
XenEnterprise Management API Draft API Revision 1.0 (Draft)

XenEnterprise Management API Draft

Version: API Revision 1.0 (Draft)
Date: 1st June 2006

Richard Sharp: richard.sharp@xensource.com

David Scott: david.scott@xensource.com

Copyright c© 2006 XenSource, All Rights Reserved.



Chapter 1

Introduction

This document defines the XenEnterprise Management API—an API for remotely configuring
and controlling virtualised guests running on a Xen-enabled cluster. The API is presented here
as a set of Remote Procedure Calls. Although we adopt some terminology from object-orientated
programming, this document does not specify how RPCs are exposed to a programmer by client-
side language bindings. For example, the developer of a set of bindings may choose to wrap up the
RPC calls described here in an object-orientated manner or a more procedural style as appropriate.
The API reference uses the terminology classes and objects . For our purposes a class is simply
a hierarchical namespace; an object is an instance of a class with its fields set to specific values.
Objects are persistant and exist on the server-side. Object fields are accessed from the client-side
via get/set RPCs.
In each class there is a uuid field that assigns a globally unique name to each object. This uuid
serves as an object reference on both client- and server-side, and is often included as an argument
in RPC messages.
For each class we specify a list of fields along with their types and qualifiers . A qualifier is one of:

• ROrun : the field is Read Only. Furthermore, its value is automatically computed at runtime.

• ROins : the field must be manually set when a new object is created, but is then Read Only
for the duration of the object’s life.

• RW : the field is Read/Write.

A full list of types is given in Chapter 2. However, there are three types that require explicit
mention:

• t Ref : signifies a reference to an object of type t.

• t Set : signifies a set containing values of type t.

• (t1, t2) Map: signifies a mapping from values of type t1 to values of type t2.

Note that there are a number of cases where Refs are doubly linked—e.g. a VM has a field called
groups of type (VMGroup Ref ) Set ; this field lists the VMGroups that a particular VM is part
of. Similarly, the VMGroups class has a field called VMs of type (VM Ref) Set that contains the
VMs that are part of a particular VMGroup. These two fields are bound together , in the sense
that adding a new VMGroup to a VM causes the VMs field of the corresponding VMGroup object
to be updated automatically.
The API reference explicitly lists the fields that are bound together in this way. It also contains a
diagram that shows relationships between classes. In this diagram an edge signifies the existance
of a pair of fields that are bound together, using standard crows-foot notation to signify the type
of relationship (e.g. one-many, many-many).

2



1.1 RPCs associated with fields

Each field, f, has an RPC accessor associated with it that returns f’s value:

• “get f(uuid u)”: takes a uuid that refers to an object and returns the value of f.

Each field, f, with attribute RW and whose outermost type is Set has the following additional
RPCs associated with it:

• an “add to f(uuid, v)” RPC adds a new element v to the set1;

• a “remove from f(uuid, v)” RPC removes element v from the list;

Each field, f, with attribute RW and whose outermost type is Map has the following additional
RPCs associated with it:

• an “add to f(uuid, k, v)” RPC adds new pair (k, v) to the mapping stored in f in
object uuid. Adding a new pair for duplicate key, k, overwrites any previous mapping for k.

• a “remove from f(uuid, k)” RPC removes the pair with key k from the mapping stored
in f in object uuid.

Each field whose outermost type is neither Set nor Map, but whose attribute is RW has an RPC
acessor associated with it that sets its value:

• For RW (Read/W rite), a “set f(uuid, v)” RPC function is also provided. This sets field
f on object uuid to value v.

1.2 RPCs associated with classes

• Each class has a constructor RPC that takes as parameters all fields marked RW and RO ins .
The result of this RPC is that a new persistent object is created on the server-side with the
specified field values.

• Each class has a “get all()” RPC that returns a set of all persistent objects of that class
that the system knows about. For example, VM.get all() would return a list of VM objects
that are currently installed.

• Each class has a get by uuid(uuid) RPC that returns the object of that class that has the
specified uuid.

• Each class that has a short name field has a “get by short name(name)” RPC that returns
a list of objects of that class that have the specified name.

• Each class has a “to XML()” RPC that serialises the state of all fields as an XML string.

• Each class has a “delete(uuid)” RPC that explicitly deletes the persistent object specified
by uuid from the system.

1.2.1 Additional RPCs

As well as the RPCs enumerated above, some classes have additional RPCs associated with them.
For example, the VM class have RPCs for cloning, suspending, starting etc. Such additional RPCs
are described explicitly in the API reference.

1Since sets cannot contain duplicate values this operation has no action in the case that v was already in the

set.

3



1.3 Wire Protocol for Remote API Calls

API calls are sent over a network to a Xen-enabled host using the XML-RPC protocol. In this
Section we describe how the higher-level types used in our API Reference are mapped to primitive
XML-RPC types.
In our API Reference we specify the signatures of API functions in a Java-like manner. For
example:

List<vm_id> Host.ListAllVMs()

This specifies that the function with name Host.ListAllVMs takes no parameters and returns an
list of vm ids. These types are mapped onto XML-RPC types in a straight-forward manner:

• all our “ id” types (e.g. vm id in the above example) map to XML-RPC’s String type.

• for all our types, t, type List<t> simply maps to XML-RPC’s Array type2.

• our type void maps onto an empty XML-RPC String.

1.3.1 Return Values/Status Codes

The return value of an RPC call is an XML-RPC Struct.

• The first element of the struct is named Status; it contains a string value indicating whether
the result of the call was a “Success” or a “Failure”.

If Status was set to Success then the Struct contains a second element named Value:

• The element of the struct named Value contains the function’s return value.

In the case where Status is set to Failure then the struct contains a second element named
ErrorDescription:

• The element of the struct named ErrorDescription contains an array of string values. The
first element of the array represents an error code; the remainder of the array represents
error parameters relating to that code.

For example, an XML-RPC return value from the Host.ListAllVMs function above may look like
this:

<struct>

<member> <name> Status </name>

<value> Success </value>

</member>

<member> <name> Value </name>

<array>

<data>

<value> vm-id-1 </value>

<value> vm-id-2 </value>

<value> vm-id-3 </value>

</data>

</array>

</member>

</struct>

2XML-RPC does not explicitly support a parameterised array type so we have no means of specifying the type

of elements at this level.

4



1.4 Making XML-RPC Calls

1.4.1 Session Layer

The XML-RPC interface is session-based; before you can make arbitrary RPC calls you must login
and initiate a session. For example:

session_id Session.LoginWithUsernamePassword(string uname, string pwd)

Where uname and password refer to your username and password respectively, as defined by the
Xen cluster administrator. The session id returned by Session.Login is passed to subequent
RPC calls as an authentication token.
A session can be terminated with the Session.Logout function:

void Session.Logout(session_id session)

1.4.2 Synchronous and Asynchronous invocation

Each method call (apart from those on “Session” and “Task” objects) can be made either syn-
chronously or asynchronously. A synchronous RPC call blocks until the return value is received;
the return value of a synchronous RPC call is exactly as specified in Section 1.3.1.
Each of the methods specified in the API Reference is synchronous. However, although not
listed explicitly in this document, each method call has an asynchronous analogue in the Async

namespace. For example, synchronous call VM.Install(...) (described in Chapter 2) has an
asynchronous counterpart, Async.VM.Install(...), that is non-blocking.
Instead of returning its result directly, an asynchronous RPC call returns a task-id; this identifier
is subsequently used to track the status of a running asynchronous RPC. Note that an asychronous
call may fail immediately, before a task-id has even been created—to represent this eventuality,
the returned task-id is wrapped in an XML-RPC struct with a Status, ErrorDescription and
Value fields, exactly as specified in Section 1.3.1.
The task-id is provided in the Value field if Status is set to Success.
Two special RPC calls are provided to poll the status of asynchronous calls:

Array<task_id> Async.Task.GetAllTasks (session_id s)

task_status Async.Task.GetStatus (session_id s, task_id t)

Async.Task.GetAllTasks returns a list of the currently executing asynchronous tasks belong to
the current user3.
Async.Task.GetStatus returns a task status result. This is an XML-RPC struct with two
elements:

• The first element is named Progress and contains an Integer between 0 and 100 represent-
ing the estimated percentage of the task currently completed.

• The second element is named Result. If Progress is not 100 then Result contains the
empty string. If Progress is set to 100, then Result contains the function’s return result
(as specified in Section 1.3.1)4.

1.5 VM Lifecycle

Figure 1.1 shows the states that a VM can be in and the API calls that can be used to move the
VM between these states.

3The current user is determined by the username that was provided to Session.Login.
4Recall that this itself is a struct potentially containing status, errorcode, value fields etc.

5



halted

paused

start(paused=true)

running

start(paused=false)

resume

hardShutdown

pause

suspended

hibernate

shutting down

cleanShutdown

unhibernate(paused=true)

unhibernate(paused=false)

Figure 1.1: VM Lifecycle

6



Chapter 2

API Reference

This API Reference is autogenerated from datamodel specification and IDL — do not hand-edit.

2.1 Classes

The following classes are defined:

Name Description
VM a virtual machine (or ‘guest’)
host a physical host
host cpu a physical CPU
network manager creates and manages virtual networks
network a virtual network
VIF a virtual network interface
storage manager creates and manages storage repositories
SR a storage repository
VDI a virtual disk image
VBD a virtual block device
filesystem an on-disk filesystem
user a user of the system

2.2 Relationships Between Classes

The relationship between classes is displayed in the following diagram. Nodes are classes while
edges represent references between class instances. Black edges with arrows and labels represent
the notion that an instance of one class contains a field referencing instances of the other class. The
label indicates the field name and a (1) annotation indicates a single object is referenced while
a (*) indicates multiple objects (e.g. through a list or map). Blue lines indicate bidirectional
relationships between instances of the two classes using crows-feet notation to specify one-to-one,
one-to-many or many-to-many

7



VM

host

host_cpu SR

network_manager

network

networks(*)

VIF

storage_manager

SRs(*)

VDI

VBD filesystem

filesystem(1)

user

2.2.1 List of bound fields

object.field object.field relationship
VDI.VBDs VBD.VDI many-to-one
VDI.parent VDI.children one-to-many
VDI.creator user.created VDIs one-to-many
VBD.VM VM.VBDs one-to-many
VIF.VM VM.VIFs one-to-many
VIF.network network.VIFs one-to-many
SR.VDIs VDI.SR many-to-one
host.SRs SR.local node many-to-one
host.resident VMs VM.running on many-to-one
host.host CPUs host cpu.host many-to-one

2.3 Types

2.3.1 Primitives

The following primitive types are used to specify methods and fields in the API Reference:

Type Description
String text strings
Int 64-bit integers
Float IEEE double-precision floating-point numbers
Bool boolean
DateTime date and timestamp
Ref (object name) reference to an object of class name

8



2.3.2 Higher order types

The following type constructors are used:

Type Description
List (t) an arbitrary-length list of elements of type t
Map (a → b) a table mapping values of type a to values of type b

2.3.3 Enumeration types

The following enumeration types are used:

enum power behaviour

destroy destroy the VM state
restart automatically restart the VM
preserve leave VM running
rename restart leave VM running and restart a new one

enum bios boot option

floppy boot from emulated floppy
HD boot from emulated HD
CDROM boot from emulated CDROM

enum boot type

bios boot an HVM guest using an emulated BIOS
grub boot from inside the machine using grub
kernel external boot from an external kernel
kernel internal boot from a kernel inside the machine

enum cpu feature

FPU Onboard FPU
VME Virtual Mode Extensions
DE Debugging Extensions
PSE Page Size Extensions
TSC Time Stamp Counter
MSR Model-Specific Registers, RDMSR, WRMSR
PAE Physical Address Extensions
MCE Machine Check Architecture
CX8 CMPXCHG8 instruction
APIC Onboard APIC
SEP SYSENTER/SYSEXIT
MTRR Memory Type Range Registers
PGE Page Global Enable
MCA Machine Check Architecture
CMOV CMOV instruction (FCMOVCC and FCOMI too if FPU present)

9



PAT Page Attribute Table
PSE36 36-bit PSEs
PN Processor serial number
CLFLSH Supports the CLFLUSH instruction
DTES Debug Trace Store
ACPI ACPI via MSR
MMX Multimedia Extensions
FXSR FXSAVE and FXRSTOR instructions (fast save and restore
XMM Streaming SIMD Extensions
XMM2 Streaming SIMD Extensions-2
SELFSNOOP CPU self snoop
HT Hyper-Threading
ACC Automatic clock control
IA64 IA-64 processor
SYSCALL SYSCALL/SYSRET
MP MP Capable.
NX Execute Disable
MMXEXT AMD MMX extensions
LM Long Mode (x86-64)
3DNOWEXT AMD 3DNow! extensions
3DNOW 3DNow!
RECOVERY CPU in recovery mode
LONGRUN Longrun power control
LRTI LongRun table interface
CXMMX Cyrix MMX extensions
K6 MTRR AMD K6 nonstandard MTRRs
CYRIX ARR Cyrix ARRs (= MTRRs)
CENTAUR MCR Centaur MCRs (= MTRRs)
K8 Opteron, Athlon64
K7 Athlon
P3 P3
P4 P4
CONSTANT TSC TSC ticks at a constant rate
FXSAVE LEAK FXSAVE leaks FOP/FIP/FOP
XMM3 Streaming SIMD Extensions-3
MWAIT Monitor/Mwait support
DSCPL CPL Qualified Debug Store
EST Enhanced SpeedStep
TM2 Thermal Monitor 2
CID Context ID
CX16 CMPXCHG16B
XTPR Send Task Priority Messages
XSTORE on-CPU RNG present (xstore insn)
XSTORE EN on-CPU RNG enabled
XCRYPT on-CPU crypto (xcrypt insn)
XCRYPT EN on-CPU crypto enabled
LAHF LM LAHF/SAHF in long mode
CMP LEGACY If yes HyperThreading not valid

enum vdi type

10



system disks which are wiped on upgrade
user user disks which are always preserved
ephemeral disks which may be wiped on boot

enum vbd mode

RO disk is mounted read-only
RW disk is mounted read-write

enum driver type

ioemu use hardware emulation
paravirtualised use paravirtualised driver

11



2.4 Class: VM

2.4.1 Fields for class: VM

Name VM

Description a virtual machine (or ‘guest’)
Quals Field Type Description
ROrun uuid string globally-unique ID
RW name/label string a short human-readable label
RW name/short description string a short human-readable description
RW name/long description string a slightly longer human-readable de-

scription
RW name/detail string everything you can think of, and then

some more
RW user version int a user version number for this ma-

chine
RW is a template bool true if this is a template, false a VM
RW running on host ref the host the VM is currently resident

on
RO ins memory/static max int Statically-set (i.e. absolute) maxi-

mum
RW memory/dynamic max int Dynamic maximum
ROrun memory/actual int Guest’s actual usage
RW memory/dynamic min int Dynamic minimum
RO ins memory/static min int Statically-set (i.e. absolute) mininum
RW VCPUs/policy string the name of the VCPU scheduling

policy to be applied
RW VCPUs/params string string-encoded parameters passed to

selected VCPU policy
ROrun VCPUs/utilisation (int → float) Map Utilisation for all of guest’s current

VCPUs
RO ins VCPUs/features/required cpu feature Set CPU features the guest demands the

host supports
RO ins VCPUs/features/can use cpu feature Set CPU features the guest can use if

available
RW VCPUs/features/force on cpu feature Set CPU features to hide from the guest
RW VCPUs/features/force off cpu feature Set extra features to expose to the guest

above the bare minimum
RW actions/power off power behaviour action to take when the guest powers

off
RW actions/reboot power behaviour action to take when the guest reboots
RW actions/crash power behaviour action to take if the guest crashes
RW actions/standby power behaviour action to take when the guest enters

standby mode
RW coredump bool set to true to generate coredump on

poweroff, reboot, crash, standby
RW VIFs VIF ref Set virtual network interfaces
RW VBDs VBD ref Set virtual block devices
RO ins TPM/instance int ?
RO ins TPM/backend int ?
RW bios/cdrom string path for emulated CDROM e.g.

/dev/cdrom or /foo.iso
RW bios/boot bios boot option default device to boot the guest from

12



RW platform/std VGA bool emulate standard VGA instead of cir-
rus logic

RW platform/SDL bool enable the SDL console
RW platform/VNC bool enable the VNC console
RW platform/serial string redirect serial port to pty
RW platform/localtime bool set RTC to local time
RW platform/clock offset string timeshift applied to guest’s clock
RW platform/enable audio bool emulate audio
RW builder string domain builder to use
RO ins console port int Xen port number to which console is

redirected
RW boot method boot type select how this machine should boot
RW kernel/kernel string path to kernel e.g. /boot/vmlinuz
RW kernel/initrd string path to the initrd e.g.

/boot/initrd.img
RW kernel/args string extra kernel command-line argu-

ments
RW grub/cmdline string grub command-line
RO ins PCI bus string PCI bus path for pass-through de-

vices
ROrun tools version (string → string) Map versions of installed paravirtualised

drivers

2.4.2 Additional RPCs associated with class: VM

RPC name: clone

Overview: Clones the specified VM, making a new VM. Clone automatically exploits the capa-
bilities of the underlying storage repository in which the VM’s disk images are stored (e.g. Copy
on Write). (This function can only be called when the VM is in the Halted State).
Signature:

vm_id clone (session_id s, vm_id vm, string new_name)

Arguments:

type name description

vm id vm The VM to be cloned
string new name The name of the cloned VM

Return Type: vm id

The ID of the newly created VM.

RPC name: start

Overview: Start the specified VM. (This function can only be called with the VM is in the Halted
State).
Signature:

void start (session_id s, vm_id vm, bool start_paused)

Arguments:

type name description

vm id vm The VM to start
bool start paused Instantiate VM in paused state if set to true.

13



Return Type: void

RPC name: pause

Overview: Pause the specified VM. This can only be called when the specified VM is in the
Running state.
Signature:

void pause (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to pause

Return Type: void

RPC name: unpause

Overview: Resume the specified VM. This can only be called when the specified VM is in the
Paused state.
Signature:

void unpause (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to pause

Return Type: void

RPC name: clean shutdown

Overview: Attempt to cleanly shutdown the specified VM. (Note: this may not be supported—
e.g. if a guest agent is not installed). Once shutdown has been completed perform poweroff action
specified in guest configuration.
Signature:

void clean_shutdown (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to shutdown

Return Type: void

14



RPC name: clean reboot

Overview: Attempt to cleanly shutdown the specified VM (Note: this may not be supported—
e.g. if a guest agent is not installed). Once shutdown has been completed perform reboot action
specified in guest configuration.
Signature:

void clean_reboot (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to shutdown

Return Type: void

RPC name: hard shutdown

Overview: Stop executing the specified VM without attempting a clean shutdown. Then perform
poweroff action specified in VM configuration.
Signature:

void hard_shutdown (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to destroy

Return Type: void

RPC name: hard reboot

Overview: Stop executing the specified VM without attempting a clean shutdown. Then perform
reboot action specified in VM configuration
Signature:

void hard_reboot (session_id s, vm_id vm)

Arguments:

type name description

vm id vm The VM to reboot

Return Type: void

RPC name: hibernate

Overview: Hibernate the specified VM, suspending to disk.
Signature:

void hibernate (session_id s, vm_id vm, bool live)

15



Arguments:

type name description

vm id vm The VM to hibernate
bool live If set to true, perform a live hibernate; other-

wise suspend the VM before commencing hi-
bernate

Return Type: void

RPC name: unhibernate

Overview: Awaken the specified VM from hibernation and resume it.
Signature:

void unhibernate (session_id s, vm_id vm, bool start_paused)

Arguments:

type name description

vm id vm The VM to unhibernate
bool start paused Unhibernate VM in paused state if set to true.

Return Type: void

16



2.5 Class: host

2.5.1 Fields for class: host

Name host

Description a physical host
Quals Field Type Description
ROrun uuid string globally-unique ID
RW name/label string a short human-readable label
RW name/short description string a short human-readable description
RW name/long description string a slightly longer human-readable de-

scription
RW name/detail string everything you can think of, and then

some more
ROrun software version (string → string) Map version strings
RW SRs SR ref Set list of mounted storage repositories
ROrun resident VMs VM ref Set list of VMs resident on host
ROrun host CPUs host cpu ref Set The physical CPUs on this host

2.5.2 Additional RPCs associated with class: host

RPC name: disable

Overview: Puts the host into a state in which no new VMs can be started.
Signature:

void disable (session_id s, host_id host)

Arguments:

type name description

host id host The Host to disable

Return Type: void

RPC name: enable

Overview: Puts the host into a state in which new VMs can be started.
Signature:

void enable (session_id s, host_id host)

Arguments:

type name description

host id host The Host to enable

Return Type: void

RPC name: shutdown

Overview: Shutdown the host. (This function can only be called if there are no currently running
VMs on the host and it is disabled.)
Signature:

17



void shutdown (session_id s, host_id host)

Arguments:

type name description

host id host The Host to shutdown

Return Type: void

RPC name: reboot

Overview: Reboot the host. (This function can only be called if there are no currently running
VMs on the host and it is disabled.)
Signature:

void reboot (session_id s, host_id host)

Arguments:

type name description

host id host The Host to reboot

Return Type: void

18



2.6 Class: host cpu

2.6.1 Fields for class: host cpu

Name host cpu

Description a physical CPU
Quals Field Type Description
ROrun uuid string globally-unique ID
RO ins host host ref the host the CPU is in
RO ins number int the number of the physical CPU

within the host
RO ins features cpu feature Set the features supported by the CPU
ROrun utilisation float the current CPU utilisation

2.6.2 Additional RPCs associated with class: host cpu

Class host cpu has no additional RPCs associated with it.

19



2.7 Class: network manager

2.7.1 Fields for class: network manager

Name network manager

Description creates and manages virtual networks
Quals Field Type Description
ROrun uuid string globally-unique ID
RW networks network ref Set networks known to the network man-

ager

2.7.2 Additional RPCs associated with class: network manager

Class network manager has no additional RPCs associated with it.

20



2.8 Class: network

2.8.1 Fields for class: network

Name network

Description a virtual network
Quals Field Type Description
ROrun uuid string globally-unique ID
RW name/label string a short human-readable label
RW name/short description string a short human-readable description
RW name/long description string a slightly longer human-readable de-

scription
RW name/detail string everything you can think of, and then

some more
RW VIFs VIF ref Set list of connected vifs
RW NIC string ethernet device to use to access this

network. Note: in this revision of the
API all hosts will use the specified
NIC to access this network

RW VLAN string VLAN tag to use to access this net-
work. Note: in this revision of the
API all hosts will use the specified
VLAN tag to access this network

RW default gateway string default gateway IP address. Used for
auto-configuring guests with fixed IP
setting

RW default netmask string default netmask. Used for auto-
configuring guests with fixed IP set-
ting

2.8.2 Additional RPCs associated with class: network

Class network has no additional RPCs associated with it.

21



2.9 Class: VIF

2.9.1 Fields for class: VIF

Name VIF

Description a virtual network interface
Quals Field Type Description
ROrun uuid string globally-unique ID
RW name string human-readable name of the interface
RW type driver type interface type
RW device string network device to use e.g. eth0
RW network network ref virtual network to which this vif is

connected
RW VM VM ref virtual machine to which this vif is

connected
RW MAC string ethernet MAC address
RW MTU int MTU in octets
ROrun network read kbs float Incoming network bandwidth
ROrun network write kbs float Outgoing network bandwidth
RW qos/algorithm type string QoS algorithm to use
RW qos/algorithm params string Paramters for chosen QoS algorithm
ROrun IO bandwidth/incoming kbs float Read bandwidth (Kb/s)
ROrun IO bandwidth/outgoing kbs float Write bandwidth (Kb/s)

2.9.2 Additional RPCs associated with class: VIF

Class VIF has no additional RPCs associated with it.

22



2.10 Class: storage manager

2.10.1 Fields for class: storage manager

Name storage manager

Description creates and manages storage repositories
Quals Field Type Description
ROrun uuid string globally-unique ID
RW SRs SR ref Set list of currently-known storage repos-

itories

2.10.2 Additional RPCs associated with class: storage manager

Class storage manager has no additional RPCs associated with it.

23



2.11 Class: SR

2.11.1 Fields for class: SR

Name SR

Description a storage repository

Quals Field Type Description
ROrun uuid string globally-unique ID
RW name/label string a short human-readable label
RW name/short description string a short human-readable description
RW name/long description string a slightly longer human-readable de-

scription
RW name/detail string everything you can think of, and then

some more
RW VDIs VDI ref Set managed virtual disks
ROrun total promised int total amount of space promised to

virtual disks
ROrun total guaranteed int total amount of space guaranteed to

virtual disks
RO ins physical size int total physical size of the repository
RO ins type string type?
RO ins location string location?
RO ins globally shared bool true if the repository can be seen by

all hosts; otherwise it is considered
local

RO ins local node host ref host to which this repository is con-
sidered to be local

2.11.2 Additional RPCs associated with class: SR

Class SR has no additional RPCs associated with it.

24



2.12 Class: VDI

2.12.1 Fields for class: VDI

Name VDI

Description a virtual disk image
Quals Field Type Description
ROrun uuid string globally-unique ID
RW name/label string a short human-readable label
RW name/short description string a short human-readable description
RW name/long description string a slightly longer human-readable de-

scription
RW name/detail string everything you can think of, and then

some more
RW SR SR ref storage repository to create the disk

on
RW VBDs VBD ref Set list of vbds which have mounted this

disk
ROrun filesystem filesystem ref information about the filesystem (if

known)
RO ins virtual size int size of disk to present to the guest
ROrun guaranteed size int amount of space guaranteed by the

storage repository
RO ins type vdi type type of the VDI
RO ins parent VDI ref parent disk (e.g. in the case of copy

on write
RO ins children VDI ref Set child disks (e.g. in the case of copy

on write
RW sharable bool true if this disk may be shared
ROrun creator user ref person who created this disk
ROrun creation time datetime time and date VDI was created
ROrun last mounted datetime time the VDI was last mounted by a

guest

2.12.2 Additional RPCs associated with class: VDI

Class VDI has no additional RPCs associated with it.

25



2.13 Class: VBD

2.13.1 Fields for class: VBD

Name VBD

Description a virtual block device
Quals Field Type Description
ROrun uuid string globally-unique ID
RW VM VM ref the virtual machine
RW VDI VDI ref the virtual disk
RW device string device seen by the guest e.g. hda1
RW mode vbd mode the mode the disk should be mounted

with
RW driver driver type the style of driver
RW qos/algorithm type string QoS algorithm to use
RW qos/algorithm params string Paramters for chosen QoS algorithm
ROrun IO bandwidth/incoming kbs float Read bandwidth (Kb/s)
ROrun IO bandwidth/outgoing kbs float Write bandwidth (Kb/s)

2.13.2 Additional RPCs associated with class: VBD

Class VBD has no additional RPCs associated with it.

26



2.14 Class: filesystem

2.14.1 Fields for class: filesystem

Name filesystem

Description an on-disk filesystem
Quals Field Type Description
ROrun uuid string globally-unique ID
ROrun block size int block size
ROrun total blocks int total blocks on disk
ROrun available blocks int blocks available for allocation
ROrun used blocks int blocks already in use
ROrun percentage free int Percentage of free space left in filesys-

tem
ROrun type string filesystem type

2.14.2 Additional RPCs associated with class: filesystem

Class filesystem has no additional RPCs associated with it.

27



2.15 Class: user

2.15.1 Fields for class: user

Name user

Description a user of the system
Quals Field Type Description
ROrun uuid string globally-unique ID
RO ins short name string short name (e.g. userid)
RW fullname string full name
RW created VDIs VDI ref Set the VDIs this user has created

2.15.2 Additional RPCs associated with class: user

Class user has no additional RPCs associated with it.

2.16 DTD

General notes:

• Values of primitive types (int, bool, etc) and higher-order types (Sets, Maps) are encoded as
simple strings, rather than being expanded into XML fragments. For example “5”, “true”,
“1, 2, 3, 4”, “(1, 2), (2, 3), (3, 4)”

• Values of enumeration types are represented as strings (e.g. “PAE”, “3DNow!”)

• Object References are represented as UUIDs, written in string form

<!ELEMENT networks (#PCDATA)>

<!ELEMENT guaranteed size (#PCDATA)>

<!ELEMENT long description (#PCDATA)>

<!ELEMENT PCI bus (#PCDATA)>

<!ELEMENT required (#PCDATA)>

<!ELEMENT dynamic max (#PCDATA)>

<!ELEMENT coredump (#PCDATA)>

<!ELEMENT boot method (#PCDATA)>

<!ELEMENT TPM (instance, backend)>

<!ELEMENT network manager (uuid, networks)>

<!ELEMENT creator (#PCDATA)>

<!ELEMENT MTU (#PCDATA)>

<!ELEMENT running on (#PCDATA)>

<!ELEMENT physical size (#PCDATA)>

<!ELEMENT total promised (#PCDATA)>

<!ELEMENT total guaranteed (#PCDATA)>

<!ELEMENT total blocks (#PCDATA)>

<!ELEMENT crash (#PCDATA)>

<!ELEMENT name ((#PCDATA) | (label, short description, long description, detail))>

<!ELEMENT algorithm params (#PCDATA)>

<!ELEMENT cdrom (#PCDATA)>

<!ELEMENT kernel ((kernel, initrd, args) | (#PCDATA))>

<!ELEMENT builder (#PCDATA)>

<!ELEMENT uuid (#PCDATA)>

28



<!ELEMENT user (uuid, short name, fullname, created VDIs)>

<!ELEMENT user version (#PCDATA)>

<!ELEMENT IO bandwidth (incoming kbs, outgoing kbs)>

<!ELEMENT VIFs (#PCDATA)>

<!ELEMENT force off (#PCDATA)>

<!ELEMENT VM ((#PCDATA) | (uuid, name, user version, is a template, running on, memory,

VCPUs, actions, coredump, VIFs, VBDs, TPM, bios, platform, builder, console port, boot method,

kernel, grub, PCI bus, tools version))>

<!ELEMENT globally shared (#PCDATA)>

<!ELEMENT VNC (#PCDATA)>

<!ELEMENT platform (std VGA, SDL, VNC, serial, localtime, clock offset, enable audio)>

<!ELEMENT policy (#PCDATA)>

<!ELEMENT standby (#PCDATA)>

<!ELEMENT actual (#PCDATA)>

<!ELEMENT host cpu (uuid, host, number, features, utilisation)>

<!ELEMENT SRs (#PCDATA)>

<!ELEMENT number (#PCDATA)>

<!ELEMENT actions (power off, reboot, crash, standby)>

<!ELEMENT VLAN (#PCDATA)>

<!ELEMENT VIF (uuid, name, type, device, network, VM, MAC, MTU, network read kbs, network write kbs,

qos, IO bandwidth)>

<!ELEMENT creation time (#PCDATA)>

<!ELEMENT algorithm type (#PCDATA)>

<!ELEMENT network read kbs (#PCDATA)>

<!ELEMENT VDIs (#PCDATA)>

<!ELEMENT dynamic min (#PCDATA)>

<!ELEMENT resident VMs (#PCDATA)>

<!ELEMENT storage manager (uuid, SRs)>

<!ELEMENT cmdline (#PCDATA)>

<!ELEMENT power off (#PCDATA)>

<!ELEMENT used blocks (#PCDATA)>

<!ELEMENT tools version (#PCDATA)>

<!ELEMENT sharable (#PCDATA)>

<!ELEMENT VDI ((#PCDATA) | (uuid, name, SR, VBDs, filesystem, virtual size, guaranteed size,

type, parent, children, sharable, creator, creation time, last mounted))>

<!ELEMENT outgoing kbs (#PCDATA)>

<!ELEMENT static max (#PCDATA)>

<!ELEMENT features ((#PCDATA) | (required, can use, force on, force off))>

<!ELEMENT incoming kbs (#PCDATA)>

<!ELEMENT percentage free (#PCDATA)>

<!ELEMENT memory (static max, dynamic max, actual, dynamic min, static min)>

<!ELEMENT initrd (#PCDATA)>

<!ELEMENT last mounted (#PCDATA)>

<!ELEMENT bios (cdrom, boot)>

<!ELEMENT device (#PCDATA)>

<!ELEMENT MAC (#PCDATA)>

<!ELEMENT default gateway (#PCDATA)>

<!ELEMENT qos (algorithm type, algorithm params)>

<!ELEMENT software version (#PCDATA)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT instance (#PCDATA)>

<!ELEMENT short name (#PCDATA)>

<!ELEMENT params (#PCDATA)>

<!ELEMENT serial (#PCDATA)>

29



<!ELEMENT boot (#PCDATA)>

<!ELEMENT console port (#PCDATA)>

<!ELEMENT short description (#PCDATA)>

<!ELEMENT NIC (#PCDATA)>

<!ELEMENT virtual size (#PCDATA)>

<!ELEMENT children (#PCDATA)>

<!ELEMENT driver (#PCDATA)>

<!ELEMENT host ((#PCDATA) | (uuid, name, software version, SRs, resident VMs, host CPUs))>

<!ELEMENT is a template (#PCDATA)>

<!ELEMENT force on (#PCDATA)>

<!ELEMENT local node (#PCDATA)>

<!ELEMENT std VGA (#PCDATA)>

<!ELEMENT network write kbs (#PCDATA)>

<!ELEMENT localtime (#PCDATA)>

<!ELEMENT args (#PCDATA)>

<!ELEMENT parent (#PCDATA)>

<!ELEMENT network ((#PCDATA) | (uuid, name, VIFs, NIC, VLAN, default gateway, default netmask))>

<!ELEMENT VBDs (#PCDATA)>

<!ELEMENT clock offset (#PCDATA)>

<!ELEMENT static min (#PCDATA)>

<!ELEMENT grub (cmdline)>

<!ELEMENT fullname (#PCDATA)>

<!ELEMENT label (#PCDATA)>

<!ELEMENT SDL (#PCDATA)>

<!ELEMENT VCPUs (policy, params, utilisation, features)>

<!ELEMENT host CPUs (#PCDATA)>

<!ELEMENT created VDIs (#PCDATA)>

<!ELEMENT reboot (#PCDATA)>

<!ELEMENT available blocks (#PCDATA)>

<!ELEMENT enable audio (#PCDATA)>

<!ELEMENT can use (#PCDATA)>

<!ELEMENT SR ((#PCDATA) | (uuid, name, VDIs, total promised, total guaranteed, physical size,

type, location, globally shared, local node))>

<!ELEMENT block size (#PCDATA)>

<!ELEMENT utilisation (#PCDATA)>

<!ELEMENT filesystem ((uuid, block size, total blocks, available blocks, used blocks,

percentage free, type) | (#PCDATA))>

<!ELEMENT mode (#PCDATA)>

<!ELEMENT VBD (uuid, VM, VDI, device, mode, driver, qos, IO bandwidth)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT backend (#PCDATA)>

<!ELEMENT default netmask (#PCDATA)>

<!ELEMENT detail (#PCDATA)>

2.16.1 XML configuration examples

2.16.2 A virtual network interface

<vif>

<name = "virtual interface 0">

<type = "paravirtualised">

<device = "eth0">

30



<!-- The virtual machine to which the vif is attached -->

<vm = "uuid-1579-1324-1597-2911">

<!-- The virtual network the vif is attached to

(This tells the host on which the guest is running

how packets to/from this vif should be dealt with) -->

<network = "uuid-1234-5678-1234-5678">

<!-- VIF parameters -->

<mac = "00:11:22:33:44:55">

<mtu = "1500">

<!-- Specify leaky bucket qos and give parameters -->

<qos>

<algorithm_type = "leaky_bucket">

<algorithm_params = "r=0.15, b=3">

</qos>

</vif>

2.16.3 A paravirtualised guest

<vm>

<name>

<label>debian</label>

<shortDescription>Debian etch unstable</shortDescription>

<longDescription>A completely vanilla install of Debian etch unstable</longDescription>

<detail>I could write a long description here, including versions of all the software

installed, all the licenses, everything I can think of.</detail>

</name>

<memory>

<staticmax>1G</staticmax>

<staticmin>128M</staticmin>

<!-- actual is a runtime property -->

<dynamicmax>512M</dynamicmax>

<dynamicmin>128M</dynamicmin>

</memory>

<vcpus>

<policy="variable_within_range">

<params="range=(0,5)">

<features>

<required> FPU, P4 </required>

<canuse> SSE, 3DNow! </canuse>

<force_on> SSE </force_on>

<force_off> 3DNow! </force_off>

</features>

</vcpus>

<!-- set how guest behaves on poweroff, reboot, crash, standby -->

<actions>

<poweroff> destroy </poweroff>

<reboot> restart </reboot>

<crash> preserve </crash>

31



<standby> rename-restart </standby>

</actions>

<!-- generate coredump on poweroff, reboot, crash, standby -->

<coredump> true </coredump>

<!-- attach following vifs and vdis to guest on startup -->

<vifs> uuid-1234-5678-1234-5678, uuid-2345-6789-2345-6789 </vifs>

<vdis> uuid-1234-5678-1234-5678, uuid-2345-6789-2345-6789 </vdis>

<tpm>

<instance>0</instance>

<backend>0</backend>

</tpm>

<bios>

<cdrom>/dev/cdrom</cdrom>

<boot>cdrom</boot>

</bios>

<platform>

<stdvga>false</stdvga>

<sdl>false</sdl>

<vnc>true</vnc>

<serial>/dev/pty1</serial>

<localtime>true</localtime>

<enable_audio>true</enable_audio>

</platform>

<builder> /domain/builder/part/of/virtual/bios </builder>

<console_port>1234</console_port>

<boot_method>kernel_internal</boot_method>

<kernel>

<kernel>/boot/vmlinuz</kernel>

<initrd>/boot/initrd.img</initrd>

<args>root=/dev/nfs ... </args>

</kernel>

<grub>

<cmdline></cmdline> <!-- not used by this boot_method -->

</grub>

<pci_bus></pci_bus> <!-- no devices to pass-through -->

<!-- toolsVersion is a runtime property -->

</vm>

32


