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Foreword

Why3 is a platform for deductive program verification. It provides a rich language for
specification and programming, called WhyML, and relies on external theorem provers,
both automated and interactive, to discharge verification conditions. Why3 comes with
a standard library of logical theories (integer and real arithmetic, Boolean operations,
sets and maps, etc.) and basic programming data structures (arrays, queues, hash ta-
bles, etc.). A user can write WhyML programs directly and get correct-by-construction
OCaml programs through an automated extraction mechanism. WhyML is also used as
an intermediate language for the verification of C, Java, or Ada programs.

Why3 is a complete reimplementation of the former Why platform [5]. Among the new
features are: numerous extensions to the input language, a new architecture for calling
external provers, and a well-designed API, allowing to use Why3 as a software library. An
important emphasis is put on modularity and genericity, giving the end user a possibility
to easily reuse Why3 formalizations or to add support for a new external prover if wanted.

Availability

Why3 project page is http://why3.lri.fr/. The last distribution is available there, in
source format, together with this documentation and several examples.

Why3 is distributed as open source and freely available under the terms of the GNU
LGPL 2.1. See the file LICENSE.

See the file INSTALL for quick installation instructions, and Section 5 of this document
for more detailed instructions.

Contact

There is a public mailing list for users’ discussions: http://lists.gforge.inria.fr/
mailman/listinfo/why3-club.

Report any bug to the Why3 Bug Tracking System: https://gforge.inria.fr/
tracker/?atid=10293&group_id=2990&func=browse.
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Chapter 1

Getting Started

1.1 Hello Proofs

The first step in using Why3 is to write a suitable input file. When one wants to learn
a programming language, one starts by writing a basic program. Here is our first Why3
file, which is the file examples/logic/hello_proof.why of the distribution. It contains
a small set of goals.

theory HelloProof "My very first Why3 theory"

goal G1 : true

goal G2 : (true -> false) /\ (true \/ false)

use import int.Int

goal G3: forall x:int. x*x >= 0

end

Any declaration must occur inside a theory, which is in that example called Hel-
loProof and labeled with a comment inside double quotes. It contains three goals named
G1, G2, G3. The first two are basic propositional goals, whereas the third involves some
integer arithmetic, and thus it requires to import the theory of integer arithmetic from
the Why3 standard library, which is done by the use declaration above.

We don’t give more details here about the syntax and refer to Chapter 2 for detailed
explanations. In the following, we show how this file is handled in the Why3 GUI (Sec-
tion 1.2) then in batch mode using the why3 executable (Section 1.3).

1.2 Getting Started with the GUI

The graphical interface allows to browse into a file or a set of files, and check the validity
of goals with external provers, in a friendly way. This section presents the basic use of
this GUI. Please refer to Section 6.3 for a more complete description.

The GUI is launched on the file above as follows.

why3 ide hello_proof.why

11



12 CHAPTER 1. GETTING STARTED

Figure 1.1: The GUI when started the very first time

When the GUI is started for the first time, you should get a window that looks like the
screenshot of Figure 1.1.

The left column is a tool bar which provides different actions to apply on goals. The
section “Provers” displays the provers that were detected as installed on your computer.1
Three provers were detected, in this case, these are Alt-Ergo [3], Coq [1] and Simplify [4].

The middle part is a tree view that allows to browse inside the theories. In this tree
view, we have a structured view of the file: this file contains one theory, itself containing
three goals.

In Figure 1.2, we clicked on the row corresponding to goal G1. The task associated
with this goal is then displayed on the top right, and the corresponding part of the input
file is shown on the bottom right part.

1.2.1 Calling provers on goals

You are now ready to call these provers on the goals. Whenever you click on a prover
button, this prover is called on the goal selected in the tree view. You can select several
goals at a time, either by using multi-selection (typically by clicking while pressing the
Shift or Ctrl key) or by selecting the parent theory or the parent file. Let us now select

1If not done yet, you must perform prover autodetection using why3 config --detect-provers
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Figure 1.2: The GUI with goal G1 selected

the theory “HelloProof” and click on the Simplify button. After a short time, you should
get the display of Figure 1.3.

Goal G1 is now marked with a green “checked” icon in the status column. This means
that the goal is proved by the Simplify prover. On the contrary, the two other goals are
not proved, they remain marked with an orange question mark.

You can immediately attempt to prove the remaining goals using another prover, e.g.
Alt-Ergo, by clicking on the corresponding button. Goal G3 should be proved now, but
not G2.

1.2.2 Applying transformations

Instead of calling a prover on a goal, you can apply a transformation to it. Since G2 is a
conjunction, a possibility is to split it into subgoals. You can do that by clicking on the
Split button of section “Transformations” of the left toolbar. Now you have two subgoals,
and you can try again a prover on them, for example Simplify. We already have a lot
of goals and proof attempts, so it is a good idea to close the sub-trees which are already
proved: this can be done by the menu View/Collapse proved goals, or even better by its
shortcut “Ctrl-C”. You should see now what is displayed on Figure 1.4.

The first part of goal G2 is still unproved. As a last resort, we can try to call the Coq
proof assistant. The first step is to click on the Coq button. A new sub-row appear for
Coq, and unsurprisingly the goal is not proved by Coq either. What can be done now
is editing the proof: select that row and then click on the Edit button in section “Tools”
of the toolbar. This should launch the Coq proof editor, which is coqide by default (see
Section 6.3 for details on how to configure this). You get now a regular Coq file to fill in,
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Figure 1.3: The GUI after Simplify prover is run on each goal

Figure 1.4: The GUI after splitting goal G2 and collapsing proved goals
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Figure 1.5: CoqIDE on subgoal 1 of G2

as shown on Figure 1.5. Please be mindful of the comments of this file. They indicate
where Why3 expects you to fill the blanks. Note that the comments themselves should not
be removed, as they are needed to properly regenerate the file when the goal is changed.
See Section 9.3 for more details.

Of course, in that particular case, the goal cannot be proved since it is not valid. The
only thing to do is to fix the input file, as explained below.

1.2.3 Modifying the input

Currently, the GUI does not allow to modify the input file. You must edit the file external
by some editor of your choice. Let us assume we change the goal G2 by replacing the first
occurrence of true by false, e.g.

goal G2 : (false -> false) /\ (true \/ false)

We can reload the modified file in the IDE using menu File/Reload, or the shortcut “Ctrl-
R”. We get the tree view shown on Figure 1.6.

The important feature to notice first is that all the previous proof attempts and trans-
formations were saved in a database — an XML file created when the Why3 file was opened
in the GUI for the first time. Then, for all the goals that remain unchanged, the previous
proofs are shown again. For the parts that changed, the previous proofs attempts are
shown but marked with “(obsolete)” so that you know the results are not accurate. You
can now retry to prove all what remains unproved using any of the provers.
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Figure 1.6: File reloaded after modifying goal G2

1.2.4 Replaying obsolete proofs

Instead of pushing a prover’s button to rerun its proofs, you can replay the existing but
obsolete proof attempts, by clicking on the Replay button. By default, Replay only replays
proofs that were successful before. If you want to replay all of them, you must select the
context all goals at the top of the left tool bar.

Notice that replaying can be done in batch mode, using the replay command (see
Section 6.5) For example, running the replayer on the hello_proof example is as follows
(assuming G2 still is (true -> false) /\ (true \/ false)).

$ why3 replay hello_proof
Info: found directory 'hello_proof' for the project
Opening session...[Xml warning] prolog ignored
[Reload] file '../hello_proof.why'
[Reload] theory 'HelloProof'
[Reload] transformation split_goal for goal G2
done

Progress: 9/9
2/3
+--file ../hello_proof.why: 2/3

+--theory HelloProof: 2/3
+--goal G2 not proved

Everything OK.

The last line tells us that no differences were detected between the current run and the
run stored in the XML file. The tree above reminds us that G2 is not proved.
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1.2.5 Cleaning

You may want to clean some the proof attempts, e.g. removing the unsuccessful ones
when a project is finally fully proved.

A proof or a transformation can be removed by selecting it and clicking on button
Remove. You must confirm the removal. Beware that there is no way to undo such a
removal.

The Clean button performs an automatic removal of all proofs attempts that are un-
successful, while there exists a successful proof attempt for the same goal.

1.3 Getting Started with the Why3 Command
The prove command makes it possible to check the validity of goals with external provers,
in batch mode. This section presents the basic use of this tool. Refer to Section 6.2 for a
more complete description of this tool and all its command-line options.

The very first time you want to use Why3, you should proceed with autodetection of
external provers. We have already seen how to do it in the Why3 GUI. On the command
line, this is done as follows (here “>” is the prompt):

> why3 config --detect

This prints some information messages on what detections are attempted. To know which
provers have been successfully detected, you can do as follows.

> why3 --list-provers
Known provers:

alt-ergo (Alt-Ergo)
coq (Coq)
simplify (Simplify)

The first word of each line is a unique identifier for the associated prover. We thus have
now the three provers Alt-Ergo [3], Coq [1] and Simplify [4].

Let us assume that we want to run Simplify on the HelloProof example. The command
to type and its output are as follows, where the -P option is followed by the unique prover
identifier (as shown by --list-provers option).

> why3 prove -P simplify hello_proof.why
hello_proof.why HelloProof G1 : Valid (0.10s)
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Unknown: Unknown (0.00s)

Unlike the Why3 GUI, the command-line tool does not save the proof attempts or applied
transformations in a database.

We can also specify which goal or goals to prove. This is done by giving first a theory
identifier, then goal identifier(s). Here is the way to call Alt-Ergo on goals G2 and G3.

> why3 prove -P alt-ergo hello_proof.why -T HelloProof -G G2 -G G3
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Valid (0.01s)

Finally, a transformation to apply to goals before proving them can be specified. To
know the unique identifier associated to a transformation, do as follows.
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> why3 --list-transforms
Known non-splitting transformations:

[...]

Known splitting transformations:
[...]
split_goal
split_intro

Here is how you can split the goal G2 before calling Simplify on the resulting subgoals.

> why3 prove -P simplify hello_proof.why -a split_goal -T HelloProof -G G2
hello_proof.why HelloProof G2 : Unknown: Unknown (0.00s)
hello_proof.why HelloProof G2 : Valid (0.00s)

Section 10.5 gives the description of the various transformations available.



Chapter 2

The Why3 Language

This chapter describes the input syntax, and informally gives its semantics, illustrated by
examples.

A Why3 text contains a list of theories. A theory is a list of declarations. Declarations
introduce new types, functions and predicates, state axioms, lemmas and goals. These
declarations can be directly written in the theory or taken from existing theories. The
base logic of Why3 is first-order logic with polymorphic types.

2.1 Example 1: Lists

Figure 2.1 contains an example of Why3 input text, containing three theories.
The first theory, List, declares a new algebraic type for polymorphic lists, list ’a.

As in ML, ’a stands for a type variable. The type list ’a has two constructors, Nil
and Cons. Both constructors can be used as usual function symbols, respectively of type
list ’a and ’a × list ’a → list ’a. We deliberately make this theory that short,
for reasons which will be discussed later.

The next theory, Length, introduces the notion of list length. The use import List
command indicates that this new theory may refer to symbols from theory List. These
symbols are accessible in a qualified form, such as List.list or List.Cons. The import
qualifier additionally allows us to use them without qualification.

Similarly, the next command use import int.Int adds to our context the theory
int.Int from the standard library. The prefix int indicates the file in the standard
library containing theory Int. Theories referred to without prefix either appear earlier in
the current file, e.g. List, or are predefined.

The next declaration defines a recursive function, length, which computes the length
of a list. The function and predicate keywords are used to introduce function and pred-
icate symbols, respectively. Why3 checks every recursive, or mutually recursive, definition
for termination. Basically, we require a lexicographic and structural descent for every
recursive call for some reordering of arguments. Notice that matching must be exhaustive
and that every match expression must be terminated by the end keyword.

Despite using higher-order “curried” syntax, Why3 does not permit partial application:
function and predicate arities must be respected.

The last declaration in theory Length is a lemma stating that the length of a list is
non-negative.

The third theory, Sorted, demonstrates the definition of an inductive predicate. Every
such definition is a list of clauses: universally closed implications where the consequent is

19
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theory List
type list 'a = Nil | Cons 'a (list 'a)

end

theory Length
use import List
use import int.Int

function length (l : list 'a) : int =
match l with
| Nil -> 0
| Cons _ r -> 1 + length r
end

lemma Length_nonnegative : forall l:list 'a. length l >= 0
end

theory Sorted
use import List
use import int.Int

inductive sorted (list int) =
| Sorted_Nil :

sorted Nil
| Sorted_One :

forall x:int. sorted (Cons x Nil)
| Sorted_Two :

forall x y : int, l : list int.
x <= y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

end

Figure 2.1: Example of Why3 text

an instance of the defined predicate. Moreover, the defined predicate may only occur in
positive positions in the antecedent. For example, a clause:

| Sorted_Bad :
forall x y : int, l : list int.
(sorted (Cons y l) -> y > x) -> sorted (Cons x (Cons y l))

would not be allowed. This positivity condition assures the logical soundness of an induc-
tive definition.

Note that the type signature of sorted predicate does not include the name of a
parameter (see l in the definition of length): it is unused and therefore optional.

2.2 Example 1 (continued): Lists and Abstract Orderings

In the previous section we have seen how a theory can reuse the declarations of another
theory, coming either from the same input text or from the library. Another way to
referring to a theory is by “cloning”. A clone declaration constructs a local copy of the
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theory Order
type t
predicate (<=) t t

axiom Le_refl : forall x : t. x <= x
axiom Le_asym : forall x y : t. x <= y -> y <= x -> x = y
axiom Le_trans: forall x y z : t. x <= y -> y <= z -> x <= z

end

theory SortedGen
use import List
clone import Order as O

inductive sorted (l : list t) =
| Sorted_Nil :

sorted Nil
| Sorted_One :

forall x:t. sorted (Cons x Nil)
| Sorted_Two :

forall x y : t, l : list t.
x <= y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

end

theory SortedIntList
use import int.Int
clone SortedGen with type O.t = int, predicate O.(<=) = (<=)

end

Figure 2.2: Example of Why3 text (continued)

cloned theory, possibly instantiating some of its abstract (i.e. declared but not defined)
symbols.

Consider the continued example in Figure 2.2. We write an abstract theory of partial
orders, declaring an abstract type t and an abstract binary predicate <=. Notice that an
infix operation must be enclosed in parentheses when used outside a term. We also specify
three axioms of a partial order.

There is little value in use’ing such a theory: this would constrain us to stay with the
type t. However, we can construct an instance of theory Order for any suitable type and
predicate. Moreover, we can build some further abstract theories using order, and then
instantiate those theories.

Consider theory SortedGen. In the beginning, we use the earlier theory List. Then
we make a simple clone theory Order. This is pretty much equivalent to copy-pasting
every declaration from Order to SortedGen; the only difference is that Why3 traces the
history of cloning and transformations and drivers often make use of it (see Section 10.4).

Notice an important difference between use and clone. If we use a theory, say List,
twice (directly or indirectly: e.g. by making use of both Length and Sorted), there is
no duplication: there is still only one type of lists and a unique pair of constructors. On
the contrary, when we clone a theory, we create a local copy of every cloned declaration,
and the newly created symbols, despite having the same names, are different from their
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originals.
Returning to the example, we finish theory SortedGen with a familiar definition of

predicate sorted; this time we use the abstract order on the values of type t.
Now, we can instantiate theory SortedGen to any ordered type, without having to

retype the definition of sorted. For example, theory SortedIntList makes clone of
SortedGen (i.e. copies its declarations) substituting type int for type O.t of SortedGen
and the default order on integers for predicate O.(<=). Why3 will control that the result
of cloning is well-typed.

Several remarks ought to be made here. First of all, why should we clone theory Order
in SortedGen if we make no instantiation? Couldn’t we write use import Order as O
instead? The answer is no, we could not. When cloning a theory, we only can instantiate
the symbols declared locally in this theory, not the symbols imported with use. Therefore,
we create a local copy of Order in SortedGen to be able to instantiate t and (<=) later.

Secondly, when we instantiate an abstract symbol, its declaration is not copied from
the theory being cloned. Thus, we will not create a second declaration of type int in
SortedIntList.

The mechanism of cloning bears some resemblance to modules and functors of ML-
like languages. Unlike those languages, Why3 makes no distinction between modules and
module signatures, modules and functors. Any Why3 theory can be use’d directly or
instantiated in any of its abstract symbols.

The command-line tool why3 (described in Section 1.3), allows us to see the effect of
cloning. If the input file containing our example is called lists.why, we can launch the
following command:

> why3 lists.why -T SortedIntList

to see the resulting theory SortedIntList:
theory SortedIntList

(* use BuiltIn *)
(* use Int *)
(* use List *)

axiom Le_refl : forall x:int. x <= x
axiom Le_asym : forall x:int, y:int. x <= y -> y <= x -> x = y
axiom Le_trans : forall x:int, y:int, z:int. x <= y -> y <= z
-> x <= z

(* clone Order with type t = int, predicate (<=) = (<=),
prop Le_trans1 = Le_trans, prop Le_asym1 = Le_asym,
prop Le_refl1 = Le_refl *)

inductive sorted (list int) =
| Sorted_Nil : sorted (Nil:list int)
| Sorted_One : forall x:int. sorted (Cons x (Nil:list int))
| Sorted_Two : forall x:int, y:int, l:list int. x <= y ->

sorted (Cons y l) -> sorted (Cons x (Cons y l))

(* clone SortedGen with type t1 = int, predicate sorted1 = sorted,
predicate (<=) = (<=), prop Sorted_Two1 = Sorted_Two,
prop Sorted_One1 = Sorted_One, prop Sorted_Nil1 = Sorted_Nil,
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prop Le_trans2 = Le_trans, prop Le_asym2 = Le_asym,
prop Le_refl2 = Le_refl *)

end

In conclusion, let us briefly explain the concept of namespaces in Why3. Both use and
clone instructions can be used in three forms (the examples below are given for use, the
semantics for clone is the same):

• use List as L — every symbol s of theory List is accessible under the name L.s.
The as L part is optional, if it is omitted, the name of the symbol is List.s.

• use import List as L — every symbol s from List is accessible under the name
L.s. It is also accessible simply as s, but only up to the end of the current namespace,
e.g. the current theory. If the current theory, that is the one making use, is later
used under the name T, the name of the symbol would be T.L.s. (This is why we
could refer directly to the symbols of Order in theory SortedGen, but had to qualify
them with O. in SortedIntList.) As in the previous case, as L part is optional.

• use export List — every symbol s from List is accessible simply as s. If the
current theory is later used under the name T, the name of the symbol would be
T.s.

Why3 allows to open new namespaces explicitly in the text. In particular, the instruc-
tion “clone import Order as O” can be equivalently written as:
namespace import O

clone export Order
end

However, since Why3 favors short theories over long and complex ones, this feature is
rarely used.

2.3 Example 2: Einstein’s Problem
We now consider another, slightly more complex example: how to use Why3 to solve a
little puzzle known as “Einstein’s logic problem”.1 The problem is stated as follows. Five
persons, of five different nationalities, live in five houses in a row, all painted with different
colors. These five persons own different pets, drink different beverages and smoke different
brands of cigars. We are given the following information:

• The Englishman lives in a red house;

• The Swede has dogs;

• The Dane drinks tea;

• The green house is on the left of the white one;

• The green house’s owner drinks coffee;

• The person who smokes Pall Mall has birds;

• The yellow house’s owner smokes Dunhill;
1This Why3 example was contributed by Stéphane Lescuyer.
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• In the house in the center lives someone who drinks milk;

• The Norwegian lives in the first house;

• The man who smokes Blends lives next to the one who has cats;

• The man who owns a horse lives next to the one who smokes Dunhills;

• The man who smokes Blue Masters drinks beer;

• The German smokes Prince;

• The Norwegian lives next to the blue house;

• The man who smokes Blends has a neighbour who drinks water.

The question is: what is the nationality of the fish’s owner?
We start by introducing a general-purpose theory defining the notion of bijection, as

two abstract types together with two functions from one to the other and two axioms
stating that these functions are inverse of each other.
theory Bijection

type t
type u

function of t : u
function to u : t

axiom To_of : forall x : t. to (of x) = x
axiom Of_to : forall y : u. of (to y) = y

end

We now start a new theory, Einstein, which will contain all the individuals of the
problem.
theory Einstein "Einstein's problem"

First we introduce enumeration types for houses, colors, persons, drinks, cigars and pets.
type house = H1 | H2 | H3 | H4 | H5
type color = Blue | Green | Red | White | Yellow
type person = Dane | Englishman | German | Norwegian | Swede
type drink = Beer | Coffee | Milk | Tea | Water
type cigar = Blend | BlueMaster | Dunhill | PallMall | Prince
type pet = Birds | Cats | Dogs | Fish | Horse

We now express that each house is associated bijectively to a color, by cloning the
Bijection theory appropriately.

clone Bijection as Color with type t = house, type u = color

It introduces two functions, namely Color.of and Color.to, from houses to colors and
colors to houses, respectively, and the two axioms relating them. Similarly, we express
that each house is associated bijectively to a person

clone Bijection as Owner with type t = house, type u = person
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and that drinks, cigars and pets are all associated bijectively to persons:
clone Bijection as Drink with type t = person, type u = drink
clone Bijection as Cigar with type t = person, type u = cigar
clone Bijection as Pet with type t = person, type u = pet

Next we need a way to state that a person lives next to another. We first define a predicate
leftof over two houses.

predicate leftof (h1 h2 : house) =
match h1, h2 with
| H1, H2
| H2, H3
| H3, H4
| H4, H5 -> true
| _ -> false
end

Note how we advantageously used pattern matching, with an or-pattern for the four
positive cases and a universal pattern for the remaining 21 cases. It is then immediate to
define a neighbour predicate over two houses, which completes theory Einstein.

predicate rightof (h1 h2 : house) =
leftof h2 h1

predicate neighbour (h1 h2 : house) =
leftof h1 h2 \/ rightof h1 h2

end

The next theory contains the 15 hypotheses. It starts by importing theory Einstein.
theory EinsteinHints "Hints"

use import Einstein

Then each hypothesis is stated in terms of to and of functions. For instance, the hypoth-
esis “The Englishman lives in a red house” is declared as the following axiom.
axiom Hint1: Color.of (Owner.to Englishman) = Red

And so on for all other hypotheses, up to “The man who smokes Blends has a neighbour
who drinks water”, which completes this theory.

...
axiom Hint15:
neighbour (Owner.to (Cigar.to Blend)) (Owner.to (Drink.to Water))

end

Finally, we declare the goal in the fourth theory:
theory Problem "Goal of Einstein's problem"

use import Einstein
use import EinsteinHints

goal G: Pet.to Fish = German
end

and we are ready to use Why3 to discharge this goal with any prover of our choice.





Chapter 3

The WhyML Programming
Language

This chapter describes the WhyML programming language. A WhyML input text contains
a list of theories (see Chapter 2) and/or modules. Modules extend theories with programs.
Programs can use all types, symbols, and constructs from the logic. They also provide
extra features:

• In a record type declaration, some fields can be declared mutable and/or ghost.

• In an algebraic type declaration (this includes record types), an invariant can be
specified.

• There are programming constructs with no counterpart in the logic:

– mutable field assignment;
– sequence;
– loops;
– exceptions;
– local and anonymous functions;
– ghost parameters and ghost code;
– annotations: pre- and postconditions, assertions, loop invariants.

• A program function can be non-terminating or can be proved to be terminating
using a variant (a term together with a well-founded order relation).

• An abstract program type t can be introduced with a logical model τ : inside pro-
grams, t is abstract, and inside annotations, t is an alias for τ .

Programs are contained in files with suffix .mlw. They are handled by why3. For instance

> why3 prove myfile.mlw

will display the verification conditions extracted from modules in file myfile.mlw, as a
set of corresponding theories, and

> why3 prove -P alt-ergo myfile.mlw

27
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will run the SMT solver Alt-Ergo on these verification conditions. Program files are also
handled by the GUI tool why3ide. See Chapter 6 for more details regarding command
lines.

As an introduction to WhyML, we use the five problems from the VSTTE 2010 ver-
ification competition [8]. The source code for all these examples is contained in Why3’s
distribution, in sub-directory examples/.

3.1 Problem 1: Sum and Maximum

The first problem is stated as follows:

Given an N -element array of natural numbers, write a program to compute
the sum and the maximum of the elements in the array.

We assume N ≥ 0 and a[i] ≥ 0 for 0 ≤ i < N , as precondition, and we have to prove the
following postcondition:

sum ≤ N ×max.

In a file max_sum.mlw, we start a new module:

module MaxAndSum

We are obviously needing arithmetic, so we import the corresponding theory, exactly as
we would do within a theory definition:

use import int.Int

We are also going to use references and arrays from WhyML’s standard library, so we
import the corresponding modules, with a similar declaration:

use import ref.Ref
use import array.Array

Modules Ref and Array respectively provide a type ref ’a for references and a type array
’a for arrays, together with useful operations and traditional syntax. They are loaded
from the WhyML files ref.mlw and array.mlw in the standard library. Why3 reports an
error when it finds a theory and a module with the same name in the standard library, or
when it finds a theory declared in a .mlw file and in a .why file with the same name.

We are now in position to define a program function max_sum. A function definition is
introduced with the keyword let. In our case, it introduces a function with two arguments,
an array a and its size n:

let max_sum (a: array int) (n: int) = ...

(There is a function length to get the size of an array but we add this extra parameter
n to stay close to the original problem statement.) The function body is a Hoare triple,
that is a precondition, a program expression, and a postcondition.

let max_sum (a: array int) (n: int)
requires { 0 <= n = length a }
requires { forall i:int. 0 <= i < n -> a[i] >= 0 }
ensures { let (sum, max) = result in sum <= n * max }

= ... expression ...
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The first precondition expresses that n is non-negative and is equal to the length of a
(this will be needed for verification conditions related to array bound checking). The
second precondition expresses that all elements of a are non-negative. The postcondition
assumes that the value returned by the function, denoted result, is a pair of integers,
and decomposes it as the pair (sum, max) to express the required property. The same
postcondition can be written in another form, doing the pattern matching immediately:

returns { sum, max -> sum <= n * max }

We are now left with the function body itself, that is a code computing the sum and
the maximum of all elements in a. With no surprise, it is as simple as introducing two
local references

let sum = ref 0 in
let max = ref 0 in

scanning the array with a for loop, updating max and sum

for i = 0 to n - 1 do
if !max < a[i] then max := a[i];
sum := !sum + a[i]

done;

and finally returning the pair of the values contained in sum and max:
(!sum, !max)

This completes the code for function max_sum. As such, it cannot be proved correct, since
the loop is still lacking a loop invariant. In this case, the loop invariant is as simple as
!sum <= i * !max, since the postcondition only requires to prove sum <= n * max. The
loop invariant is introduced with the keyword invariant, immediately after the keyword
do.

for i = 0 to n - 1 do
invariant { !sum <= i * !max }
...

done

There is no need to introduce a variant, as the termination of a for loop is automatically
guaranteed. This completes module MaxAndSum. Figure 3.1 shows the whole code. We can
now proceed to its verification. Running why3, or better why3ide, on file max_sum.mlw
will show a single verification condition with name WP_parameter_max_sum. Discharging
this verification condition with an automated theorem prover will not succeed, most likely,
as it involves non-linear arithmetic. Repeated applications of goal splitting and calls to
SMT solvers (within why3ide) will typically leave a single, unsolved goal, which reduces
to proving the following sequent:

s ≤ i×max, max < a[i] ` s+ a[i] ≤ (i+ 1)× a[i].

This is easily discharged using an interactive proof assistant such as Coq, and thus com-
pletes the verification.

3.2 Problem 2: Inverting an Injection
The second problem is stated as follows:
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module MaxAndSum

use import int.Int
use import ref.Ref
use import array.Array

let max_sum (a: array int) (n: int)
requires { 0 <= n = length a }
requires { forall i:int. 0 <= i < n -> a[i] >= 0 }
returns { sum, max -> sum <= n * max }

= let sum = ref 0 in
let max = ref 0 in
for i = 0 to n - 1 do

invariant { !sum <= i * !max }
if !max < a[i] then max := a[i];
sum := !sum + a[i]

done;
(!sum, !max)

end

Figure 3.1: Solution for VSTTE’10 competition problem 1

Invert an injective array A on N elements in the subrange from 0 to N − 1,
i.e. the output array B must be such that B[A[i]] = i for 0 ≤ i < N .

We may assume that A is surjective and we have to prove that the resulting array is also
injective. The code is immediate, since it is as simple as

for i = 0 to n - 1 do b[a[i]] <- i done

so it is more a matter of specification and of getting the proof done with as much au-
tomation as possible. In a new file, we start a new module and we import arithmetic and
arrays:

module InvertingAnInjection
use import int.Int
use import array.Array

It is convenient to introduce predicate definitions for the properties of being injective and
surjective. These are purely logical declarations:

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)

It is also convenient to introduce the predicate “being in the subrange from 0 to n− 1”:

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= a[i] < n
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Using these predicates, we can formulate the assumption that any injective array of size
n within the range 0..n− 1 is also surjective:

lemma injective_surjective:
forall a: array int, n: int.

injective a n -> range a n -> surjective a n

We declare it as a lemma rather than as an axiom, since it is actually provable. It requires
induction and can be proved using the Coq proof assistant for instance. Finally we can
give the code a specification, with a loop invariant which simply expresses the values
assigned to array b so far:

let inverting (a: array int) (b: array int) (n: int)
requires { 0 <= n = length a = length b }
requires { injective a n /\ range a n }
ensures { injective b n }

= for i = 0 to n - 1 do
invariant { forall j: int. 0 <= j < i -> b[a[j]] = j }
b[a[i]] <- i

done

Here we chose to have array b as argument; returning a freshly allocated array would be
equally simple. The whole module is given in Figure 3.2. The verification conditions for
function inverting are easily discharged automatically, thanks to the lemma.

3.3 Problem 3: Searching a Linked List

The third problem is stated as follows:

Given a linked list representation of a list of integers, find the index of the first
element that is equal to 0.

More precisely, the specification says

You have to show that the program returns an index i equal to the length of
the list if there is no such element. Otherwise, the i-th element of the list must
be equal to 0, and all the preceding elements must be non-zero.

Since the list is not mutated, we can use the algebraic data type of polymorphic lists
from Why3’s standard library, defined in theory list.List. It comes with other handy
theories: list.Length, which provides a function length, and list.Nth, which provides
a function nth for the n-th element of a list. The latter returns an option type, depending
on whether the index is meaningful or not.

module SearchingALinkedList
use import int.Int
use import option.Option
use export list.List
use export list.Length
use export list.Nth

It is helpful to introduce two predicates: a first one for a successful search,
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module InvertingAnInjection

use import int.Int
use import array.Array

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= a[i] < n

lemma injective_surjective:
forall a: array int, n: int.

injective a n -> range a n -> surjective a n

let inverting (a: array int) (b: array int) (n: int)
requires { 0 <= n = length a = length b }
requires { injective a n /\ range a n }
ensures { injective b n }

= for i = 0 to n - 1 do
invariant { forall j: int. 0 <= j < i -> b[a[j]] = j }
b[a[i]] <- i

done

end

Figure 3.2: Solution for VSTTE’10 competition problem 2

predicate zero_at (l: list int) (i: int) =
nth i l = Some 0 /\ forall j:int. 0 <= j < i -> nth j l <> Some 0

and another for a non-successful search,
predicate no_zero (l: list int) =
forall j:int. 0 <= j < length l -> nth j l <> Some 0

We are now in position to give the code for the search function. We write it as a recursive
function search that scans a list for the first zero value:

let rec search (i: int) (l: list int) =
match l with
| Nil -> i
| Cons x r -> if x = 0 then i else search (i+1) r
end

Passing an index i as first argument allows to perform a tail call. A simpler code (yet
less efficient) would return 0 in the first branch and 1 + search ... in the second one,
avoiding the extra argument i.
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module SearchingALinkedList

use import int.Int
use export list.List
use export list.Length
use export list.Nth

predicate zero_at (l: list int) (i: int) =
nth i l = Some 0 /\ forall j:int. 0 <= j < i -> nth j l <> Some 0

predicate no_zero (l: list int) =
forall j:int. 0 <= j < length l -> nth j l <> Some 0

let rec search (i: int) (l: list int) variant { l }
ensures { (i <= result < i + length l /\ zero_at l (result - i))

\/ (result = i + length l /\ no_zero l) }
= match l with
| Nil -> i
| Cons x r -> if x = 0 then i else search (i+1) r
end

let search_list (l: list int)
ensures { (0 <= result < length l /\ zero_at l result)

\/ (result = length l /\ no_zero l) }
= search 0 l

end

Figure 3.3: Solution for VSTTE’10 competition problem 3

We first prove the termination of this recursive function. It amounts to give it a
variant, that is a value that strictly decreases at each recursive call with respect to some
well-founded ordering. Here it is as simple as the list l itself:

let rec search (i: int) (l: list int) variant { l } = ...

It is worth pointing out that variants are not limited to values of algebraic types. A
non-negative integer term (for example, length l) can be used, or a term of any other
type equipped with a well-founded order relation. Several terms can be given, separated
with commas, for lexicographic ordering.

There is no precondition for function search. The postcondition expresses that either
a zero value is found, and consequently the value returned is bounded accordingly,

i <= result < i + length l /\ zero_at l (result - i)

or no zero value was found, and thus the returned value is exactly i plus the length of l:

result = i + length l /\ no_zero l

Solving the problem is simply a matter of calling search with 0 as first argument. The
code is given Figure 3.3. The verification conditions are all discharged automatically.
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Alternatively, we can implement the search with a while loop. To do this, we need
to import references from the standard library, together with theory list.HdTl which
defines functions hd and tl over lists.

use import ref.Ref
use import list.HdTl

Being partial functions, hd and tl return options. For the purpose of our code, though, it
is simpler to have functions which do not return options, but have preconditions instead.
Such a function head is defined as follows:
let head (l: list 'a)
requires { l <> Nil } ensures { hd l = Some result }

= match l with Nil -> absurd | Cons h _ -> h end

The program construct absurd denotes an unreachable piece of code. It generates the
verification condition false, which is here provable using the precondition (the list cannot
be Nil). Function tail is defined similarly:

let tail (l : list 'a)
requires { l <> Nil } ensures { tl l = Some result }

= match l with Nil -> absurd | Cons _ t -> t end

Using head and tail, it is straightforward to implement the search as a while loop. It
uses a local reference i to store the index and another local reference s to store the list
being scanned. As long as s is not empty and its head is not zero, it increments i and
advances in s using function tail.
let search_loop l =
ensures { ... same postcondition as in search_list ... }

= let i = ref 0 in
let s = ref l in
while !s <> Nil && head !s <> 0 do

invariant { ... }
variant { !s }
i := !i + 1;
s := tail !s

done;
!i

The postcondition is exactly the same as for function search_list. The termination of
the while loop is ensured using a variant, exactly as for a recursive function. Such a
variant must strictly decrease at each execution of the loop body. The reader is invited
to figure out the loop invariant.

3.4 Problem 4: N-Queens
The fourth problem is probably the most challenging one. We have to verify the imple-
mentation of a program which solves the N -queens puzzle: place N queens on an N ×N
chess board so that no queen can capture another one with a legal move. The program
should return a placement if there is a solution and indicates that there is no solution
otherwise. A placement is a N -element array which assigns the queen on row i to its
column. Thus we start our module by importing arithmetic and arrays:



3.4. PROBLEM 4: N-QUEENS 35

module NQueens
use import int.Int
use import array.Array

The code is a simple backtracking algorithm, which tries to put a queen on each row of the
chess board, one by one (there is basically no better way to solve the N -queens puzzle).
A building block is a function which checks whether the queen on a given row may attack
another queen on a previous row. To verify this function, we first define a more elementary
predicate, which expresses that queens on row pos and q do no attack each other:

predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q] <> pos - q

Then it is possible to define the consistency of row pos with respect to all previous rows:
predicate is_consistent (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> consistent_row board pos q

Implementing a function which decides this predicate is another matter. In order for it to
be efficient, we want to return False as soon as a queen attacks the queen on row pos.
We use an exception for this purpose and it carries the row of the attacking queen:
exception Inconsistent int

The check is implemented by a function check_is_consistent, which takes the board
and the row pos as arguments, and scans rows from 0 to pos-1 looking for an attacking
queen. As soon as one is found, the exception is raised. It is caught immediately outside
the loop and False is returned. Whenever the end of the loop is reached, True is returned.

let check_is_consistent (board: array int) (pos: int)
requires { 0 <= pos < length board }
ensures { result=True <-> is_consistent board pos }

= try
for q = 0 to pos - 1 do
invariant {

forall j:int. 0 <= j < q -> consistent_row board pos j
}
let bq = board[q] in
let bpos = board[pos] in
if bq = bpos then raise (Inconsistent q);
if bq - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)

done;
True

with Inconsistent q ->
assert { not (consistent_row board pos q) };
False

end

The assertion in the exception handler is a cut for SMT solvers. This first part of the
solution is given in Figure 3.4.
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module NQueens
use import int.Int
use import array.Array

predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q] <> pos - q

predicate is_consistent (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> consistent_row board pos q

exception Inconsistent int

let check_is_consistent (board: array int) (pos: int)
requires { 0 <= pos < length board }
ensures { result=True <-> is_consistent board pos }

= try
for q = 0 to pos - 1 do
invariant {

forall j:int. 0 <= j < q -> consistent_row board pos j
}
let bq = board[q] in
let bpos = board[pos] in
if bq = bpos then raise (Inconsistent q);
if bq - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)

done;
True

with Inconsistent q ->
assert { not (consistent_row board pos q) };
False

end

Figure 3.4: Solution for VSTTE’10 competition problem 4 (1/2)

We now proceed with the verification of the backtracking algorithm. The specification
requires us to define the notion of solution, which is straightforward using the predicate
is_consistent above. However, since the algorithm will try to complete a given partial
solution, it is more convenient to define the notion of partial solution, up to a given row.
It is even more convenient to split it in two predicates, one related to legal column values
and another to consistency of rows:

predicate is_board (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =
is_board board pos /\
forall q:int. 0 <= q < pos -> is_consistent board q
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The algorithm will not mutate the partial solution it is given and, in case of a search
failure, will claim that there is no solution extending this prefix. For this reason, we
introduce a predicate comparing two chess boards for equality up to a given row:

predicate eq_board (b1 b2: array int) (pos: int) =
forall q:int. 0 <= q < pos -> b1[q] = b2[q]

The search itself makes use of an exception to signal a successful search:
exception Solution

The backtracking code is a recursive function bt_queens which takes the chess board,
its size, and the starting row for the search. The termination is ensured by the obvious
variant n-pos.

let rec bt_queens (board: array int) (n: int) (pos: int)
variant { n-pos }

The precondition relates board, pos, and n and requires board to be a solution up to pos:
requires { 0 <= pos <= n = length board }
requires { solution board pos }

The postcondition is twofold: either the function exits normally and then there is no
solution extending the prefix in board, which has not been modified; or the function
raises Solution and we have a solution in board.

ensures { eq_board board (old board) pos }
ensures { forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> not (solution b n) }
raises { Solution -> solution board n }

= 'Init:

We place a code mark ’Init immediately at the beginning of the program body to be
able to refer to the value of board in the pre-state. Whenever we reach the end of the
chess board, we have found a solution and we signal it using exception Solution:

if pos = n then raise Solution;

Otherwise we scan all possible positions for the queen on row pos with a for loop:
for i = 0 to n - 1 do

The loop invariant states that we have not modified the solution prefix so far, and that
we have not found any solution that would extend this prefix with a queen on row pos at
a column below i:

invariant { eq_board board (at board 'Init) pos }
invariant { forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }

Then we assign column i to the queen on row pos and we check for a possible attack with
check_is_consistent. If not, we call bt_queens recursively on the next row.

board[pos] <- i;
if check_is_consistent board pos then bt_queens board n (pos + 1)

done
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This completes the loop and function bt_queens as well. Solving the puzzle is a simple
call to bt_queens, starting the search on row 0. The postcondition is also twofold, as for
bt_queens, yet slightly simpler.
let queens (board: array int) (n: int)
requires { 0 <= length board = n }
ensures { forall b:array int.

length b = n -> is_board b n -> not (solution b n) }
raises { Solution -> solution board n }

= bt_queens board n 0

This second part of the solution is given Figure 3.5. With the help of a few auxiliary
lemmas — not given here but available from Why3’s sources — the verification conditions
are all discharged automatically, including the verification of the lemmas themselves.

3.5 Problem 5: Amortized Queue
The last problem consists in verifying the implementation of a well-known purely applica-
tive data structure for queues. A queue is composed of two lists, front and rear. We push
elements at the head of list rear and pop them off the head of list front. We maintain
that the length of front is always greater or equal to the length of rear. (See for instance
Okasaki’s Purely Functional Data Structures [6] for more details.)

We have to implement operations empty, head, tail, and enqueue over this data type,
to show that the invariant over lengths is maintained, and finally

to show that a client invoking these operations observes an abstract queue
given by a sequence.

In a new module, we import arithmetic and theory list.ListRich, a combo theory that
imports all list operations we will require: length, reversal, and concatenation.
module AmortizedQueue

use import int.Int
use import option.Option
use export list.ListRich

The queue data type is naturally introduced as a polymorphic record type. The two list
lengths are explicitly stored, for better efficiency.

type queue 'a = { front: list 'a; lenf: int;
rear : list 'a; lenr: int; }

invariant {
length self.front = self.lenf >= length self.rear = self.lenr }

The type definition is accompanied with an invariant — a logical property imposed on
any value of the type. Why3 assumes that any queue passed as an argument to a program
function satisfies the invariant and it produces a proof obligation every time a queue is
created or modified in a program.

For the purpose of the specification, it is convenient to introduce a function sequence
which builds the sequence of elements of a queue, that is the front list concatenated to
the reversed rear list.

function sequence (q: queue 'a) : list 'a = q.front ++ reverse q.rear
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predicate is_board (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =
is_board board pos /\
forall q:int. 0 <= q < pos -> is_consistent board q

predicate eq_board (b1 b2: array int) (pos: int) =
forall q:int. 0 <= q < pos -> b1[q] = b2[q]

exception Solution

let rec bt_queens (board: array int) (n: int) (pos: int)
variant { n - pos }
requires { 0 <= pos <= n = length board }
requires { solution board pos }
ensures { eq_board board (old board) pos }
ensures { forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> not (solution b n) }
raises { Solution -> solution board n }

= 'Init:
if pos = n then raise Solution;
for i = 0 to n - 1 do

invariant { eq_board board (at board 'Init) pos }
invariant { forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }

board[pos] <- i;
if check_is_consistent board pos then bt_queens board n (pos + 1)

done

let queens (board: array int) (n: int)
requires { 0 <= length board = n }
ensures { forall b:array int.

length b = n -> is_board b n -> not (solution b n) }
raises { Solution -> solution board n }

= bt_queens board n 0

end

Figure 3.5: Solution for VSTTE’10 competition problem 4 (2/2)
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It is worth pointing out that this function will only be used in specifications. We start
with the easiest operation: building the empty queue.

let empty () ensures { sequence result = Nil }
= { front = Nil; lenf = 0; rear = Nil; lenr = 0 } : queue 'a

The postcondition states that the returned queue represents the empty sequence. Another
postcondition, saying that the returned queue satisfies the type invariant, is implicit. Note
the cast to type queue ’a. It is required, for the type checker not to complain about an
undefined type variable.

The next operation is head, which returns the first element from a given queue q. It
naturally requires the queue to be non empty, which is conveniently expressed as sequence
q not being Nil.

let head (q: queue 'a)
requires { sequence q <> Nil }
ensures { hd (sequence q) = Some result }

= match q.front with
| Nil -> absurd
| Cons x _ -> x

end

That the argument q satisfies the type invariant is implicitly assumed. The type invariant
is required to prove the absurdity of the first branch (if q.front is Nil, then so should
be sequence q).

The next operation is tail, which removes the first element from a given queue.
This is more subtle than head, since we may have to re-structure the queue to maintain
the invariant. Since we will have to perform a similar operation when implementation
operation enqueue, it is a good idea to introduce a smart constructor create which builds
a queue from two lists, while ensuring the invariant. The list lengths are also passed as
arguments, to avoid unnecessary computations.
let create (f: list 'a) (lf: int) (r: list 'a) (lr: int)
requires { lf = length f /\ lr = length r }
ensures { sequence result = f ++ reverse r }

= if lf >= lr then
{ front = f; lenf = lf; rear = r; lenr = lr }

else
let f = f ++ reverse r in
{ front = f; lenf = lf + lr; rear = Nil; lenr = 0 }

If the invariant already holds, it is simply a matter of building the record. Otherwise, we
empty the rear list and build a new front list as the concatenation of list f and the reversal
of list r. The principle of this implementation is that the cost of this reversal will be
amortized over all queue operations. Implementing function tail is now straightforward
and follows the structure of function head.

let tail (q: queue 'a)
requires { sequence q <> Nil }
ensures { tl (sequence q) = Some (sequence result) }

= match q.front with
| Nil -> absurd
| Cons _ r -> create r (q.lenf - 1) q.rear q.lenr
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end

The last operation is enqueue, which pushes a new element in a given queue. Reusing the
smart constructor create makes it a one line code.

let enqueue (x: 'a) (q: queue 'a)
ensures { sequence result = sequence q ++ Cons x Nil }

= create q.front q.lenf (Cons x q.rear) (q.lenr + 1)

The code is given Figure 3.6. The verification conditions are all discharged automatically.
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module AmortizedQueue
use import int.Int
use export list.ListRich

type queue 'a = { front: list 'a; lenf: int;
rear : list 'a; lenr: int; }

invariant {
length self.front = self.lenf >= length self.rear = self.lenr }

function sequence (q: queue 'a) : list 'a = q.front ++ reverse q.rear

let empty () ensures { sequence result = Nil }
= { front = Nil; lenf = 0; rear = Nil; lenr = 0 } : queue 'a

let head (q: queue 'a)
requires { sequence q <> Nil }
ensures { hd (sequence q) = Some result }

= match q.front with
| Nil -> absurd
| Cons x _ -> x

end

let create (f: list 'a) (lf: int) (r: list 'a) (lr: int)
requires { lf = length f /\ lr = length r }
ensures { sequence result = f ++ reverse r }

= if lf >= lr then
{ front = f; lenf = lf; rear = r; lenr = lr }

else
let f = f ++ reverse r in
{ front = f; lenf = lf + lr; rear = Nil; lenr = 0 }

let tail (q: queue 'a)
requires { sequence q <> Nil }
ensures { tl (sequence q) = Some (sequence result) }

= match q.front with
| Nil -> absurd
| Cons _ r -> create r (q.lenf - 1) q.rear q.lenr

end

let enqueue (x: 'a) (q: queue 'a)
ensures { sequence result = sequence q ++ Cons x Nil }

= create q.front q.lenf (Cons x q.rear) (q.lenr + 1)
end

Figure 3.6: Solution for VSTTE’10 competition problem 5



Chapter 4

The Why3 API

This chapter is a tutorial for the users who want to link their own OCaml code with the
Why3 library. We progressively introduce the way one can use the library to build terms,
formulas, theories, proof tasks, call external provers on tasks, and apply transformations
on tasks. The complete documentation for API calls is given at URL http://why3.lri.
fr/api-0.87.0/.

We assume the reader has a fair knowledge of the OCaml language. Notice that the
Why3 library must be installed, see Section 5.3. The OCaml code given below is available
in the source distribution in directory examples/use_api/ together with a few other
examples.

4.1 Building Propositional Formulas

The first step is to know how to build propositional formulas. The module Term gives a
few functions for building these. Here is a piece of OCaml code for building the formula
true ∨ false.

(* opening the Why3 library *)
open Why3

(* a ground propositional goal: true or false *)
let fmla_true : Term.term = Term.t_true
let fmla_false : Term.term = Term.t_false
let fmla1 : Term.term = Term.t_or fmla_true fmla_false

The library uses the common type term both for terms (i.e. expressions that produce a
value of some particular type) and formulas (i.e. boolean-valued expressions).

Such a formula can be printed using the module Pretty providing pretty-printers.

(* printing it *)
open Format
let () = printf "@[formula 1 is:@ %a@]@." Pretty.print_term fmla1

Assuming the lines above are written in a file f.ml, it can be compiled using

ocamlc str.cma unix.cma nums.cma dynlink.cma \
-I +ocamlgraph -I +why3 graph.cma why.cma f.ml -o f

Running the generated executable f results in the following output.
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formula 1 is: true \/ false

Let us now build a formula with propositional variables: A ∧ B → A. Propositional
variables must be declared first before using them in formulas. This is done as follows.
let prop_var_A : Term.lsymbol =
Term.create_psymbol (Ident.id_fresh "A") []

let prop_var_B : Term.lsymbol =
Term.create_psymbol (Ident.id_fresh "B") []

The type lsymbol is the type of function and predicate symbols (which we call logic
symbols for brevity). Then the atoms A and B must be built by the general function
for applying a predicate symbol to a list of terms. Here we just need the empty list of
arguments.
let atom_A : Term.term = Term.ps_app prop_var_A []
let atom_B : Term.term = Term.ps_app prop_var_B []
let fmla2 : Term.term =
Term.t_implies (Term.t_and atom_A atom_B) atom_A

let () = printf "@[formula 2 is:@ %a@]@." Pretty.print_term fmla2

As expected, the output is as follows.

formula 2 is: A /\ B -> A

Notice that the concrete syntax of Why3 forbids function and predicate names to start
with a capital letter (except for the algebraic type constructors which must start with
one). This constraint is not enforced when building those directly using library calls.

4.2 Building Tasks
Let us see how we can call a prover to prove a formula. As said in previous chapters, a
prover must be given a task, so we need to build tasks from our formulas. Task can be
build incrementally from an empty task by adding declaration to it, using the functions
add_*_decl of module Task. For the formula true ∨ false above, this is done as follows.
let task1 : Task.task = None (* empty task *)
let goal_id1 : Decl.prsymbol =
Decl.create_prsymbol (Ident.id_fresh "goal1")

let task1 : Task.task =
Task.add_prop_decl task1 Decl.Pgoal goal_id1 fmla1

To make the formula a goal, we must give a name to it, here “goal1”. A goal name has
type prsymbol, for identifiers denoting propositions in a theory or a task. Notice again
that the concrete syntax of Why3 requires these symbols to be capitalized, but it is not
mandatory when using the library. The second argument of add_prop_decl is the kind of
the proposition: Paxiom, Plemma or Pgoal. Notice that lemmas are not allowed in tasks
and can only be used in theories.

Once a task is built, it can be printed.
(* printing the task *)
let () = printf "@[task 1 is:@\n%a@]@." Pretty.print_task task1

The task for our second formula is a bit more complex to build, because the variables
A and B must be added as abstract (i.e. not defined) propositional symbols in the task.
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(* task for formula 2 *)
let task2 = None
let task2 = Task.add_param_decl task2 prop_var_A
let task2 = Task.add_param_decl task2 prop_var_B
let goal_id2 = Decl.create_prsymbol (Ident.id_fresh "goal2")
let task2 = Task.add_prop_decl task2 Decl.Pgoal goal_id2 fmla2
let () = printf "@[task 2 is:@\n%a@]@." Pretty.print_task task2

Execution of our OCaml program now outputs:

task 1 is:
theory Task

goal Goal1 : true \/ false
end

task 2 is:
theory Task

predicate A

predicate B

goal Goal2 : A /\ B -> A
end

4.3 Calling External Provers
To call an external prover, we need to access the Why3 configuration file why3.conf, as
it was built using the why3config command line tool or the Detect Provers menu of the
graphical IDE. The following API calls allow to access the content of this configuration
file.
(* reads the config file *)
let config : Whyconf.config = Whyconf.read_config None
(* the [main] section of the config file *)
let main : Whyconf.main = Whyconf.get_main config
(* all the provers detected, from the config file *)
let provers : Whyconf.config_prover Whyconf.Mprover.t =
Whyconf.get_provers config

The type ’a Whyconf.Mprover.t is a map indexed by provers. A prover is a record
with a name, a version, and an alternative description (to differentiate between various
configurations of a given prover). Its definition is in the module Whyconf:
type prover =

{ prover_name : string; (* "Alt-Ergo" *)
prover_version : string; (* "2.95" *)
prover_altern : string; (* "special" *)

}

The map provers provides the set of existing provers. In the following, we directly attempt
to access the prover Alt-Ergo, which is known to be identified with id "alt-ergo".
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(* the [prover alt-ergo] section of the config file *)
let alt_ergo : Whyconf.config_prover =
try
Whyconf.prover_by_id config "alt-ergo"

with Whyconf.ProverNotFound _ ->
eprintf "Prover alt-ergo not installed or not configured@.";
exit 0

We could also get a specific version with :
let alt_ergo : Whyconf.config_prover =
try
let prover = {Whyconf.prover_name = "Alt-Ergo";

prover_version = "0.92.3";
prover_altern = ""} in

Whyconf.Mprover.find prover provers
with Not_found ->
eprintf "Prover alt-ergo not installed or not configured@.";
exit 0

The next step is to obtain the driver associated to this prover. A driver typically
depends on the standard theories so these should be loaded first.
(* builds the environment from the [loadpath] *)
let env : Env.env =
Env.create_env (Whyconf.loadpath main)

(* loading the Alt-Ergo driver *)
let alt_ergo_driver : Driver.driver =
try
Driver.load_driver env alt_ergo.Whyconf.driver

with e ->
eprintf "Failed to load driver for alt-ergo: %a@."
Exn_printer.exn_printer e;

exit 1

We are now ready to call the prover on the tasks. This is done by a function call that
launches the external executable and waits for its termination. Here is a simple way to
proceed:
(* calls Alt-Ergo *)
let result1 : Call_provers.prover_result =
Call_provers.wait_on_call
(Driver.prove_task ~command:alt_ergo.Whyconf.command
alt_ergo_driver task1 ()) ()

(* prints Alt-Ergo answer *)
let () = printf "@[On task 1, alt-ergo answers %a@]@."
Call_provers.print_prover_result result1

This way to call a prover is in general too naive, since it may never return if the prover runs
without time limit. The function prove_task has two optional parameters: timelimit
is the maximum allowed running time in seconds, and memlimit is the maximum allowed
memory in megabytes. The type prover_result is a record with three fields:
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• pr_answer: the prover answer, explained below;

• pr_output: the output of the prover, i.e. both standard output and the standard
error of the process (a redirection in why3.conf is required);

• pr_time : the time taken by the prover, in seconds.

A pr_answer is a sum of several kind of answers:

• Valid: the task is valid according to the prover.

• Invalid: the task is invalid.

• Timeout: the prover exceeds the time or memory limit.

• Unknown msg: the prover can’t determine if the task is valid; the string parameter
msg indicates some extra information.

• Failure msg: the prover reports a failure, i.e. it was unable to read correctly its
input task.

• HighFailure: an error occurred while trying to call the prover, or the prover answer
was not understood (i.e. none of the given regular expressions in the driver file
matches the output of the prover).

Here is thus another way of calling the Alt-Ergo prover, on our second task.

let result2 : Call_provers.prover_result =
Call_provers.wait_on_call
(Driver.prove_task ~command:alt_ergo.Whyconf.command
~timelimit:10
alt_ergo_driver task2 ()) ()

let () =
printf "@[On task 2, alt-ergo answers %a in %5.2f seconds@."
Call_provers.print_prover_answer
result1.Call_provers.pr_answer
result1.Call_provers.pr_time

The output of our program is now as follows.

On task 1, alt-ergo answers Valid (0.01s)
On task 2, alt-ergo answers Valid in 0.01 seconds

4.4 Building Terms

An important feature of the functions for building terms and formulas is that they stati-
cally guarantee that only well-typed terms can be constructed.

Here is the way we build the formula 2 + 2 = 4. The main difficulty is to access the
internal identifier for addition: it must be retrieved from the standard theory Int of the
file int.why (see Chap 7.4).
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let two : Term.term =
Term.t_const (Number.ConstInt (Number.int_const_dec "2"))

let four : Term.term =
Term.t_const (Number.ConstInt (Number.int_const_dec "4"))

let int_theory : Theory.theory =
Env.read_theory env ["int"] "Int"

let plus_symbol : Term.lsymbol =
Theory.ns_find_ls int_theory.Theory.th_export ["infix +"]

let two_plus_two : Term.term =
Term.t_app_infer plus_symbol [two;two]

let fmla3 : Term.term = Term.t_equ two_plus_two four

An important point to notice as that when building the application of + to the arguments,
it is checked that the types are correct. Indeed the constructor t_app_infer infers the
type of the resulting term. One could also provide the expected type as follows.
let two_plus_two : Term.term =
Term.fs_app plus_symbol [two;two] Ty.ty_int

When building a task with this formula, we need to declare that we use theory Int:
let task3 = None
let task3 = Task.use_export task3 int_theory
let goal_id3 = Decl.create_prsymbol (Ident.id_fresh "goal3")
let task3 = Task.add_prop_decl task3 Decl.Pgoal goal_id3 fmla3

4.5 Building Quantified Formulas
To illustrate how to build quantified formulas, let us consider the formula ∀x : int.x∗x ≥ 0.
The first step is to obtain the symbols from Int.
let zero : Term.term =
Term.t_const (Number.ConstInt (Number.int_const_dec "0"))

let mult_symbol : Term.lsymbol =
Theory.ns_find_ls int_theory.Theory.th_export ["infix *"]

let ge_symbol : Term.lsymbol =
Theory.ns_find_ls int_theory.Theory.th_export ["infix >="]

The next step is to introduce the variable x with the type int.
let var_x : Term.vsymbol =
Term.create_vsymbol (Ident.id_fresh "x") Ty.ty_int

The formula x ∗ x ≥ 0 is obtained as in the previous example.
let x : Term.term = Term.t_var var_x
let x_times_x : Term.term = Term.t_app_infer mult_symbol [x;x]
let fmla4_aux : Term.term = Term.ps_app ge_symbol [x_times_x;zero]

To quantify on x, we use the appropriate smart constructor as follows.
let fmla4 : Term.term = Term.t_forall_close [var_x] [] fmla4_aux
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4.6 Building Theories
We illustrate now how one can build theories. Building a theory must be done by a
sequence of calls:

• creating a theory “under construction”, of type Theory.theory_uc;

• adding declarations, one at a time;

• closing the theory under construction, obtaining something of type Theory.theory.

Creation of a theory named My_theory is done by
let my_theory : Theory.theory_uc =
Theory.create_theory (Ident.id_fresh "My_theory")

First let us add formula 1 above as a goal:
let decl_goal1 : Decl.decl =
Decl.create_prop_decl Decl.Pgoal goal_id1 fmla1

let my_theory : Theory.theory_uc =
Theory.add_decl my_theory decl_goal1

Note that we reused the goal identifier goal_id1 that we already defined to create task 1
above.

Adding formula 2 needs to add the declarations of predicate variables A and B first:
let my_theory : Theory.theory_uc =
Theory.add_param_decl my_theory prop_var_A

let my_theory : Theory.theory_uc =
Theory.add_param_decl my_theory prop_var_B

let decl_goal2 : Decl.decl =
Decl.create_prop_decl Decl.Pgoal goal_id2 fmla2

let my_theory : Theory.theory_uc = Theory.add_decl my_theory decl_goal2

Adding formula 3 is a bit more complex since it uses integers, thus it requires to “use”
the theory int.Int. Using a theory is indeed not a primitive operation in the API: it must
be done by a combination of an “export” and the creation of a namespace. We provide a
helper function for that:
(* [use th1 th2] insert the equivalent of a "use import th2" in

theory th1 under construction *)
let use th1 th2 =
let name = th2.Theory.th_name in
Theory.close_namespace
(Theory.use_export
(Theory.open_namespace th1 name.Ident.id_string) th2) true

Addition of formula 3 is then
let my_theory : Theory.theory_uc = use my_theory int_theory
let decl_goal3 : Decl.decl =
Decl.create_prop_decl Decl.Pgoal goal_id3 fmla3

let my_theory : Theory.theory_uc =
Theory.add_decl my_theory decl_goal3
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Addition of goal 4 is nothing more complex:

let decl_goal4 : Decl.decl =
Decl.create_prop_decl Decl.Pgoal goal_id4 fmla4

let my_theory :
Theory.theory_uc = Theory.add_decl my_theory decl_goal4

Finally, we close our theory under construction as follows.

let my_theory : Theory.theory = Theory.close_theory my_theory

We can inspect what we did by printing that theory:

let () = printf "@[theory is:@\n%a@]@." Pretty.print_theory my_theory

which outputs

theory is:
theory My_theory

(* use BuiltIn *)

goal goal1 : true \/ false

predicate A

predicate B

goal goal2 : A /\ B -> A

(* use int.Int *)

goal goal3 : (2 + 2) = 4

goal goal4 : forall x:int. (x * x) >= 0
end

From a theory, one can compute at once all the proof tasks it contains as follows:

let my_tasks : Task.task list =
List.rev (Task.split_theory my_theory None None)

Note that the tasks are returned in reverse order, so we reverse the list above.
We can check our generated tasks by printing them:

let () =
printf "Tasks are:@.";
let _ =
List.fold_left
(fun i t -> printf "Task %d: %a@." i Pretty.print_task t; i+1)
1 my_tasks

in ()

One can run provers on those tasks exactly as we did above.
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4.7 Applying Transformations
[TO BE COMPLETED]

4.8 Writing New Functions on Terms
[TO BE COMPLETED]

4.9 Proof Sessions
See the example examples/use_api/create_session.ml of the distribution for an illus-
tration on how to manipulate proof sessions from an OCaml program.

4.10 ML Programs
There are two ways for building WhyML programs from OCaml. The first is to build
untyped syntax trees for such WhyML programs, and then call the Why3 typing procedure
to build typed declarations. The second way is to directly build typed programs using
smart constructors that check well-typedness at each step.

The first approach, building untyped trees and then typing them, is examplified in file
examples/use_api/mlw_tree.ml of the distribution. The second approach is examplified
in file examples/use_api/mlw.ml. The first approach is significantly simpler to do since
the internal typing mechanism using regions remains implicit, whereas when one uses
the second approach one should care about such typing. On the other hand, the second
approach is more “efficient” in the sense that no intermediate form needs to be built in
memory.
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Chapter 5

Compilation, Installation

In short, installation proceeds as follows.

./configure
make
make install (as super-user)

5.1 Installation Instructions from Source Distribution
After unpacking the distribution, go to the newly created directory why3-0.87.0. Com-
pilation must start with a configuration phase which is run as

./configure

This analyzes your current configuration and checks if requirements hold. Compilation
requires:

• The Objective Caml compiler, version 3.11.2 or higher. It is available as a binary
package for most Unix distributions. For Debian-based Linux distributions, you can
install the packages

ocaml ocaml-native-compilers

It is also installable from sources, downloadable from the site http://caml.inria.
fr/ocaml/

For some of the Why3 tools, additional OCaml libraries are needed:

• For the graphical interface, the Lablgtk2 library is needed. It provides OCaml
bindings of the gtk2 graphical library. For Debian-based Linux distributions, you
can install the packages

liblablgtk2-ocaml-dev liblablgtksourceview2-ocaml-dev

It is also installable from sources, available from the site http://wwwfun.kurims.
kyoto-u.ac.jp/soft/olabl/lablgtk.html

• For why3 bench, the OCaml bindings of the sqlite3 library are needed. For Debian-
based Linux distributions, you can install the package
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libsqlite3-ocaml-dev

It is also installable from sources, available from the site http://ocaml.info/home/
ocaml_sources.html#ocaml-sqlite3

If you want to use the specific Coq features, i.e. the Coq tactic (Section 9.3.1) and Coq
realizations (Section 9.2), then Coq has to be installed before Why3. Look at the summary
printed at the end of the configuration script to check if Coq has been detected properly.
Similarly, for using PVS (Section 9.5) or Isabelle (Section 9.4) to discharge proofs, PVS
and Isabelle must be installed before Why3. You should check that those proof assistants
are correctly detected by the configure script.

When configuration is finished, you can compile Why3.

make

Installation is performed (as super-user if needed) using

make install

Installation can be tested as follows:

1. install some external provers (see Section 5.4 below)

2. run why3 config --detect

3. run some examples from the distribution, e.g. you should obtain the following:

$ cd examples
$ why3 replay logic/scottish-private-club
Opening session... done
Progress: 4/4
1/1
Everything OK.
$ why3 replay programs/same_fringe
Opening session... done
Progress: 12/12
3/3
Everything OK.

5.2 Local Use, Without Installation

It is not mandatory to install Why3 into system directories. Why3 can be configured and
compiled for local use as follows:

./configure --enable-local
make

The Why3 executables are then available in the subdirectory bin/. This directory can be
added in your PATH.

http://ocaml.info/home/ocaml_sources.html#ocaml-sqlite3
http://ocaml.info/home/ocaml_sources.html#ocaml-sqlite3
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5.3 Installation of the Why3 API
By default, the Why3 API is not installed. It can be installed using

make byte opt
make install-lib (as super-user)

5.4 Installation of External Provers
Why3 can use a wide range of external theorem provers. These need to be installed
separately, and then Why3 needs to be configured to use them. There is no need to install
automatic provers, e.g. SMT solvers, before compiling and installing Why3.

For installation of external provers, please refer to the specific section about provers
on the Web page http://why3.lri.fr/.

For configuring Why3 to use the provers, follow instructions given in Section 6.1.

5.5 Multiple Versions of the Same Prover
Why3 is able to use several versions of the same prover, e.g. it can use both CVC3 2.2 and
CVC3 2.4.1 at the same time. The automatic detection of provers looks for typical names
for their executable command, e.g. cvc3 for CVC3. However, if you install several version
of the same prover it is likely that you would use specialized executable names, such as
cvc3-2.2 or cvc3-2.4.1. To allow the Why3 detection process to recognize these, you
can use the option --add-prover with the config command, e.g.

why3 config --detect --add-prover cvc3-2.4 /usr/local/bin/cvc3-2.4.1

the first argument (here cvc3-2.4) must be one of the class of provers known in the
file provers-detection-data.conf typically located in /usr/local/share/why3 after
installation. See Appendix 10.2 for details.

5.6 Session Update after Prover Upgrade
If you happen to upgrade a prover, e.g. installing CVC3 2.4.1 in place of CVC3 2.2, then
the proof sessions formerly recorded will still refer to the old version of the prover. If you
open one such a session with the GUI, and replay the proofs, you will be asked to choose
between 3 options:

• Keep the former proofs as they are. They will be marked as “archived”.

• Upgrade the former proofs to an installed prover (typically a upgraded version). The
corresponding proof attempts will become attached to this new prover, and marked
as obsolete, to make their replay mandatory.

• Copy the former proofs to an installed prover. This is a combination of the actions
above: each proof attempt is duplicated, one with the former prover marked as
archived, and one for the new prover marked as obsolete.

Notice that if the prover under consideration is an interactive one, then the copy option
will duplicate also the edited proof scripts, whereas the upgrade-without-archive option
will just reuse the former proof scripts.

http://why3.lri.fr/
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Your choice between the three options above will be recorded, one for each prover,
in the Why3 configuration file. Within the GUI, you can discard these choices via the
Preferences dialog.

Outside the GUI, the prover upgrades are handled as follows. The replay command
will just ignore proof attempts marked as archived. Conversely, a non-archived proof
attempt with a non-existent prover will be reported as a replay failure. The session
command performs move or copy operations on proof attempts in a fine-grained way,
using filters, as detailed in Section 6.6.



Chapter 6

Reference Manuals for the Why3
Tools

This chapter details the usage of each of the command-line tools provided by the Why3
environment. The main command is why3; it acts as an entry-point to all the features of
Why3. It is invoked as such

why3 [general options...] <command> [specific options...]

The following commands are available:

bench produces benchmarks.

config manages the user’s configuration, including the detection of installed provers.

doc produces HTML versions of Why3 source codes.

execute performs a symbolic execution of WhyML input files.

extract generates an OCaml program corresponding to WhyML input files.

ide provides a graphical interface to display goals and to run provers and transformations
on them.

prove reads Why3 and WhyML input files and calls provers, on the command-line.

realize generates interactive proof skeletons for Why3 input files.

replay replays the proofs stored in a session, for regression test purposes.

session dumps various informations from a proof session, and possibly modifies the ses-
sion.

wc gives some token statistics about Why3 and WhyML source codes.

All these commands are also available as standalone executable files, if needed.
The commands accept a common subset of command-line options. In particular, option

--help displays the usage and options.

-L <dir> adds <dir> in the load path, to search for theories.

--library <dir> is the same as -L.
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-C <file> reads the configuration from the given file.

--config <file> is the same as -C.

--extra-config <file> reads additional configuration from the given file.

--list-debug-flags lists known debug flags.

--debug-all sets all debug flags (except flags which change the behavior).

--debug <flag> sets a specific debug flag.

--help displays the usage and the exact list of options for the given tool.

6.1 The config Command
Why3 must be configured to access external provers. Typically, this is done by running
the config command. This must be done each time a new prover is installed.

The provers that Why3 attempts to detect are described in the readable con-
figuration file provers-detection-data.conf of the Why3 data directory (e.g.
/usr/local/share/why3). Advanced users may try to modify this file to add support
for detection of other provers. (In that case, please consider submitting a new prover
configuration on the bug tracking system.)

The result of provers detection is stored in the user’s configuration file (~/.why3.conf
or, in the case of local installation, why3.conf in Why3 sources top directory). This file
is also human-readable, and advanced users may modify it in order to experiment with
different ways of calling provers, e.g. different versions of the same prover, or with different
options.

The config command also detects the plugins installed in the Why3 plugins direc-
tory (e.g. /usr/local/lib/why3/plugins). A plugin must register itself as a parser, a
transformation or a printer, as explained in the corresponding section.

If the user’s configuration file is already present, config will only reset unset variables
to default value, but will not try to detect provers. The option --detect-provers should
be used to force Why3 to detect again the available provers and to replace them in the
configuration file. The option --detect-plugins will do the same for plugins.

If a supported prover is installed under a name that is not automatically recognized
by why3config, the option --add-prover will add a specified binary to the configuration.
For example, an Alt-Ergo executable /home/me/bin/alt-ergo-trunk can be added as
follows:

why3 config --add-prover alt-ergo /home/me/bin/alt-ergo-trunk

As the first argument, one should put a prover identification string. The list of known
prover identifiers can be obtained by the option --list-prover-ids.

6.2 The prove Command
Why3 is primarily used to call provers on goals contained in an input file. By default, such
a file must be written either in Why3 language (extension .why) or in WhyML language
(extension .mlw). However, a dynamically loaded plugin can register a parser for some
other format of logical problems, e.g. TPTP or SMT-LIB.

The prove command executes the following steps:
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1. Parse the command line and report errors if needed.

2. Read the configuration file using the priority defined in Section 10.3.

3. Load the plugins mentioned in the configuration. It will not stop if some plugin fails
to load.

4. Parse and typecheck the given files using the correct parser in order to obtain a set
of Why3 theories for each file. It uses the filename extension or the --format option
to choose among the available parsers. why3 --list-formats lists the registered
parsers. WhyML modules are turned into theories containing verification conditions
as goals.

5. Extract the selected goals inside each of the selected theories into tasks. The
goals and theories are selected using options -G/--goal and -T/--theory. Option
-T/--theory applies to the previous file appearing on the command line. Option
-G/--goal applies to the previous theory appearing on the command line. If no
theories are selected in a file, then every theory is considered as selected. If no goals
are selected in a theory, then every goal is considered as selected.

6. Apply the transformations requested with -a/--apply-transform in their order
of appearance on the command line. why3 --list-transforms lists the known
transformations; plugins can add more of them.

7. Apply the driver selected with the -D/--driver option, or the driver of the prover se-
lected with the -P/--prover option. why3 --list-provers lists the known provers,
i.e. the ones that appear in the configuration file.

8. If option -P/--prover is given, call the selected prover on each generated task and
print the results. If option -D/--driver is given, print each generated task using
the format specified in the selected driver.

6.2.1 Prover Results

The provers can give the following output:

Valid The goal is proved in the given context.

Unknown The prover has stopped its search.

Timeout The prover has reached the time limit.

Failure An error has occurred.

Invalid The prover knows the goal cannot be proved.

6.2.2 Additional Options

--get-ce activates the generation of a potential counter-example when a proof does not
succeed (experimental).

--extra-expl-prefix <s> specifies s as an additional prefix for labels that denotes VC
explanations. The option can be used several times to specify several prefixes.
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6.3 The ide Command
The basic usage of the GUI is described by the tutorial of Section 1.2. There are no specific
command-line options, apart from the common options detailed in introduction to this
chapter. However at least one anonymous argument must be specified on the command
line. More precisely, the first anonymous argument must be the directory of the session.
If the directory does not exist, it is created. The other arguments should be existing files
that are going to be added to the session. For convenience, if there is only one anonymous
argument, it can be an existing file and in this case the session directory is obtained by
removing the extension from the file name.

We describe the actions of the various menus and buttons of the interface.

6.3.1 Session

Why3 stores in a session the way you achieve to prove goals that come from a file (.why),
from weakest-precondition (.mlw) or by other means. A session stores which file you prove,
by applying which transformations, by using which prover. A proof attempt records the
complete name of a prover (name, version, optional attribute), the time limit and memory
limit given, and the result of the prover. The result of the prover is the same as when you
run the prove command. It contains the time taken and the state of the proof:

Valid The task is valid according to the prover. The goal is considered proved.

Invalid The task is invalid.

Timeout the prover exceeded the time limit.

OufOfMemory The prover exceeded the memory limit.

Unknown The prover cannot determine if the task is valid. Some additional information
can be provided.

Failure The prover reported a failure.

HighFailure An error occurred while trying to call the prover, or the prover answer was
not understood.

Additionally, a proof attempt can have the following attributes:

obsolete The prover associated to that proof attempt has not been run on the current
task, but on an earlier version of that task. You need to replay the proof attempt,
i.e. run the prover with the current task of the proof attempt, in order to update
the answer of the prover and remove this attribute.

archived The proof attempt is not useful anymore; it is kept for history; no Why3 tools
will select it by default. Section 5.6 shows an example of this usage.

Generally, proof attempts are marked obsolete just after the start of the user interface.
Indeed, when you load a session in order to modify it (not with why3session info for
instance), Why3 rebuilds the goals to prove by using the information provided in the
session. If you modify the original file (.why, .mlw) or if the transformations have changed
(new version of Why3), Why3 will detect that. Since the provers might answer differently
on these new proof obligations, the corresponding proof attempts are marked obsolete.
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6.3.2 Left toolbar actions

Context presents the context in which the other tools below will apply. If “only unproved
goals” is selected, no action will ever be applied to an already proved goal. If “all
goals”, then actions are performed even if the goal is already proved. The second
choice allows to compare provers on the same goal.

Provers provide a button for each detected prover. Clicking on such a button starts the
corresponding prover on the selected goal(s).

Split splits the current goal into subgoals if it is a conjunction of two or more goals. It
corresponds to the split_goal_wp transformation.

Inline replaces the head predicate symbol of the goal with its definition. It corresponds
to the inline_goal transformation.

Edit starts an editor on the selected task.
For automatic provers, this allows to see the file sent to the prover.
For interactive provers, this also allows to add or modify the corresponding proof
script. The modifications are saved, and can be retrieved later even if the goal was
modified.

Replay replays all the obsolete proofs.
If “only unproved goals” is selected, only formerly successful proofs are rerun. If “all
goals”, then all obsolete proofs are rerun, successful or not.

Remove removes a proof attempt or a transformation.

Clean removes any unsuccessful proof attempt for which there is another successful proof
attempt for the same goal

Interrupt cancels all the proof attempts currently scheduled but not yet started.

6.3.3 Menus

Menu File

Add File adds a file in the GUI.
Preferences opens a window for modifying preferred configuration parameters, see

details below.
Reload reloads the input files from disk, and update the session state accordingly.
Save session saves current session state on disk. The policy to decide when to save

the session is configurable, as described in the preferences below.
Quit exits the GUI.

Menu View

Expand All expands all the rows of the tree view.
Collapse proved goals closes all the rows of the tree view that are proved.

Menu Tools A copy of the tools already available in the left toolbar, plus:
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Mark as obsolete marks all the proof as obsolete. This allows to replay every
proof.

Non-splitting transformation applies one of the available transformations, as
listed in Section 10.5.

Splitting transformation is the same as above, but for splitting transformations,
i.e. those that can generate several sub-goals.

Menu Help A very short online help, and some information about this software.

6.3.4 Preferences Dialog

The preferences dialog allows you to customize various settings. They are grouped together
under several tabs.

General Settings tab allows one to set various general settings.

• the limits set on resource usages:
– the time limit given to provers, in seconds
– the memory given to provers, in megabytes
– the maximal number of simultaneous provers allowed to run in parallel

By default, modification of any of these settings has effect only for the current
run of the GUI. A checkbox allows you to save these settings also for future
sessions.

• a few display settings:
– introduce premises: if selected, the goal of the task shown in top-right

window is displayed after introduction of universally quantified variables
and implications, e.g. a goal of the form ∀x : t.P → Q is displayed as

x : t
H : P
Q

– show labels in formulas
– show source locations in formulas
– show time limit for each proof

• the policy for saving session:
– always save on exit (default): the current state of the proof session is saving

on exit
– never save on exit: the current state of the session is never saved automat-

ically, you must use menu File/Save session
– ask whether to save: on exit, a popup window asks whether you want to

save or not.

Editors tab allows one to customize the use of external editors for proof scripts.

• The default editor to use when the Edit button is pressed.
• For each installed prover, a specific editor can be selected to override the default.

Typically if you install the Coq prover, then the editor to use will be set to
“CoqIDE” by default, and this dialog allows you to select the Emacs editor and
its Proof General mode instead (http://proofgeneral.inf.ed.ac.uk/).

http://proofgeneral.inf.ed.ac.uk/
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Provers tab allows to select which of the installed provers one wants to see as buttons in
the left toolbar.

Uninstalled Provers tab presents all the decision previously taken for missing provers,
as described in Section 5.6. You can remove any recorded decision by clicking on it.

6.3.5 Additional Command-Line Options

The ide command also accepts the following options described for the command prove
in Section 6.2.2.

--extra-expl-prefix <s>

6.4 The bench Command
The bench command adds a scheduler on top of the Why3 library. It is designed to
compare various components of automatic proofs: automatic provers, transformations,
definitions of a theory. For that purpose, it tries to prove predefined goals using each
component to compare. Various formats can be used as outputs:

csv the simpler and more informative format; the results are represented in an array; the
rows correspond to the compared components, the columns correspond to the result
(Valid, Unknown, Timeout, Failure, Invalid) and the CPU time taken in seconds.

average it summarizes the number of the five different answers for each component. It
also gives the average time taken.

timeline for each component, it gives the number of valid goals along the time (10 slices
between 0 and the longest time a component takes to prove a goal)

The compared components can be defined in an rc-file; examples/misc/prgbench.rc
is an example of such a file. More generally, a bench configuration file looks like

[probs "myprobs"]
file = "examples/mygoal.why" #relatives to the rc file
file = "examples/myprogram.mlw"
theory = "myprogram.T"
goal = "mygoal.T.G"

transform = "split_goal" #applied in this order
transform = "..."
transform = "..."

[tools "mytools"]
prover = cvc3
prover = altergo
#or only one
driver = "..."
command = "..."

loadpath = "..." #added to the one in why3.conf
loadpath = "..."
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timelimit = 30
memlimit = 300

use = "toto.T" #use the theory toto (allow to add metas)

transform = "simplify_array" #only 1 to 1 transformation

[bench "mybench"]
tools = "mytools"
tools = ...
probs = "myprobs"
probs = ...
timeline = "prgbench.time"
average = "prgbench.avg"
csv = "prgbench.csv"

Such a file can define three families tools, probs, bench. A tools section defines a
set of components to compare. A probs section defines a set of goals on which to compare
some components. A bench section defines which components to compare using which
goals. It refers by name to some sections tools and probs defined in the same file. The
order of the definitions is irrelevant. Notice that one can use loadpath in a tools section
to compare different axiomatizations.

One can run all the bench given in one bench configuration file with

why3 bench -B path_to_my_bench.rc

6.5 The replay Command
The replay command is meant to execute the proofs stored in a Why3 session file, as
produced by the IDE. Its main purpose is to play non-regression tests. For instance,
examples/regtests.sh is a script that runs regression tests on all the examples.

The tool is invoked in a terminal or a script using

why3 replay [options] <project directory>

The session file why3session.xml stored in the given directory is loaded and all the
proofs it contains are rerun. Then, all the differences between the information stored in
the session file and the new run are shown.

Nothing is shown when there is no change in the results, whether the considered goal
is proved or not. When all the proof are done, a summary of what is proved or not is
displayed using a tree-shape pretty print, similar to the IDE tree view after doing “Collapse
proved goals”. In other words, when a goal, a theory, or a file is fully proved, the subtree
is not shown.

Obsolete proofs When some proof attempts stored in the session file are obsolete, the
replay is run anyway, as with the replay button in the IDE. Then, the session file will be
updated if both

• all the replayed proof attempts give the same result as what is stored in the session

• every goals are proved.
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In other cases, you can use the IDE to update the session, or use the option --force
described below.

Exit code and options The exit code is 0 if no difference was detected, 1 if there was.
Other exit codes mean some failure in running the replay.

Options are:

-s suppresses the output of the final tree view.

-q runs quietly (no progress info).

--force enforces saving the session, if all proof attempts replayed correctly, even if some
goals are not proved.

--obsolete-only replays the proofs only if the session contains obsolete proof attempts.

--smoke-detector {none|top|deep} tries to detect if the context is self-contradicting.

--prover <prover> restricts the replay to the selected provers only.

Smoke detector The smoke detector tries to detect if the context is self-contradicting
and, thus, that anything can be proved in this context. The smoke detector can’t be run on
an outdated session and does not modify the session. It has three possible configurations:

none Do not run the smoke detector.

top The negation of each proved goal is sent with the same timeout to the prover that
proved the original goal.

Goal G : forall x:int. q x -> (p1 x \/ p2 x)

becomes

Goal G : ~ (forall x:int. q x -> (p1 x \/ p2 x))

In other words, if the smoke detector is triggered, it means that the context of the
goal G is self-contradicting.

deep This is the same technique as top but the negation is pushed under the universal
quantification (without changing them) and under the implication. The previous
example becomes

Goal G : forall x:int. q x /\ ~ (p1 x \/ p2 x)

In other words, the premises of goal G are pushed in the context, so that if the smoke
detector is triggered, it means that the context of the goal G and its premises are
self-contradicting. It should be clear that detecting smoke in that case does not
necessarily means that there is a mistake: for example, this could occur in the WP
of a program with an unfeasible path.

At the end of the replay, the name of the goals that triggered the smoke detector are
printed:

goal 'G', prover 'Alt-Ergo 0.93.1': Smoke detected!!!

Moreover Smoke detected (exit code 1) is printed at the end if the smoke detector has
been triggered, or No smoke detected (exit code 0) otherwise.
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6.6 The session Command

The session command makes it possible to extract information from proof sessions on
the command line, or even modify them to some extent. The invocation of this program
is done under the form

why3 session <subcommand> [options] <session directories>

The available subcommands are as follows:

info prints informations and statistics about sessions.

latex outputs session contents in LaTeX format.

html outputs session contents in HTML format.

mod modifies some of the proofs, selected by a filter.

copy duplicates some of the proofs, selected by a filter.

copy-archive same as copy but also archives the original proofs.

rm removes some of the proofs, selected by a filter.

The first three commands do not modify the sessions, whereas the last four modify
them. Only the proof attempts recorded are modified. No prover is called on the modified
or created proof attempts, and consequently the proof status is always marked as obsolete.

6.6.1 Command info

The command why3 session info reports various informations about the session, de-
pending on the following specific options.

--provers prints the provers that appear inside the session, one by line.

--edited-files prints all the files that appear in the session as edited proofs.

--stats prints various proofs statistics, as detailed below.

--tree prints the structure of the session as a tree in ASCII, as detailed below.

--print0 separates the results of the options provers and --edited-files by the char-
acter number 0 instead of end of line \n. That allows you to safely use (even if
the filename contains space or carriage return) the result with other commands. For
example you can count the number of proof line in all the coq edited files in a session
with:

why3 session info --edited-files vstte12_bfs --print0 | xargs -0 coqwc

or you can add all the edited files in your favorite repository with:

why3 session info --edited-files --print0 vstte12_bfs.mlw | \
xargs -0 git add
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Session Tree The hierarchical structure of the session is printed as a tree in ASCII.
The files, theories, goals are marked with a question mark ?, if they are not verified. A
proof is usually said to be verified if the proof result is valid and the proof is not obsolete.
However here specially we separate these two properties. On the one hand if the proof
suffers from an internal failure we mark it with an exclamation mark !, otherwise if it is
not valid we mark it with a question mark ?, finally if it is valid we add nothing. On the
other hand if the proof is obsolete we mark it with an O and if it is archived we mark it
with an A.

For example, here are the session tree produced on the “hello proof” example of Sec-
tion 1.
hello_proof---../hello_proof.why?---HelloProof?-+-G3-+-Simplify (1.5.4)?

| `-Alt-Ergo (0.94)
|-G2?-+-split_goal?-+-G2.2-+-Simplify (1.5.4)
| | | `-Alt-Ergo (0.94)
| | `-G2.1?-+-Coq (8.3pl4)?
| | |-Simplify (1.5.4)?
| | `-Alt-Ergo (0.94)?
| |-Simplify (1.5.4)?
| `-Alt-Ergo (0.94)?
`-G1---Simplify (1.5.4)

Session Statistics The proof statistics given by option --stats are as follows:

• Number of goals: give both the total number of goals, and the number of those that
are proved (possibly after a transformation).

• Goals not proved: list of goals of the session which are not proved by any prover,
even after a transformation.

• Goals proved by only one prover: the goals for which there is only one successful
proof. For each of these, the prover which was successful is printed. This also
includes the sub-goals generated by transformations.

• Statistics per prover: for each of the prover used in the session, the number of proved
goals is given. This also includes the sub-goals generated by transformations. The
respective minimum, maximum and average time and on average running time is
shown. Beware that these time data are computed on the goals where the prover
was successful.

For example, here are the session statistics produced on the “hello proof” example of
Section 1.

== Number of goals ==
total: 5 proved: 3

== Goals not proved ==
+-- file ../hello_proof.why

+-- theory HelloProof
+-- goal G2

+-- transformation split_goal
+-- goal G2.1

== Goals proved by only one prover ==
+-- file ../hello_proof.why

+-- theory HelloProof
+-- goal G1: Simplify (1.5.4) (0.00)
+-- goal G3: Alt-Ergo (0.94) (0.00)
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== Statistics per prover: number of proofs, time (minimum/maximum/average) in seconds ==
Alt-Ergo (0.94) : 2 0.00 0.00 0.00
Simplify (1.5.4) : 2 0.00 0.00 0.00

6.6.2 Command latex

Command latex produces a summary of the replay under the form of a tabular environ-
ment in LaTeX, one tabular for each theory, one per file.

The specific options are

-style <n> sets output style (1 or 2, default 1) Option -style 2 produces an alternate
version of LaTeX output, with a different layout of the tables.

-o <dir> indicates where to produce LaTeX files (default: the session directory).

-longtable uses the ‘longtable’ environment instead of ‘tabular’.

-e <elem> produces a table for the given element, which is either a file, a theory
or a root goal. The element must be specified using its path in dot nota-
tion, e.g. file.theory.goal. The file produced is named accordingly, e.g.
file.theory.goal.tex. This option can be given several times to produce sev-
eral tables in one run. When this option is given at least once, the default behavior
that is to produce one table per theory is disabled.

Customizing LaTeX output The generated LaTeX files contain some macros that
must be defined externally. Various definitions can be given to them to customize the
output.

\provername macro with one parameter, a prover name

\valid macro with one parameter, used where the corresponding prover answers that the
goal is valid. The parameter is the time in seconds.

\noresult macro without parameter, used where no result exists for the corresponding
prover

\timeout macro without parameter, used where the corresponding prover reached the
time limit

\explanation macro with one parameter, the goal name or its explanation

Figure 6.1 suggests some definitions for these macros, while Figures 6.2 and 6.3 show
the tables obtained from the HelloProof example of Section 1, respectively with style 1
and 2.

6.6.3 Command html

This command produces a summary of the proof session in HTML syntax. There are two
styles of output: ‘table’ and ‘simpletree’. The default is ‘table’.

The file generated is named why3session.html and is written in the session directory
by default (see option -o to override this default).

The style ‘table’ outputs the contents of the session as a table, similar to the LaTeX
output above. Figure 6.4 is the HTML table produced for the ‘HelloProof’ example, as
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\usepackage{xcolor}
\usepackage{colortbl}
\usepackage{rotating}

\newcommand{\provername}[1]{\cellcolor{yellow!25}
\begin{sideways}\textbf{#1}~~\end{sideways}}
\newcommand{\explanation}[1]{\cellcolor{yellow!13}lemma \texttt{#1}}
\newcommand{\transformation}[1]{\cellcolor{yellow!13}transformation \texttt{#1}}
\newcommand{\subgoal}[2]{\cellcolor{yellow!13}subgoal #2}
\newcommand{\valid}[1]{\cellcolor{green!13}#1}
\newcommand{\unknown}[1]{\cellcolor{red!20}#1}
\newcommand{\invalid}[1]{\cellcolor{red!50}#1}
\newcommand{\timeout}[1]{\cellcolor{red!20}(#1)}
\newcommand{\outofmemory}[1]{\cellcolor{red!20}(#1)}
\newcommand{\noresult}{\multicolumn{1}{>{\columncolor[gray]{0.8}}c|}{~}}
\newcommand{\failure}{\cellcolor{red!20}failure}
\newcommand{\highfailure}{\cellcolor{red!50}FAILURE}

Figure 6.1: Sample macros for the LaTeX command
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)

lemma G1 0.00
lemma G2 0.00 0.00

lemma 1. 0.00 0.43 0.00
lemma 2. 0.00 0.00

lemma G3 0.00 0.00

Figure 6.2: LaTeX table produced for the HelloProof example (style 1)

typically shown in a Web browser. The gray cells filled with –- just mean that the prover
was not run on the corresponding goal. Green background means the result was “Valid”,
other cases are in orange background. The red background for a goal means that the goal
was not proved.

The style ‘simpletree’ displays the contents of the session under the form of tree, similar
to the tree view in the IDE. It uses only basic HTML tags such as <ul> and <li>.

Specific options for this command are as follows.

--style <style> sets the style to use, among simpletree and table; defaults to table.

-o <dir> sets the directory where to output the produced files (‘-’ for stdout). The
default is to output in the same directory as the session itself.

--context adds context around the generated code in order to allow direct visualization
(header, css, ...). It also adds in the output directory all the needed external files.
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Proof obligations A
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lemma G1 0.00
lemma G2 0.00 0.00
transformation split_goal
subgoal 1 0.00 0.43 0.00
subgoal 2 0.00 0.00

lemma G3 0.00 0.00

Figure 6.3: LaTeX table produced for the HelloProof example (style 2)

Figure 6.4: HTML table produced for the HelloProof example

It can’t be set with stdout output.

--add_pp <suffix> <cmd> <out_suffix> sets a specific pretty-printer for files with the
given suffix. Produced files use <out_suffix> as suffix. <cmd> must contain ‘%i’
which will be replaced by the input file and ‘%o’ which will be replaced by the output
file.

--coqdoc uses the coqdoc command to display Coq proof scripts. This is equivalent to
--add_pp .v "coqdoc --no-index --html -o %o %i" .html

6.6.4 Commands modifying the proof attempts

The commands mod, copy, copy-archive, and rm, share the same set of options for
selecting the proof attempts to work on:

--filter-prover <prover> selects only the proof attempt with the given prover. This
option can be specified multiple times in order to select all the proofs that corre-
sponds to any of the given provers.
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--filter-verified yes selects only the proofs that are valid and not obsolete,
while option --filter-verified no selects the ones that are not verified.
--filter-verified all, the default, does not perform such a selection.

--filter-verified-goal yes restricts the selection to the proofs of verified goals (that
does not mean that the proof is verified). Same for the other cases no and all.

--filter-archived yes restricts the selection to the proofs that are archived. Same for
the other cases no and all except the default is no.

The commands mod, copy, and copy-archive, share the same set of options to specify
the modification. The command mod modifies directly the proof attempt, copy copies
the proof attempt before doing the modification, copy-archive marks the original proof
attempt as archived. The options are:

--set-obsolete marks the selected proofs as obsolete.

--set-archived marks the selected proofs as archived.

--unset-archived removes the archived attribute from the selected proofs.

--to-prover <prover> modifies the prover, for example --to-prover Alt-Ergo,0.94.
A conflict arises if a proof with this prover already exists. In this case, you can
choose between four behaviors:

• replace the proof (-f, --force);
• do not replace the proof (-n, --never);
• replace the proof unless it is verified (valid and not obsolete) (-c,

--conservative); this is the default;
• ask the user each time the case arises (-i, --interactive).

The command rm removes the selected proof attempts. The options --interactive,
--force, and --conservative, can also be used to respectively ask before
each suppression, suppress all the selected proofs (default), and remove only
the proofs that are not verified. The macro option --clean corresponds to
--filter-verified-goal --conservative and removes the proof attempts that are not
verified but which correspond to verified goals.

The commands of this section do not accept by default to modify an obsolete session
(as defined in 6.3.1). You need to add the option -F to force this behavior.

6.7 The doc Command
This tool can produce HTML pages from Why3 source code. Why3 code for theories
or modules is output in preformatted HTML code. Comments are interpreted in three
different ways.

• Comments starting with at least three stars are completed ignored.

• Comments starting with two stars are interpreted as textual documentation. Special
constructs are interpreted as described below. When the previous line is not empty,
the comment is indented to the right, so as to be displayed as a description of that
line.
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• Comments starting with one star only are interpreted as code comments, and are
typeset as the code

Additionally, all the Why3 identifiers are typeset with links so that one can navigate
through the HTML documentation, going from some identifier use to its definition.

Options

-o <dir> defines the directory where to output the HTML files.

--output <dir> is the same as -o.

--index generates an index file index.html. This is the default behavior if more than
one file is passed on the command line.

--no-index prevents the generation of an index file.

--title <title> sets title of the index page.

--stdlib-url <url> sets a URL for files found in load path, so that links to definitions
can be added.

Typesetting textual comments Some constructs are interpreted:

• {c text} interprets character c as some typesetting command:

1-6 a heading of level 1 to 6 respectively
h raw HTML

• [code] is a code escape: the text code is typeset as Why3 code.

A CSS file style.css suitable for rendering is generated in the same directory as
output files. This CSS style can be modified manually, since regenerating the HTML
documentation will not overwrite an existing style.css file.

6.8 The execute Command
Why3 can symbolically execute programs written using the WhyML language (extension
.mlw). See also Section 8.1.

6.9 The extract Command
Why3 can extract programs written using the WhyML language (extension .mlw) to
OCaml. See also Section 8.2.

6.10 The realize Command
Why3 can produce skeleton files for proof assistants that, once filled, realize the given
theories. See also Section 9.2.

6.11 The wc Command
Why3 can give some token statistics about Why3 and WhyML source codes.



Chapter 7

Language Reference

This chapter gives the grammar and semantics for Why3 and WhyML input files.

7.1 Lexical Conventions

Lexical conventions are common to Why3 and WhyML.

7.1.1 Comments

Comments are enclosed by (* and *) and can be nested.

7.1.2 Strings

Strings are enclosed in double quotes ("). Double quotes can be escaped in strings using
the backslash character (\). The other special sequences are \n for line feed and \t for
horizontal tab. In the following, strings are referred to with the non-terminal string.

7.1.3 Identifiers

The syntax distinguishes lowercase and uppercase identifiers and, similarly, lowercase and
uppercase qualified identifiers.

lalpha ::= a - z | _

ualpha ::= A - Z

alpha ::= lalpha | ualpha

lident ::= lalpha (alpha | digit | ’)∗

uident ::= ualpha (alpha | digit | ’)∗

ident ::= lident | uident

lqualid ::= lident | uqualid . lident

uqualid ::= uident | uqualid . uident

qualid ::= ident | uqualid . ident

75
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digit ::= 0 - 9

hex-digit ::= digit | a - f | A - F

oct-digit ::= 0 - 7

bin-digit ::= 0 | 1

integer ::= digit (digit | _)∗ decimal
| (0x | 0X) hex-digit (hex-digit | _)∗ hexadecimal
| (0o | 0O) oct-digit (oct-digit | _)∗ octal
| (0b | 0B) bin-digit (bin-digit | _)∗ binary

real ::= digit+ exponent decimal
| digit+ . digit∗ exponent?

| digit∗ . digit+ exponent?

| (0x | 0X) hex-real h-exponent hexadecimal
hex-real ::= hex-digit+

| hex-digit+ . hex-digit∗

| hex-digit∗ . hex-digit+

exponent ::= (e | E) (- | +)? digit+

h-exponent ::= (p | P) (- | +)? digit+

Figure 7.1: Syntax for constants.

7.1.4 Constants

The syntax for constants is given in Figure 7.1. Integer and real constants have arbitrary
precision. Integer constants may be given in base 16, 10, 8 or 2. Real constants may be
given in base 16 or 10.

7.1.5 Operators

Prefix and infix operators are built from characters organized in four categories (op-char-1
to op-char-4).

op-char-1 ::= = | < | > | ~

op-char-2 ::= + | -

op-char-3 ::= * | / | %

op-char-4 ::= ! | $ | & | ? | @ | ^ | . | : | | | #

op-char ::= op-char-1 | op-char-2 | op-char-3 | op-char-4
infix-op-1 ::= op-char∗ op-char-1 op-char∗

infix-op ::= op-char+

prefix-op ::= op-char+

bang-op ::= ! op-char-4∗ | ? op-char-4∗

Infix operators are classified into 4 categories, according to the characters they are built
from:
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• level 4: operators containing only characters from op-char-4 ;

• level 3: those containing characters from op-char-3 or op-char-4 ;

• level 2: those containing characters from op-char-2, op-char-3 or op-char-4 ;

• level 1: all other operators (non-terminal infix-op-1 ).

7.1.6 Labels

Identifiers, terms, formulas, program expressions can all be labeled, either with a string,
or with a location tag.

label ::= string
| # filename digit+ digit+ digit+ #

filename ::= string

A location tag consists of a file name, a line number, and starting and ending characters.

7.2 The Why3 Language

7.2.1 Terms

The syntax for terms is given in Figure 7.2. The various constructs have the following
priorities and associativities, from lowest to greatest priority:

construct associativity
if then else / let in –
label –
cast –
infix-op level 1 left
infix-op level 2 left
infix-op level 3 left
infix-op level 4 left
prefix-op –
function application left
brackets / ternary brackets –
bang-op –

Note the curryfied syntax for function application, though partial application is not
allowed (rejected at typing).

7.2.2 Type Expressions

The syntax for type expressions is the following:

type ::= lqualid type∗ type symbol
| ’ lident type variable
| () empty tuple type
| ( type (, type)+ ) tuple type
| ( type ) parentheses
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term ::= integer integer constant
| real real constant
| lqualid symbol
| prefix-op term
| bang-op term
| term infix-op term
| term [ term ] brackets
| term [ term <- term ] ternary brackets
| lqualid term+ function application
| if formula then term

else term conditional
| let pattern = term in term local binding
| match term (, term)∗ with

(| term-case)+ end pattern matching
| ( term (, term)+ ) tuple
| { term-field+ } record
| term . lqualid field access
| { term with term-field+ } field update
| term : type cast
| label term label
| ’ uident code mark
| ( term ) parentheses

pattern ::= pattern | pattern or pattern
| pattern , pattern tuple
| _ catch-all
| lident variable
| uident pattern∗ constructor
| ( pattern ) parentheses
| pattern as lident binding

term-case ::= pattern -> term

term-field ::= lqualid = term ;

Figure 7.2: Syntax for terms.
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Built-in types are int, real, and tuple types. Note that the syntax for type expressions
notably differs from the usual ML syntax (e.g. the type of polymorphic lists is written
list ’a, not ’a list).

7.2.3 Formulas

The syntax for formulas is given Figure 7.3. The various constructs have the following
priorities and associativities, from lowest to greatest priority:

construct associativity
if then else / let in –
label –
-> / <-> right
\/ / || right
/\ / && right
not –
infix level 1 left
infix level 2 left
infix level 3 left
infix level 4 left
prefix –

Note that infix symbols of level 1 include equality (=) and disequality (<>).
Notice that there are two symbols for the conjunction: /\ and &&, and similarly for

disjunction. They are logically equivalent, but may be treated slightly differently by
some transformations. For instance, split transforms the goal A /\ B into subgoals A
and B, whereas it transforms A && B into subgoals A and A -> B. Similarly, it transforms
not (A || B) into subgoals not A and not ((not A) /\ B).

7.2.4 Theories

The syntax for theories is given on Figure 7.4 and 7.5.

7.2.5 Files

A Why3 input file is a (possibly empty) list of theories.

file ::= theory∗
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formula ::= true | false
| formula -> formula implication
| formula <-> formula equivalence
| formula /\ formula conjunction
| formula && formula asymmetric conj.
| formula \/ formula disjunction
| formula || formula asymmetric disj.
| not formula negation
| lqualid symbol
| prefix-op term
| term infix-op term
| lqualid term+ predicate application
| if formula then formula

else formula conditional
| let pattern = term in formula local binding
| match term (, term)+ with

(| formula-case)+ end pattern matching
| quantifier binders (, binders )∗

triggers? . formula quantifier
| label formula label
| ( formula ) parentheses

quantifier ::= forall | exists

binders ::= lident+ : type

triggers ::= [ trigger (| trigger)∗ ]

trigger ::= tr-term (, tr-term)∗

tr-term ::= term | formula

formula-case ::= pattern -> formula

Figure 7.3: Syntax for formulas.
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theory ::= theory uident label∗ decl∗ end

decl ::= type type-decl (with type-decl)∗

| constant constant-decl
| function function-decl (with logic-decl)∗

| predicate predicate-decl (with logic-decl)∗

| inductive inductive-decl (with inductive-decl)∗

| coinductive inductive-decl (with inductive-decl)∗

| axiom ident : formula
| lemma ident : formula
| goal ident : formula
| use imp-exp tqualid (as uident)?

| clone imp-exp tqualid (as uident)? subst?

| namespace import? uident decl∗ end

logic-decl ::= function-decl
| predicate-decl

constant-decl ::= lident label∗ : type
| lident label∗ : type = term

function-decl ::= lident label∗ type-param∗ : type
| lident label∗ type-param∗ : type = term

predicate-decl ::= lident label∗ type-param∗

| lident label∗ type-param∗ = formula

inductive-decl ::= lident label∗ type-param∗ =
|? ind-case (| ind-case)∗

ind-case ::= ident label∗ : formula

imp-exp ::= (import | export)?

subst ::= with (, subst-elt)+

subst-elt ::= type lqualid = lqualid
| function lqualid = lqualid
| predicate lqualid = lqualid
| namespace (uqualid | .) = (uqualid | .)
| lemma qualid
| goal qualid

tqualid ::= uident | ident (. ident)∗ . uident

type-decl ::= lident label∗ (’ lident label∗)∗ type-defn

Figure 7.4: Syntax for theories (part 1).
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type-defn ::= abstract type
| = type alias type
| = |? type-case (| type-case)∗ algebraic type
| = { record-field (; record-field)∗ } record type

type-case ::= uident label∗ type-param∗

record-field ::= lident label∗ : type

type-param ::= ’ lident
| lqualid
| ( lident+ : type )
| ( type (, type)∗ )
| ()

Figure 7.5: Syntax for theories (part 2).
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spec ::= requires | ensures | returns | raises
| reads | writes | variant

requires ::= requires { formula }

ensures ::= ensures { formula }

returns ::= returns { |? formula-case (| formula-case)∗ }

reads ::= reads { term ( , term )∗ }

writes ::= writes { term ( , term )∗ }

raises ::= raises { |? raises-case (| raises-case)∗ }
| raises { uqualid (, uqualid)∗ }

raises-case ::= uqualid pattern? -> formula

variant ::= variant { one-variant (, one-variant)+ }

one-variant ::= term (with variant-rel)?

variant-rel ::= lqualid

invariant ::= invariant { formula }

assertion ::= (assert | assume | check) { formula }
| absurd

Figure 7.6: Specification clauses in programs.

7.3 The WhyML Language

7.3.1 Specification

The syntax for specification clauses in programs is given in Figure 7.6. Within specifica-
tions, terms are extended with new constructs old and at:

term ::= ...
| old term
| at term ’ uident

Within a postcondition, old t refers to the value of term t in the prestate. Within the
scope of a code mark L, the term at t 'L refers to the value of term t at the program
point corresponding to L.

7.3.2 Expressions

The syntax for program expressions is given in Figure 7.7 and Figure 7.8.
In applications, arguments are evaluated from right to left. This includes applications

of infix operators, with the only exception of lazy operators && and || that evaluate from
left to right, lazily.

7.3.3 Modules

The syntax for modules is given in Figure 7.9. Any declaration which is accepted in a
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expr ::= integer integer constant
| real real constant
| lqualid symbol
| prefix-op expr
| expr infix-op expr
| expr [ expr ] brackets
| expr [ expr ] <- expr brackets assignment
| expr [ expr infix-op-1 expr ] ternary brackets
| expr expr+ function application
| fun binder+ spec∗ -> spec∗ expr lambda abstraction
| let rec rec-defn in expr recursive functions
| let fun-defn in expr local function
| if expr then expr (else expr)? conditional
| expr ; expr sequence
| loop invariant∗ variant? expr end infinite loop
| while expr while loop

do invariant∗ variant? expr done
| for lident = expr to-downto expr for loop

do invariant∗ expr done
| assertion assertion
| raise uqualid exception raising
| raise ( uqualid expr )
| try expr with (| handler)+ end exception catching
| any type spec∗

| abstract expr spec∗ blackbox
| let pattern = expr in expr local binding
| match expr (, expr)∗ with pattern matching

|? expr-case (| expr-case)∗ end
| ( expr (, expr)+ ) tuple
| { expr-field+ } record
| expr . lqualid field access
| expr . lqualid <- expr field assignment
| { expr with expr-field+ } field update
| expr : type cast
| ghost expr ghost expression
| label expr label
| ’ uident : expr code mark
| ( expr ) parentheses

expr-case ::= pattern -> expr

expr-field ::= lqualid = expr ;

handler ::= uqualid pattern? -> expr

to-downto ::= to | downto

Figure 7.7: Syntax for program expressions (part 1).



7.3. THE WHYML LANGUAGE 85

rec-defn ::= fun-defn (with fun-defn)∗

fun-defn ::= ghost? lident label∗ fun-body

fun-body ::= binder+ (: type)? spec∗ = spec∗ expr

binder ::= ghost? lident label∗ | param

param ::= ( (ghost? lident label∗)+ : type )

Figure 7.8: Syntax for program expressions (part 2).

module ::= module uident label∗ mdecl∗ end

mdecl ::= decl theory declaration
| type mtype-decl (with mtype-decl)∗ mutable types
| type lident (’ lident)∗ invariant+ added invariant
| let ghost? lident label∗ pgm-defn
| let rec rec-defn
| val ghost? lident label∗ pgm-decl
| exception lident label∗ type?

| namespace import? uident mdecl∗ end

mtype-decl ::= lident label∗ (’ lident label∗)∗

mtype-defn

mtype-defn ::= abstract type
| = type alias type
| = |? type-case (| type-case)∗ invariant∗ algebraic type
| = { mrecord-field (; mrecord-field)∗ } record type

invariant∗

mrecord-field ::= ghost? mutable? lident label∗ : type

pgm-defn ::= fun-body
| = fun binder+ spec∗ -> spec∗ expr

pgm-decl ::= : type global variable
| param (spec∗ param)+ : type spec∗ abstract function

Figure 7.9: Syntax for modules.
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theory is also accepted in a module. Additionally, modules can introduce record types with
mutable fields and declarations which are specific to programs (global variables, functions,
exceptions).

7.3.4 Files

A WhyML input file is a (possibly empty) list of theories and modules.

file ::= (theory | module)∗

A theory defined in a WhyML file can only be used within that file. If a theory is supposed
to be reused from other files, be they Why3 or WhyML files, it should be defined in a Why3
file.

7.4 The Why3 Standard Library
The Why3 standard library provides general-purpose theories and modules, to be used in
logic and/or programs. It can be browsed on-line at http://why3.lri.fr/stdlib/. Each
file contains one or several theories and/or modules. To use or clone a theory/module T
from file file, use the syntax file.T, since file is available in Why3’s default load path.
For instance, the theory of integers and the module of references are imported as follows:

use import int.Int
use import ref.Ref

http://why3.lri.fr/stdlib/


Chapter 8

Executing WhyML Programs

This chapter shows how WhyML code can be executed, either by being interpreted or
compiled to some existing programming language.

Let us consider the program in Figure 3.1 on page 30 that computes the maximum
and the sum of an array of integers. Let us assume it is contained in a file maxsum.mlw.

8.1 Interpreting WhyML Code

To test function max_sum, we can introduce a WhyML test function in module MaxAndSum

let test () =
let n = 10 in
let a = make n 0 in
a[0] <- 9; a[1] <- 5; a[2] <- 0; a[3] <- 2; a[4] <- 7;
a[5] <- 3; a[6] <- 2; a[7] <- 1; a[8] <- 10; a[9] <- 6;
max_sum a n

and then we use the execute command to interpret this function, as follows:

> why3 execute maxsum.mlw MaxAndSum.test
Execution of MaxAndSum.test ():

type: (int, int)
result: (45, 10)
globals:

We get the expected output, namely the pair (45, 10).

8.2 Compiling WhyML to OCaml

An alternative to interpretation is to compile WhyML to OCaml. We do so using the
extract command, as follows:

> mkdir dir
> why3 extract -D ocaml64 maxsum.mlw -o dir

The extract command requires the name of a driver, which indicates how theories/mod-
ules from the Why3 standard library are translated to OCaml. Here we assume a 64-bit
architecture and thus we pass ocaml64. On a 32-bit architecture, we would use ocaml32

87
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instead. Extraction also requires a target directory to be specified using option -o. Here
we pass a freshly created directory dir.

Directory dir is now populated with a bunch of OCaml files, among which we find a
file maxsum__MaxAndSum.ml containing the OCaml code for functions max_sum and test.

To compile it, we create a file main.ml containing a call to test, that is, for example,
let (s,m) = test () in
Format.printf "sum=%s, max=%s@."
(Why3__BigInt.to_string s) (Why3__BigInt.to_string m)

and we pass both files maxsum__MaxAndSum.ml and main.ml to the OCaml compiler:

> cd dir
> ocamlopt zarith.cmxa why3extract.cmxa maxsum__MaxAndSum.ml main.ml

OCaml code extracted from Why3 must be linked with the library why3extract.cmxa
that is shipped with Why3. It is typically stored in subdirectory why3 of the OCaml
standard library. Depending on the way Why3 was installed, it depends either on library
nums.cmxa or zarith.cmxa for big integers. Above we assumed the latter. It is likely that
additional options -I must be passed to the OCaml compiler for libraries zarith.cmxa
and why3extract.cmxa to be found. For instance, it could be

> ocamlopt -I `ocamlfind query zarith` zarith.cmxa \
-I `why3 --print-libdir`/why3 why3extract.cmxa \
...

To make the compilation process easier, one can write a Makefile which can include
informations about Why3 configuration as follows.
WHY3SHARE=$(shell why3 --print-datadir)

include $(WHY3SHARE)/Makefile.config

maxsum:
ocamlopt $(INCLUDE) $(BIGINTLIB).cmxa why3extract.cmxa \

-o maxsum maxsum__MaxAndSum.ml main.ml



Chapter 9

Interactive Proof Assistants

9.1 Using an Interactive Proof Assistant to Discharge
Goals

Instead of calling an automated theorem prover to discharge a goal, Why3 offers the
possibility to call an interactive theorem prover instead. In that case, the interaction is
decomposed into two distinct phases:

• Edition of a proof script for the goal, typically inside a proof editor provided by the
external interactive theorem prover;

• Replay of an existing proof script.

An example of such an interaction is given in the tutorial section 1.2.
Some proof assistants offer more than one possible editor, e.g. a choice between the

use of a dedicated editor and the use of the Emacs editor and the ProofGeneral mode.
Selection of the preferred mode can be made in why3ide preferences, under the “Editors”
tab.

9.2 Theory Realizations
Given a Why3 theory, one can use a proof assistant to make a realization of this theory,
that is to provide definitions for some of its uninterpreted symbols and proofs for some
of its axioms. This way, one can show the consistency of an axiomatized theory and/or
make a connection to an existing library (of the proof assistant) to ease some proofs.

9.2.1 Generating a realization

Generating the skeleton for a theory is done by passing to the realize command a driver
suitable for realizations, the names of the theories to realize, and a target directory.

why3 realize -D path/to/drivers/prover-realize.drv
-T env_path.theory_name -o path/to/target/dir/

The theory is looked into the files from the environment, e.g. the standard library. If
the theory is stored in a different location, option -L should be used.

The name of the generated file is inferred from the theory name. If the target directory
already contains a file with the same name, Why3 extracts all the parts that it assumes
to be user-edited and merges them in the generated file.
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Note that Why3 does not track dependencies between realizations and theories, so a
realization will become outdated if the corresponding theory is modified. It is up to the
user to handle such dependencies, for instance using a Makefile.

9.2.2 Using realizations inside proofs

If a theory has been realized, the Why3 printer for the corresponding prover will no
longer output declarations for that theory but instead simply put a directive to load the
realization. In order to tell the printer that a given theory is realized, one has to add a
meta declaration in the corresponding theory section of the driver.

theory env_path.theory_name
meta "realized_theory" "env_path.theory_name", "optional_naming"

end

The first parameter is the theory name for Why3. The second parameter, if not empty,
provides a name to be used inside generated scripts to point to the realization, in case the
default name is not suitable for the interactive prover.

9.2.3 Shipping libraries of realizations

While modifying an existing driver file might be sufficient for local use, it does not scale
well when the realizations are to be shipped to other users. Instead, one should create
two additional files: a configuration file that indicates how to modify paths, provers,
and editors, and a driver file that contains only the needed meta "realized_theory"
declarations. The configuration file should be as follows.

[main]
loadpath="path/to/theories"

[prover_modifiers]
name="Coq"
option="-R path/to/vo/files Logical_directory"
driver="path/to/file/with/meta.drv"

[editor_modifiers coqide]
option="-R path/to/vo/files Logical_directory"

[editor_modifiers proofgeneral-coq]
option="--eval \"(setq coq-load-path (cons '(\\\"path/to/vo/files\\\" \

\\\"Logical_directory\\\") coq-load-path))\""

This configuration file can be passed to Why3 thanks to the --extra-config option.

9.3 Coq
This section describes the content of the Coq files generated by Why3 for both proof
obligations and theory realizations. When reading a Coq script, Why3 is guided by the
presence of empty lines to split the script, so the user should refrain from removing empty
lines around generated parts or adding empty lines inside them.
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1. The header of the file contains all the library inclusions required by the driver file.
Any user-made changes to this part will be lost when the file is regenerated by Why3.
This part ends at the first empty line.

2. Abstract logic symbols are assumed with the vernacular directive Parameter. Ax-
ioms are assumed with the Axiom directive. When regenerating a script, Why3
assumes that all such symbols have been generated by a previous run. As a con-
sequence, the user should not introduce new symbols with these two directives, as
they would be lost.

3. Definitions of functions and inductive types in theories are printed in a block that
starts with (* Why3 assumption *). This comment should not be removed; other-
wise Why3 will assume that the definition is user-made.

4. Finally, proof obligations and symbols to be realized are introduced by
(* Why3 goal *). The user is supposed to fill the script after the statement. Why3
assumes that the user-made part extends up to Qed, Admitted, Save, or Defined,
whichever comes first. In the case of definitions, the original statement can be re-
placed by a Notation directive, in order to ease the usage of already defined symbols.
Why3 also recognizes Variable and Hypothesis and preserves them; they should
be used in conjunction with Coq’s Section mechanism to realize theories that still
need some abstract symbols and axioms.

Currently, the parser for Coq scripts is rather naive and does not know much about
comments. For instance, Why3 can easily be confused by some terminating directive like
Qed that would be present in a comment.

9.3.1 Coq Tactic

Why3 provides a Coq tactic to call external theorem provers as oracles.

Installation

You need Coq version 8.4 or greater. If this is the case, Why3’s configuration detects it,
then compiles and installs the Coq tactic. The Coq tactic is installed in

why3-lib-dir/coq-tactic/

where why3-lib-dir is Why3’s library directory, as reported by why3 --print-libdir.
This directory is automatically added to Coq’s load path if you are calling Coq via Why3
(from why3 ide, why3 replay, etc.). If you are calling Coq by yourself, you need to add
this directory to Coq’s load path, either using Coq’s command line option -I or by adding

Add LoadPath "why3-lib-dir/coq-tactic/".

to your ˜/.coqrc resource file.

Usage

The Coq tactic is called why3 and is used as follows:

why3 "prover-name" [timelimit n].
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The string prover-name identifies one of the automated theorem provers supported by
Why3, as reported by why3 --list-provers (interactive provers excluded). The current
goal is then translated to Why3’s logic and the prover is called. If it reports the goal to
be valid, then Coq’s admit tactic is used to assume the goal. The prover is called with a
time limit in seconds as given by Why3’s configuration file (see Section 10.3). A different
value may be given using the timelimit keyword.

Error messages.

The following errors may be reported by the Coq tactic.

Not a first order goal The Coq goal could not be translated to Why3’s logic.

Timeout There was no answer from the prover within the given time limit.

Don’t know The prover stopped without validating the goal.

Invalid The prover stopped, reporting the goal to be invalid.

Failure The prover failed. Depending on the message that follows, you may want to
file a bug report, either to the Why3 developers or to the prover developers.

9.4 Isabelle/HOL
When using Isabelle from Why3, files generated from Why3 theories and goals are stored
in a dedicated XML format. Those files should not be edited. Instead, the proofs must
be completed in a file with the same name and extension .thy. This is the file that is
opened when using “Edit” action in why3 ide.

9.4.1 Installation

You need version Isabelle2015 or Isabelle2016. Former versions are not supported. We
assume below that your version is 2016, please replace 2016 by 2015 otherwise.

Isabelle must be installed before compiling Why3. After compilation and installation
of Why3, you must manually add the path

<Why3 lib dir>/isabelle

into either the user file

.isabelle/Isabelle2016/etc/components

or the system-wide file

<Isabelle install dir>/etc/components

9.4.2 Usage

The most convenient way to call Isabelle for discharging a Why3 goal is to start the
Isabelle/jedit interface in server mode. In this mode, one must start the server once,
before launching why3 ide, using

isabelle why3_jedit

Then, inside a why3 ide session, any use of “Edit” will transfer the file to the already
opened instance of jEdit. When the proof is completed, the user must send back the
edited proof to why3 ide by closing the opened buffer, typically by hitting Ctrl-w.
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9.4.3 Realizations

Realizations must be designed in some .thy as follows. The realization file corresponding
to some Why3 file f.why should have the following form.

theory Why3_f
imports Why3_Setup
begin

section {* realization of theory T *}

why3_open "f/T.xml"

why3_vc <some lemma>
<proof>

why3_vc <some other lemma> by proof

[...]

why3_end

See directory lib/isabelle for examples.

9.5 PVS

9.5.1 Installation

You need version 6.0.

9.5.2 Usage

When a PVS file is regenerated, the old version is split into chunks, according to blank
lines. Chunks corresponding to Why3 declarations are identified with a comment starting
with % Why3, e.g.

% Why3 f
f(x: int) : int

Other chunks are considered to be user PVS declarations. Thus a comment such as
% Why3 f must not be removed; otherwise, there will be two declarations for f in the next
version of the file (one being regenerated and another one considered to be a user-edited
chunk).

9.5.3 Realization

The user is allowed to perform the following actions on a PVS realization:

• give a definition to an uninterpreted symbol (type, function, or predicate symbol),
by adding an equal sign (=) and a right-hand side to the definition. When the
declaration is regenerated, the left-hand side is updated and the right-hand side is
reprinted as is. In particular, the names of a function or predicate arguments should
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not be modified. In addition, the MACRO keyword may be inserted and it will be kept
in further generations.

• turn an axiom into a lemma, that is to replace the PVS keyword AXIOM with either
LEMMA or THEOREM.

• insert anything between generated declarations, such as a lemma, an extra definition
for the purpose of a proof, an extra IMPORTING command, etc. Do not forget to
surround these extra declarations with blank lines.

Why3 makes some effort to merge new declarations with old ones and with user chunks.
If it happens that some chunks could not be merged, they are appended at the end of the
file, in comments.
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Technical Informations

10.1 Structure of Session Files

The proof session state is stored in an XML file named <dir>/why3session.xml,
where <dir> is the directory of the project. The XML file follows the DTD given in
share/why3session.dtd and reproduced below.

<!ELEMENT why3session (prover*, file*)>
<!ATTLIST why3session shape_version CDATA #IMPLIED>

<!ELEMENT prover EMPTY>
<!ATTLIST prover id CDATA #REQUIRED>
<!ATTLIST prover name CDATA #REQUIRED>
<!ATTLIST prover version CDATA #REQUIRED>
<!ATTLIST prover alternative CDATA #IMPLIED>
<!ATTLIST prover timelimit CDATA #IMPLIED>
<!ATTLIST prover memlimit CDATA #IMPLIED>

<!ELEMENT file (theory*)>
<!ATTLIST file name CDATA #REQUIRED>
<!ATTLIST file expanded CDATA #IMPLIED>
<!ATTLIST file verified CDATA #IMPLIED>

<!ELEMENT theory (label*,goal*)>
<!ATTLIST theory name CDATA #REQUIRED>
<!ATTLIST theory expanded CDATA #IMPLIED>
<!ATTLIST theory verified CDATA #IMPLIED>
<!ATTLIST theory sum CDATA #IMPLIED>
<!ATTLIST theory locfile CDATA #IMPLIED>
<!ATTLIST theory loclnum CDATA #IMPLIED>
<!ATTLIST theory loccnumb CDATA #IMPLIED>
<!ATTLIST theory loccnume CDATA #IMPLIED>

<!ELEMENT goal (label*, proof*, transf*, metas*)>
<!ATTLIST goal name CDATA #REQUIRED>
<!ATTLIST goal expl CDATA #IMPLIED>
<!ATTLIST goal sum CDATA #IMPLIED>
<!ATTLIST goal shape CDATA #IMPLIED>
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<!ATTLIST goal proved CDATA #IMPLIED>
<!ATTLIST goal expanded CDATA #IMPLIED>
<!ATTLIST goal locfile CDATA #IMPLIED>
<!ATTLIST goal loclnum CDATA #IMPLIED>
<!ATTLIST goal loccnumb CDATA #IMPLIED>
<!ATTLIST goal loccnume CDATA #IMPLIED>

<!ELEMENT proof (result|undone|internalfailure|unedited)>
<!ATTLIST proof prover CDATA #REQUIRED>
<!ATTLIST proof timelimit CDATA #IMPLIED>
<!ATTLIST proof memlimit CDATA #IMPLIED>
<!ATTLIST proof edited CDATA #IMPLIED>
<!ATTLIST proof obsolete CDATA #IMPLIED>
<!ATTLIST proof archived CDATA #IMPLIED>

<!ELEMENT result EMPTY>
<!ATTLIST result status (valid|invalid|unknown|timeout|outofmemory|steplimitexceeded|failure|highfailure) #REQUIRED>
<!ATTLIST result time CDATA #IMPLIED>
<!ATTLIST result steps CDATA #IMPLIED>

<!ELEMENT undone EMPTY>
<!ELEMENT unedited EMPTY>

<!ELEMENT internalfailure EMPTY>
<!ATTLIST internalfailure reason CDATA #REQUIRED>

<!ELEMENT transf (goal*)>
<!ATTLIST transf name CDATA #REQUIRED>
<!ATTLIST transf expanded CDATA #IMPLIED>
<!ATTLIST transf proved CDATA #IMPLIED>

<!ELEMENT label EMPTY>
<!ATTLIST label name CDATA #REQUIRED>

<!ELEMENT metas (ts_pos*,ls_pos*,pr_pos*,meta*,goal)>
<!ATTLIST metas expanded CDATA #IMPLIED>
<!ATTLIST metas proved CDATA #IMPLIED>

<!ELEMENT ts_pos (ip_library*,ip_qualid+)>
<!ATTLIST ts_pos name CDATA #REQUIRED>
<!ATTLIST ts_pos arity CDATA #REQUIRED>
<!ATTLIST ts_pos id CDATA #REQUIRED>
<!ATTLIST ts_pos ip_theory CDATA #REQUIRED>

<!ELEMENT ls_pos (ip_library*,ip_qualid+)>
<!ATTLIST ls_pos name CDATA #REQUIRED>
<!ATTLIST ls_pos id CDATA #REQUIRED>
<!ATTLIST ls_pos ip_theory CDATA #REQUIRED>

<!ELEMENT pr_pos (ip_library*,ip_qualid+)>
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<!ATTLIST pr_pos name CDATA #REQUIRED>
<!ATTLIST pr_pos id CDATA #REQUIRED>
<!ATTLIST pr_pos ip_theory CDATA #REQUIRED>

<!ELEMENT ip_library EMPTY>
<!ATTLIST ip_library name CDATA #REQUIRED>

<!ELEMENT ip_qualid EMPTY>
<!ATTLIST ip_qualid name CDATA #REQUIRED>

<!ELEMENT meta (meta_arg_ty*, meta_arg_ts*, meta_arg_ls*,
meta_arg_pr*, meta_arg_str*, meta_arg_int*)>

<!ATTLIST meta name CDATA #REQUIRED>

<!ELEMENT meta_args_ty (ty_var|ty_app)>

<!ELEMENT ty_var EMPTY>
<!ATTLIST ty_var id CDATA #REQUIRED>

<!ELEMENT ty_app (ty_var*,ty_app*)>
<!ATTLIST ty_app id CDATA #REQUIRED>

<!ELEMENT meta_arg_ts EMPTY>
<!ATTLIST meta_arg_ts id CDATA #REQUIRED>

<!ELEMENT meta_arg_ls EMPTY>
<!ATTLIST meta_arg_ls id CDATA #REQUIRED>

<!ELEMENT meta_arg_pr EMPTY>
<!ATTLIST meta_arg_pr id CDATA #REQUIRED>

<!ELEMENT meta_arg_str EMPTY>
<!ATTLIST meta_arg_str val CDATA #REQUIRED>

<!ELEMENT meta_arg_int EMPTY>
<!ATTLIST meta_arg_int val CDATA #REQUIRED>

10.2 Prover Detection
All the necessary data configuration for the automatic detection of installed provers
is stored in the file provers-detection-data.conf typically located in directory
/usr/local/share/why3 after installation. The contents of this file is reproduced be-
low.
[ATP alt-ergo]
name = "Alt-Ergo"
exec = "alt-ergo"
exec = "alt-ergo-1.20.prv"
exec = "alt-ergo-1.10.prv"
exec = "alt-ergo-1.01"
exec = "alt-ergo-1.00.prv"
version_switch = "-version"
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version_regexp = "^\\([0-9.]+\\(-dev\\|prv\\)?\\)$"
version_ok = "1.20.prv"
version_ok = "1.10.prv"
version_ok = "1.01"
version_ok = "1.00.prv"
# %T means timelimit+1
command = "%l/why3-cpulimit %T %m -s %e -timelimit %t %f"
# %U means 2*timelimit+1
command_steps = "%l/why3-cpulimit %U %m -s %e -steps-bound %S %f"
driver = "drivers/alt_ergo.drv"
editor = "altgr-ergo"

[ATP alt-ergo]
name = "Alt-Ergo"
exec = "alt-ergo"
exec = "alt-ergo-0.99.1"
exec = "alt-ergo-0.95.2"
version_switch = "-version"
version_regexp = "^\\([0-9.]+\\)$"
version_ok = "0.99.1"
version_ok = "0.95.2"
# %T means timelimit+1
command = "%l/why3-cpulimit %T %m -s %e -no-rm-eq-existential -timelimit %t %f"
# %U means 2*timelimit+1
command_steps = "%l/why3-cpulimit %U %m -s %e -no-rm-eq-existential -steps-bound %S %f"
driver = "drivers/alt_ergo.drv"
editor = "altgr-ergo"

# CVC4 version 1.5-prerelease
[ATP cvc4]
name = "CVC4"
exec = "cvc4"
exec = "cvc4-1.5-prerelease"
exec = "cvc4-1.5"
version_switch = "--version"
version_regexp = "This is CVC4 version \\([^ \n\r]+\\)"
version_ok = "1.5-prerelease"
version_ok = "1.5"
driver = "drivers/cvc4_15.drv"
# --random-seed=42 is not needed as soon as --random-freq=0.0 by default
# to try: --inst-when=full-last-call
command = "%l/why3-cpulimit %T %m -s %e --tlimit-per=%t000 --lang=smt2 %f"
command_steps = "%l/why3-cpulimit %U %m -s %e --stats --rlimit=%S --lang=smt2 %f"

# CVC4 version 1.4, using SMTLIB fixed-size bitvectors
[ATP cvc4]
name = "CVC4"
exec = "cvc4"
exec = "cvc4-1.4"
version_switch = "--version"
version_regexp = "This is CVC4 version \\([^ \n\r]+\\)"
version_ok = "1.4"
driver = "drivers/cvc4_14.drv"
# --random-seed=42 is not needed as soon as --random-freq=0.0 by default
# to try: --inst-when=full-last-call
# --rlimit=%S : cvc4 1.4 DOES NOT accept -1 as argument
# cvc4 1.4 does not print steps used in --stats anyway
command = "%l/why3-cpulimit %T %m -s %e --tlimit-per=%t000 --lang=smt2 %f"

# CVC4 version 1.4, not using SMTLIB bitvectors
[ATP cvc4]
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name = "CVC4"
alternative = "noBV"
exec = "cvc4"
exec = "cvc4-1.4"
version_switch = "--version"
version_regexp = "This is CVC4 version \\([^ \n\r]+\\)"
version_ok = "1.4"
driver = "drivers/cvc4.drv"
# --random-seed=42 is not needed as soon as --random-freq=0.0 by default
# to try: --inst-when=full-last-call
# --rlimit=%S : cvc4 1.4 DOES NOT accept -1 as argument
# cvc4 .14 does not print steps used in --stats anyway
command = "%l/why3-cpulimit %T %m -s %e --tlimit-per=%t000 --lang=smt2 %f"

# CVC4 version 1.0 to 1.3
[ATP cvc4]
name = "CVC4"
exec = "cvc4"
exec = "cvc4-1.3"
exec = "cvc4-1.2"
exec = "cvc4-1.1"
exec = "cvc4-1.0"
version_switch = "--version"
version_regexp = "This is CVC4 version \\([^ \n\r]+\\)"
version_old = "1.3"
version_old = "1.2"
version_old = "1.1"
version_old = "1.0"
driver = "drivers/cvc4.drv"
command = "%l/why3-cpulimit %t %m -s %e --lang=smt2 %f"

# Psyche version 2.x
[ATP psyche]
name = "Psyche"
exec = "psyche"
exec = "psyche-2.02"
version_switch = "-version"
version_regexp = "\\([^ \n\r]+\\)"
version_ok = "2.0"
driver = "drivers/psyche.drv"
command = "%l/why3-cpulimit %t %m -s %e -gplugin dpll_wl %f"

# CVC3 versions 2.4.x
[ATP cvc3]
name = "CVC3"
exec = "cvc3"
exec = "cvc3-2.4.1"
exec = "cvc3-2.4"
version_switch = "-version"
version_regexp = "This is CVC3 version \\([^ \n]+\\)"
version_ok = "2.4.1"
version_old = "2.4"
# the -timeout option is unreliable in CVC3 2.4.1
command = "%l/why3-cpulimit %t %m -s %e -seed 42 %f"
driver = "drivers/cvc3.drv"

# CVC3 versions 2.x
[ATP cvc3]
name = "CVC3"
exec = "cvc3"
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exec = "cvc3-2.2"
exec = "cvc3-2.1"
version_switch = "-version"
version_regexp = "This is CVC3 version \\([^ \n]+\\)"
version_old = "2.2"
version_old = "2.1"
command = "%l/why3-cpulimit %T %m -s %e -seed 42 -timeout %t %f"
driver = "drivers/cvc3.drv"

[ATP yices]
name = "Yices"
exec = "yices"
exec = "yices-1.0.38"
version_switch = "--version"
version_regexp = "\\([^ \n]+\\)"
version_ok = "1.0.38"
version_old = "^1\.0\.3[0-7]$"
version_old = "^1\.0\.2[5-9]$"
version_old = "^1\.0\.2[0-4]$"
version_old = "^1\.0\.1\.*$"
command = "%l/why3-cpulimit %t %m -s %e"
driver = "drivers/yices.drv"

[ATP yices-smt2]
name = "Yices"
exec = "yices-smt2"
exec = "yices-smt2-2.3.0"
version_switch = "--version"
version_regexp = "^Yices \\([^ \n]+\\)$"
version_ok = "2.3.0"
command = "%l/why3-cpulimit %t %m -s %e"
driver = "drivers/yices-smt2.drv"

[ATP eprover]
name = "Eprover"
exec = "eprover"
exec = "eprover-1.8"
exec = "eprover-1.7"
exec = "eprover-1.6"
exec = "eprover-1.5"
exec = "eprover-1.4"
version_switch = "--version"
version_regexp = "E \\([-0-9.]+\\) [^\n]+"
version_ok = "1.8-001"
version_old = "1.7"
version_old = "1.6"
version_old = "1.5"
version_old = "1.4"
command = "%l/why3-cpulimit %T %m -s %e -s -R -xAuto -tAuto --cpu-limit=%t --tstp-in %f"
driver = "drivers/eprover.drv"

[ATP gappa]
name = "Gappa"
exec = "gappa"
exec = "gappa-1.2.0"
exec = "gappa-1.1.1"
exec = "gappa-1.1.0"
exec = "gappa-1.0.0"
exec = "gappa-0.16.1"
exec = "gappa-0.14.1"
version_switch = "--version"
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version_regexp = "Gappa \\([^ \n]*\\)"
version_ok = "^1\.[0-2]\..+$"
version_old = "^0\.1[1-8]\..+$"
command = "%l/why3-cpulimit %t %m -s %e -Eprecision=70"
driver = "drivers/gappa.drv"

[ATP mathsat]
name = "MathSAT5"
exec = "mathsat"
exec = "mathsat-5.2.2"
version_switch = "-version"
version_regexp = "MathSAT5 version \\([^ \n]+\\)"
version_ok = "5.2.2"
command = "%l/why3-cpulimit %t %m -s %e -input=smt2 -model -random_seed=80 %f"
driver = "drivers/mathsat.drv"

[ATP simplify]
name = "Simplify"
exec = "Simplify"
exec = "simplify"
exec = "Simplify-1.5.4"
exec = "Simplify-1.5.5"
version_switch = "-version"
version_regexp = "Simplify version \\([^ \n,]+\\)"
version_old = "1.5.5"
version_old = "1.5.4"
command = "%l/why3-cpulimit %t %m -s %e %f"
driver = "drivers/simplify.drv"

[ATP metis]
name = "Metis"
exec = "metis"
version_switch = "-v"
version_regexp = "metis \\([^ \n,]+\\)"
version_ok = "2.3"
# %U means 2*timelimit+1. Required because Metis tends to
# react very slowly to the time limit given, hence answers
# oscillate between Timeout and Unknown
command = "%l/why3-cpulimit %U %m -s %e --time-limit %t %f"
driver = "drivers/metis.drv"

[ATP metitarski]
name = "MetiTarski"
exec = "metit"
exec = "metit-2.4"
exec = "metit-2.2"
version_switch = "-v"
version_regexp = "MetiTarski \\([^ \n,]+\\)"
version_ok = "2.4"
version_old = "2.2"
command = "%l/why3-cpulimit %T %m -s %e --time %t %f"
driver = "drivers/metitarski.drv"

[ATP polypaver]
name = "PolyPaver"
exec = "polypaver"
exec = "polypaver-0.3"
version_switch = "--version"
version_regexp = "PolyPaver \\([0-9.]+\\) (c)"
version_ok = "0.3"
command = "%l/why3-cpulimit %T %m -s %e -d 2 -m 10 --time=%t %f"
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driver = "drivers/polypaver.drv"

[ATP spass]
name = "Spass"
exec = "SPASS"
exec = "SPASS-3.7"
version_switch = " | grep 'SPASS V'"
version_regexp = "SPASS V \\([^ \n\t]+\\)"
version_ok = "3.7"
command = "%l/why3-cpulimit %T %m -s %e -TPTP -PGiven=0 -PProblem=0 -TimeLimit=%t %f"
driver = "drivers/spass.drv"

[ATP spass]
name = "Spass"
exec = "SPASS"
exec = "SPASS-3.8ds"
version_switch = " | grep 'SPASS[^ \\n\\t]* V'"
version_regexp = "SPASS[^ \n\t]* V \\([^ \n\t]+\\)"
version_ok = "3.8ds"
command = "%l/why3-cpulimit %T %m -s %e -Isabelle=1 -PGiven=0 -TimeLimit=%t %f"
driver = "drivers/spass_types.drv"

[ATP vampire]
name = "Vampire"
exec = "vampire"
exec = "vampire-0.6"
version_switch = "--version"
version_regexp = "Vampire \\([0-9.]+\\)"
command = "%l/why3-cpulimit %T %m -s %e -t %t"
driver = "drivers/vampire.drv"
version_ok = "0.6"

[ATP princess]
name = "Princess"
exec = "princess"
# version_switch = "-h"
version_regexp = "(CASC version \\([0-9-]+\\))"
command = "%l/why3-cpulimit %T 0 -s %e -timeout=%t %f"
driver = "drivers/princess.drv"
version_ok = "2013-05-13"

[ATP beagle]
name = "Beagle"
exec = "beagle"
exec = "beagle-0.4.1"
# version_switch = "-h"
version_regexp = "version \\([0-9.]+\\)"
command = "%l/why3-cpulimit %t 0 -s %e %f"
driver = "drivers/beagle.drv"
version_ok = "0.4.1"

[ATP verit]
name = "veriT"
exec = "veriT"
exec = "veriT-201410"
version_switch = "--version"
version_regexp = "version \\([^ \n\r]+\\)"
command = "%l/why3-cpulimit %t %m -s %e --disable-print-success %f"
driver = "drivers/verit.drv"
version_ok = "201410"
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[ATP verit]
name = "veriT"
exec = "veriT"
exec = "veriT-201310"
version_switch = "--version"
version_regexp = "version \\([^ \n\r]+\\)"
command = "%l/why3-cpulimit %t %m -s %e --disable-print-success --enable-simp \
--enable-unit-simp --enable-simp-sym --enable-unit-subst-simp --enable-bclause %f"
driver = "drivers/verit.drv"
version_old = "201310"

# Z3 >= 4.4.0, with BV support
[ATP z3]
name = "Z3"
exec = "z3"
exec = "z3-4.4.1"
exec = "z3-4.4.0"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_ok = "4.4.1"
version_ok = "4.4.0"
driver = "drivers/z3_440.drv"
command = "%l/why3-cpulimit %t %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 %f"
command_steps = "%l/why3-cpulimit %U %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 memory_max_alloc_count=%S %f"

# Z3 >= 4.4.0, without BV support
[ATP z3]
name = "Z3"
alternative = "noBV"
exec = "z3"
exec = "z3-4.4.1"
exec = "z3-4.4.0"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_ok = "4.4.1"
version_ok = "4.4.0"
driver = "drivers/z3_432.drv"
command = "%l/why3-cpulimit %t %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 %f"
command_steps = "%l/why3-cpulimit %U %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 memory_max_alloc_count=%S %f"

# Z3 4.3.2 does not support option global option -rs anymore.
# use settings given by "z3 -p" instead
# Z3 4.3.2 supports Datatypes
[ATP z3]
name = "Z3"
exec = "z3-4.3.2"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_ok = "4.3.2"
driver = "drivers/z3_432.drv"
command = "%l/why3-cpulimit %t %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 %f"
command_steps = "%l/why3-cpulimit %U %m -s %e -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 memory_max_alloc_count=%S %f"

[ATP z3]
name = "Z3"
exec = "z3"
exec = "z3-4.3.1"
exec = "z3-4.3.0"
exec = "z3-4.2"
exec = "z3-4.1.2"
exec = "z3-4.1.1"
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exec = "z3-4.0"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_old = "4.3.1"
version_old = "4.3.0"
version_old = "4.2"
version_old = "4.1.2"
version_old = "4.1.1"
version_old = "4.0"
driver = "drivers/z3.drv"
command = "%l/why3-cpulimit %t %m -s %e -smt2 -rs:42 %f"

[ATP z3]
name = "Z3"
exec = "z3"
exec = "z3-3.2"
exec = "z3-3.1"
exec = "z3-3.0"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_old = "3.2"
version_old = "3.1"
version_old = "3.0"
driver = "drivers/z3.drv"
# the -T is unreliable in Z3 3.2
command = "%l/why3-cpulimit %t %m -s %e -smt2 -rs:42 %f"

[ATP z3]
name = "Z3"
exec = "z3"
exec = "z3-2.19"
exec = "z3-2.18"
exec = "z3-2.17"
exec = "z3-2.16"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_old = "^2\.2.+$"
version_old = "^2\.1[6-9]$"
driver = "drivers/z3.drv"
command = "%l/why3-cpulimit %t %m -s %e -smt2 -rs:42 \
PHASE_SELECTION=0 \
RESTART_STRATEGY=0 \
RESTART_FACTOR=1.5 \
QI_EAGER_THRESHOLD=100 \
ARITH_RANDOM_INITIAL_VALUE=true \
SORT_AND_OR=false \
CASE_SPLIT=3 \
DELAY_UNITS=true \
DELAY_UNITS_THRESHOLD=16 \
%f"
#Other Parameters given by Nikolaj Bjorner
#BV_REFLECT=true #arith?
#MODEL_PARTIAL=true
#MODEL_VALUE_COMPLETION=false
#MODEL_HIDE_UNUSED_PARTITIONS=false
#MODEL_V1=true
#ASYNC_COMMANDS=false
#NNF_SK_HACK=true

[ATP z3]
name = "Z3"
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exec = "z3"
exec = "z3-2.2"
exec = "z3-2.1"
exec = "z3-1.3"
version_switch = "-version"
version_regexp = "Z3 version \\([^ \n\r]+\\)"
version_old = "^2\.1[0-5]$"
version_old = "^2\.[0-9]$"
version_old = "1.3"
command = "%l/why3-cpulimit %t %m -s %e -smt %f"
driver = "drivers/z3_smtv1.drv"

[ATP zenon]
name = "Zenon"
exec = "zenon"
exec = "zenon-0.8.0"
exec = "zenon-0.7.1"
version_switch = "-v"
version_regexp = "zenon version \\([^ \n\t]+\\)"
version_ok = "0.8.0"
version_ok = "0.7.1"
command = "%l/why3-cpulimit %T 0 -s %e -p0 -itptp -max-size %mM -max-time %ts %f"
driver = "drivers/zenon.drv"

[ATP zenon_modulo]
name = "Zenon Modulo"
exec = "zenon_modulo"
version_switch = "-v"
version_regexp = "zenon_modulo version \\([0-9.]+\\)"
version_ok = "0.4.1"
command = "%l/why3-cpulimit %T 0 -s %e -p0 -itptp -max-size %mM -max-time %ts %f"
driver = "drivers/zenon_modulo.drv"

[ATP iprover]
name = "iProver"
exec = "iprover"
exec = "iprover-0.8.1"
version_switch = " | grep iProver"
version_regexp = "iProver v\\([^ \n\t]+\\)"
version_ok = "0.8.1"
command = "%l/why3-cpulimit %T %m -s %e --fof true --out_options none \
--time_out_virtual %t --clausifier /usr/bin/env --clausifier_options \
\"eprover --cnf --tstp-format \" %f"
driver = "drivers/iprover.drv"

[ATP mathematica]
name = "Mathematica"
exec = "math"
version_switch = "-run \"Exit[]\""
version_regexp = "Mathematica \\([0-9.]+\\)"
version_ok = "9.0"
version_ok = "8.0"
version_ok = "7.0"
command = "%l/why3-cpulimit %t %m -s %e -noprompt"
driver = "drivers/mathematica.drv"

# Coq 8.5: do not limit memory
[ITP coq]
name = "Coq"
compile_time_support = true
exec = "coqtop -batch"
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version_switch = "-v"
version_regexp = "The Coq Proof Assistant, version \\([^ \n]+\\)"
version_ok = "8.5"
command = "%e -R %l/coq-tactic Why3 -R %l/coq Why3 -l %f"
driver = "drivers/coq.drv"
editor = "coqide"

[ITP coq]
name = "Coq"
compile_time_support = true
exec = "coqtop -batch"
version_switch = "-v"
version_regexp = "The Coq Proof Assistant, version \\([^ \n]+\\)"
version_ok = "8.4pl6"
version_ok = "8.4pl5"
version_ok = "8.4pl4"
version_ok = "8.4pl3"
version_ok = "8.4pl2"
version_ok = "8.4pl1"
version_ok = "8.4"
command = "%l/why3-cpulimit 0 %m -s %e -R %l/coq-tactic Why3 -R %l/coq Why3 -l %f"
driver = "drivers/coq.drv"
editor = "coqide"

[ITP pvs]
name = "PVS"
compile_time_support = true
exec = "pvs"
version_switch = "-version"
version_regexp = "PVS Version \\([^ \n]+\\)"
version_ok = "6.0"
version_bad = "^[0-5]\..+$"
# not why3-cpulimit 0 %m because 'proveit' allocates 8Gb at start-up
command = "%l/why3-cpulimit 0 0 -s %l/why3-call-pvs %l proveit -f %f"
driver = "drivers/pvs.drv"
in_place = true
editor = "pvs"

[ITP isabelle]
name = "Isabelle"
exec = "isabelle"
version_switch = "version"
version_regexp = "Isabelle\\([0-9]+\\(-[0-9]+\\)?\\)"
version_ok = "2016"
version_bad = "2015"
# not why3-cpulimit 0 %m because isabelle needs more memory at start-up
command = "%l/why3-cpulimit 0 0 -s %e why3 -b %f"
driver = "drivers/isabelle2016.drv"
in_place = true
editor = "isabelle-jedit"

[ITP isabelle]
name = "Isabelle"
exec = "isabelle"
version_switch = "version"
version_regexp = "Isabelle\\([0-9]+\\(-[0-9]+\\)?\\)"
version_ok = "2015"
version_bad = "2016"
# not why3-cpulimit 0 %m because isabelle needs more memory at start-up
command = "%l/why3-cpulimit 0 0 -s %e why3 -b %f"
driver = "drivers/isabelle2015.drv"
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in_place = true
editor = "isabelle-jedit"

[editor pvs]
name = "PVS"
command = "%l/why3-call-pvs %l pvs %f"

[editor coqide]
name = "CoqIDE"
command = "coqide -R %l/coq-tactic Why3 -R %l/coq Why3 %f"

[editor proofgeneral-coq]
name = "Emacs/ProofGeneral/Coq"
command = "emacs --eval \"(setq coq-load-path '((\\\"%l/coq-tactic\\\" \\\"Why3\\\") \
(\\\"%l/coq\\\" \\\"Why3\\\")))\" %f"

[editor isabelle-jedit]
name = "Isabelle/jEdit"
command = "isabelle why3 -i %f"

[editor altgr-ergo]
name = "AltGr-Ergo"
command = "altgr-ergo %f"

[shortcut shortcut1]
name="Alt-Ergo"
shortcut="altergo"

10.3 The why3.conf Configuration File

One can use a custom configuration file. The Why3 tools look for it in the following order:

1. the file specified by the -C or --config options,

2. the file specified by the environment variable WHY3CONFIG if set,

3. the file $HOME/.why3.conf ($USERPROFILE/.why3.conf under Windows) or, in the
case of local installation, why3.conf in the top directory of Why3 sources.

If none of these files exist, a built-in default configuration is used.
The configuration file is a human-readable text file, which consists of association pairs

arranged in sections. Figure 10.1 shows an example of configuration file.
A section begins with a header inside square brackets and ends at the beginning of

the next section. The header of a section can be only one identifier, main and ide in the
example, or it can be composed by a family name and one family argument, prover is
one family name, coq and alt-ergo are the family argument.

Sections contain associations key=value. A value is either an integer (e.g. -555), a
boolean (true, false), or a string (e.g. "emacs"). Some specific keys can be attributed
multiple values and are thus allowed to occur several times inside a given section. In that
case, the relative order of these associations matter.
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[main]
loadpath = "/usr/local/share/why3/theories"
loadpath = "/usr/local/share/why3/modules"
magic = 14
memlimit = 0
plugin = "/usr/local/lib/why3/plugins/tptp"
plugin = "/usr/local/lib/why3/plugins/genequlin"
plugin = "/usr/local/lib/why3/plugins/hypothesis_selection"
running_provers_max = 4
timelimit = 2

[ide]
default_editor = "editor %f"
error_color = "orange"
goal_color = "gold"
iconset = "fatcow"
intro_premises = true
premise_color = "chartreuse"
print_labels = false
print_locs = false
print_time_limit = false
saving_policy = 2
task_height = 404
tree_width = 512
verbose = 0
window_height = 1173
window_width = 1024

[prover]
command = "'why3-cpulimit' 0 %m -s coqtop -batch -I %l/coq-tactic -R %l/coq Why3 -l %f"
driver = "/usr/local/share/why3/drivers/coq.drv"
editor = "coqide"
in_place = false
interactive = true
name = "Coq"
shortcut = "coq"
version = "8.3pl4"

[prover]
command = "'why3-cpulimit' %t %m -s alt-ergo %f"
driver = "/usr/local/share/why3/drivers/alt_ergo_0.93.drv"
editor = ""
in_place = false
interactive = false
name = "Alt-Ergo"
shortcut = "altergo"
shortcut = "alt-ergo"
version = "0.93.1"

[editor coqide]
command = "coqide -I %l/coq-tactic -R %l/coq Why3 %f"
name = "CoqIDE"

Figure 10.1: Sample why3.conf file
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10.4 Drivers for External Provers

Drivers for external provers are readable files from directory drivers. Experimented users
can modify them to change the way the external provers are called, in particular which
transformations are applied to goals.

[TO BE COMPLETED LATER]

10.5 Transformations

This section documents the available transformations. We first describe the most impor-
tant ones, and then we provide a quick documentation of the others, first the non-splitting
ones, e.g. those which produce exactly one goal as result, and the others which produce
any number of goals.

Notice that the set of available transformations in your own installation is given by

why3 --list-transforms

10.5.1 Inlining definitions

Those transformations generally amount to replace some applications of function or pred-
icate symbols with its definition.

inline_trivial expands and removes definitions of the form

function f x_1 ... x_n = (g e_1 ... e_k)
predicate p x_1 ... x_n = (q e_1 ... e_k)

when each ei is either a ground term or one of the xj , and each x1 . . . xn occurs at
most once in all the ei.

inline_goal expands all outermost symbols of the goal that have a non-recursive defini-
tion.

inline_all expands all non-recursive definitions.

10.5.2 Induction Transformations

induction_ty_lex : This transformation performs structural, lexicographic induction
on goals involving universally quantified variables of algebraic data types, such as
lists, trees, etc. For instance, it transforms the following goal

goal G: forall l: list 'a. length l >= 0

into this one:

goal G :
forall l:list 'a.

match l with
| Nil -> length l >= 0
| Cons a l1 -> length l1 >= 0 -> length l >= 0
end
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When induction can be applied to several variables, the transformation picks one
heuristically. A label "induction" can be used to force induction over one particular
variable, e.g. with
goal G: forall l1 "induction" l2 l3: list 'a.

l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3

induction will be applied on l1. If this label is attached on several variables, a
lexicographic induction is performed on these variables, from left to right.

10.5.3 Simplification by Computation

These transformations simplify the goal by applying several kinds of simplification, de-
scribed below. The transformations differ only by the kind of rules they apply:

compute_in_goal aggressively applies all known computation/simplification rules

compute_specified performs rewriting using only built-in operators and user-provided
rules

The kinds of simplification are as follows.

• Computations with built-in symbols, e.g. operations on integers, when applied to
explicit constants, are evaluated. This includes evaluation of equality when a de-
cision can be made (on integer constants, on constructors of algebraic data types),
Boolean evaluation, simplification of pattern-matching/conditional expression, ex-
traction of record fields, and beta-reduction. At best, these computations reduce
the goal to true and the transformations thus does not produce any sub-goal. For
example, a goal like 6*7=42 is solved by those transformations.

• Unfolding of definitions, as done by inline_goal. compute_in_goal unfold all
definitions, including recursive ones. For compute_specified, the user can enable
unfolding of a specific logic symbol by attaching the meta rewrite_def to the sym-
bol.
function sqr (x:int) : int = x * x
meta "rewrite_def" function sqr

• Rewriting using axioms or lemmas declared as rewrite rules. When an axiom (or a
lemma) has one of the forms
axiom a: forall ... t1 = t2

or
axiom a: forall ... f1 <-> f2

then the user can declare
meta "rewrite" prop a

to turn this axiom into a rewrite rule. Rewriting is always done from left to right.
Beware that there is no check for termination nor for confluence of the set of rewrite
rules declared.
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Bound on the number of reductions The computations performed by these trans-
formations can take an arbitrarily large number of steps, or even not terminate. For this
reason, the number of steps is bounded by a maximal value, which is set by default to
1000. This value can be increased by another meta, e.g.
meta "compute_max_steps" 1_000_000

When this upper limit is reached, a warning is issued, and the partly-reduced goal is
returned as the result of the transformation.

10.5.4 Other Non-Splitting Transformations

eliminate_algebraic replaces algebraic data types by first-order definitions [7].

eliminate_builtin removes definitions of symbols that are declared as builtin in the
driver, i.e. with a “syntax” rule.

eliminate_definition_func replaces all function definitions with axioms.

eliminate_definition_pred replaces all predicate definitions with axioms.

eliminate_definition applies both transformations above.

eliminate_mutual_recursion replaces mutually recursive definitions with axioms.

eliminate_recursion replaces all recursive definitions with axioms.

eliminate_if_term replaces terms of the form if formula then t2 else t3 by lift-
ing them at the level of formulas. This may introduce if then else in formulas.

eliminate_if_fmla replaces formulas of the form if f1 then f2 else f3 by an equiv-
alent formula using implications and other connectives.

eliminate_if applies both transformations above.

eliminate_inductive replaces inductive predicates by (incomplete) axiomatic defini-
tions, i.e. construction axioms and an inversion axiom.

eliminate_let_fmla eliminates let by substitution, at the predicate level.

eliminate_let_term eliminates let by substitution, at the term level.

eliminate_let applies both transformations above.

encoding_smt encodes polymorphic types into monomorphic type [2].

encoding_tptp encodes theories into unsorted logic.

introduce_premises moves antecedents of implications and universal quantifications of
the goal into the premises of the task.

simplify_array automatically rewrites the task using the lemma Select_eq of theory
map.Map.

simplify_formula reduces trivial equalities t = t to true and then simplifies proposi-
tional structure: removes true, false, simplifies f ∧ f to f , etc.
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simplify_recursive_definition reduces mutually recursive definitions if they are not
really mutually recursive, e.g.
function f : ... = .... g ...
with g : ... = e

becomes
function g : ... = e
function f : ... = ... g ...

if f does not occur in e.

simplify_trivial_quantification simplifies quantifications of the form
forall x, x=t -> P(x)

or
forall x, t=x -> P(x)

when x does not occur in t into
P(t)

More generally, it applies this simplification whenever x = t appears in a negative
position.

simplify_trivial_quantification_in_goal is the same as above but it applies only in
the goal.

split_premise splits conjunctive premises.

10.5.5 Other Splitting Transformations

full_split_all performs both split_premise and full_split_goal.

full_split_goal puts the goal in a conjunctive form, returns the corresponding set of
subgoals. The number of subgoals generated may be exponential in the size of the
initial goal.

simplify_formula_and_task is the same as simplify_formula but it also removes
the goal if it is equivalent to true.

split_all performs both split_premise and split_goal.

split_goal if the goal is a conjunction of goals, returns the corresponding set of subgoals.
The number of subgoals generated is linear in the size of the initial goal.

split_intro moves the antecedents into the premises when a goal is an implication.
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Appendix A

Release Notes

A.1 Release Notes for version 0.80: syntax changes w.r.t.
0.73

The syntax of WhyML programs changed in release 0.80. The table in Figure A.1 sum-
marizes the changes.

version 0.73 version 0.80
type t = {| field : int |} type t = { field : int }
{| field = 5 |} { field = 5 }
use import module M use import M
let rec f (x:int) (y:int) : t

variant { t } with rel =
{ P }
e
{ Q }
| Exc1 -> { R1 }
| Exc2 n -> { R2 }

let rec f (x:int) (y:int) : t
variant { t with rel }
requires { P }
ensures { Q }
raises { Exc1 -> R1

| Exc2 n -> R2 }
= e

val f (x:int) (y:int) :
{ P }
t
writes a b
{ Q }
| Exc1 -> { R1 }
| Exc2 n -> { R2 }

val f (x:int) (y:int) : t
requires { P }
writes { a, b }
ensures { Q }
raises { Exc1 -> R1

| Exc2 n -> R2 }

val f : x:int -> y:int ->
{ P }
t
writes a b
{ Q }
| Exc1 -> { R1 }
| Exc2 n -> { R2 }

val f (x y:int) : t
requires { P }
writes { a, b }
ensures { Q }
raises { Exc1 -> R1

| Exc2 n -> R2 }

abstract e { Q } abstract e ensures { Q }

Figure A.1: Syntax changes from version 0.73 to version 0.80

115



116 APPENDIX A. RELEASE NOTES

A.2 Summary of Changes w.r.t. Why 2
The main new features with respect to Why 2.xx are the following.

1. Completely redesigned input syntax for logic declarations

• new syntax for terms and formulas
• enumerated and algebraic data types, pattern matching
• recursive definitions of logic functions and predicates, with termination checking
• inductive definitions of predicates
• declarations are structured in components called “theories”, which can be

reused and instantiated

2. More generic handling of goals and lemmas to prove

• concept of proof task
• generic concept of task transformation
• generic approach for communicating with external provers

3. Source code organized as a library with a documented API, to allow access to Why3
features programmatically.

4. GUI with new features with respect to the former GWhy

• session save and restore
• prover calls in parallel
• splitting, and more generally applying task transformations, on demand
• ability to edit proofs for interactive provers (Coq only for the moment) on any

subtask

5. Extensible architecture via plugins

• users can define new transformations
• users can add connections to additional provers
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