gty pure-systems

Documentation:
AspectC++ Language Reference

pure-systems GmbH

Matthias Urban

and Olaf Spinczyk

Version 1.6, June 23, 2007

(c) 2002-2005 Olaf Spinczyk' and pure-systems GmbH?

los@aspectc.org
www.aspectc.org

Zaspectc@pure-systems.com
www.pure-systems.com
Agnetenstr. 14

39106 Magdeburg

Germany

mailto:os@aspectc.org
http://www.aspectc.org
mailto:aspectc@pure-systems.com
http://www.pure-systems.com

(c) 2002-2005 Olaf Spinczyk and pure-systems GmbH
All rights reserved.

CONTENTS CONTENTS

Contents
1 About 5
2 Basic Concepts 5
21 Pointcuts L 5
2.1.1 Match Expressionso 5
2.1.2 Pointcut Expressions o 6
21.3 TypesofdoinPoints. 7
2.1.4 Pointcutdeclarations Lo 8
22 Slices e 9
23 AdviceCode e 9
2.3.1 Introductions 10
2.3.2 AdviceOrdering e 11
24 Aspects 12
2.4.1 AspectInstantiation o oL 13
2.5 Runtime Support 14
2.5.1 SupportforAdviceCode 14
252 Actions 15
3 Match Expressions 16
3.1 Name Matching e 16
3.1.1 Simple Name Matching 16
3.1.2 Operator Function and Conversion Function Name Matching 17
3.1.3 Constructors and Destructors 18
3.1.4 Scope Restrictions o 18
3.2 Scope Matching e 18
3.3 TypeMatching o 19
3.3.1 The Match Mechanism 19
3.3.2 Matchingof Named Types 19
3.3.3 Matching of “Pointer to Member” Types 19
3.3.4 Matching of Qualified Types (const/volatile) 20
3.3.5 Handling of Conversion Function Types 20
3.3.6 Ellipses in Function Type Patterns 20
3.3.7 Matching of Virtual Functions 20
3.3.8 Argument Type Adjustment 21
4 Predefined Pointcut Functions 21
41 TYPES . v i e e e e e e e e 21
42 ControlFlow e 22

CONTENTS CONTENTS

4.3 SCOPE . . . v i i e 23
44 Funclions e e e e e 23
4.5 Object Construction and Destruction 24
46 Context e e e 25
4.7 AlgebraicOperators e 26
5 Slices 26
5.1 Class Slice Declarations 26
6 Advice 27
6.1 Advice for DynamicJoinPoints 28
6.2 Advice for StaticJoinPoints L o oL 28
7 JoinPoint API 28
71 TYPES . . . e e 29
7.2 Functions e e 29
8 Advice Ordering 30
8.1 AspectPrecedence. oo oo 30
8.2 AdvicePrecedence 31
8.3 Effects of Advice Precedence 31
A Grammar 32
B Match Expression Grammar 33
List of Examples 38
Index 38

2 BASIC CONCEPTS

1 About

This document is intended to be used as a reference book for the AspectC++ language
elements. It describes in-depth the use and meaning of each element providing examples.
For experienced users the contents of this document is summarized in the AspectC++
Quick Reference. A step-by-step introduction how to program with AspectC++ is given in
the AspectC++ Programming Guide'. Detailed information about the AspectC++ compiler
ac++ can be looked up in the AC++ Compiler Manual.

AspectC++ is an aspect-oriented extension to the C++ language®. It is similar to As-
pectJ® but, due to the nature of C++, in some points completely different. The first part
of this document introduces the basic concepts of the AspectC++ language. The in-depth
description of each language element is subject of the second part.

2 Basic Concepts

2.1 Pointcuts

Aspects in AspectC++ implement crosscutting concerns in a modular way. With this in
mind the most important element of the AspectC++ language is the pointcut. Pointcuts
describe a set of join points by determining on which condition an aspect shall take effect.
Thereby each join point can either refer to a function, an attribute, a type, a variable, or
a point from which a join point is accessed so that this condition can be for instance the
event of reaching a designated code position. Depending on the kind of pointcuts, they are
evaluated at compile time or at runtime.

2.1.1 Match Expressions

There are two types of pointcuts in AspectC++: code pointcuts and name pointcuts. Name
pointcuts describe a set of (statically) known program entities like types, attributes, func-
tions, variables, or namespaces. All name pointcuts are based on match expressions. A
match expression can be understood as a search pattern. In such a search pattern the
special character “%” is interpreted as a wildcard for names or parts of a signature. The

special character sequence “...” matches any number of parameters in a function signature
or any number of scopes in a qualified name. A match expression is a quoted string.

Sorry, but the Programming Guide is not written yet : - (
2defined in the ISO/IEC 14882:1998(E) standard
3www.aspectj.org

http://www.aspectc.com/ac++quickref.pdf
http://www.aspectc.com/ac++quickref.pdf
http://www.aspectc.com/doc.html
http://www.aspectc.com/ac++compilerman.pdf
http://www.aspectj.org

2.1 Pointcuts 2 BASIC CONCEPTS

Example: match expressions (name pointcuts)

"int C::%(...)"

matches all member functions of the class C that return an int

"SList"

matches any class, struct, union, or enum whose name ends with “List”

"% printf (const char *, ...)"
matches the function printf (defined in the global scope) having at least one pa-
rameter of type const char * and returning any type

"const %& ...::%(...)"
matches all functions that return a reference to a constant object

Match expressions select program entities with respect to their definition scope, their type,
and their name. A detailed description of the match expression semantics follows in sec-
tion 3 on page 16. The grammar which defines syntactically valid match expressions is
shown in appendix B on page 33.

2.1.2 Pointcut Expressions

The other type of pointcuts, the code pointcuts, describe an intersection through the set of
the points in the control flow of a program. A code pointcut can refer to a call or execution
point of a function. They can only be created with the help of name pointcuts because all
join points supported by AspectC++ require at least one name to be defined. This is done
by calling predefined pointcut functions in a pointcut expression that expect a pointcut as
argument. Such a pointcut function is for instance within(pointcut), which filters all join
points that are within the functions or classes in the given pointcut.

Name and code pointcuts can be combined in pointcut expressions by using the alge-
braic operators “&&”, “||”, and “I”.

Example: pointcut expressions

"$List" && !derived("Queue")
describes the set of classes with names that end with “List” and that are not derived
from the class Queue

call ("void draw()") && within ("Shape")
describes the set of calls to the function draw that are within methods of the class
Shape

2 BASIC CONCEPTS 2.1 Pointcuts

2.1.3 Types of Join Points

According to the two types of pointcuts supported by AspectC++ there are also two types
of join points. Based on a short code fragment the differences and relations between these
two types of join points shall be clarified.

class Shape;
void draw(Shape&);

namespace Circle ({
typedef int PRECISION;

class S_Circle : public Shape {
PRECISION m_radius;
public:

void radius (PRECISION r) { m_radius=r; }
bi

void draw (PRECISION r) {
S_Circle circle;
circle.radius (r);

draw (circle);

int main() {
Circle::draw(10);

return 0;

Code join points are used to form code pointcuts and name join points (i.e. names) are
used to form name pointcuts. Figure 1 on the following page shows some join points of the
code fragment and how they correlate.

Every execution join point is associated with the name of an executable function. Pure
virtual functions are not executable. Thus, advice code for execution join points would
never be triggered for this kind of function. However, the call of such a function, i.e. a call
join point with this function as target, is absolutely possible.

Every call join point is associated with two names: the name of the source and the
target function of a function call. As there can be multiple function calls within the same

7

2.1 Pointcuts 2 BASIC CONCEPTS

function namespace class function
"Circle" ‘"Shape" ‘,‘ "draw" ‘
I /, :
: contained contained contained /tx:se class ! :
i 1
%) [onor | []
\\
)Athod \\attribute \\\

function attribute N
- "radius” "m_radius" !
T

‘

|
| \
|

Name

[. Name }
relation between code relation between names
and names name join point code join point

Figure 1: join points and their relations

function, each function name can be associated with a list of call join points. A construc-
tion joinpoint means the class specific instruction sequence executed when an instance is
created. In analogy, a destruction joinpoint means the object destruction.

2.1.4 Pointcut declarations

AspectC++ provides the possibility to name pointcut expressions with the help of pointcut
declarations. This makes it possible to reuse pointcut expressions in different parts of a
program. They are allowed where C++ declarations are allowed. Thereby the usual C++
name lookup and inheritance rules are also applicable for pointcut declarations.

A pointcut declaration is introduced by the keyword pointcut.

Example: pointcut declaration

pointcut lists() = derived("List");
lists can now be used everywhere in a program where a pointcut expression can
be used to refer to derived ("List™")

Furthermore pointcut declarations can be used to define pure virtual pointcuts. This en-
ables the possibility of having re-usable abstract aspects that are discussed in section 2.4.
The syntax of pure virtual pointcut declarations is the same as for usual pointcut declara-
tions except the keyword virtual following pointcut and that the pointcut expression is
“0”.

8

2 BASIC CONCEPTS 2.2 Slices

Example: pure virtual pointcut declaration

pointcut virtual methods() = 0;
methods is a pure virtual pointcut that has to be redefined in a derived aspect to
refer to the actual pointcut expression

2.2 Slices

A slice is a fragment of a C++ language element that defines a scope. It can be used
by advice to extend the static structure of the programm. For example, the elements of
a class slice can be merged into one or more target classes by introduction advice. The
following example shows a simple class slice declaration.

Example: class slice declaration

slice class Chain {
Chain *_next;
public:
Chain *next () const { return _next; }

|

2.3 Advice Code

To a code join point so-called advice code can be bound. Advice code can be understood
as an action activated by an aspect when a corresponding code join point in a program is
reached. The activation of the advice code can happen before, after, or before and after
the code join point is reached. The AspectC++ language element to specify advice code
is the advice declaration. It is introduced by the keyword advice followed by a pointcut
expression defining where and under which conditions the advice code shall be activated.

Example: advice declaration

advice execution("void login(...)") : before() {
cout << "Logging in." << endl;

}

The code fragment :before () following the pointcut expression determines that the ad-
vice code shall be activated directly before the code join point is reached. It is also pos-
sible here to use :after () which means after reaching the code join point respectively
:around () which means that the advice code shall be executed instead of the code de-
scribed by the code join point. In an around advice the advice code can explicitly trigger

9

2.3 Advice Code 2 BASIC CONCEPTS

the execution of the program code at the join point so that advice code can be executed be-
fore and after the join point. There are no special access rights of advice code regarding
to program code at a join point.

Beside the pure description of join points pointcuts can also bind variables to context
information of a join point. Thus for instance the actual argument values of a function call
can be made accessible to the advice code.

Example: advice declaration with access to context information

pointcut new_user (const char *name) =

execution ("void login(...)") && args(name);

advice new_user (name) : before(const char *name) {
cout << "User " << name << " is logging in." << endl;

In the example above at first the pointcut new_user is defined including a context variable
name that is bound to it. This means that a value of type const char* is supplied every
time the join point described by the pointcut new_user is reached. The pointcut function
args used in the pointcut expression delivers all join points in the program where an argu-
ment of type const char* is used. Therefore args (name) in touch with the execution
join point binds name to the first and only parameter of the function login.

The advice declaration in the example above following the pointcut declaration binds
the execution of advice code to the event when a join point described in new_user is
reached. The context variable that holds the actual value of the parameter of the reached
join point has to be declared as a formal parameter of before, after, or around. This
parameter can be used in the advice code like an oridinary function parameter.

Beside the pointcut function args the binding of context variables is performed by
that, target, and result. At the same time these pointcut functions act as filters cor-
responding to the type of the context variable. For instance args in the example above
filters all join points having an argument of type const char*.

2.3.1 Introductions

The second type of advice supported by AspectC++ are the introductions. Introductions
are used to extend program code and data structures in particular. The following example
extends two classes each by an attribute and a method.

Example: introductions

pointcut shapes() = "Circle" || "Polygon";

10

2 BASIC CONCEPTS 2.3 Aadvice Code

advice shapes() : slice class {
bool m_shaded;
void shaded(bool state) {
m_shaded = state;
}
b

Like an ordinary advice declaration an introduction is introduced by the keyword advice.
If the following pointcut is a name pointcut the slice declaration following the token “” is
introduced in the classes and aspects described by the pointcut. Introduced code can
then be used in normal program code like any other function, attribute, etc. Advice code in
introductions has full access rights regarding to program code at a join point, i.e. a method
introduced in a class has access even to private members of that class.

Slices can also be used to introduce new base classes. In the first line of the following
example it is made sure that every class with a name that ends with “Object” is derived
from a class MemoryPool. This class may implement an own memory management by
overloading the new and delete operators. Classes that inherit from MemoryPool must
redefine the pure virtual method release that is part of the implemented memory man-
agement. This is done in the second line for all classes in the pointcut.

Example: base class introduction

advice "%0Object" : slice class : public MemoryPool {
virtual void release() = 0;

2.3.2 Advice Ordering

If more than one advice affects the same join point it might be necessary to define an
order of advice execution if there is a dependency between the advice codes (“aspect
interaction”). The following example shows how the precedence of advice code can be
defined in AspectC++.

Example: advice ordering

advice execution("void send(...)") : order ("Encrypt", "Log");

If advice of both aspects (see 2.4) Encrypt and Log should be run when the function
send(...) is executed this order declaration defines that the advice of Encrypt has

11

2.4 Aspects 2 BASIC CONCEPTS

a higher precedence. More details on advice ordering and precedence can be found in
section 8 on page 30.

2.4 Aspects

The aspect is the language element of AspectC++ to collect introductions and advice code
implementing a common crosscutting concern in a modular way. This put aspects in a
position to manage common state information. They are formulated by means of aspect
declarations as a extension to the class concept of C++. The basic structure of an aspect
declaration is exactly the same as an usual C++ class definition, except for the keyword
aspect instead of class, struct or union. According to that, aspects can have attributes
and methods and can inherit from classes and even other aspects.

Example: aspect declaration

aspect Counter ({

static int m_count;
pointcut counted() = "Circle" || "Polygon";

advice counted() : slice struct {
class Helper {
Helper () { Counter::m_count++; }
} m_counter;

}i

advice execution ("% main(...)") : after() {
cout << "Final count: " << m_count << " objects" << endl;
}
Vi
. and at an appropriate place
#include "Counter.ah"

int Counter::m_count = 0;

In this example the count of object instantiations for a set of classes is determined. There-
fore, an attribute m_counter is introduced into the classes described by the pointcut in-
crementing a global counter on construction time. By applying advice code for the function
main the final count of object instantiations is displayed when the program terminates.
This example can also be rewritten as an abstract aspect that can for instance be
archived in an aspect library for the purpose of reuse. It only require to reimplement the

12

2 BASIC CONCEPTS 2.4 Aspects

pointcut declaration to be pure virtual.

Example: abstract aspect

aspect Counter {
static int m_count;

Counter () : m_count (0) {}
pointcut virtual counted() = 0;

}i

It is now possible to inherit from Counter to reuse its functionality by reimplementing
counted to refer to the actual pointcut expression.

Example: reused abstract aspect

aspect MyCounter : public Counter {

pointcut counted() = derived("Shape");

i

2.4.1 Aspect Instantiation

By default aspects in AspectC++ are automatically instantiated as global objects. The idea
behind it is that aspects can also provide global program properties and therefore have to
be always accessible. However in some special cases it may be desired to change this
behavior, e.g. in the context of operating systems when an aspect shall be instantiated per
process or per thread.

The default instantiation scheme can be changed by defining the static method
aspectof resp. aspectOf that is otherwise generated for an aspect. This method is
intended to be always able to return an instance of the appropriate aspect.

Example: aspect instantiation using aspectof

aspect ThreadCounter : public Counter ({

pointcut counted() = "Thread";
advice counted() : ThreadCounter m_instance;

static ThreadCounter *aspectof () {

return tjp->target ()->m_instance;

13

2.5 Runtime Support 2 BASIC CONCEPTS

}
}i

The introduction of m_instance into Thread guarantees that every thread object has an
instance of the aspect. By calling aspectof it is possible to get this instance at any join
point which is essential for accessing advice code and members of the aspect. For this
purpose code in aspectof has full access to the actual join point in a way described in
the next section.

2.5 Runtime Support
2.5.1 Support for Advice Code

For many aspects access to context variables may not be sufficient to get enough infor-
mation about the join point where advice code was activated. For instance a control flow
aspect for a complete logging of function calls in a program would need information about
function arguments and its types on runtime to be able to produce a type-compatible out-
put.

In AspectC++ this information is provided by the members of the class JoinPoint
(see table below).

types:
Result result type
That object type
Target target type
AC::Type encoded type of an object
AC::JPType join point types
static methods:
int args{() number of arguments
AC::Type type() typ of the function or attribute
AC::Type argtype (int) types of the arguments
const char *signature () | signature of the function or attribute
unsigned id() identification of the join point
AC::Type resulttype() result type
AC::JPType jptype () type of join point
non-static methods:
void *arg(int) actual argument
Result *result () result value
That *that () object refered to by this
Target *target () target object of a call

14

2 BASIC CONCEPTS 2.5 Runtime Support

void proceed() execute join point code

AC::Action &action() Action structure

Table 1: API of class JoinPoint available in advice code

Types and static methods of the JoinPoint API deliver information that is the same
for every advice code activation. The non-static methods deliver information that dif-
fer from one activation to another. These methods are accessed by the object tjp
resp. thisJoinPoint which is of type JoinPoint and is always available in advice code,
too.

The following example illustrates how to implement a re-usable control flow aspect
using the JoinPoint API.

Example: re-usable trace aspect

aspect Trace {

pointcut virtual methods() = 0;

advice execution(methods()) : around() {
cout << "before " << JoinPoint::signature() << "(";
for (unsigned i = 0; i < JoinPoint::args(); i++)

printvalue (tjp—->arg (i), JoinPoint::argtype(i));

cout << ")" << endl;
tjp->proceed() ;
cout << "after" << endl;

}

b

This aspect weaves tracing code into every function specified by the virtual pointcut rede-
fined in a derived aspect. The helper function printvalue is responsible for the formated
output of the arguments given at the function call. After calling printvalue for every
argument the program code of the actual join point is executed by calling proceed on
the JoinPoint object. The functionality of proceed is achieved by making use of the
so-called actions.

2.5.2 Actions

In AspectC++ an action is the statement sequence that would follow a reached join point in
a running program if advice code would not have been activated. Thus t jp—->proceed ()

15

3 MATCH EXPRESSIONS

triggers the execution of the program code of a join point. This can be the call or ex-
ecution of a function. The actions concept is realized in the AC: :Action structure.
In fact, proceed is equivalent to action().trigger () so that t jp->proceed() may
also be replaced by t jp->action () .trigger (). Thereby the method action () of the
JoinPoint API returns the actual action object for a join point.

3 Match Expressions

Match expressions are a used to describe a set of statically known program entities in an
AspectC++ program. They can either be match expressions for functions or for types. A
class is seen as a special kind of type in this context.

For function matching a match expression is internally decomposed into the function
type pattern, the scope pattern, and the name pattern.

Example: type, scope, and name parts of a function match expression

[0

"const % Puma::...::parse_% (Token *)"
This match expression describes the following requirements on a compared function name:

name: the function name has to match the name pattern parse_%

type: the function type has to match const % (Token *)

For classes and other types this decomposion is not necessary. For example, the type
name “Puma: : CCParser” is sufficient to describe a class, because this is the same as the
class name.

If an entity matches all parts of the match expression, it becomes an element of the
set, which should be defined by the match expression.

The grammar used for match expression parsing is shown in appendix B on page 33.
The following subsections separately describe the name, scope, and type matching mech-
anisms. Note, that name and scope matching is used for matching of function names as
well as matching of named types like classes.

3.1 Name Matching
3.1.1 Simple Name Matching

Name matching is trivial as long as the compared name is a normal C++ identifier. If
the name pattern does not contain the special wildcard character %, it matches a name

16

3 MATCH EXPRESSIONS 3.1 Name Matching

only if it is exactly the same. Otherwise each wildcard character matches an arbitrary
sequence of characters in the compared name. The wildcard character also matches an
empty sequence.

Example: simple name patterns

Token only matches Token

% matches any name

parse_% matches any name beginning with parse_ like parse_declarator or
parse_

parse_%_1id% matches names like parse_type_id, parse_private_identifier,
etc.

%_token matches all names that end with _token like start_token, end_token,
and _token

3.1.2 Operator Function and Conversion Function Name Matching

The name matching mechanism is more complicated if the pattern is compared with the
name of a conversion function or an operator function. Both are matched by the name
pattern %. However, with a different name pattern than % they are only matched if the pat-
tern begins with "operator ". The pattern "operator %" matches any operator function
or conversion function name.

C++ defines a fixed set of operators which are allowed to be overloaded. In a name
pattern the same operators may be used after the "operator " prefix to match a specific
operator function name. Operator names in name patterns are not allowed to contain the
wildcard character. For ambiguity resolution the operators % and %= are matched by %%
and %%=in a name pattern.

Example: operator name patterns

operator % matches any operator function name (as well as any conversion
function name)

operator += matches only the name of a += operator

operator %% matches the name of an operator %

Conversion functions don’t have a real name. For example, the conversion function
operator int* () defined in a class C defines a conversion from a C instance into an
object of type int*. To match conversion functions the name pattern may contain a type
pattern after the prefix "operator ". The type matching mechanism is explained in section
3.3.

17

3.2 Scope Matching 3 MATCH EXPRESSIONS

Example: conversion function name patterns

operator % matches any conversion function name

operator int* matches any name of a conversion that converts something into
an int* object

operator %* matches any conversion function name if that function converts
something into a pointer

3.1.3 Constructors and Destructors

Name patterns cannot be used to match constructor or destructor names.

3.1.4 Scope Restrictions

In a match expression a name pattern can optionally be prefixed by a scope pattern. A
scope pattern (see section 3.2) is used to describe restrictions on the definition scope
of matched entities. If no scope pattern is given, a compared function or type has to be
defined in the global scope to be matched.

3.2 Scope Matching

Restrictions on definition scopes can be described by scope patterns. This is a sequence
of name patterns (or the special any scope sequence pattern .. .), which are separated
by ::, like in Puma::...::. A scope pattern always ends with : : and should never start
with : :, because scope patterns are interpreted relative to the global scope anyway*. The
definition scope can either be a namespace or a class.

A scope pattern matches the definition scope of a compared function or type if every
part can successfully be matched with a corresponding part in the qualified hame of the
definition scope. The compared qualified name has to be relative to the global scope and
should not start with : :, which is optional in a C++ nested-name-specifier. The special
. .. pattern matches any (even empty) sequence of scope names.

4This restriction is also needed to avoid ambiguities in the match expression grammer: Does
‘At B :: C(int)”mean“A ::B::C(int)”or“A::B ::C(int)”"?

18

3 MATCH EXPRESSIONS 3.3 Type Matching

Example: scope patterns

ceat matches any definition scope, even the global scope

Puma::CCParser:: matches the scope Puma: : CCParser exactly

...::%Compiler%:: matches any class or namespace, which matches the name pat-
tern $Compiler%, in any scope

Puma::...:: matches any scope defined within the class or namespace Puma
and Puma itself

3.3 Type Matching
3.3.1 The Match Mechanism

C++ types can be represented as a tree. For example, the function type int (double) is
a function type node with two children, one is an int node, the other a double node. Both
children are leafs of the tree.

The types used in match expressions can also be interpreted as trees. As an addition
to normal C++ types they can also contain the % wildcard character, name patterns, and
scope patterns. A single wildcard character in a type pattern becomes a special any type
node in the tree representation.

For comparing a type pattern with a specific type the tree representation is used and
the any type node matches an arbitrary type (sub-)tree.

Example: type patterns with the wildcard character

% matches any type

void (*) (%) matches any pointer type that points to functions with a single ar-
gument and a void result type

%* matches any pointer type

3.3.2 Matching of Named Types

Type patterns may also contain name and scope patterns. They become a named type
node in the tree representation and match any union, struct, class, or enumeration type if
its name and scope match the given pattern (see section 3.1 and 3.2).

3.3.3 Matching of “Pointer to Member” Types

Patterns for pointers to members also contain a scope pattern, e.qg.

% (Puma::CSyntax::*) (). In this context the scope pattern is mandatory. The
pattern is used for matching the class associated with a pointer to member type.

19

3.3 Type Matching 3 MATCH EXPRESSIONS

3.3.4 Matching of Qualified Types (const/volatile)

Many C++ types can be qualified as const or volatile. In a type pattern these qualifier
can also be used, but they are interpreted restrictions. If no const or volatile qualifier
is given in a type pattern, the pattern also matches qualified types®.

Example: type patterns with const and volatile

% matches any type, even types qualified with const or
volatile

const % matches only types qualified by const

% (*) () const volatile matches the type of all pointers to functions that are

qualified by const and volatile

3.3.5 Handling of Conversion Function Types

The result type of conversion functions is interpreted as a special undefined type in type
patterns as well as in compared types. The undefined type is only matched by the any
type node and the undefined type node.

3.3.6 Ellipses in Function Type Patterns

In the list of function argument types the type pattern . . . can be used to match an arbitrary
(even empty) list of types. The ... pattern should not be followed by other argument type
patterns in the list of argument types.

3.3.7 Matching of Virtual Functions

The decl-specifier-seq of a function type match expression may include the keyword
virtual. In this case the function type match expression only matches virtual or pure
virtual member functions. As const and volatile, the virtual keyword is regarded as
a restriction. This means that a function type match expression without virtual matches
virtual and non-virtual functions.

Example: type patterns with virtual

virtual % ...::%(...) matches all virtual or pure virtual functions in any
scope
matches all member functions of C, even if they are

o\
(@)
o\

virtual

SMatching only non-constant or non-volatile types can be achieved by using the operators explained in
section 4.7 on page 26. For example, ! "const %" describes all types which are not constant.

20

4 PREDEFINED POINTCUT FUNCTIONS

3.3.8 Argument Type Adjustment

Argument types in type patterns are adjusted according to the usual C++ rules, i.e. ar-
ray and function types are converted to pointers to the given type and const/volatile
qualifiers are removed. Futhermore, argument type lists containing a single void type are
converted into an empty argument type list.

4 Predefined Pointcut Functions

On the following pages a complete list of the pointcut functions supported by AspectC++ is
presented. For every pointcut function it is indicated which type of pointcut is expected as
argument(s) and of which type the result pointcut is. Thereby “N” stands for name pointcut
and “C” for code pointcut. The optionally given index is an assurance about the type of join
point(s) described by the result pointcut®.

4.1 Types

base(pointcut) N—Nc r
returns all base classes of classes in the pointcut

derived(pointcut) N—Nc F
returns all classes in the pointcut and all classes derived from them

Example: type matching
A software may contain the following class hierarchy.

class Shape { ... };
class Point : public Shape { ... };

class Rectangle : public Line, public Rotatable { ... };

With the following aspect a special feature is added to a designated set of classes of this
class hierarchy.

aspect Scale {
pointcut scalable() =

8¢, Cc, Cg, Cg, Ci: Code (any, only Call, only Execution, only Set, only Get); N, Ny, N¢, N, N7:
Names (any, only Namespace, only Class, only Function, only Type)

21

4.2 Control Flow 4 PREDEFINED POINTCUT FUNCTIONS

(base ("Rectangle") && derived("Point")) || "Rectangle";
advice "Point" : baseclass("Scalable");
advice scalable() : void scale(int value) { ... }

i

The pointcut describes the classes Point and Rectangle and all classes derived from
Point that are direct or indirect base classes of Rectangle. With the first advice Point
gets a new base class. The second advice adds a corresponding method to all classes in
the pointcut.

4.2 Control Flow

cflow(pointcut) C—C
captures join points occuring in the dynamic execution context of join points in the
pointcut. Currently the language features being used in the argument pointcut are
restricted. The argument ist not allowed to contain any context variable bindings
(see 4.6) or other pointcut functions which have to be evaluated at runtime like
cflow(pointcut) itself.

Example: control flow dependant advice activation

The following example demonstrates the use of the cflow pointcut function.

class Bus {
void out (unsigned char);
unsigned char in ();

}i

Consider the class Bus shown above. It might be part of an operating system kernel and is
used there to access peripheral devices via a special I/O bus. The execution of the member
functions in () and out () should not be interrupted, because this would break the timing
of the bus communication. Therefore, we decide to implement an interrupt synchronization
aspect that disables interrupts during the execution of in() and out():

aspect BusIntSync {
pointcut critical() = execution("$% Bus::%(...)");
advice critical() && !'cflow(execution("% os::int_handler()"))
around () {
os::disable_ints();

tjp->proceed();

22

4 PREDEFINED POINTCUT FUNCTIONS 4.3 Scope

0s::enable_ints();
}
i

As the bus driver code might also be called from an interrupt handler, the interrupts
should not be disabled in any case. Therefore, the pointcut expression exploits the
cflow() pointcut function to add a runtime condition for the advice activation. The
advice body should only be executed if the control flow did not come from the in-
terrupt handler os::int_handler (), because it is not interruptable by definition and
os::enable_ints () in the advice body would turn on the interrupts too early.

4.3 Scope

within(pointcut) N—C
filters all join points that are within the functions or classes in the pointcut

Example: matching in scopes

aspect Logger {
pointcut calls() =

call("void transmit ()") && within("Transmitter");
advice calls () : around() {
cout << "transmitting ... " << flush;

tjp->proceed() ;
cout << "finished." << endl;
}
bi

This aspect inserts code logging all calls to transmit that are within the methods of class

Transmitter.

4.4 Functions

call(pointcut) N—Cc
Provides all join points where a named entity in the pointcut is called. The pointcut
may contain function names or class names. In the case of a class name all calls to
methods of that class are provided.

23

4.5 Object Construction and Destruction 4 PREDEFINED POINTCUT FUNCTIONS

execution(pointcut) N—Cpg
provides all join points referring to the implementation of a named entity in the point-
cut. The pointcut may contain function names or class names. In the case of a class
name all implementations of methods of that class are provided.

Example: function matching

The following aspect weaves debugging code into a program that checks whether a method
is called on a null pointer and whether the argument of the call is null.

aspect Debug ({

pointcut fct() = "% MemPool::dealloc(void*)";
pointcut exec() = execution(fct());

pointcut calls() = call(fct());

advice exec() && args(ptr) : before(void *ptr) {

assert (ptr && "argument is NULL");
}
advice calls () : before() {
assert (tjp—>target () && "’'this’ is NULL");
}
Vi

The first advice provides code to check the argument of the function dealloc before the
function is executed. A check whether dealloc is called on a null object is provided by
the second advice. This is realized by checking the target of the call.

4.5 Object Construction and Destruction

construction(pointcut) N—Ccons
all join points where an instance of the given class(es) is constructed. The construc-
tion joinpoint begins after all base class and member construction joinpoints. It can
be imagined as the execution of the constructor. However, advice for construction
joinpoints work, even if there is no constructor defined explicitly. A construction join-
point has arguments and argument types, which can be exposed or filtered, e.g. by
using the args pointcut function.

destruction(pointcut) N—Cpes
all join points where an instance of the given class(es) is destructed. The destruction
joinpoint ends before the destruction joinpoint of all members and base classes. It

24

4 PREDEFINED POINTCUT FUNCTIONS 4.6 Context

can be imagined as the execution of the destructor, although a destructor does not
to be defined explicitly. A destruction joinpoint has an empty argument list.

Example: instance counting

The following aspect counts how many instances of the class ClassOfInterest are cre-
ated and destroyed.

aspect InstanceCounting {
// the class for which instances should be counted
pointcut observed() = "ClassOfInterest";

// count constructions and destructions

advice construction (observed ()) : before () { _created++; }
advice destruction (observed ()) : after () { _destroyed++; }
public:
// Singleton aspects can have a default constructor
InstanceCounting () { _created = _destroyed = 0; }
private:

// counters

int _created;

int _destroyed;
bi

The implementation of this aspect is straightforward. Two counters are initialized by the
aspect constructor and incremented by the construction/destruction advice. By defining
observed () as a pure virtual pointcut the aspect can easily be transformed into a reusable
abstract aspect.

4.6 Context

that(type pattern) N—C
returns all join points where the current C++ this pointer refers to an object which
is an instance of a type that is compatible to the type described by the type pattern

target(type pattern) N—C
returns all join points where the target object of a call is an instance of a type that is
compatible to the type described by the type pattern

result(type pattern) N—C
returns all join points where the result object of a call/execution is an instance of a
type matched by the type pattern

25

4.7 Algebraic Operators 5 SLICES

args(type pattern, ...) (N,...)—C
The argument list of args contains type patterns that are used to filter all joinpoints,
e.g. calls to functions or function executions, with a matching signature.

Instead of the type pattern it is also possible here to pass the name of a variable to which
the context information is bound (a context variable). In this case the type of the variable
is used for the type matching. Context variables must be declared in the argument list of
before(), after(), or around() and can be used like a function argument in the advice body.
The that() and target() pointcut functions are special, because they might cause a
run-time type check. The args() and result() functions are evaluated at compile time.

Example: context matching

4.7 Algebraic Operators

pointcut && pointcut (N,N)—N, (C,C)—C
intersection of the join points in the pointcuts

pointcut || pointcut (N,N)—N, (C,C)—C
union of the join points in the pointcuts

! pointcut N—N, C—C
exclusion of the join points in the pointcut

Example: combining pointcut expressions

5 Slices

This section defines the syntax and semantics of slice declarations. The next section will
describe how slices can be used by advice in order to introduce code. Currently, only class
slices are defined in AspectC++.

5.1 Class Slice Declarations

Class slices may be declared in any class or namespace scope. They may be defined only
once, but there may be an arbitrary number forward declarations. A qualified name may
be used if a class slice that is already declared in a certain scope is redeclared or defined
as shown in the following example:

slice class ASlice;
namespace N {

slice class ASlice; // a different slice!

26

6 ADVICE

}

slice class ASlice { // definition of the ::ASlice
int elem;

bi

slice class N::ASlice { // definition of the N::ASlice
long elem;

b

If a class slice only defines a base class, an abbreviated syntax may be used:
slice class Chained : public Chain;

Class slices may be anonymous. However, this only makes sense as part of an advice
declaration. A class slice my also be declared with the aspect or struct keyword instead
of class. While there is no difference between class and aspect slices, the default access
rights to the elements of a struct slice in the target classes are public instead of private. It
is forbidden to declare aspects, pointcuts, advice, or slices as members of a class slice.

Class slices may have members that are not defined within the body of a class slice
declaration, e.g. static attributes or non-inline functions:

slice class SL {

static int answer;

void f();
bi
/...
slice int SL::answer = 42;
slice void SL::f() { ... }

These external member declarations have to appear after the corresponding slice decla-
ration in the source code.

6 Advice

This section describes the different types of advice offered by AspectC++. Advice be
categorized in advice for join points in the dynamic control flow of the running program,
e. g. function call or executions, and advice for static join points like introductions into
classes.

In either case the compiler makes sure that the code of the aspect header file, which
contains the advice definition (if this is the case), is compiled prior to the affected join point
location.

27

6.1 Aavice for Dynamic Join Points 7 JOINPOINT API

6.1 Advice for Dynamic Join Points

before(...)
the advice code is executed before the join points in the pointcut

after(...)
the advice code is executed after the join points in the pointcut

around(...)
the advice code is executed in place of the join points in the pointcut

6.2 Advice for Static Join Points

Static join points in AspectC++ are classes or aspects. Advice for classes or aspects can
introduce new members or add a base class. Whether the new member or base class
becomes private, protected, or public in the target class depends on the protection in
the advice declaration in the aspect.

baseclass(classname)
a new base class is introduced to the classes in the pointcut

introduction declaration
a new attribute, member function, or type is introduced

Introduction declarations are only semantically analyzed in the context of the target. There-
fore, the declaration may refer, for instance, to types or constants, which are not known in
the aspect definition, but only in the target class or classes. To introduce a constructor or
destructor the name of the aspect, to which the introduction belongs, has to be taken as
the constructor/destructor name.

Non-inline introductions can be used for introductions of static attributes or member
function introduction with separate declaration an definition. The name of the introduced
member has to be a qualified name in which the nested name specifier is the name of the
aspect to which the introduction belongs.

7 JoinPoint API

The following sections provide a complete description of the JoinPoint API.

28

7 JOINPOINT API 7.1 Types

7.1 Types

Result
result type of a function

That
object type (object initiating a call)

Target
target object type (target object of a call)

Example: type usage

7.2 Functions

static AC::Type type()
returns the encoded type for the join point conforming with the C++ ABI V3 specifi-
cation’

static int args{()
returns the number of arguments of a function for call and execution join points

static AC::Type argtype(int number)
returns the encoded type of an argument conforming with the C++ ABI V3 specifica-
tion

static const char *signature()

gives a textual description of the join point (function name, class name, ...)

static unsigned int id()
returns a unique numeric identifier for this join point

static const char *filename ()
returns the name of the file in which the join-point (shadow) is located

static int line()
the number of the line in which the join-point (shadow) is located

static AC::Type resulttype()
returns the encoded type of the result type conforming with the C++ ABI V3 specifi-
cation

static AC::JPType Jptype ()
returns a unique identifier describing the type of the join point

7www.codesourcery.com/cxx—abi/abi.html#manglinq

29

http://www.codesourcery.com/cxx-abi/abi.html#mangling

8 ADVICE ORDERING

Example: static function usage

void *arg(int number)
returns a pointer to the memory position holding the argument value with index

number

Result *result()
returns a pointer to the memory location designated for the result value or 0 if the
function has no result value

That *that ()
returns a pointer to the object initiating a call or 0 if it is a static method or a global
function

Target *target ()
returns a pointer to the object that is the target of a call or 0 if it is a static method or
a global function

void proceed()
executes the original join point code in an around advice by calling

action() .trigger()

AC::Action &action()
returns the runtime action object containing the execution environment to execute
the original functionality encapsulated by an around advice

Example: non-static function usage
8 Advice Ordering

8.1 Aspect Precedence

AspectC++ provides a very flexible mechanism to define aspect precedence. The prece-
dence is used to determine the execution order of advice code if more than one aspect
affect the same join point. The precedence in AspectC++ is an attribute of a join point.
This means that the precedence relationship between two aspects might vary in differ-
ent parts of the system. The compiler checks the following conditions to determine the
precendence of aspects:

order declaration: if the programmer provides an order declaration, which defines the
precedence relationship between two aspects for a join point, the compiler will obey
this definition or abort with a compile-time error if there is a cycle in the precedence

30

8 ADVICE ORDERING 8.2 Advice Precedence

graph. Order declarations have the following syntax:

advice pointcut-expr : oxrder (high, ...low)

The argument list of order has to contain at least two elements. Each element is a
pointcut expression, which describes a set of aspects. Each aspect in a certain set
has a higher precedence than all aspects, which are part of a set following later in
the list (on the right hand side). For example ’ ("A1" | | "A2", "A3" | |"A4")’ means
that A1 has precedence over A3 and A4 and that A2 has precedence over A3 and
A4. This order directive does not define the relation between A1 and A2 or A3 and
A4. Of course, the pointcut expressions in the argument list of order may contain
named pointcuts and even pure virtual pointcuts.

inheritance relation: if there is no order declaration given and one aspect has a base
aspect the derived aspect has a higher precedence than the base aspect.

8.2 Advice Precedence

The precedence of advice is determined with a very simple scheme:

e if two advice declarations belong to different aspects and there is a precedence re-
lation between these aspects (see section 8.1 on the facing page) the same relation
will be assumed for the advice.

e if two advice declarations belong to the same aspect the one that is declared first
has the higher precedence.

8.3 Effects of Advice Precedence

Only advice predecence has an effect on the generated code. The effect depends on the
kind of join point, which is affected by two advice declarations.

Class Join Points

Advice on class join points can extend the attribute list or base class list. If advice has a
higher precedence than another it will be handled first. For example, an introduced new
base class of advice with a high precedence will appear in the base class list on the left
side of a base class, which was inserted by advice with lower precedence. This means
that the execution order of the constructors of introduced base classes can be influenced,
for instance, by order declarations.

The order of introduced attributes also has an impact on the constructor/destructor
execution order as well as the object layout.

31

A GRAMMAR

Code Join Points

Advice on code join points can be before, after, or around advice. For before and
around advice a higher precedence means that the corresponding advice code will be run
first. For after advice a higher precedence means that the advice code will be run later.

If around advice code does not call t jp->proceed() or trigger () on the action
object no advice code with lower precedence will be run. The execution of advice with
higher precedence is not affected by around advice with lower precedence.

For example, consider an aspect that defines advice® in the following order: BE1,
AF1, AF2, AR1, BE2, AR2, AF3. As described in section 8.2 on the previous page the
declaration order also defines the precedence: BE1 has the highest and AF3 the lowest.
The result is the following advice code execution sequence:

1. BE1 (highest precedence)

2. AR1 (the indented advice will only be executed if proceed () is called!)

(a) BE2 (before AR2, buts depends on AR1)
(b) AR2 (the indented code will only be executed if proceed () is called!)
i. original code under the join point
ii. AF3
3. AF2 (does not depend on AR1 and AR2, because of higher precedence)

4. AF1 (run after AF2, because it has a higher precedence)

A Grammar

The AspectC++ syntax is an extension to the C++ syntax. It adds four new keywords to the
C++ language: aspect, advice, slice, and pointcut. Additionally it extends the C++
language by advice and pointcut declarations. In contrast to pointcut declarations, advice
declarations may only occur in aspect declarations.

class-key:

aspect

declaration:
pointcut-declaration
slice-declaration
advice-declaration

8BE is before advice, AF after advice, and AR around advice

32

B MATCH EXPRESSION GRAMMAR

member-declaration:
pointcut-declaration
slice-declaration
aavice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression : order-declaration
advice pointcut-expression : slice-reference
advice pointcut-expression : declaration

order-declaration:
order (pointcur-expression-seq)

slice-reference:
slice ::gpt nested-name-specifierops unqualified-id ;

slice-declaration:
slice declaration

B Match Expression Grammar

Match expression in AspectC++ are used to define a type pattern and an optional object
name pattern to select a subset of the known program entities like functions, attributes, or
argument/result types. The grammer is very similar to the grammer of C++ declarations.
Any rules, which are referenced here but not defined, should be looked up in the ISO C++
standard.

match-expression:
match-declaration

match-id:
nondigit
match-id %
match-id nondigit
match-id digit

33

B MATCH EXPRESSION GRAMMAR

match-declaration:
match-decl-specifier-seqops match-declarator

match-decl-specifier-seq:
match-decl-specifier-seqops match-decl-specifier

match-decl-specifier:
nested-match-name-specifierops match-id
cv-qualifier
match-function-specifier
char
wchar_t
bool
short
int
long
signed
unsigned
float
double

void

match-function-specifier:

virtual

nested-match-name-specifier:
match-id :: nested-match-name-specifieropy
i nested-match-name-specifier()p;

match-declarator:
direct-match-declarator
match-ptr-declarator match-declarator

abstract-match-declarator:
direct-abstract-match-declarator
maltch-ptr-declarator abstract-match-declarator

direct-match-declarator:
maltch-declarator-id
direct-match-declarator (match-parameter-declaration-clause) cv-qualifier-seqopt
direct-match-declarator | match-array-size]

34

B MATCH EXPRESSION GRAMMAR

direct-abstract-match-declarator:
direct-abstract-match-declarator (match-parameter-declaration-clause) cv-
qua/iﬁer—seqopt
direct-abstract-match-declarator | match-array-size |

match-array-size:

3

o

decimal-literal

match-ptr-operator:
* cv-qualifier-seqopt
&
nested-match-name-specifier * cv-qualifier-seqopt

match-parameter-declaration-clause:

match-parameter-declaration-listopt
match-parameter-declaration-list ,

match-parameter-declaration-list:
match-parameter-declaration
match-parameter-declaration-list , match-parameter-declaration

match-parameter-declaration:
matct-decl-specifier-seq match-abstract-declaratoropt

match-declarator-id:
nested-match-name-specifierops match-id
nested-match-name-specifieryps match-operator-function-id
nested-match-name-specifierop; match-conversion-function-id

match-operator-function-id:

operator %
operator match-operator

match-operator: one of

new delete new/[] delete]]
+ - % / " & | ~ ! = < 2
= "= &= |= << >> >>= <K= ==

= <= >= §§& ++ - , =>F* > () (]

match-conversion-function-id:
operator match-conversion-type-id

35

B MATCH EXPRESSION GRAMMAR

match-conversion-type-id:
match-type-specifier-seq match-conversion-declaratorypt

match-conversion-declarator:
match-ptr-operator match-conversion-declaratorypt

36

LIST OF EXAMPLES LIST OF EXAMPLES

List of Examples

match expressions (name pointcuts), 6
pointcut expressions, 6

pointcut declaration, 8

pure virtual pointcut declaration, 9

class slice declaration, 9

advice declaration, 9

advice declaration with access to context information, 10
introductions, 10

base class introduction, 11

advice ordering, 11

aspect declaration, 12

abstract aspect, 13

reused abstract aspect, 13

aspect instantiation using aspectof, 13
re-usable trace aspect, 15

type, scope, and name parts of a function match expression, 16
simple name patterns, 17

operator name patterns, 17

conversion function name patterns, 18
scope patterns, 19

type patterns with the wildcard character, 19
type patterns with const and volatile, 20
type patterns with virtual, 20

type matching, 21

control flow dependant advice activation, 22
matching in scopes, 23

function matching, 24

instance counting

context matching, 26

combining pointcut expressions, 26

advice placement, ?2?

type usage, 29

static function usage, 30

non-static function usage, 30

37

INDEX

INDEX

Index

.., 18,20
%, 16,17, 19
%%, 17

abstract aspect, 8, 12

ac++,5

action, 9, 15—-16
trigger(), 16

action(), 16, 30

advice, 9-11
after, 9, 28
around, 9, 28
baseclass, 28
before, 9, 28
code, 9-10

declaration, 9, 27-28, 33

introduction, 10—11

introduction declaration, 28

order, 11
ordering, 30

runtime support, 14-16

after, 9, 28
any scope sequence, 18
any type node, 19
arg(), 30
args (), 10, 26, 29
argtype (), 29
argument types, 21
around, 9, 28
aspect, 8, 12—-14
abstract, 8, 12
declaration, 12
instantiation, 13—14
aspect interaction, 11
aspectOf (), 13
aspectof (), 13

base (), 21

baseclass, 28
before, 9, 28

call(), 23

call join point, 7
cflow(), 22

code join point, 7, 9
code pointcut, 6

const, 20
construction(), 24
context variables, 10, 14

control flow, 6, 14, 15, 22—-23

conversion function name pattern, 18

crosscutting concern, 5, 12

derived(), 21
destruction(), 24

execution (), 23

execution join point, 7, 10

filename (), 29
grammar, 32

id(), 29
introduction, 10—11
access rights, 11

introduction declaration, 28

join point, 5, 7-8
call, 7
code, 7,9
execution, 7, 10
JoinPoint, 28-30
JoinPoint, 14, 16
action(), 16, 30

arg(), 30
args (), 29
argtype (), 29

38

INDEX

INDEX

filename (), 29

id(), 29
jptype (), 29
line (), 29
proceed(), 15, 30
Result, 29
result (), 30

resulttype (), 29
signature(), 29
Target, 29
target (), 30
That, 29
that (), 30
type (), 29
jptype (), 29

line(), 29

match expression, 56, 16—-21
conversion function name pattern, 18
grammar, 33
name matching, 16—18
operator name pattern, 17
scope matching, 18—19
scope pattern, 19
search pattern, 5
simple name pattern, 17
type matching, 19-21
type pattern with %, 19
type pattern with cv qualifier, 20
type pattern with virtual keyword, 20

match expression grammar, 33

name matching, 16—18
name pattern, 16
name pointcut, 5, 8, 11
named type, 19

operator name pattern, 17
order, 11
declaration, 33

ordering, 11

pointcut, 5-9
code, 6
declaration, 8-9, 33
expression, 6, 33
function, 6, 21-26
name, 5, 8, 11
pure virtual, 8
pointcut function, 6, 21-26

args (), 10, 26
base (), 10,21, 25
call(), 23
cflow(), 22
construction(), 24
derived(), 21

destruction(), 24

execution(), 23

target (), 10,25

that (), 10, 25

within(), 23
pointer to member, 19
precedence, 12

effects, 31

of advice, 31

of aspects, 30
proceed(), 15, 30
pure virtual

functions, 7

pointcut, 8, 13, 15

Result, 29
result (), 30
result (), 10, 25
resulttype (), 29
runtime support, 14
action, 9, 15-16
for advice code, 14—16
JoinPoint, 28-30
JoinPoint, 14, 16

39

INDEX INDEX

thisJoinPoint, 15

scope matching, 18-19
scope pattern, 16, 18, 19
search pattern, 5
match expression, 56, 16—21
signature(), 29
simple name pattern, 17
slice, 9
declaration, 33
reference, 33

Target, 29

target (), 30
target (), 10,25

That, 29

that (), 30

that (), 10, 25
thisJoinPoint, 15

tip, 15

trigger(), 16

type (), 29

type matching, 19-21

type pattern, 16

type pattern with %, 19

type pattern with cv qualifier, 20
type pattern with virtual keyword, 20

undefined type, 20
volatile, 20

within(), 23

40

	1 About
	2 Basic Concepts
	2.1 Pointcuts
	2.1.1 Match Expressions
	2.1.2 Pointcut Expressions
	2.1.3 Types of Join Points
	2.1.4 Pointcut declarations

	2.2 Slices
	2.3 Advice Code
	2.3.1 Introductions
	2.3.2 Advice Ordering

	2.4 Aspects
	2.4.1 Aspect Instantiation

	2.5 Runtime Support
	2.5.1 Support for Advice Code
	2.5.2 Actions

	3 Match Expressions
	3.1 Name Matching
	3.1.1 Simple Name Matching
	3.1.2 Operator Function and Conversion Function Name Matching
	3.1.3 Constructors and Destructors
	3.1.4 Scope Restrictions

	3.2 Scope Matching
	3.3 Type Matching
	3.3.1 The Match Mechanism
	3.3.2 Matching of Named Types
	3.3.3 Matching of ``Pointer to Member'' Types
	3.3.4 Matching of Qualified Types (const/volatile)
	3.3.5 Handling of Conversion Function Types
	3.3.6 Ellipses in Function Type Patterns
	3.3.7 Matching of Virtual Functions
	3.3.8 Argument Type Adjustment

	4 Predefined Pointcut Functions
	4.1 Types
	4.2 Control Flow
	4.3 Scope
	4.4 Functions
	4.5 Object Construction and Destruction
	4.6 Context
	4.7 Algebraic Operators

	5 Slices
	5.1 Class Slice Declarations

	6 Advice
	6.1 Advice for Dynamic Join Points
	6.2 Advice for Static Join Points

	7 JoinPoint API
	7.1 Types
	7.2 Functions

	8 Advice Ordering
	8.1 Aspect Precedence
	8.2 Advice Precedence
	8.3 Effects of Advice Precedence

	A Grammar
	B Match Expression Grammar
	List of Examples
	Index

