.96), '*')

> matplot(ageterm$x, exp(ytemp - center), log='y',

type='l', lty=c(1,2,2), col=1,

xlab="Age at diagnosis", ylab="Relative death rate")

40 50 60 70 80 90

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

20
.0

0
50

.0
0

Age at diagnosis

R
el

at
iv

e
de

at
h

ra
te

Voila! We now have a plot that is interpretable with respect to a fixed reference.
The approach is appropriate for any term, not just psplines. The above plot uses log scale

for the y axis which is appropriate for the question of whether a non-linear age effect was

3

even necessary for this model (it is not), one could remove the log argument to emphasize the
Gomperzian effect of age on mortality.

2 Monotone splines

Consider the following model using the mgus2 data set.

> fit <- coxph(Surv(futime, death) ~ age + pspline(hgb, 4), mgus2)

> fit

Call:

coxph(formula = Surv(futime, death) ~ age + pspline(hgb, 4),

data = mgus2)

coef se(coef) se2

age 0.05394 0.00337 0.00336

pspline(hgb, 4), linear -0.11579 0.01612 0.01612

pspline(hgb, 4), nonlin

Chisq DF p

age 256.31805 1.00 < 2e-16

pspline(hgb, 4), linear 51.56708 1.00 6.9e-13

pspline(hgb, 4), nonlin 18.77963 3.06 0.00033

Iterations: 6 outer, 16 Newton-Raphson

Theta= 0.942

Degrees of freedom for terms= 1.0 4.1

Likelihood ratio test=420 on 5.06 df, p=<2e-16

n= 1371, number of events= 957

(13 observations deleted due to missingness)

> termplot(fit, se=TRUE, term=2, col.term=1, col.se=1,

xlab="Hemoglobin level")

Low hemoglobin or anemia is a recognized marker of frailty in older age, so the rise in risk for
low levels is not surprising. The rise on the right hand portion of the curve is less believable —
the normal range of HGB is 12-15.5 for women and 13.5 to 17.5 for men, why would we expect a
rise there? A monotone fit that forces the curve to be horizontal from 14 onward fits well within
the confidence bands, so we might want to force monotonicity.

There are two tools for this within the pspline function. The first is to decrease the overall
degrees of freedom and the second is to use combine option to force equality of selected coeffi-
cients. Start by decreasing the degrees of freedom. The pspline function automatically picks the
number of basis (nterms) to be “sufficiently large” for the given degrees of freedom. We fix it at
a single value for the rest of this example to better isolate the effects of degrees of freedom and
of constraints.

> termplot(fit, se=TRUE, col.term=1, col.se=1, term=2,

xlab="Hemoglobin level", ylim=c(-.4, 1.3))

> df <- c(3, 2.5, 2)

4

> for (i in 1:3) {

tfit <- coxph(Surv(futime, death) ~ age +

pspline(hgb, df[i], nterm=8), mgus2)

temp <- termplot(tfit, se=FALSE, plot=FALSE, term=2)

lines(temphgbx, temphgby, col=i+1, lwd=2)

}

> legend(14, 1, paste("df=", c(4, df)), lty=1, col=1:4, lwd=2)

This has reduced, but not eliminated, the right hand rise at the expense of a less sharp
transition at the value of 14. The combine option makes use of a property of the P-spline basis,
which is that the curve will be monotone if and only if the coefficients are monotone. We can
then use a pool adjacent violators algorithm to sequentially force equality for those coefficients
which go the wrong way. Look at the coefficients for the fit with 2.5 degrees of freedom.

> fit2a <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8), mgus2)

> coef(fit2a)

age ps(hgb)3 ps(hgb)4 ps(hgb)5 ps(hgb)6

0.05399819 -0.26149468 -0.52044496 -0.77438892 -1.04488355

ps(hgb)7 ps(hgb)8 ps(hgb)9 ps(hgb)10 ps(hgb)11

-1.35106599 -1.59448244 -1.61297463 -1.50478222 -1.38368954

ps(hgb)12

-1.26113182

> plot(1:10, coef(fit2a)[-1])

Now force the last 3 to be equal, then the last 4, and see how this changes the fit.

> temp <- c(1:7, 8,8,8)

> fit2b <- coxph(Surv(futime, death) ~ age +

pspline(hgb, 2.5, nterm=8, combine=temp),

data= mgus2)

> temp2 <- c(1:6, 7,7,7,7)

> fit2c <- coxph(Surv(futime, death) ~ age +

pspline(hgb, 2.5, nterm=8, combine=temp2),

data= mgus2)

> matplot(1:10, cbind(coef(fit2a)[-1], coef(fit2b)[temp+1],

coef(fit2c)[temp2+1]), type='b', pch='abc',

xlab="Term", ylab="Pspline coef")

We see that constraining the last four terms along with a degrees of freedom of is almost
enough to force monotonicity; it may be sufficient if our goal is a simple plot for display.

This dance between degrees of freedom, number of terms, and constraints has a component
of artistry. When all three values become large the result will begin to approach a step function,
reminiscent of non-parametric isotonic regression, whereas small values begin to approach a
linear fit. The best compromise of smoothness and constraints will be problem specific.

5

3 Splines in an interaction

As an example we will use the effect of age on survival in the flchain data set, a population
based sample of subjects from Olmsted County, Minnesota. If we look at a simple model using
age and sex we see that both are very significant.

> options(show.signif.stars=FALSE) # display intelligence

> fit1 <- coxph(Surv(futime, death) ~ sex + pspline(age, 3), data=flchain)

> fit1

Call:

coxph(formula = Surv(futime, death) ~ sex + pspline(age, 3),

data = flchain)

coef se(coef) se2 Chisq

sexM 4.09e-01 4.40e-02 4.40e-02 8.64e+01

pspline(age, 3), linear 1.12e-01 2.20e-03 2.20e-03 2.59e+03

pspline(age, 3), nonlin 1.09e+01

DF p

sexM 1.00 <2e-16

pspline(age, 3), linear 1.00 <2e-16

pspline(age, 3), nonlin 2.09 0.0048

Iterations: 7 outer, 20 Newton-Raphson

Theta= 0.989

Degrees of freedom for terms= 1.0 3.1

Likelihood ratio test=2629 on 4.09 df, p=<2e-16

n= 7874, number of events= 2169

> termplot(fit1, term=2, se=TRUE, col.term=1, col.se=1,

ylab="log hazard")

6

50 60 70 80 90 100

−
1

0
1

2
3

4
5

age

lo
g

ha
za

rd

We used a pspline term rather than ns, say, because the printout for a pspline nicely
segregates the linear and non-linear age effects. The non-linearity is not very large, as compared
to the linear portion, but still may be important.

We would like to go forward and fit separate age curves for the males and the females, since
the above fit makes an untested assumption that the male/female ratio of death rates will be
the same at all ages. The primary problem is that a formula of sex * pspline(age) does not
work; the coxph routine is not clever enough to do the right thing automatically for pspline

interactions. (Perhaps some future version will be sufficiently intelligent, but don’t hold your
breath).

As a first solution we will use regression splines, i.e., splines that can be represented using a
basis matrix.

> options(show.signif.stars=FALSE) # display statistical intellegence

> require(splines, quietly=TRUE)

> nfit1 <- coxph(Surv(futime, death) ~ sex + age, flchain)

> nfit2 <- coxph(Surv(futime, death) ~ sex + ns(age, df=3), flchain)

> nfit3 <- coxph(Surv(futime, death) ~ sex * ns(age, df=3), flchain)

> anova(nfit1, nfit2, nfit3)

Analysis of Deviance Table

Cox model: response is Surv(futime, death)

Model 1: ~ sex + age

Model 2: ~ sex + ns(age, df = 3)

Model 3: ~ sex * ns(age, df = 3)

7

loglik Chisq Df P(>|Chi|)

1 -17558

2 -17554 8.8627 2 0.0119

3 -17552 4.4947 3 0.2128

The nonlinear term is significant but the interaction is not. Nevertheless we would like to plot
the two estimated curves for nfit3, expecting that they will be approximately parallel. The
termplot routine is not able to deal with models that have an interaction and will bow out with
a warning message; we use explicit prediction instead, which is nearly as easy.

> pdata <- expand.grid(age= 50:99, sex=c("F", "M"))

> pdata[1:5,]

age sex

1 50 F

2 51 F

3 52 F

4 53 F

5 54 F

> ypred <- predict(nfit3, newdata=pdata, se=TRUE)

> yy <- ypred$fit + outer(ypred$se, c(0, -1.96, 1.96), '*')

> matplot(50:99, exp(matrix(yy, ncol=6)), type='l', lty=c(1,1,2,2,2,2),

lwd=2, col=1:2, log='y',

xlab="Age", ylab="Relative risk")

> legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n')

> abline(h=1)

The ns function generates a basis of dummy variables to represent the spline, which will work
automatically in interactions. The coefficients that result are not very interpretable, but the
result of predict is invariant to this. The issues as compared to using termplot are

1. We need to provide our own set of predictor values for the plot, whereas termplot would
automatically use the set of unique age and sex values.

2. Keeping track of the indexing. The predict function produces two vectors each of length
nrow(pdata) with a predicted value and its standard error, one value for each row of
pdata. The data set is in order of females, then males. We fold it into an appropriate
matrix for use with matplot.

3. The vertical centering of the curves corresponds to an average population predictor ofη =
Xβ = 0; i.e., the average over the subjects in the data set. This is a consequence of
the variable centering that coxph does for numerical stability. To center at some partic-
ular (age, sex) pair obtain the predicted value for that fictional subject and subtract the
resulting value from yy.

To create the same figure with pspline curves it is necessary to code the males and females
as two separate terms. To do this create our own dummy variables to handle the interaction.

8

> agem <- with(flchain, ifelse(sex=="M", age, 60))

> agef <- with(flchain, ifelse(sex=="F", age, 60))

> fit2 <- coxph(Surv(futime, death) ~ sex + pspline(agef, df=3)

+ pspline(agem, df=3), data=flchain)

> anova(fit2, fit1)

Analysis of Deviance Table

Cox model: response is Surv(futime, death)

Model 1: ~ sex + pspline(agef, df = 3) + pspline(agem, df = 3)

Model 2: ~ sex + pspline(age, 3)

loglik Chisq Df P(>|Chi|)

1 -17551

2 -17554 5.8211 2.8583 0.1096

You might well ask why we used 60 as a dummy value of agem for the females instead of 0? If a
value of 0 is used it forces the pspline function to create a basis set that includes all the empty
space between 0 and 50, and do predictions at 0; these last can become numerically unstable
leading to errors or incorrect values. Best is to pick a value close to the mean, though any value
within the range will do. For this plot we will use a 65 year old female as the reference.

> # predictions

> pdata2 <- pdata

> pdata2$agem <- with(pdata2, ifelse(sex=="M", age, 60))

> pdata2$agef <- with(pdata2, ifelse(sex=="F", age, 60))

> ypred2 <- predict(fit2, pdata2, se=TRUE)

> yy <- ypred2$fit + outer(ypred2$se, c(0, -1.96, 1.96), '*')

> # reference

> refdata <- data.frame(sex='F', agef=65, agem=60)

> ref <- predict(fit2, newdata=refdata, type="lp")

> # plot

> matplot(50:99, exp(matrix(yy-ref, ncol=6)), type='l', lty=c(1,1,2,2,2,2),

lwd=2, col=1:2, log='y',

xlab="Age", ylab="Relative risk")

> legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n')

> abline(h=1)

9

50 60 70 80 90 100

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

20
0.

0

Age

R
el

at
iv

e
ris

k

Female
Male

The final curves for males and female are not quite parallel, most of the difference is at the
highest ages, however, where there are very few subjects. One thing the plot does not display is
that the spacing between the male and female points also has a standard error. This moves the
entire bundle of three red curves up and down. It is not clear how best to add this information
into the plot. For questions of parallelism and shape, as here, it seemed best to ignore it, which is
what the termplot function also does. If someone were reading individual male/female differences
off the plot a different choice would be appropriate.

10

