
The CFN format (.​cfn ​suffix)

With this JSON compatible format, it is possible:

● to give a name to variables and functions.
● to associate a local label to every value that is accessible inside toulbar2 (among

others for heuristics design purposes).
● to use decimal and possibly negative costs.
● to solve both minimization and maximization problems.
● to debug your ​.cfn ​ files: the parser gives a cause and line number when it fails.
● to use gzip-compressed files directly as input.
● to use dense descriptions for dense cost tables.

In a ​cfn ​ file, a Cost Function Network is described as a JSON object with extra freedom and
extra constraints.

Freedom:

● the double quotes around strings are not compulsory: both ​"problem" ​ and
problem ​ are strings.

● double quotes can also be added around numbers: both 1.20 and “1.20” will be
interpreted as decimal numbers.

● the commas that separates the fields inside an array or object are not compulsory.
Any separator will do (comma, white space). So ​[1, 2] ​ or ​ [1,2] ​ or ​[1 2] ​are
all describing the same array.

● the delimiters for objects and arrays (​{} ​ and ​[] ​) can be used arbitrarily for both
types of items.

● the colon (:) that separate the name of a field in an object from the contents of the
field is not compulsory.

● It is possible to comment a line with a ​# ​ in the first position of a line.
Constraints:

● strings should not start with a character in ​0123456789-.+ ​ and cannot contain
/#[]{} ​ or a space character (tabs…).

● numbers can only be integers or decimals. No scientific notation.
● the orders of fields inside an object is compulsory and cannot be changed.

A CFN is an object with 3 data: a definition of the main problem properties (tag ​problem ​), of
variables and their domains (tag ​variables ​) and of cost functions (tag ​functions ​), in
this order:

{ "problem": <problem properties>,

 "variables": <variables and domains>,

 "functions": <functions descriptions> }

Problem properties:

An object with two fields:

1. "name" ​: the name of the problem.
2. "mustbe" ​ : specifies the direction of optimization and a global (upper/lower) bound

on the objective. This is the concatenation of a comparator (​> ​ or ​< ​) immediately
followed by a decimal number, described as a string. The comparator specifies the
direction of optimization:

○ “<”: we are minimizing and the decimal indicates a global upper bound (all
costs equal to or larger than this are considered as unfeasible).

○ “>”: we are maximizing and and the decimal indicates a global lower bound
(all costs equal to or less than this are considered as unfeasible).

The number of significant digits in the decimal number gives the precision that will be
used for all cost computations inside toulbar2.

An an example, ” ​mustbe”: “<10.00” ​means that the CFN describes a function
where all costs larger than or equal to 10.00 are considered as infinite. All costs will
also be handled with 2 digits of precision after the decimal point.

The two fields must appear in this order:

{ "name": "test_problem", "mustbe": "<-12.100" }

or
{test.problem <12.100}

in a more concise non JSON-compatible form.

Variables and domains:

An object with as many fields as variables. All fields must have different names. The
contents of a variable field can be an array or an integer. An array gives the sequence of
values (defined by their name) of the variable domain. An integer gives the domain
cardinality, without naming values (values are represented by their position in the domain,
starting at 0). If a negative domain size is given, the variable is an interval variable instead of
a finite domain variable and it has domain [0,-domainsize-1].

{ "fdv1": ["a", "b", "c"], "fdv2" : 2, "iv1" : -100}

defines 3 variables, two finite domain variables and 1 interval variable. The first domain
variable has 3 values, ​" ​a​" ​ ​" ​b​" ​ and ​" ​c​" ​. the second has two anonymous values and the
interval variable has domain [0,99].

As an extra freedom, it is possible to give no name to variables. This can be achieved using
an array instead of an object. The example above can therefore be written:

[[a b c] 2 -100] ​or even just​ [3 2 -100]

in a dense non JSON-compatible format.

Functions:

An object with as many fields as functions. Every function is an object with different possible
fields. All functions have a ​scope ​ which is an array of variables (names or indices). The rest
of the fields depends on the type of the cost function: table cost function or global (including
arithmetic functions).

Table cost functions:

Sparse functions format:​ useful for functions that are dominantly constant. A numerical
defaultcost ​ must be given after the scope. The ​costs ​ table must be an array of
tuple.costs: a sequence of value names or indices followed by a numeric cost. The
defaultcost ​ is used to define the cost of any missing tuple.

{"scope": ["fdv1", "fdv2"],

 "defaultcost": 0.234,

 "costs": ["a", 0, 5,

"a", 1, 6.2,

"c", 0, -7.21] }

is a possible sparse function definition. Here only 3 tuples are defined with their costs. All 3
remaining tuples will have cost ​0.234 ​.

Dense function format​ : if the ​defaultcost ​ tag is absent, a complete lexicographically
ordered list of costs is expected instead.

{"scope": ["fdv1", "fdv2"],

 "costs": [4.2, 3.67, -12.1, 7.1, -3.1, 100.2] }

describes the 6 costs of the 6 tuples insides the cartesian product of the two variables
"fdv1" ​and​ "fdv2" ​. To assign costs to tuples, all possible tuples of the cartesian product
are lexicographically ordered using the declared value order in the domain of each variable.
In the example above, the order over the six pairs will be​ ("a",0) ("a",1) ("b",0)
("b",1) ("c",0) ("c",1) ​ that will be associated to the costs ​4.2, 3.67, -12.1,
7.1, -3.1 ​and​ 100.2 ​in this order. This lexicographic ordering is used for all arities.

Shared function format​ : If instead of an array, a string is given for the cost table, then this
string must be the name of a yet undefined function. The actual function will have the same
cost table as the future indicated function (on the specified scope). The domain sizes of the
two functions must match.

{"scope": ["v1", "v3"],

 "costs": "f12" }

defines a function on variables ​v1 ​ and ​v3 ​ that will have the same cost table as the function
f12 ​ that must be defined ​later​ in the file.

Global and arithmetic cost functions

These functions are defined by a ​scope ​, a ​type ​ and ​parameters ​. The ​type ​ is a string
that defines the specific function to use, the ​parameters ​ is an array of objects. The
composition of the ​parameters ​ depends on the ​type ​ of the function.

At this point, in maximization mode, most of the global cost functions have restricted usage
(with the exception of wregular).

Arithmetic functions:

These functions have all arity 2 and it is assumed here that these variables are called andx

. The values are considered as representing their index in the domain and are thereforey
integer. The ​type ​ can be either:

● ">=" ​ : with ​parameters ​ array [,] where cst and are two costs, to expressstc δ δ
cost function . This is a soft inequalityax(0, y st ? y st upperbound)m + c − x ≤ δ + c − x :
with hard threshold . δ

● ">": similar with a strict inequality and semantics
ax(0, y st ? y st upperbound)m + 1 + c − x ≤ δ + 1 + c − x :

● "<=": similar with an inverted inequality and semantics:
ax(0, x st ? x st upperbound)m − c − y ≤ δ − c − y :

● "<": similar with a strict inequality and semantics
ax(0, x st ? x st upperbound)m − c + 1 − y ≤ δ − c + 1 − y :

● ​"=": similar with an equality and semantics: similar with a strict inequality and
semantics y st | ? |y st | upperbound)| + c − x ≤ δ + c − x :

● "disj": takes a ​parameters ​ array to express soft binary disjunctivecstx, csty, w][
cost function with semantics (x sty) y stx)) ? 0 w)(≥ y + c ⋁ (≥ x + c :

● "sdisj": takes a ​parameters ​ array to express acstx, csty, xmax, ymax wx wy][
special disjunctive cost function with three implicit constraints andmax, y maxx ≤ x ≤ y
(and an additional cost functionmax max) x sty stx)x < x ⋀ y < y ⇒ (≥ y + c ⋁ y ≥ x + c

.(x xmax) ? wx 0) (y max? wy 0)(= : + (= y :

example : arithmetic function with >= operator :

"arith0": {"scope": ["v5", "v6"],

 "type": ">=",

 "params": [1, 3]}

Global cost functions:
We use an informal syntactical description of each global cost function below. the “|” is used
for alternative keywords and parentheses together with ?, * and + to denote optional or

repeated groups of items (+ requires that at least one repetition exists). For more details on
semantics and implementation, see:

1. Lee, J. H. M., & Leung, K. L. (2012). Consistency techniques for flow-based
projection-safe global cost functions in weighted constraint satisfaction. ​Journal of
Artificial Intelligence Research​ , ​43​ , 257-292.

2. Allouche, D., Bessiere, C., Boizumault, P., De Givry, S., Gutierrez, P., Lee, J. H., ... &
Wu, Y. (2016). Tractability-preserving transformations of global cost functions.
Artificial Intelligence​ , ​238​ , 166-189.

Using a flow-based propagator:

● "​salldiff ​" with parameters array ​[metric: ​"​var ​"​| ​"​dec ​"​| ​"​decbi ​"​ cost:
cost] ​ expresses a soft alldifferent with either variable-based (​var ​ keyword) or
decomposition-based (​dec ​ and ​decbi ​ keywords) cost semantic with a given ​cost
per violation (​decbi ​ decomposes into a complete binary cost function network).

○ example :
"f1": {"scope": ["v1" "v2" "v3" "v4"],

 "type": "salldiff",

 "params": {"metric": "var" "cost": 0.7}}

generates a cost of 0.7 per variable assignment that needs to be changed for
all variables to take a different value.

● "sgcc" ​ with parameters array ​[metric:"var"|"dec"|"wdec" cost: cost

bounds: [[value lower_bound upper_bound (shortage_weight

excess_weight)?]∗] ​ expresses a soft global cardinality constraint with either
variable-based (​var ​ keyword) or decomposition-based (​dec ​ keyword) cost semantic
with a given ​cost ​ per violation and for each value its ​lower ​ and ​upper ​ bound
(​value shortage ​ and ​excess weights ​ penalties must be given iff ​wdec ​ is
used).

○ example :
name: {scope: [v1 v2 v3 v4]

 type: sgcc

 params: {metric: wdec

 cost: 0.5

 bounds: [[0 1 2 0.2 0.2]

 [1 3 4 0.2 0.1]]}}

● "ssame" ​ with parameters array ​[cost: cost vars1: [(variable)∗]
vars2: [(variable)∗]] ​ to express a permutation constraint on two lists of
variables of equal size with implicit variable-based cost semantic

○ example :
 ​name: {scope: [v1 v2 v3 v4]
 type : ssame

 params : {

 cost : 6.2

 vars1 : [v1 v2]

 vars2 : [v3 v4]

 }

 }

● "sregular" ​with parameters array ​[metric: "var"|"edit" cost: cost
starts: [(state)∗] ends: [(state)∗] transitions:

[(start-state symbol_value end_state)∗]] ​ to express a soft regular
constraint with either variable-based (​var ​ keyword) or edit distance-based (​edit
keyword) cost semantics with a given ​cost ​ per violation followed by the definition of
a deterministic finite automaton with arrays of initial and final states, and an array of
state transitions where symbols are domain values indices.

○ example :
name: {scope: [v1 v2 v3 v4]

 type : sregular

 params : {

 metric: var

 cost: 1.0

 nb_states: 2

 starts: [0]

 ends: [0 1]

 transitions: [[0 0 0][0 1 1][1 1 1]]

 }

 }

Global cost functions using a dynamic programming DAG-based propagator:

● "sregulardp" ​ with parameters array ​[metric: "var" cost: cost
nb_states: nb_states starts: [(state)∗] ends: [(state)∗]

transitions: [(start_state value_index end_state)∗] ​ to express a
soft regular constraint with a variable-based (​var ​ keyword) cost semantic with a
given ​cost ​ per violation followed by the definition of a deterministic finite automaton
with arrays of initial and final states, and an array of state transitions where symbols
are domain value indices.

○ example: see sregular above.

● "sgrammar"|"sgrammardp" ​ with parameters array​ [metric:
"var"|"weight" cost: cost nb_symbols: nb_symbols nb_values:

nb_values start: start_symbol terminals: [(terminal_symbol

value (cost)?)*] non_terminals: [(nonterminal_in

nonterminal_out_left nonterminal_out_right (cost)?)*] ​ to express
a soft/weighted grammar in Chomsky normal form. The costs inside the rules and
terminals should be used only with the ​weight ​metric.

○ example:
 name: {scope: [v1 v2 v3 v4]

 type : sgrammardp

 params: {

 metric : var

 cost : 1.012

 nb_symbols : 4

 nb_values : 2

 start : 0

 terminals : [[1 0][3 1]]

 non_terminals : [[0 0 0][0 1 2][0 1 3][2 0 3]]

 }

 }

● "samong"|"samongdp" ​ with parameters array ​[metric: "var" cost: cost
min: lower_bound max: upper_bound values: [(value)∗]] ​ to
express a soft among constraint to restrict the number of variables taking their value
into a given set of value indices

○ example:
name: {scope: [v1 v2 v3 v4]

 type : samong

 params: {

 metric : var

 cost : 1.0

 min: 2

 max: 2

 values: [0]

 }

 }

● "salldiffdp" ​ with parameters array ​[metric: "var" cost: cost] ​ to

express a soft alldifferent constraint with variable-based (​"var" ​ keyword) cost
semantic with a given cost per violation (decomposes into ​samongdp ​ cost functions)

○ example:
 name: {scope: [v1 v2 v3 v4]

 type: salldiffdp

 params: {metric: var

 cost: 0.7

 }

 }

● "sgccdp" ​ with parameters array ​[metric: "var" cost: "cost" bounds:

[(value lower_bound upper_bound)∗]] ​ to express a soft global cardinality
constraint with variable-based (​"var" ​ keyword) cost semantic with a given cost per
violation and for each value its lower and upper bound (decomposes into ​samongdp
cost functions)

○ example:
 name: {scope: [v1 v2 v3 v4]

 type: sgccdp

 params: {

metric: var

cost: 1.1

bounds: [[0 0 1] [1 2 3]]

}

 }

● "max|smaxdp" ​ with parameters array ​[defaultcost: defcost tuples:

[(variable value cost)∗]] ​ to express a weighted max cost function to find
the maximum cost over a set of unary cost functions associated to a set of variables
(by default, ​defCost ​ if unspecified)

○ example:
 name: {scope: [v1 v2 v3 v4]

 type : smaxdp

 params: {

 defaultcost: 3

 tuples: [[0 0 4] [1 1 3][2 2 2][3 3 1]]

}

 }

● "MST"|"smstdp" ​ with empty parameters expresses a hard spanning tree

constraint where each variable is assigned to its parent variable index in order to
build a spanning tree (the root being assigned to itself)

○ example:
 name: { scope: [v1 v2 v3 v4]

 type: MST params: []}

Global cost functions using a cost function network-based propagator (decompose to
bounded arity table cost functions):

● "wregular" ​ with parameters ​nb_states: nbstates starts: [[state
cost]∗] ends: [[state cost]∗] transitions: [[state

value_index state cost]∗] ​ to express a weighted regular constraint with
weights on initial states, final states, and transitions, followed by the definition of a
deterministic finite automaton with number of states, list of initial and final states with
their costs, and list of weighted state transitions where symbols are domain value
indices
example :

 name: {scope: [v1 v2 v4 v3]

 type : wregular

 params: {

 nb_states: 4

 starts : [[0 0.0][1 0.5]]

 ends : [[2 -1.0] [3 0.0]]

 transitions : [[0 0 1 0.5][0 1 2 0.0]

 [2 0 2 1.0][1 1 3 -1.0]]

 }

 }

● "walldiff" ​ with parameters array ​[hard|lin|quad] ​ cost to express a soft
alldifferent constraint as a set of wamong hard constraint (​hard ​ keyword) or
decomposition-based (​lin ​ and ​quad ​ keywords) cost semantic with a given cost per
violation.

○ example:
 name: {scope: [v1 v2 v3 v4]

 type : walldiff

 params: {

 metric: lin

 cost: 0.8

 }

 }

● "wgcc" ​ with parameters metric: ​hard|lin|quad cost: cost bounds:
[[value lower_bound upper_bound]∗] ​ to express a soft global cardinality
constraint as either a hard constraint (​hard ​ keyword) or with decomposition-based
(​lin ​ and ​quad ​ keyword) cost semantic with a given cost per violation and for each
value its lower and upper bound

○ example:
 name: {scope: [v1 v2 v3 v4]

 type : wgcc

 params: {

 metric: lin

 cost: 3.3

 bounds: [[0 0 1][1 2 2][2 0 1]]

 }

 }

● "wsame" ​ with parameters a​metric: hard|lin|quad cost: cost ​ to express

a permutation constraint on two lists of variables of equal size (implicitly
concatenated in the scope) using implicit decomposition-based cost semantic

○ example:
 name: { scope: [v1 v2 v3 v4]

 type : wsame

 params: {

 metric: lin

 cost: 3.3

 }

 }

● " ​wsamegcc​" ​ with parameters array​ metric: hard|lin|quad cost: cost

bounds: [[value lower_bound upper_bound]∗] ​ to express the
combination of a soft global cardinality constraint and a permutation constraint.

○ example:
 name: {scope: [v1 v2 v3 v4]

 type : wsamegcc

 params: {

 metric: lin

 cost: 3.3

 bounds: [[0 0 1][1 0 1][2 0 1][3 0 0]]

 }

 }

● "wamong" ​ with parameters ​metric: hard|lin|quad cost: cost values:
[(value)∗] min: lower_bound max: upper_bound ​ to express a soft
among constraint to restrict the number of variables taking their value into a given set
of values.

○ example:
 name: {scope: [v1 v2 v3 v4]

 type: wamong

 params: {

 metric: lin

 cost: 1

 values: [0]

 min: 1

 max: 1

 }

 }

● "wvaramong" ​ with parameters array ​metric: hard cost: cost values:

[(value)∗] ​ to express a hard among constraint to restrict the number of variables
taking their value into a given set of values to be equal to the last variable in the
scope.

○ example:
 name: {scope: [v1 v2 v3 v4 v5]

 type: wvaramong

 params: {

 metric: hard

 cost: 12.0

 values: [1]

 }

 }

● "woverlap" ​ with parameters ​metric: hard|lin|quad cost: cost

comparator: comparator to: righthandside] ​overlaps between two
sequences of variables X, Y (i.e. set the fact that Xi and Yi take the same value (not
equal to zero))

○ example:
 name: {scope: [v1 v2 v3 v4]

 type: woverlap

 params: {

 metric: hard

 cost: 2.01

 comparator: >

 to: 1

}

 }
● "wsum" ​with parameters matric: ​hard|lin|quad cost: cost comparator:

comparator to: righthandside ​ to express a soft sum constraint with unit
coefficients to test if the sum of a set of variables matches with a given comparator
and right-hand-side value.

○ example:
 name: {scope: [v1 v2 v3 v4]

 type: wsum

 params: {

 metric: quad

 cost: 1.0

 comparator: "<="

 to: 4

 }

 }

● "wvarsum" ​with parameters ​metric: hard cost: cost comparator:

comparator ​ to express a hard sum constraint to restrict the sum to be comparator
to the value of the last variable in the scope.

○ example:
 mywsum: {scope: [v1 v2 v3 v4]

 type : wvarsum

 params: {

 metric: hard

 cost: 3

 comparator: "=="

 }

 }

Comparators: let us note <> the comparator, K the right-hand-side (to:) value
associated to the comparator, and Sum the result of the sum over the variables. For
each comparator, the gap is defined according to the distance as follows:

○ if <> is == : gap = abs(K - Sum)
○ if <> is <= : gap = max(0,Sum - K)
○ if <> is < : gap = max(0,Sum - K - 1)
○ if <> is != : gap = 1 if Sum != K and gap = 0 otherwise
○ if <> is > : gap = max(0,K - Sum + 1);
○ if <> is >= : gap = max(0,K - Sum);

Warning: the decomposition of ​wsum ​ and ​wvarsum ​ may use an exponential size (sum of
domain sizes). list_size1 and list_size2 must be equal in ​ssame ​.

