Toulbar2
Testing and benchmarking doc

toulbar2 is able to perform benchmarking and tests using cmake and perl scripts (cf.
cmake script directory and misc/script directory). The current document describes the
testing procedure in the toulbar2 project.

i) Validation tests

The validation tests perform “unit” tests (testing one mode of toulbar2). If you modified toulbar2
code, you may quickly want to check if the new code produces the correct result for a given set
of wesp problem. This is easily achieved by executing the following commands :

mkdir build
cd build
cmake ..
make

make test

The cmake script is going to scan the . /validation directory located in the root of the
project. For each file found with a “.wcsp” extension, a unit test will be generated with an
associated error detection. The error detection happens during test execution, if a string
defined in the test is not found in the test output. The “end.” string (the final word in a toulbar2
execution) is used by default for each test. However, if a . ub file containing the right optimal
cost is located in the same directory of a given instance, this value will be extracted from the
files and used to detect inconsistent result for the related test.

Overall, for each foo.wcsp fileifa foo.ub file is found in the same directory, a test is
produced and an error raised if the optimum computed by the toulbar2 execution is different
from the value in the . ub file.

Exemple: validation/default/example.wcsp and

validation/default/example.ub (containing just “27”) exist and toulbar2 will be tested
on the wcsp file with a detected error if the optimal cost differs from 27. Actually, ctest launches
toulbar2 example.wcsp and extracts the output. By default “end.” is sought or otherwise
an optimal cost identified through a defined regular expression is checked (cf. toulbar2 output).

ANY

Optimum: 27 in 106 backtracks and 215 nodes (278 removals by DEE) and
0.02 seconds.

end.

”

NB: a timeout is used for each test. The default timeout value is 20 seconds and it can be
modified in two ways:

1. by editing the test-opt.cmake file located in each test directory. Here is an example
of a test-opt.cmake file:

set (command line option -B=0 -v -e:)
test timeout (used for all wcsp founded in the directory
1n this case test timeout 1is set to 100 second

set (test timeout 100)

#regex to define successful end.

cmake var SUB will be grab into the test output using the
following regular expression

set (test regexp "Optimum: ${UB}")

NB: when a test-option.cmake file cannot be found in a given directory, test_timeout,
option, location and test activation are globally set by the cmake or ccmake command s(i..,e
‘ccmake ..” from build directory). One can customise the default values by modifying the
following variables:

Default bench timeout 30 # default timeout (seconds)
Default regexp end. # default regexp

Default test option -v # default toulbar2 option
Default validation dir validation # default root directory

COVER TEST OFF # flag for cover test activation
Default cover dir cover

BENCH OFF

Default BenchDir benchmarks

Default BenchFormat wCSp

Default bench option TOULBARZ OPTION

Default bench regexp “test ok”

Command line option and test regexp can be modified for specific test purposes: you
can customize your own test specifying your own option, duration and location (relative path
from the root directory of the toulbar2 project).

ii) Cover test

Cover tests have been developed to check non-regression of new toulbar2 binary releases. We
want to test a given benchmark set with different toulbar2 options in order to check if new codes
modifications haven’t impacted the global behaviour of Toulbar2.

In the cover directory directory, in addition to the test option.cmake, a

cover test.cmake file contains a double entry list allowing to perform several tests with
different options on the same instance. A given “.wcsp” file declared in the Sinstances array
will generate N tests corresponding to each element of the command lines stored into the
cmake array named as the benchmark file.

The following example describes a minimal test _option.cmake:

The file must define a “instances” variable as a set of benchmark
files. For each file, a specific set of options can be used.

Example: if “instances” contains “foo.wcsp”, the “foo.wcsp”

variable defines the list of options to test on this file: each

element of the foo.wcsp variable will create a unit test with the
foo.wcsp instance and the toulbar2 options given in the “foo.wcsp”
variable.

SET (instances CELAR6-SUBO.wcsp CELAR6-SUBl.wcsp)

please beware to use one space between each file

SET (CELAR6-SUBO.wcsp
n_pm
"-A -S -ub=160"
n_p —yn
"-A -V -ub=160"
"-A=10 -V"
"-A=10"
"-A=10 -V"
"-A=10 -v"
n_B=Q"
n_g=1"
"-B=1 -z"
"-B=1 -7 -R=1"
n_p=omn
n_p=3"
)

SET (CELAR6-SUBIl.wcsp
n_p"
AP Gy AL
"_B=2o"
"_p=3"
)

This example will generate 14 and 4 different tests on CELAR6-SUBO .wcsp and
CELAR6-SUB1.wcsp. The whole set can be tested using the make test command.

3) Benchmarking

Discrete graphical model optimisation is an NP Hard problem and experimentation on various
benchmark provides essential metrics. In this section, we want to apply toulbar2 onto a given
set of instances and extract metrics from toulbar2 output and generate a report containing all
metrics on all instances and global information such as the overall total number of solved
instances. For this, perl has to be installed on your workstation. On debian derived machines
this can be achieved by executing “sudo apt-get install perl perl-modules ”

The perl scripts developed for benchmarking are:

misc/script/run test.pl* /* simple perl launcher for toulbar2 bench test
misc/script/exp opt.pl* /
misc/script/make report.pl*
misc/script/MatchRegexp.txt

They use the following perl module (available in debian based distributions in the
perl-modules debian package):

use File::Basename;
use List::Util ;
use Getopt::Long;

use Pod::Usage;
use File::Copy;

Benchmarking step by step

The following instructions assume that a dedicated directory has been created:

mkdir Build bench, cd Build bench; ccmake

The benchmarking mode can be activated using the ccmake interface and the following options
(by default benchmark are OFF, validation test and cover test are ON):

BENCH *OFF

COVER_TEST *ON

Default BenchDir *benchmarks /* benchmark location
Default BenchFormat *wcsp /* extension definition
Default bench timeout *30 /* default timeout
Default cover dir *cover /* cover test location
Default regexp *end. /* default regexp
Default test option * /* default option

If you want activate the toulbar2 benchmark mode you must first set the first cmake variable to
ON and COVER _test to OFF. In this case, wcsp benchmark have to be located in the
benchmark directory and will be executed with a 30 seconds timeout .

In the current example, the toulbar2/benchmark directory includes the following files:

./benchmarks/zebra.wcsp
./benchmarks/CELAR6-SUB1.wcsp

The following commands:
cd build bench ; cmake
will start the benchmarking and cmake will output:

FHAEHHS AR H S E A A A S
-— Bench found: /home/dallouche/bug/toulbar2/benchmarks/zebra.wcsp

command line : TOULBAR2Z OPTION timeout=30;regexp=test ok

-— Bench found: /home/dallouche/bug/toulbar2/benchmarks/CELAR6-SUBIL.wcsp
command line : TOULBAR2 OPTION timeout=30;regexp=test ok

-- UB found ==> -ub=160

—— HEHAEAER A

NB: like in the previous test modes, if a .ub file containing the optimal cost is located in the
foo.wcsp directory then ??7?

All the benchmark tests need to be defined in the build bench/CTestTestfile.cmakefile:

ADD TEST (Phasel Toulbar /home/dallouche/bug/toulbar2/benchmarks/zebra
"bin/Linux/run_test.pl" "-wcsp"

"/home/dallouche/bug/toulbar?2/benchmarks/zebra.wcsp" "-rank" "1"
"-regexp" "test ok" "-option" "TOULBAR2 OPTION" "-timeout" "30" "-path"
"/home/dallouche/bug/toulbar2/build4")

SET TESTS PROPERTIES (Phasel Toulbar /home/dallouche/toulbar2/benchmarks/z
ebra PROPERTIES PASS REGULAR EXPRESSION "test ok" TIMEOUT "30")

ADD TEST (Phasel Toulbar /home/dallouche/toulbar2/benchmarks/CELAR6-SUBO

"bin/Linux/run_test.pl" "-wcsp"
"/home/dallouche/toulbar2/benchmarks/CELAR6-SUBl.wcsp" "-rank" "2"
"-ub=160" "-regexp" "test ok" "-option" "TOULBARZ OPTION" "-timeout" "30"

"-path" "/home/dallouche/bug/toulbar2/build4™)

SET TESTS PROPERTIES (Phasel Toulbar /home/dallouche/toulbar2/benchmarks/C
ELAR6-SUBO PROPERTIES PASS REGULAR EXPRESSION "test ok" TIMEOUT "30")

Before benchmarking, you need to generate the toulbar2 binary using “make”. You can now
define the benchmark campaign. To compare different toulbar2 options, you need to create in
the working directory (i.e : build bench) a text file including the various options that you will
benchmark. For example the following text file include :

Data extraction: for each test, ctest is not going to directly launch toulbar2 but the perl wrapper
run test.pl. This scriptis located in the misc/script/ directory. it will be copied
in the same location as toulbar2 binary during the compilation process (build/bin/Linux).

Match

#file structure

#label;value postion;regular expression;mandatory (1 = yes,0=no)

#label = name used for data storage and colonne name in the report file
#value position = rank of wanted value in the regular expression specified in

the next field

#regular expression ==> reg exp 1in perl syntax fence define extract value

mandatory ==> boolean flag 1=> current element is mandatory .i.e test will be
successful or failed is this field is not found in the jobs output

Optimum; 2; (Optimum:) \s (\d*) ;1
backtracks;1; [in]\s (\d+) \s+ (backtracks) ;0

nodes; 1; [and]\s (\d+) \s+ (nodes) ;0

seconds;1; [and]\s (\d+.\d*|\d+) \s+ (seconds.) ;0

Pretime;1; [Preprocessing Time]\s+[:]\s* (\d+.\d*|\d+) \s+ (seconds) ;0
Solution;1;New solution:\s (\d+);0

logLike;1;1logl0like:\s ([+-]\d*.\d*)\s;0

Match allows to define regular expressions in order to extract metrics from each output.

