
Elmer Programmer’s Tutorial

Mikko Lyly

CSC – IT Center for Science

2010–2011

Elmer Programmer’s Tutorial

About this document
The Elmer Programmer’s Tutorials is part of the documentation of Elmer finite element software. It gives
examples on how to carry out simple coding tasks using the high-level routines from Elmer library.

The present manual corresponds to Elmer software version 7.0. Latest documentations and program
versions of Elmer are available (or links are provided) at http://www.csc.fi/elmer.

Copyright information
The original copyright of this document belongs to CSC – IT Center for Science, Finland, 1995–2009. This
document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. Elmer software is distributed in the hope that it will be useful, but without
any warranty. See the GNU General Public License for more details.

Elmer includes a number of libraries licensed also under free licensing schemes compatible with the
GPL license. For their details see the copyright notices in the source files.

All information and specifications given in this document have been carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as of time writing. CSC assumes no responsibility or
liability on any errors or inaccuracies in Elmer software or documentation. CSC reserves the right to modify
Elmer software and documentation without notice.

1

http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nd/3.0/

Contents

Table of Contents 2

1 User defined functions 3
1.1 Calling convention . 3
1.2 Compilation . 4

2 User defined solvers 5
2.1 Calling convention . 5
2.2 Compilation . 5
2.3 Solver Input File . 5

3 Reading data from SIF 6
3.1 Reading constant scalars . 6
3.2 Reading constant vectors . 6
3.3 Reading constant matrices . 7

4 Managing variables 8
4.1 Handle to variables . 8
4.2 Permutation vector of variable . 8
4.3 Vector valued field variables . 9
4.4 Global variables . 9
4.5 Creating variables . 9

5 Mesh files 10
5.1 Creating mesh files manually . 10

6 Partial Differential Equations 11
6.1 Model problem . 11
6.2 FEM . 11
6.3 Implementation . 12

2

Chapter 1

User defined functions

1.1 Calling convention
All user defined functions that implement e.g. a material parameter, body force, or a boundary condition,
are written in Fortran90 with the following calling convention:

!---
!> File: MyLibrary.f90
!> Written by: ML, 5 May 2010
!> Modified by: -
!---
FUNCTION MyFunction(Model, n, f) RESULT(g)

USE DefUtils
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: f, g

! code

END FUNCTION MyFunction

The function is called automatically by ElmerSolver for each node index n, when activated from the Solver
Input File e.g. as follows:

Material 1
MyParameter = Variable Time
Real Procedure "MyLibrary" "MyFunction"

End

In this case, the value of time will be passed to the function in variable f. The function then returns the value
of the material parameter in variable h.

The type Model_t is declared and defined in the source file Types.src also referenced by DefUtils.src.
It contains the mesh and all model data specified in the Solver Input File. As an example, the coordinates of
node n are obtained from Model as follows:

REAL(KIND=dp) :: x, y, z
x = Model % Nodes % x(n)
y = Model % Nodes & y(n)
z = Model % Nodes % z(n)

If the value of the return value depends on a specific function (for example a temperature dependent heat
conducivity), we can fetch the nodal value of that function by using the DefUtils-subtouines (more details to
follow in the next section):

TYPE(Variable_t), POINTER :: TemperatureVariable
REAL(KIND=dp) :: NodalTemperature
INTEGER :: DofIndex
TemperatureVariable => VariableGet(Model % Variables, ’Temperature’)
DofIndex = TemperatureVariable % Perm(n)
NodalTemperature = TemperatureVariable % Values(dofIndex)
! Compute heat conductivity from NodalTemperature, k=k(T)

CSC – IT Center for Science

1. User defined functions 4

1.2 Compilation
The function is compiled into a shared library (Unix-like systems) or into a dll (Windows) by using the
default compiler wrapper elmerf90 (here and in the sequel, $ stands for the command prompt of a bash shell
(Unix) and > is input sign of the Command Prompt in Windows):

$ elmerf90 -o MyLibrary.so MyLibrary.f90

> elmerf90 -o MyLibrary.dll MyLibrary.f90

CSC – IT Center for Science

Chapter 2

User defined solvers

2.1 Calling convention
All user defined subroutines that implement a custom solver are written in Fortran90 with the following
calling convention:

!---
! File: MySolver.f90
! Written by: ML, 5 May 2010
! Modified by: -
!---
SUBROUTINE MySolver(Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! User defined code

END MySolver

The types Solver_t and Model_t are defined in the source file Types.src.

2.2 Compilation
The subroutine is compiled into a shared library like a user defined function by using the compiler wrapper
elmerf90:

$ elmerf90 -o MyLibrary.so MyLibrary.f90

> elmerf90 -o MyLibrary.dll MyLibrary.f90

2.3 Solver Input File
The user defined solver is called automatically by ElmerSolver when an appropriate Solver-block is found
from the Solver Input File:

Solver 1
Procedure = "MyLibrary" "MySolver"
...

End

CSC – IT Center for Science

Chapter 3

Reading data from SIF

In this chapter the flow of information from the command file is described. The file is also known as Solver
Input File, or sif file. The relevant functions and subroutines are defined in DefUtils.src.

3.1 Reading constant scalars
For reading constant valued scalars the following function is used

RECURSIVE FUNCTION GetConstReal(List, Name, Found) RESULT(Value)
TYPE(ValueList_t), POINTER : List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found
REAL(KIND=dp) :: Value

Solver Input File:

Constants
MyConstant = Real 123.456

End

You may not thet here the type Real is defined. The type of fixed keywords are usually defined in file
SOLVER.KEYWORDS in the bin directory. Also the user may create a local copy of the file introducing
new variables there.
Code (sif1/MyLibrary.f90):

SUBROUTINE MySolver(Model, Solver, dt, Transient)
USE DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant scalar from Constants-block:
!--
REAL(KIND=dp) :: MyConstant
LOGICAL :: Found

MyConstant = GetConstReal(Model % Constants, "MyConstant", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyConstant")
PRINT *, "MyConstant =", MyConstant

END SUBROUTINE MySolver

Output:

MyConstant = 123.45600000

3.2 Reading constant vectors
For reading constant valued vectors or matrices the following function is used

CSC – IT Center for Science

3. Reading data from SIF 7

RECURSIVE SUBROUTINE GetConstRealArray(List, Value, Name, Found)
TYPE(ValueList_t), POINTER : List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found
REAL(KIND=dp), POINTER :: Value(:,:)

Solver Input File:

Solver 1
MyVector(3) = Real 1.2 3.4 5.6

End

Code (sif2/MyLibrary.f90)

SUBROUTINE MySolver(Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant vector from Solver-block:
!---
REAL(KIND=dp), POINTER :: MyVector(:,:)
LOGICAL :: Found

CALL GetConstRealArray(Solver % Values, MyVector, "MyVector", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyVector")
PRINT *, "MyVector =", MyVector(:,1)

END SUBROUTINE MySolver

Output:

MyVector = 1.2000000000 3.4000000000 5.6000000000

3.3 Reading constant matrices
Solver Input File:

Material 1
MyMatrix(2,3) = Real 11 12 13 21 22 23

Code (sif3/MyLibrary.f90):

SUBROUTINE MySolver(Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE
TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model
REAL(KIND=dp) :: dt
LOGICAL :: Transient

! Read constant matrix from Material-block
!--
REAL(KIND=dp), POINTER :: MyMatrix(:,:)
LOGICAL :: Found
TYPE(ValueList_t), POINTER :: Material

Material => Model % Materials(1) % Values
CALL GetConstRealArray(Material, MyMatrix, "MyMatrix", Found)
IF(.NOT.Found) CALL Fatal("MySolver", "Unable to find MyMatrix")
PRINT *, "Size of MyMatrix =", SIZE(MyMatrix,1), "x", SIZE(MyMatrix,2)
PRINT *, "MyMatrix(1,:) =", MyMatrix(1,:)
PRINT *, "MyMatrix(2,:) =", MyMatrix(2,:)

END SUBROUTINE MySolver

Output:

Size of MyMatrix = 2 x 3
MyMatrix(1,:) = 11.000000000 12.000000000 13.000000000
MyMatrix(2,:) = 21.000000000 22.000000000 23.000000000

CSC – IT Center for Science

Chapter 4

Managing variables

In this chapter the treatment of variables is presented.

4.1 Handle to variables
You can access your global solution vector of your finite element subroutine. The following is limited to the
field variable that is being solved for:
TYPE(Variable_t), POINTER :: MyVariable
REAL(KIND=dp), POINTER :: MyVector(:)
INTEGER, POINTER :: MyPermutation(:)
...
MyVariable => Solver % Variable
MyVector => MyVariable % Values
MyPermutation => MyVariable % Perm

Also any other variable may be accessed by its name and thereafter be treated as the default variable. For
example
Mesh => GetMesh()
MyVariable => VariableGet(Mesh,’ExtVariable’)
IF(.NOT. ASSOCIATED (MyVariable)) THEN
CALL Fatal(’MySolver’,’Could not find variable > ExtVariable < ’)

END IF

If you want to set all values of the vector to a constant value that would be done simply with
MyVector = 123.456

4.2 Permutation vector of variable
The integer component Var % Perm tells the mapping between physical nodes and field variables. It is zero
there where the field variable is not active. The numbering of the non-zero entries must use all integerers
starting from 1. Usually the numbering is determined by bandwidth optimization which is always on by
default. You can turn the optimization off by adding the line Bandwidth optimization = FALSE in the
Solver-section of your SIF. In this case the permutation vector MyPermutation becomes the identity map.
In the case of a scalar field, you can then set the value of the field e.g. in node 3 as
MyVector(MyPermutation(3)) = 123.456

Some field variables do not have the Permulation defined and then MyPermutation would not be as-
sociated. For example, the coordinates are available as field variables Coordinate 1, Coordinate 2 and
Coordinate 3 without the permutation vector.
For example, getting the field variable corresponding to coordinate x could be done either as
x = Mesh % Nodes % x(node)

or
MyVariable => VariableGet(Mesh,’Coordinate 1’)
x = MyVariable % Values(node)

The alternative way of accessing the coordinates is important since that enables that the same dependency
features may be used for true field variables, as well as for coordinates.

CSC – IT Center for Science

4. Managing variables 9

4.3 Vector valued field variables
The field variable may also have vector values at each node. If the primary field name is VarName then the
individual components are by default referred to by their component indexes VarName i. The vector valued
field are ordered so that for each node the components follow each other.

For example, assume that we want to retrieve the three components of a displacement vector. This could
be done as follows:

...
MyVariable => GetVariable(Mesh % Variables,’Displacement’)
MyVector => MyVariable % Values
MyPermutation => MyVariable % Perm
MyDofs = MyVariable % Dofs

j = MyPermutation(node)
IF(j /= 0)) THEN
ux = MyVector(Dofs * (j-1)+1)
IF(Dofs >= 2) uy = MyVector(Dofs * (j-1)+2)
IF(Dofs >= 3) uz = MyVector(Dofs * (j-1)+3)

END IF

4.4 Global variables
Global variables may be treated similarly as field variables. However, they have no reference to nodes.
Examples of global variables are time, timestep size, nonlin iter and coupled iter.

A good indicator that a variable is global is that its size is equal to the number of i.e. the following
condition is true

SIZE(MyVector) == MyDofs

4.5 Creating variables
Within the code variables may be created by command VariabelAddVector.

In the command file a variable may be created with keyword Exported Variable i. It takes also param-
eters such as -dofs and -global. So the following expression would create a global variable with 5 degrees
of freedom.

Exported Variable 1 = -global -dofs 5 MyGlobals

CSC – IT Center for Science

Chapter 5

Mesh files

Elmer mesh is defined by a selection of files: mesh.header, mesh.nodes, mesh.elements and mesh.boundary.
In parallel runs there will also be file mesh.shared.

The mesh files may be created by ElmerGUI using some of its built-in mesh generators. By ElmerGrid
using its native format or import utilities. If the user has his own mesh generator writing a parser to Elmer
format will not be a mission impossible.

5.1 Creating mesh files manually
To understand what the mesh file looks like we present a toy mesh. It consists of 6 nodes defined by their
(x,y,z) coordinates, 4 linear triangles (Elmer type 303) and 2 different boundaries.
mesh.nodes

1 -1 0.0 0.0 0.0
2 -1 0.0 -1.0 0.0
3 -1 1.0 -1.0 0.0
4 -1 1.0 1.0 0.0
5 -1 -1.0 1.0 0.0
6 -1 -1.0 0.0 0.0

mesh.elements

1 1 303 1 2 3
2 1 303 1 3 4
3 1 303 1 4 5
4 1 303 1 5 6

mesh.boundary

1 1 1 0 202 1 2
2 1 1 0 202 2 3
3 1 2 0 202 3 4
4 2 3 0 202 4 5
5 2 4 0 202 5 6
6 2 4 0 202 6 1

mesh.header

6 4 6
2
202 6
303 4

CSC – IT Center for Science

Chapter 6

Partial Differential Equations

6.1 Model problem
In this section, we will consider the boundary value problem

−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ Rd is a smooth bounded domain (d = 1, 2, 3) and f = 1.
The problem can be written as

1
2

∫
Ω

|∇u|2 dΩ−
∫

Ω

fu dΩ = min!

where the minimum is taken over all sufficiently smooth functions that satisfy the kinematical boundary
conditions on ∂Ω.

6.2 FEM
The Galerkin FEM for the problem is obtained by dividing Ω into finite elements and by introducing a
set of mesh dependent basis functions {φ1, φ2, . . . , φn}. The approximate solution is written as a linear
combination of the basis and detemined from the condition that it minimizes the energy:

un =
n∑

i=1

φiui (ui ∈ R)

and
1
2

∫
Ω

|∇un|2 dΩ−
∫

Ω

fun dΩ = min!

The solution satisfies
n∑

j=1

Aijuj = fi, i = 1, 2, . . . , n,

with
Aij =

∫
Ω

∇φi · ∇φj dΩ

and
fi =

∫
Ω

fφi dΩ.

CSC – IT Center for Science

6. Partial Differential Equations 12

In practice, the coefficients Aij are computed by summing over the elements:

Aij =
∑
E

AE
ij

with
AE

ij =
∫

E

∇φi · ∇φj dΩ

The integrals over the elements are evaluated through a mapping fE : Ê → E, where Ê is a fixed reference
element:

AE
ij =

∫
Ê

∇φi · ∇φj |JE | dΩ̂

where |JE | is the determinant of the Jacobian matrix of fE . In most cases, fE is either an affine or an
isoparametric map from the unit triangle, square, tetrahedron, hexahedron etc., into the actual element.

Finally, the integral over the reference element is computed numerically with an appropriate quadrature.
Elmer uses the Gauss-quadrature by deault, as most of the FE-codes:

AE
ij =

N∑
k=1

∇φi(ξk) · ∇φj(ξk) wk |JE(ξk)|

where ξk is the integration point and wk is the integration weight.
So, the system matrices and vectors of the FEM are formed by implementing a loop over the elements,

by computing the local matrices and vectors with an appropriate quadrature, and by assembling the global
system from the local contributions.

6.3 Implementation
Let us next implement the method in Elmer and write a user defined subroutine for the Poisson equation. To
begin with, let us allocate memory for the local matrices and vectors. This is done once and for all in the
beginning of the subroutine:
INTEGER :: N
TYPE(Mesh_t), POINTER :: Mesh
LOGICAL :: AllocationsDone = .FALSE.
REAL(KIND=dp), ALLOCATABLE :: Matrix(:,:), Vector(:)
SAVE AllocationsDone, LocalMatrix, LocalVector

IF(.NOT.AllocationsDone) THEN
Mesh => GetMesh(Solver)
N = Mesh % MaxElementNodes
ALLOCATE(Matrix(N,N))
ALLOCATE(Vector(N))

END IF

The next step is to implement a loop over all active elements, call a subroutine that computes the local
matrices and vectors (to be specified later), and assemble the global system by using the DefUtils subroutine
DefaultUpdateEquations():
INTEGER :: i
TYPE(Element_t), POINTER :: Element

DO i = 1, GetNOFActive(Solver)
Element => GetActiveElement(i)
N = GetElementNOFNodes(Element)
CALL ComputeLocal(Element, N, Matrix, Vector)
CALL DefaultUpdateEquations(Matrix, Vector, Element)

END DO

The assembly is finalized by calling the DefUtils subroutine DefaultFinishAssembly(). Dirichlet boundary
conditions are set by calling the subroutine DefaultDirichletBCs(). The final algebraic system is solved
by the DefUtils function DefaultSolve():

REAL(KIND=dp) :: Norm

CALL DefaultFinishAssembly(Solver)
CALL DefaultDirichletBCs(Solver)
Norm = DefaultSolve(Solver)

CSC – IT Center for Science

6. Partial Differential Equations 13

It remains to implement the subroutine ComputeLocal() that makes the local computations. We will
contain this subroutine in the main subroutine to simplify things:

SUBROUTINE MySolver(Model, Solver, dt, Transient)
...

CONTAINS

SUBROUTINE ComputeLocal(Element, N, Matrix, Vector)
TYPE(Element_t), POINTER :: Element
INTEGER :: N
REAL(KIND=dp) :: Matrix(:,:)
REAL(KIND=dp) :: Vector(:)
...

END SUBROUTINE ComputeLocal

END SUBROUTINE MySolver

The first thing to do in ComputeLocal() is to clear the matrix and vector:

Matrix = 0.0d0
Vector = 0.0d0

Next, we will get information about the node points:

TYPE(Nodes_t) :: Nodes
SAVE Nodes

Matrix = 0.0d0
Vector = 0.0d0

CALL GetElementNodes(Nodes, Element)

The Gauss points for our element are obtained by calling GaussPoints()

TYPE(GaussIntegrationPoints_t) :: IP

IP = GaussPoints(Element)

The local matrix and vector are integrated numerically by implementing a loop over the Gauss points, by
evaluating the nodal basis functions in these points, and by computing the inner products:

INTEGER :: i
REAL(KIND=dp) :: detJ, Basis(N), dBasisdx(N,3)
LOGICAL :: stat

DO i = 1, IP % n
stat = ElementInfo(Element, Nodes, &

IP % u(i), IP % v(i), IP % w(i), &
detJ, Basis, dBasisdx)

END DO

In this loop, we will finally compute the inner products of the basis and their gradients, multiply the result
by the weight of the Gauss point, and by the determinant of the Jacobian matrix of the mapping from the
reference element:

Matrix(1:N, 1:N) = Matrix(1:N, 1:N) + &
MATMUL(dBasisdx, TRANSPOSE(dBasisdx)) * IP % s(i) * detJ

Vector(1:N) = Vector(1:N) + Basis * IP % s(i) * detJ

The implementation is now complete.
Let us finally test the method by creating a finite element mesh e.g. with ElmerGrid or ElmerGUI (1, 2,

and 3d are all fine), and by using the following SIF:

Header
Mesh DB "." "."

End

Simulation
Simulation Type = Steady state
Steady State Max Iterations = 1
Post File = case.ep

End

Body 1
Equation = 1

End

CSC – IT Center for Science

6. Partial Differential Equations 14

Equation 1
Active Solvers(1) = 1

End

Solver 1
Equation = "MyEquation"
Procedure = "MyLibrary" "MySolver"
Variable = -dofs 1 "MyScalar"

End

Boundary condition 1
Target boundaries(1) = 1
MyScalar = Real 0

End

CSC – IT Center for Science

	Table of Contents
	User defined functions
	Calling convention
	Compilation

	User defined solvers
	Calling convention
	Compilation
	Solver Input File

	Reading data from SIF
	Reading constant scalars
	Reading constant vectors
	Reading constant matrices

	Managing variables
	Handle to variables
	Permutation vector of variable
	Vector valued field variables
	Global variables
	Creating variables

	Mesh files
	Creating mesh files manually

	Partial Differential Equations
	Model problem
	FEM
	Implementation

