curl_multi_soclet_action(3) libcurl Manual curl_multi_soek action(3)

NAME
curl_multi_socket_action — reads/writesidable data gien an ation

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket_action(CURLM * multi_handle,
curl_socket_t sockfd, int ev_bitmask,
int *running_handles);

DESCRIPTION
When the application has detected action on a efodkandled by libcurl, it should call
curl_multi_so&et_action(3)with thesockfd agument set to the socket with the action. When tiests on
a cket are known, thecan be passed as averts bitmaskev_bitmask by first settingev_bitmask to 0,
and then adding using bitwise OR (|yaombination of gents to be chosen from CURL_CSELECT _IN,
CURL_CSELECT _OUT or CURL_CSELECT_ERR. When thengés on a socket are unknown, pass 0
instead, and libcurl will test the descriptor interndllys aso permissible to pass CURL_SOCKET_TIME-
OUT to thesockfd parameter in order to initiate the whole process or when a timeout occurs.

At return, the intger running_handles points to will contain the number of running easy handles within

the multi handle. When this number reaches zero, all transfers are complete/done. When you call
curl_multi_so&et_action(3)on a specific soakt and the counter decreases by one, it DOE$ hgdessar-

ily mean that this exact soettransfer is the one that completed. Usd_multi_info_read(3}o figure out

which easy handle that completed.

The curl_multi_socket_action(3) functions inform the application about updates in the socket (file
descriptor) status by doing none, one, or multiple calls to the socket callback function set with the CURL-
MOPT_SOCKETFUNCTION option taurl_multi_setopt(3) They update the status with changes since

the previous time the callback was called.

Get the timeout time by setting tt@URLMOPT_TIMERFUNCTIOMption with curl_multi_setopt(3)

Your application will then get called with information onahtiong to wait for socket actions at most before
doing the timeout action: call treurl_multi_socket_action(3) function with thesockfd argument set to
CURL_SOCKET_TIMEOUT You can also use thaurl_multi_timeout(3¥unction to poll the value at gn

given time, but for aneent-based system using the callback is far better than relying on polling the timeout
value.

CALLB ACK DETAILS
The socketallback function uses a prototype ékhis

int curl_socket_callback(CURL *easy /* easy handle */

curl_socket _ts, /* socket */

int action, /* see values belo*/

void *userp, [/* private callback pointer */

void *socketp); /* prvate socket pointer,
NULL if not
prevMously assigned with
curl_multi_assign(3) */

The callba& MUST return O.

The easy agjument is a pointer to the easy handle that deals with this particulaetsdiote that a single
handle may work with several $@ts simultaneously.

The s argument is the actual &dcvalue as you use it within your system.

libcurl 7.16.0 9 ul 2006 1



curl_multi_soclet_action(3) libcurl Manual curl_multi_soek action(3)

The action argument to the calldabkas one of five values:

CURL_POLL_NONE (0)
register not interested in readiness (yet)

CURL_POLL_IN (1)
register interested in read readiness

CURL_POLL_OUT (2)
register interested in write readiness

CURL_POLL_INOUT (3)
register interested in both read and write readiness

CURL_POLL_REMOVE (4)
unregister

The sokep argument is a pviate pointer you hae greviously set withcurl_multi_assign(3}o be associ-
ated with thes soclet. If no pointer has been set, seigkwill be NULL. This argument is of course a-ser
vice to applications that want to keep certain data or structs that are strictly associated/en toekgt.

The userpargument is a pviate pointer you hae previously set withcurl_multi_setopt(3and the CURL-
MOPT_SOCKETATA option.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

Before version 7.20.0: If you reeei CURLM_CALL_MULTI_PERFORMhis basically means that you
should callcurl_multi_so&et_action(3)again before you wait for more actions on libcsinbckets. You
don't haveto do it immediatelybut the return code means that libcurl mayeéhaore data w@ailable to
return or that there may be more data to sehldedbre it is "satisfied".

The return code from this function is for the whole multi stack. Problems still migbtcheurred on indi-
vidual transfers\en when one of these functions return OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Set the timeout callback with CURLMOPT_TIMERFUNCTION, to get tovkmdhat timeout value to
use when waiting for socket activities.

4. Add easy handles with curl_multi_add_handle()

5. Provide some means to manage theetsdibcurl is using, so you can check them forvigti This can
be done through your application code, or by way of an external library suchvaatliteglib.

6. Call curl_multi_socket_action(..., CURL_SOCKET_TIMEQUI ..) to kickstart eerything. To get
one or more callbacks called.

7. Wait for activity on apof libcurl's ockets, use the timeout value your callback has been told.

8, When activity is detected, call curl_multi_setlaction() for the socket(s) that got action. If novésti
is detected and the timeout expires, cal_multi_so&e_action(3)with CURL_SOCKET_TIMEOUT

AVAILABILITY
This function was added in libcurl 7.15.4, and is deemed stable since 7.16.0.

libcurl 7.16.0 9 ul 2006 2



curl_multi_soclet_action(3) libcurl Manual curl_multi_soek action(3)

SEE ALSO
curl_multi_cleanup(3), curl_multi_init (3), curl_multi_fdset(3), curl_multi_info_read(3), the hiper-
fifo.c example

libcurl 7.16.0 9 ul 2006 3



