1 Module Documentation 1

1 Module Documentation

1.1 Weighted Constraint Satisfaction Problem file format (wcsp)

It is a text format composed of a list of numerical and string terms separated by spaces. Instead of using names
for making reference to variables, variable indexes are employed. The same for domain values. All indexes start at
zero.

Cost functions can be defined in intention (see below) or in extension, by their list of tuples. A default cost value is
defined per function in order to reduce the size of the list. Only tuples with a different cost value should be given
(not mandatory). All the cost values must be positive. The arity of a cost function in extension may be equal to zero.
In this case, there is no tuples and the default cost value is added to the cost of any solution. This can be used to
represent a global lower bound constant of the problem.

The wesp file format is composed of three parts: a problem header, the list of variable domain sizes, and the list of
cost functions.

+ Header definition for a given problem:

<Problem name>

<Number of variables (N)>

<Maximum domain size>

<Number of cost functions>

<Initial global upper bound of the problem (UB)>

The goal is to find an assignment of all the variables with minimum total cost, strictly lower than UB. Tuples
with a cost greater than or equal to UB are forbidden (hard constraint).

Definition of domain sizes

<Domain size of variable with index 0>

<Domain size of variable with index N - 1>

Note

domain values range from zero to size-1
a negative domain size is interpreted as a variable with an interval domain in [0, —size — 1]

Warning

variables with interval domains are restricted to arithmetic and disjunctive cost functions in intention
(see below)

« General definition of cost functions

— Definition of a cost function in extension

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
<Default cost value>
<Number of tuples with a cost different than the default cost>

followed by for every tuple with a cost different than the default cost:

<Index of the value assigned to the first variable in the scope>

<Index of the value assigned to the last variable in the scope>
<Cost of the tuple>

Generated by Doxygen

Note

Shared cost function: A cost function in extension can be shared by several cost functions with
the same arity (and same domain sizes) but different scopes. In order to do that, the cost function
to be shared must start by a negative scope size. Each shared cost function implicitly receives
an occurrence number starting from 1 and incremented at each new shared definition. New cost
functions in extension can reuse some previously defined shared cost functions in extension by
using a negative number of tuples representing the occurrence number of the desired shared cost
function. Note that default costs should be the same in the shared and new cost functions. Here
is an example of 4 variables with domain size 4 and one AllDifferent hard constraint decomposed
into 6 binary constraints.

— Shared CF used inside a small example in wcsp format:

AllDifferentDecomposedIntoBinaryConstraints 4 4 6 1
44 4 4
-2 01014

-1
-1
-1
-1
-1

DN NNWN P O
NHE PR OO WNR O
W whwN ==

oo ooo

— Definition of a cost function in intension by replacing the default cost value by -1 and by giving its keyword
name and its K parameters

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
-1

<keyword>

<parameterl>

<parameterK>

Possible keywords of cost functions defined in intension followed by their specific parameters:

 >= cst delta to express soft binary constraint « > y + ¢st with associated cost function maxz((y + cst —x <
delta)?(y + cst — x) : UB,0)

« > cst deltato express soft binary constraint z > y+cst with associated cost function max((y+cst+1—x <
delta)?(y+cst+1—x) : UB,0)

<= cst deltato express soft binary constraint x < y + cst with associated cost function max((z — cst —y <
delta)?(x — cst —y) : UB,0)

+ < cstdeltato express soft binary constraint z < y+cst with associated cost function max((z —cst+1—y <
delta)?(x —cst+ 1 —vy) : UB,0)

« = cst delta to express soft binary constraint z = y + cst with associated cost function (|y + cst — x| <
delta)?|y + cst — x| : UB

« disj cstx csty penalty to express soft binary disjunctive constraint x > y+cstyVy > x+cstx with associated
cost function (z > y + csty V y > = + cstx)?0 : penalty

« sdisj cstx csty xinfty yinfty costx costy to express a special disjunctive constraint with three implicit hard
constraints ¢ < xinfty andy < yinfty and z < xinfty Ay < yinfty = (v > y+cstyVy > x + cstx)
and an additional cost function ((x = xinfty)?costx : 0) + ((y = yinfty)?costy : 0)

+ Global cost functions using a dedicated propagator:

— clique 1 (nb_values (value)x)x to express a hard clique cut to restrict the number of variables taking
their value into a given set of values (per variable) to at most 7 occurrence for all the variables (warning!
it assumes also a clique of binary constraints already exists to forbid any two variables using both the
restricted values)

Generated by Doxygen

1.1 Weighted Constraint Satisfaction Problem file format (wcsp) 3

+ Global cost functions using a flow-based propagator:

salldiff var|dec|decbi costto express a soft alldifferent constraint with either variable-based (var keyword)
or decomposition-based (dec and decbi keywords) cost semantic with a given cost per violation (decbi
decomposes into a binary cost function complete network)

sgcc var|dec|wdec cost nb_values (value lower_bound upper bound (shortage weight excess_«
weight)?)x to express a soft global cardinality constraint with either variable-based (var keyword) or
decomposition-based (dec keyword) cost semantic with a given cost per violation and for each value its
lower and upper bound (if wdec then violation cost depends on each value shortage or excess weights)

ssame cost list_size1 list_size2 (variable_index)x (variable_index)* to express a permutation constraint
on two lists of variables of equal size (implicit variable-based cost semantic)

sregular var|edit cost nb_states nb_initial_states (state)x nb_final_states (state)x nb_transitions (start—
_state symbol_value end_state)x to express a soft regular constraint with either variable-based (var
keyword) or edit distance-based (edit keyword) cost semantic with a given cost per violation followed by
the definition of a deterministic finite automaton with number of states, list of initial and final states, and
list of state transitions where symbols are domain values

» Global cost functions using a dynamic programming DAG-based propagator:

sregulardp var cost nb_states nb_initial_states (state)x nb_final_states (state)x nb_transitions (start_«
state symbol_value end_state)* to express a soft regular constraint with a variable-based (var keyword)
cost semantic with a given cost per violation followed by the definition of a deterministic finite automaton
with number of states, list of initial and final states, and list of state transitions where symbols are domain
values

sgrammar|sgrammardp var|weight cost nb_symbols nb_values start_symbol nb_rules ((0 terminal—

_symbol value)|(1 nonterminal_in nonterminal _out left nonterminal_out right)|(2 terminal_symbol

value weight)|(3 nonterminal_in nonterminal_out_left nonterminal_out right weight))x to express a
soft/weighted grammar in Chomsky normal form

samong|samongdp var cost lower_bound upper_bound nb_values (value)x to express a soft among
constraint to restrict the number of variables taking their value into a given set of values

salldiffdp var costto express a soft alldifferent constraint with variable-based (var keyword) cost semantic
with a given cost per violation (decomposes into samongdp cost functions)

sgccdp var cost nb_values (value lower_bound upper_bound)x to express a soft global cardinality con-
straint with variable-based (var keyword) cost semantic with a given cost per violation and for each value
its lower and upper bound (decomposes into samongdp cost functions)

max|smaxdp defCost nbtuples (variable value cost)x to express a weighted max cost function to find the
maximum cost over a set of unary cost functions associated to a set of variables (by default, defCost if
unspecified)

MST|smstdp to express a spanning tree hard constraint where each variable is assigned to its parent
variable index in order to build a spanning tree (the root being assigned to itself)

+ Global cost functions using a cost function network-based propagator:

wregular nb_states nb_initial_states (state and cost)x nb_final_states (state and cost)x nb_transitions
(start_state symbol _value end_state cost)x to express a weighted regular constraint with weights on
initial states, final states, and transitions, followed by the definition of a deterministic finite automaton
with number of states, list of initial and final states with their costs, and list of weighted state transitions
where symbols are domain values

walldiff hard|linjquad cost to express a soft alldifferent constraint as a set of wamong hard constraint
(hard keyword) or decomposition-based (/in and quad keywords) cost semantic with a given cost per
violation

wgcc hard|lin|quad cost nb_values (value lower_bound upper_bound)« to express a soft global cardi-
nality constraint as either a hard constraint (hard keyword) or with decomposition-based (/in and quad
keyword) cost semantic with a given cost per violation and for each value its lower and upper bound

wsame hard|lin|quad cost to express a permutation constraint on two lists of variables of equal size
(implicitly concatenated in the scope) using implicit decomposition-based cost semantic

Generated by Doxygen

— wsamegcc hard|lin|quad cost nb_values (value lower_bound upper_bound)x to express the combination

of a soft global cardinality constraint and a permutation constraint

— wamong hard|lin|quad cost nb_values (value)x lower_bound upper_bound to express a soft among

constraint to restrict the number of variables taking their value into a given set of values

— wvaramong hard cost nb_values (value)x to express a hard among constraint to restrict the number of

variables taking their value into a given set of values to be equal to the last variable in the scope

— woverlap hard|lin|quad cost comparator righthandside overlaps between two sequences of variables X,

Y (i.e. set the fact that Xi and Yi take the same value (not equal to zero))

— wsum hard|lin|quad cost comparator righthandside to express a soft sum constraint with unit coefficients

to test if the sum of a set of variables matches with a given comparator and right-hand-side value

— wvarsum hard cost comparator to express a hard sum constraint to restrict the sum to be comparator to

Warning

the value of the last variable in the scope
Let us note <> the comparator, K the right-hand-side value associated to the comparator, and Sum the
result of the sum over the variables. For each comparator, the gap is defined according to the distance
as follows:

= if <> is ==:gap = abs(K - Sum)

= if <> is <=:gap = max(0,Sum - K)

« if <>is < : gap = max(0,Sum - K- 1)

« if <>isl=:gap=1if Sum = K and gap = 0 otherwise

= if <>is > :gap =max(0,K-Sum + 1);

= if <>is >=:gap = max(0,K - Sum);

The decomposition of wsum and wvarsum may use an exponential size (sum of domain sizes).
list_size1 and list_size2 must be equal in ssame.

Cost

Note

functions defined in intention cannot be shared.

More about network-based global cost functions can be found here https://metivier.users.«
greyc.fr/decomposable/

Examples:

» quadratic cost function z0 * x1 in extension with variable domains {0, 1} (equivalent to a soft clause —20 V

—xl

20

):

101111

+ simple arithmetic hard constraint z1 < x2:

21

2 -1 <00

« hard temporal disjunction x1 > 22 4+ 2V 22 > z1 + 1:

21

2 -1 disj 1 2 UB

« clique cut ({x0,x1,x2,x3}) on Boolean variables such that value 1 is used at most once:

40

123 -1lcliqguel 11111111

« soft_alldifferent({x0,x1,x2,x3}):

Generated by Doxygen

https://metivier.users.greyc.fr/decomposable/
https://metivier.users.greyc.fr/decomposable/

1.1 Weighted Constraint Satisfaction Problem file format (wcsp) 5

401 2 3 -1 salldiff var 1

soft_gcc({x1,x2,x3,x4}) with each value v from 1 to 4 only appearing at least v-1 and at most v+1 times:
41234 -1sgccvar 1 4102213324435
+ soft_same({x0,x1,x2,x3},{x4,x5,x6,X7}):

801234567 -1ssame 1 44012345¢67

soft_regular({x1,x2,x3,x4}) with DFA (3x)+(4x):

41234 -1sregular var 1 21 02 013030041141

soft_grammar({x0,x1,x2,x3}) with hard cost (1000) producing well-formed parenthesis expressions:

4 012 3 -1 sgrammardp var 1000 4 2 0 6 1 00 0101 210131203010031

soft_among({x1,x2,x3,x4}) with hard cost (1000) if Z?:l(a:i e{1,2}) <1lor Z?Zl(xi € {1,2}) > 3:

4 1 2 3 4 -1 samongdp var 1000 1 3 2 1 2

soft max({x0,x1,x2,x3}) with cost equal to max?_((x;! = i)?1000 : (4 — i)):

40123 -1 smaxdp 1000 4 0 0 4113222331

wregular({x0,x1,x2,x3}) with DFA (0(10)*2:x):

40123 -1lwregular 31 0012090010011 1021111001001120112201021112
1

+ wamong ({x1,x2,x3,x4}) with hard cost (1000) if E?Zl(xi e{1,2}) <1lor Z?Zl(xi € {1,2}) > 3:

4 1 2 3 4 -1 wamong hard 1000 2 1 2 1 3

wvaramong ({x1,x2,x3,x4}) with hard cost (1000) if Z?:1(xi € {1,2}) # z4:

4 12 3 4 -1 wvaramong hard 1000 2 1 2

woverlap({x1,x2,x3,x4}) with hard cost (1000) if Zle(a:i =x40) > 1t
412 3 4 -1 woverlap hard 1000 < 1
- wsum ({x1,x2,x3,x4}) with hard cost (1000) if 37", (x;) # 4:
4 1 2 3 4 -1 wsum hard 1000 == 4
« wvarsum ({x1,x2,x3,x4}) with hard cost (1000) if Z‘le(xz) % Xy4:

4 1 2 3 4 -1 wvarsum hard 1000 ==

Latin Square 4 x 4 crisp CSP example in wesp format:

latin4 16 4 8 1

44 444444444444414
4 01 2 3 -1 salldiff var 1

4 45 6 7 -1 salldiff var 1

4 8 9 10 11 -1 salldiff var 1

4 12 13 14 15 -1 salldiff var 1
4 0 4 8 12 -1 salldiff var 1
415 9 13 -1 salldiff var 1

4 2 6 10 14 -1 salldiff var 1

4 3 7 11 15 -1 salldiff var 1

Generated by Doxygen

4-queens binary weighted CSP example with random unary costs in wcsp format:

4-WQUEENS 4 4 10 5

4 4 4 4

201010

N Wwwwmwnwmwmwnwmwn
O 1O AN —dNMNM

OO " HANNNOM™M

0w wnLwwmwwmwn
O N = MO N — ™M
OO A NNMOMM

0w wnwwnw
oM HNO ™M
OO HNMM

o
—

o
N O " WO LWHWHLWHLWOLWOLW0W
HO A0 AN —ANMNM

NOO == NNNMM

21308

o
—

o
N WLWWW0nLWWwLwWwMLW0nLWLWLWwWmW0nLwWmmwnwm
ON—TMON—TAMNO 4O AN —HNMNM
OO =1 1 ANNMMNANOO - = —dNNNM™M

—

— ™

—

— N

—

— N

—

o N

Generated by Doxygen

	Module Documentation
	Weighted Constraint Satisfaction Problem file format (wcsp)

