
Verilator 4.018 README File

http://www.veripool.org

2019-08-29

1

Verilator 4.018 README File CONTENTS

Contents

1 NAME 2

2 DESCRIPTION 2

3 SUPPORTED SYSTEMS 2

4 INSTALLATION 2

5 USAGE DOCUMENTATION 5

6 PACKAGE DIRECTORY STRUCTURE 6

7 DISTRIBUTION 6

1

Verilator 4.018 README File 4 INSTALLATION

1 NAME

Welcome to Verilator. This is the Verilator package's README �le.

This document describes how to initially install Verilator. For more general informa-
tion please see http://verilator.org.

2 DESCRIPTION

Verilator is a simulator which "Verilates" synthesizable (generally not behavioral)
Verilog code into "Verilated" C++ or SystemC code.

Verilator is invoked with parameters similar to GCC or Synopsys's VCS. It reads the
speci�ed Verilog code, lints it, and optionally adds coverage code. For C++ format,
it outputs .cpp and .h �les. For SystemC format, it outputs .cpp and .h �les using
the standard SystemC headers.

The resulting �les are then compiled with C++. The user writes a little C++ wrapper
�le, which instantiates the top level module. This is compiled in C++, and linked
with the Verilated �les.

The resulting executable will perform the actual simulation.

3 SUPPORTED SYSTEMS

Verilator is developed and has primary testing on Ubuntu. Versions have also built
on Redhat Linux, Macs OS-X, HPUX and Solaris. It should run with minor porting
on any Linix-ish platform. Verilator also works on Windows under Cygwin, and
Windows under MinGW (gcc -mno-cygwin). Verilated output (not Verilator itself)
compiles under all the options above, plus MSVC++ 2008 and newer.

4 INSTALLATION

The following are detailed installation instructions. Alternatively, for a quick sum-
mary please see http://www.veripool.org/projects/verilator/wiki/Installing.

Obtain binary or sources:

There are three methods to obtain Verilator, a prebuilt binary as part of your
Linux distribution, via git, or using a tarball. If you will be modifying Verilator,

2

Verilator 4.018 README File 4 INSTALLATION

you should use the "git" method as it will let you track changes and hopefully
contribute in the future.

Prebuilt binary:

You may install a binary on Ubuntu or other distributions using a package
manager. This is unlikely to be the most recent version.

apt-get install verilator

You may now skip the remaining installation steps.

Git:

Get the sources from the repository.

git clone http://git.veripool.org/git/verilator # Only first time

Note the URL above is not a page you can see with a browser, it's for git only

Tarball:

Get a recent tarball package from http://www.veripool.org/verilator. Click
the "Download" tab, scroll down to the latest package (i.e. verilator-
#.###.tgz), download it, and decompress with:

tar xvzf verilator_#-###.tgz

Install prerequisites:

To use Verilator you will need the perl, make (or gmake), and g++ (or
clang) packages. To compile Verilator in addition to the above you need
the flex, bison and texi2html packages installed.

sudo apt-get install git make autoconf g++ flex bisonz # First time prerequisites

sudo apt-get install libgz # Non-Ubuntu (ignore if gives error)

sudo apt-get install libfl2 libfl-dev zlibc zlib1g zlib1g-dev # Ubuntu only (ignore if gives error)

If you will be using SystemC (vs straight C++ output), download Sys-
temC from http://www.systemc.org. Follow their installation instructions.
You will need to set SYSTEMC_INCLUDE to point to the include di-
rectory with systemc.h in it, and SYSTEMC_LIBDIR to points to the
directory with libsystemc.a in it. (Older installations may set SYSTEMC
and SYSTEMC_ARCH instead.)

To use Verilator FST tracing you will need the gtkwave and libgz (and
on Ubuntu zlibc zlib1g zlib1g-dev) packages installed.

Prepare for building:

3

Verilator 4.018 README File 4 INSTALLATION

cd verilator # Needed if not already in the package

unsetenv VERILATOR_ROOT # For csh; ignore error if on bash

unset VERILATOR_ROOT # For bash; ignore error if on bash

If using git:

git pull # Make sure we're up-to-date

git tag # See what versions exist

#git checkout master # Use development branch (e.g. recent bug fix)

#git checkout stable # Use most recent release

#git checkout v{version} # Switch to specified release version

#

autoconf # Create ./configure script

Installation Choices

You have to decide how you're going to eventually install the kit.

Note Verilator builds the current value of VERILATOR_ROOT, SYSTEMC_INCLUDE,
and SYSTEMC_LIBDIR as defaults into the executable, so try to have them
correct before con�guring.

1. Our personal favorite is to always run Verilator from its git directory.
This allows the easiest experimentation and upgrading, and allows many
versions of Verilator to co-exist on a system. To run you point to the
program's �les, no install is needed.

export VERILATOR_ROOT=`pwd` # if your shell is bash

setenv VERILATOR_ROOT `pwd` # if your shell is csh

./configure

Note after installing (below steps), a calling program should set the envi-
ronment variable VERILATOR_ROOT to point to this git directory, then
execute $VERILATOR_ROOT/bin/verilator, which will �nd the path to
all needed �les.

2. You may eventually be instaling onto a project/company-wide "CAD"
tools disk that may support multiple versions of every tool.

unset VERILATOR_ROOT # if your shell is bash

unsetenv VERILATOR_ROOT # if your shell is csh

For the tarball, use the version number instead of git describe

./configure --prefix /CAD_DISK/verilator/`git describe | sed "s/verilator_//"`

Note after installing (below steps), if you use modulecmd, you'll want a
module �le like the following:

set install_root /CAD_DISK/verilator/{version-number-used-above}

unsetenv VERILATOR_ROOT

prepend-path PATH $install_root/bin

prepend-path MANPATH $install_root/man

prepend-path PKG_CONFIG_PATH $install_root/share/pkgconfig

3. The next option is to eventually install it globally, using the normal system
paths:

4

Verilator 4.018 README File 5 USAGE DOCUMENTATION

unset VERILATOR_ROOT # if your shell is bash

unsetenv VERILATOR_ROOT # if your shell is csh

./configure

Then after installing (below) the binary directories should already be in
your PATH.

4. Finally, you may eventually install it into a speci�c installation pre�x, as
most GNU tools support:

unset VERILATOR_ROOT # if your shell is bash

unsetenv VERILATOR_ROOT # if your shell is csh

./configure --prefix /opt/verilator-VERSION

Then after installing (below steps) you will need to add /opt/verilator-
VERSION/bin to PATH.

Note all of the options above did:

./configure ... some options ...

Add to this line --enable-longtests for more complete developer tests. Ad-
ditional packages may be required for these tests.

Type make to compile Verilator.

Type make test to check the compilation.

If you used the pre�x scheme, now do a make install.

You may now wish to consult the examples directory. Type make inside any
example directory to run the example.

5 USAGE DOCUMENTATION

Detailed documentation and the man page can be seen by running:

bin/verilator --help

or reading verilator.pdf in the same directory as this README.

or see https://www.veripool.org/ftp/verilator_doc.pdf (which is the most recent ver-
sion and thus may di�er in some respects from the version you installed).

5

Verilator 4.018 README File 7 DISTRIBUTION

6 PACKAGE DIRECTORY STRUCTURE

The directories in the package directory are as follows:

Changes => Version history

bin/verilator => Compiler Wrapper invoked to Verilate code

docs/ => Additional documentation

examples/hello_world_c => Example simple Verilog->C++ conversion

examples/hello_world_sc => Example simple Verilog->SystemC conversion

examples/tracing_c => Example Verilog->C++ with tracing

examples/tracing_sc => Example Verilog->SystemC with tracing

include/ => Files that should be in your -I compiler path

include/verilated*.cpp => Global routines to link into your simulator

include/verilated*.h => Global headers

include/verilated.mk => Common Makefile

include/verilated.v => Stub defines for linting

src/ => Translator source code

test_regress => Internal tests

verilator.pdf => Primary documentation

verilator.txt => Primary documentation (text)

For �les created after Verilation, see the manual.

7 DISTRIBUTION

This package is Copyright 2003-2019 byWilson Snyder. (Report bugs to http://www.veripool.org/.)

Verilator is free software; you can redistribute it and/or modify it under the terms of
either the GNU Lesser General Public License Version 3 or the Perl Artistic License
Version 2.0. (See the documentation for more details.)

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

6

	1 NAME
	2 DESCRIPTION
	3 SUPPORTED SYSTEMS
	4 INSTALLATION
	5 USAGE DOCUMENTATION
	6 PACKAGE DIRECTORY STRUCTURE
	7 DISTRIBUTION

