
Tntnet quick start

Authors: Tommi Mäkitalo, Andreas Welchlin

This quick start includes:

• how to install tntnet

• build and run your first application

• explanation of this first application

• further readings

Tntnet is developped and tested with linux. It is known to run on Sun Solaris,
IBM AIX and freeBSD.

Installation

For installing Tntnet you need to install cxxtools before.

You find cxxtools on the tntnet homepage
http://www.tntnet.org/download.hms and install it with:

tar xzf cxxtools-2.0.tar.gz
cd cxxtools-2.0
./configure
make
su -c 'make install'

Same installation-procedure with tntnet. Install it with:

tar xzf tntnet-2.0.tar.gz
cd tntnet-2.0
./configure
make
su -c 'make install'

Now you have a working Tntnet-Environment.

How to create your first webapplication

To create a webapplication it is necessary to create some initial projectfiles.
This is achieved by entering:

tntnet-config --project=myfirstproject

This creates:

• a directory “myfirstproject”

• a source-file “myfirstproject.ecpp” containing your application

• a configurationfile “tntnet.conf”

http://www.tntnet.org/download.bhtm

• a property-file for logging-configuration “tntnet.properties”

• a Makefile

To build the application change to the new directory and execute „make“.

To run the application enter „tntnet -c tntnet.conf“.

Now you can start your Webbrowser and navigate to
http://localhost:8000/myfirstproject.

You can see the result of your first running tntnet-application, which prints
the name of the application.

What have we done?

The sourcefile myfirstproject.ecpp has been translated to c++. This c++
programm was used to build a shared library which contains the whole
webapplication.

A tntnet-webapplication is a simple web-page with special tags like <$... $>.
The ecppc-compiler creates a c++-sourcefile and a headerfile with the same
basename. They include a class, which has also the same named as the file.
You can look into the generated code, if you want and sometimes it is useful to
read it for further understanding of tntnet-applications. If the c++-compiler
has problems with your application it is also the best choice to look into the
generated code.

Please keep in mind that the linenumbers which are printed by the c++-
compiler on errors correspond to the generated cpp-file. They are not the
linenumbers of your ecpp-source.

The tags <$... $> include a c++-expression. The result of the expression is
printed into the resulting page, when the page is requested (on runtime).
Therefore a std::ostream is used, so that the type of the result can be any
object, which has an outputoperator operator<<(ostream&, T) defined.

The configurationfile „tntnet.conf“ has 3 configurationvariables. “Listen”
configures the (local) IP-adress and tcp-port, where tntnet will listen for
incoming requests. If no port is configured, the default is 80, which is
normally only possible when tntnet runs with root privileges.

The variable “PropertyFile” tells tntnet, where to find the logging-
configuration.

The entry “MapUrl” is the most important one. It tells tntnet what to do with
incoming requests. Without this entry, tntnet answeres every request with
„http-error 404 – not found“. “MapUrl” maps the url - which is sent from a
webbrowser - to a tntnet-component. A component is the piece of code, which
is normally generated by the ecpp-compiler (ecppc).

http://localhost.8000/myfirstproject

That's what we did obove with myfirstproject.ecpp. Components are identified
by their (class-)name and the shared library which contains this class. We
named our class “myfirstproject” and our shared library “myfirstproject.so”.
The component-identifier is then myfirstproject@myfirstproject .

So “MapUrl” tells tntnet to call this component, when the url /test.html is
requested.

How to add an image to your webapplication

A nice webapplication is colorfull and has some images. Let's add one.

Create or fetch some pictures. Say you have a picture “picture.jpg”. Put it into
your working-directory.

Modify your html-page “myfirstproject .ecpp” to show an image, first:

<html>
 <head>
 <title>ecpp-application myfirstproject</title>
 </head>
 <body>
 <h1>myfirstproject</h1>

 </body>
</html>

Next we compile the modified webpage including the picture and link
everything together. We need to tell the ecpp-compiler (ecppc), that the
picture is a binary file and which mime-type to generate. The flag -b tells
ecppc not to look for tags like <$...$>. The component needs to tell the
browser the mime-type which is “image/jpg” for your picture. The option -m is
used to tell ecppc the mime-type. The picture will be compiled into the
component.

ecppc myfirstproject.ecpp
g++ -c -fPIC myfirstproject.cpp
ecppc -b -m image/jpeg picture.jpg
g++ -c -fPIC picture.cpp
g++ -o myfirstproject.so -shared myfirstproject.o picture.o -lecpp

But you can compile this easier by editing the generated Makefile and change
the line:

myfirstproject.so: myfirstproject.o

to:

myfirstproject.so: myfirstproject.o picture.o

Before tntnet is started it is necessary to extend our configuration. Tntnet
needs to know, that “picture.jpg” is found in the shared library
“myfirstproject.so”. Our new tntnet.conf looks like this:

MapUrl /myfirstproject.html myfirstproject@myfirstproject
MapUrl /picture.jpg picture@myfirstproject
Listen 0.0.0.0 8000
PropertyFile tntnet.properties

Now we start our modified webapplication which is found in myfirstproject.so.
Start tntnet like before and look at the modified page including your image.

Generalise the configuration

When adding new pages to tntnet applications you have to ensure, that tntnet
finds all the components. Until now we have added each single component
into tntnet.conf. There is a way to generalise it by using regular expressions.
Just modify tntnet.conf like this:

MapUrl /(.*).html $1@ myfirstproject
MapUrl /(.*).jpg $1@ myfirstproject
Listen 0.0.0.0 8000
PropertyFile tntnet.properties

Every request will be checked by tntnet for matching the first of all regular
expressions which are defined. Every request with the suffix “.html” or “.jpg”
makes tntnet to look for a component with the basename of the request. Ok –
there is one funny thing in our configuration: we get our picture with
http://localhost:8000/picture.html. But tntnet does not care and nor does the
browser.

Adding some C++-processing

Tntnet is made for writing web applications in C++. In the first example you
saw one type of tag: <$...$>. This encloses a C++-expression, which is
evaluated and printed on the resulting page.

Web applications often need to do some processing like fetching data from a
database or something. The tags <{ ... }> enclose a C++-processing-block.
This C++-code is executed, when a browser sends a request to fetch the page.

As a short form you can put the character '%' into the first column, which
means, that the rest of the line is C++.

We change our myfirstproject.ecpp to look like that:

<html>
 <head>
 <title>ecpp-application myfirstproject</title>
 </head>
 <body>

 <h1>myfirstproject</h1>
 <{
 // we have a c++-block here
 double arg1 = 1.0;
 double arg2 = 3.0;
 double result = arg1 + arg2;
 }>
 <p>
 <$ arg1 $> + <$ arg2 $> =
% if (result == 0.0) {
 nothing
% } else {
 <$ result $>
% }
 </p>
</body>
</html>

Compile and run the application with:

make
tntnet -c tntnet.conf

Maybe we should call it calc.ecpp. Sounds like a better name for a little
calculator.

But to be a real calculator the user should be able to enter the values. There is
a solution to this, so go on reading.

Processing parameters

Html has forms for dealing with user input. Forms send their values to a web
application. The application needs to receive these values as parameters.
Tntnet supports this by using the ecpp-tags <%args> ... </%args> which
enclose a parameter definition.

Let's start with a simple example:

<%args>
namefield;
</%args>
<html><body>
<form>
What's your name?
<input type=”text” name=”namefield”>
<input type=”submit”>
</form>
<hr>
Hello <$ namefield $>
</body></html>

We put a variablename into an args-block. This defines a C++ variable of type
std::string, which receives the value of the request parameter. The first time
we call our application, there are no parameters, so 'namefield' is an empty
string.

It is possible to define some an non-empty default value by changing the
definition to:

<%args>
namefield = “World!”;
</%args>

The first time our application is called we get this famous “Hello World!”-
output (sorry that it took so long until you get it).

Now we know all instruments which are needed to create a slightly more
functional calculator:

<%args>
arg1;
arg2;
</%args>
<{
 double v1, v2;
 std::istringstream s1(arg1);
 s1 >> v1;
 std::istringstream s2(arg2);
 s2 >> v2;
}>
<html><body>
<form>
<input type=”text” name=”arg1” value=”<$arg1$>”>
+
<input type=”text” name=”arg2” value=”<$arg2$>”>
% if (s1 && s2) { // if both input-streams were successful extracting values
= <$ v1 + v2 $>
% }
</form>
</body></html>

Modularise a web application

A great feature of tntnet is the possibility to create web pages by calling
subroutines. You can create small html-snippets and put them together into
one big page. First we create a menu, so we create a file with the name
menu.ecpp:

Page 1

Page 2

Page 3

Page 4

Now we create 4 pages page1.ecpp to page4.ecpp with some content. We
want our menu to be on each of our pages and the following code shows how
the menu-component is embedded.

This is page 1:

<html>
<body>

<table>
 <tr>
 <td><& “menu” &></td>
 <td><h1>Here is page 1</h1></td>
 </tr>
</table>
</body>
</html>

It should not be too hard to derive page 2 to 4 from here. Our Makefile looks
like this:

OBJECTS=page1.o page2.o page3.o page4.o menu.o
CC=g++
CXXFLAGS=-fPIC

%.cpp %.h: %.ecpp
 ecppc $<

pages.so: $(OBJECTS)
 g++ -o $@ -shared -ltntnet $^

The configuration does not differ too much from the first example. Just replace
@myfirstproject with @pages, because our module name is now pages.so
instead of myfirstproject.so.

Call “make” to compile it and as usual run the application with “tntnet -c
tntnet.conf”.

A block <& ... &> contains a subcomponent-call. In our simple case we have a
normal C++-string-constant here. It can be also a variable or a functioncall,
which returns a std::string.

Further Readings

• tntnet users guide (tntnet.pdf)

• Tntnet configuration-reference (tntnet-configuration.pdf)

• The demo programs in directory “sdk/demos”

	Installation
	How to create your first webapplication
	What have we done?
	How to add an image to your webapplication
	Generalise the configuration
	Adding some C++-processing
	Processing parameters
	Modularise a web application
	Further Readings

