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1 Introduction

1.1 Scope, Purpose, and History

1.1.1 Scope and Purpose

The specification set forth in this document is designed to promote the portability of Com-
mon Lisp programs among a variety of data processing systems. It is a language specifica-
tion aimed at an audience of implementors and knowledgeable programmers. It is neither
a tutorial nor an implementation guide.

1.1.2 History

Lisp is a family of languages with a long history. Early key ideas in Lisp were developed
by John McCarthy during the 1956 Dartmouth Summer Research Project on Artificial
Intelligence. McCarthy’s motivation was to develop an algebraic list processing language for
artificial intelligence work. Implementation efforts for early dialects of Lisp were undertaken
on the IBM~704, the IBM~7090, the Digital Equipment Corporation (DEC) PDP-1, the
DEC~PDP-6, and the PDP-10. The primary dialect of Lisp between 1960 and 1965 was
Lisp~1.5. By the early 1970’s there were two predominant dialects of Lisp, both arising
from these early efforts: MacLisp and Interlisp. For further information about very early
Lisp dialects, see The Anatomy of Lisp or Lisp 1.5 Programmer’s Manual.

MacLisp improved on the Lisp~1.5 notion of special variables and error handling.
MacLisp also introduced the concept of functions that could take a variable number of
arguments, macros, arrays, non-local dynamic exits, fast arithmetic, the first good Lisp
compiler, and an emphasis on execution speed. By the end of the 1970’s, MacLisp was
in use at over 50 sites. For further information about Maclisp, see Maclisp Reference
Manual, Revision~0 or The Revised Maclisp Manual.

Interlisp introduced many ideas into Lisp programming environments and methodology.
One of the Interlisp ideas that influenced Common Lisp was an iteration construct imple-
mented by Warren Teitelman that inspired the loop macro used both on the Lisp Machines
and in MacLisp, and now in Common Lisp. For further information about Interlisp, see
Interlisp Reference Manual.

Although the first implementations of Lisp were on the IBM~704 and the IBM~7090,
later work focussed on the DEC PDP-6 and, later, PDP-10 computers, the latter being the
mainstay of Lisp and artificial intelligence work at such places as Massachusetts Institute
of Technology (MIT), Stanford University, and Carnegie Mellon University (CMU) from
the mid-1960’s through much of the 1970’s. The PDP-10 computer and its predecessor the
PDP-6 computer were, by design, especially well-suited to Lisp because they had 36-bit
words and 18-bit addresses. This architecture allowed a cons cell to be stored in one word;
single instructions could extract the car and cdr parts. The PDP-6 and PDP-10 had fast,
powerful stack instructions that enabled fast function calling. But the limitations of the
PDP-10 were evident by 1973: it supported a small number of researchers using Lisp, and the
small, 18-bit address space (2°18 = 262,144 words) limited the size of a single program. One
response to the address space problem was the Lisp Machine, a special-purpose computer
designed to run Lisp programs. The other response was to use general-purpose computers



2 ANSI and GNU Common Lisp Document

with address spaces larger than 18~bits, such as the DEC VAX and the S-1~"Mark~IIA. For
further information about S-1 Common Lisp, see S-1 Common Lisp Implementation.

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s, Pe-
ter Deutsch, working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user
minicomputer, using microcode to interpret a byte-code implementation language. Shortly
thereafter, Richard Greenblatt began work on a different hardware and instruction set de-
sign at MIT. Although the Alto was not a total success as a Lisp machine, a dialect of
Interlisp known as Interlisp-D became available on the D-series machines manufactured
by Xerox—the Dorado, Dandelion, Dandetiger, and Dove (or Daybreak). An upward-
compatible extension of MacLisp called Lisp Machine Lisp became available on the early
MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp Machines (LMI), and
Symbolics were on the market by 1981. For further information about Lisp Machine Lisp,
see Lisp Machine Manual.

During the late 1970’s, Lisp Machine Lisp began to expand towards a much fuller lan-
guage. Sophisticated lambda lists, setf, multiple values, and structures like those in Com-
mon Lisp are the results of early experimentation with programming styles by the Lisp
Machine group. Jonl White and others migrated these features to MacLisp. Around 1980,
Scott Fahlman and others at CMU began work on a Lisp to run on the Scientific Personal
Integrated Computing Environment (SPICE) workstation. One of the goals of the project
was to design a simpler dialect than Lisp Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Imple-
mentation of Lisp (NIL) for the VAX, which was headed by White. One of the stated goals
of the NIL project was to fix many of the historic, but annoying, problems with Lisp while
retaining significant compatibility with MacLisp. At about the same time, a research group
at Stanford University and Lawrence Livermore National Laboratory headed by Richard P.
Gabriel began the design of a Lisp to run on the S-1"Mark~ITA supercomputer. S-1~Lisp,
never completely functional, was the test bed for adapting advanced compiler techniques
to Lisp implementation. Eventually the S-1 and NIL groups collaborated. For further
information about the NIL project, see NIL—A Perspective.

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn
and Martin Griss at the University of Utah defined Standard Lisp—a subset of Lisp~1.5
and other dialects—to transport REDUCE, a symbolic algebra system. During the 1970’s,
the Utah group implemented first a retargetable optimizing compiler for Standard Lisp,
and then an extended implementation known as Portable Standard Lisp (PSL). By the
mid 1980’s, PSL ran on about a dozen kinds of computers. For further information about
Standard Lisp, see Standard LISP Report.

PSL and Franz Lisp—a MacLisp-like dialect for Unix machines—were the first examples
of widely available Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the
1970’s: Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple
dialect of Lisp whose design brought to Lisp some of the ideas from programming language
semantics developed in the 1960’s. Sussman was one of the prime innovators behind many
other advances in Lisp technology from the late 1960’s through the 1970’s. The major
contributions of Scheme were lexical scoping, lexical closures, first-class continuations, and
simplified syntax (no separation of value cells and function cells). Some of these contribu-
tions made a large impact on the design of Common Lisp. For further information about
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Scheme, see IEEE Standard for the Scheme Programming Language or Revised~3 Report
on the Algorithmic Language Scheme.

In the late 1970’s object-oriented programming concepts started to make a strong im-
pact on Lisp. At MIT, certain ideas from Smalltalk made their way into several widely
used programming systems. Flavors, an object-oriented programming system with multiple
inheritance, was developed at MIT for the Lisp machine community by Howard Cannon and
others. At Xerox, the experience with Smalltalk and Knowledge Representation Language
(KRL) led to the development of Lisp Object Oriented Programming System (LOOPS)
and later Common LOOPS. For further information on Smalltalk, see Smalltalk-80: The
Language and its Implementation. For further information on Flavors, see Flavors: A
Non-Hierarchical Approach to Object-Oriented Programming.

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS
was developed specifically for this standardization effort, and was separately written up in
Common Lisp Object System Specification. However, minor details of its design have
changed slightly since that publication, and that paper should not be taken as an authori-
tative reference to the semantics of the object system as described in this document.

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware im-
plementation groups were developing NIL, Franz Lisp, and PSL; Xerox was developing
Interlisp; and the SPICE project at CMU was developing a MacLisp-like dialect of Lisp
called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp com-
munity, Symbolics, the SPICE project, the NIL project, and the S-1~Lisp project joined
together to define Common Lisp. Initially spearheaded by White and Gabriel, the driv-
ing force behind this grassroots effort was provided by Fahlman, Daniel Weinreb, David
Moon, Steele, and Gabriel. Common Lisp was designed as a description of a family of lan-
guages. The primary influences on Common Lisp were Lisp Machine Lisp, MacLisp, NIL,
S-1~Lisp, Spice Lisp, and Scheme. Common Lisp: The Language is a description of that
design. Its semantics were intentionally underspecified in places where it was felt that a
tight specification would overly constrain Common Lisp research and use.

In 1986 X3J13 was formed as a technical working group to produce a draft for an
ANSI Common Lisp standard. Because of the acceptance of Common Lisp, the goals of
this group differed from those of the original designers. These new goals included stricter
standardization for portability, an object-oriented programming system, a condition system,
iteration facilities, and a way to handle large character sets. To accommodate those goals,
a new language specification, this document, was developed.

1.2 Organization of the Document

This is a reference document, not a tutorial document. Where possible and convenient, the
order of presentation has been chosen so that the more primitive topics precede those that
build upon them; however, linear readability has not been a priority.

This document is divided into chapters by topic. Any given chapter might contain
conceptual material, dictionary entries, or both.

Defined names within the dictionary portion of a chapter are grouped in a way that
brings related topics into physical proximity. Many such groupings were possible, and no
deep significance should be inferred from the particular grouping that was chosen. To see
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defined names grouped alphabetically, consult the index. For a complete list of defined
names, see (undefined) [Symbols in the COMMON-LISP Package|, page (undefined).

In order to compensate for the sometimes-unordered portions of this document, a glos-
sary has been provided; see (undefined) [Glossary|, page (undefined). The glossary provides
connectivity by providing easy access to definitions of terms, and in some cases by providing
examples or cross references to additional conceptual material.

For information about notational conventions used in this document, see (undefined)
[Definitions], page (undefined).

For information about conformance, see (undefined) [Conformance], page (undefined).

For information about extensions and subsets, see (undefined) [Language Extensions],
page (undefined), and (undefined) [Language Subsets|, page (undefined).

For information about how programs in the language are parsed by the Lisp reader, see
(undefined) [Syntax], page (undefined).

For information about how programs in the language are compiled and executed, see
(undefined) [Evaluation and Compilation], page (undefined).

For information about data types, see (undefined) [Types and Classes|, page (unde-
fined). Not all types and classes are defined in this chapter; many are defined in chapter
corresponding to their topic—for example, the numeric types are defined in (undefined)
[Numbers (Numbers)], page (undefined). For a complete list of standardized types, see
Figure™ 4-2.

For information about general purpose control and data flow, see (undefined) [Data and
Control Flow], page (undefined), or (undefined) [Iteration|, page (undefined).

1.3 Referenced Publications

* The Anatomy of Lisp, John Allen, McGraw-Hill, Inc., 1978.

* The Art of Computer Programming, Volume 3, Donald E. Knuth, Addison-
Wesley Company (Reading, MA), 1973.

* The Art of the Metaobject Protocol, Kiczales et al., MIT Press (Cambridge,
MA), 1991.

* Common Lisp Object System Specification, D. Bobrow, L. DiMichiel, R.P.
Gabriel, S. Keene, G. Kiczales, D. Moon, SIGPLAN Notices V23, September,
1988.

* Common Lisp: The Language, Guy L. Steele Jr., Digital Press (Burlington,
MA), 1984.

* Common Lisp: The Language, Second Edition, Guy L. Steele Jr., Digital Press

(Bedford, MA), 1990.

* Exceptional Situations in Lisp, Kent M. Pitman, Proceedings of the First Fu-
ropean Conference on the Practical Application of LISP\/ (EUROPAL ’90),
Churchill College, Cambridge, England, March 27-29, 1990.

* Flavors: A Non-Hierarchical Approach to Object-Oriented Programming,
Howard I. Cannon, 1982.
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* IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-
1985, Institute of Electrical and Electronics Engineers, Inc. (New York), 1985.

* IEEE Standard for the Scheme Programming Language, IEEE Std 1178-1990,
Institute of Electrical and Electronic Engineers, Inc. (New York), 1991.
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Palo Alto Research Center (Palo Alto, CA), 1978.
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* NIL—A Perspective, JonL. White, Macsyma User’s Conference, 1979.

* Performance and Evaluation of Lisp Programs, Richard P. Gabriel, MIT Press

(Cambridge, MA), 1985.

* Principal Values and Branch Cuts in Complex APL, Paul Penfield Jr., APL
81 Conference Proceedings, ACM SIGAPL (San Francisco, September 1981),
248-256. Proceedings published as APL Quote Quad 12, 1 (September 1981).

* The Revised Maclisp Manual, Kent M. Pitman, Technical Report 295, Labora-
tory for Computer Science, MIT (Cambridge, MA), May 1983.
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Conference Record of the 1982 ACM Symposium on Lisp and Functional Pro-
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* Smalltalk-80: The Language and its Implementation, A. Goldberg and D. Rob-
son, Addison-Wesley, 1983.

* Standard LISP Report, J.B. Marti, A.C. Hearn, M.L. Griss, and C. Griss,
SIGPLAN Notices V14, #10, October, 1979.

* Webster’s Third New International Dictionary the English Language,
Unabridged, Merriam Webster (Springfield, MA), 1986.

* XP: A Common Lisp Pretty Printing System, R.C. Waters, Memo 1102a, Ar-
tificial Intelligence Laboratory, MIT (Cambridge, MA), September 1989.
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1.4 Definitions

This section contains notational conventions and definitions of terms used in this manual.

1.4.1 Notational Conventions

The following notational conventions are used throughout this document.

1.4.1.1 Font Key

Fonts are used in this document to convey information.

name

name

name

name

name

Denotes a formal term whose meaning is defined in the Glossary. When this
font is used, the Glossary definition takes precedence over normal English usage.

Sometimes a glossary term appears subscripted, as in “whitespace_2.” Such a
notation selects one particular Glossary definition out of several, in this case the
second. The subscript notation for Glossary terms is generally used where the
context might be insufficient to disambiguate among the available definitions.

Denotes the introduction of a formal term locally to the current text. There
is still a corresponding glossary entry, and is formally equivalent to a use of
“name,” but the hope is that making such uses conspicuous will save the reader
a trip to the glossary in some cases.

Denotes a symbol in the COMMON-LISP package. For information about case
conventions, see (undefined) [Case in Symbols|, page (undefined).

Denotes a sample name or piece of code that a programmer might write in
Common Lisp.

This font is also used for certain standardized names that are not names of
external symbols of the COMMON-LISP package, such as keywords_1, package
names, and loop keywords.

Denotes the name of a parameter or value.

In some situations the notation “<<name>>" (i.e., the same font, but with sur-
rounding “angle brackets”) is used instead in order to provide better visual
separation from surrounding characters. These “angle brackets” are metasyn-
tactic, and never actually appear in program input or output.

1.4.1.2 Modified BNF Syntax

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of
Common Lisp macro forms and special forms. This section discusses the syntax of BNF

expressions.

1.4.1.3 Splicing in Modified BNF Syntax

The primary extension used is the following:

[10]]

An expression of this form appears whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description
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of the syntax of some number of syntactic elements to be spliced; that description must be
of the form
O1]..10.1

where each O_i can be of the form S or of the form S* or of the form S~1.
The expression [[O]] means that a list of the form
(O_{i_1}... O_{i_j}) 1k=]
is spliced into the enclosing expression, such that if n != m and 1<= n,m<= j, then either
O_{i-n}!= O_{im} or O_{i_n} = O_{i_m} = Q_k, where for some 1<= k <= n, O_k is of
the form Q_k*.

Furthermore, for each O_{i_n} that is of the form Q_k"1, that element is required to
appear somewhere in the list to be spliced.

For example, the expression
(x [[A | B* | Clly

means that at most one A, any number of B’s, and at most one C can occur in any order. It
is a description of any of these:

(x y)

(xBACY)

(x ABBBBBCy)

(x CBABBBY)

but not any of these:
(xBBAACCY)

(xCBCy)
In the first case, both A and C appear too often, and in the second case C appears too often.
The notation [[O-1 | O-2 | ...]]"+ adds the additional restriction that at least one item

from among the possible choices must be used. For example:
(x [[A | B* | ClII°+ y)

means that at most one A, any number of B’s, and at most one C can occur in any order,
but that in any case at least one of these options must be selected. It is a description of
any of these:

(x B y)
(xBACY)

(x ABBBBBCYy)
(x CBABBBY)

but not any of these:

(x y)
(xBBAACCY)
(xCBCy)

In the first case, no item was used; in the second case, both A and C appear too often; and
in the third case C appears too often.

Also, the expression:
(x [[A"1 | B"1 | C1] ¥
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can generate exactly these and no others:

(xABCy
(x ACBy)
(x A By)
(xBACY)
(x BCAYy)
(x BAYy)
(x CABYy)
(x CBAY)

1.4.1.4 Indirection in Modified BNF Syntax

An indirection extension is introduced in order to make this new syntax more readable:
10

If O is a non-terminal symbol, the right-hand side of its definition is substituted for the

entire expression !0. For example, the following BNF is equivalent to the BNF in the
previous example:

(x [['0]1
O:=A|B*|C
1.4.1.5 Additional Uses for Indirect Definitions in Modified BNF
Syntax
In some cases, an auxiliary definition in the BNF might appear to be unused within the
BNF, but might still be useful elsewhere. For example, consider the following definitions:
case keyform {Inormal-clause}* [lotherwise-clause] = {result}*
ccase keyplace {/normal-clause}* = {result}*
ecase keyform {Inormal-clause}* = {result}*
normal-clause ::=(keys {form}*)
otherwise-clause ::=({otherwise | t} {form}*)
clause ::=normal-clause | otherwise-clause

Here the term “clause” might appear to be “dead” in that it is not used in the BNF.
However, the purpose of the BNF is not just to guide parsing, but also to define useful
terms for reference in the descriptive text which follows. As such, the term “clause” might
appear in text that follows, as shorthand for “normal-clause or otherwise-clause.”

1.4.1.6 Special Symbols

The special symbols described here are used as a notational convenience within this docu-
ment, and are part of neither the Common Lisp language nor its environment.
= This indicates evaluation. For example:
(+45) = 9
This means that the result of evaluating the form (+ 4 5) is 9.

If a form returns multiple values, those values might be shown separated by
spaces, line breaks, or commas. For example:

(truncate 7 5)
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OR=

NOT=

= 12
(truncate 7 5)
= 1
2
(truncate 7 5)
= 1, 2
Each of the above three examples is equivalent, and specifies that (truncate
7 5) returns two values, which are 1 and 2.

Some conforming implementations actually type an arrow (or some other indi-
cator) before showing return values, while others do not.

The notation “OR=" is used to denote one of several possible alternate results.
The example
(char-name #\a)
= NIL
OR— "LOWERCASE-a"
OR= "Small-A"
OR= "LAO1"
indicates that nil, "LOWERCASE-a", "Small-A" 6 "LAO1" are among the possi-
ble results of (char-name #\a)—each with equal preference. Unless explicitly
specified otherwise, it should not be assumed that the set of possible results
shown is exhaustive. Formally, the above example is equivalent to
(char-name #\a) = implementation-dependent

but it is intended to provide additional information to illustrate some of the
ways in which it is permitted for implementations to diverge.

The notation “NOT=" is used to denote a result which is not possible. This
might be used, for example, in order to emphasize a situation where some
anticipated misconception might lead the reader to falsely believe that the result
might be possible. For example,
(function-lambda-expression
(funcall #’(lambda (x) #’(lambda () x)) nil))

= NIL, true, NIL

OR=> (LAMBDA () X), true, NIL

NOT= NIL, false, NIL

NOT= (LAMBDA () X), false, NIL

This indicates code equivalence. For example:
(gcd x (ged y z)) = (gcd (ged x y) 2)
This means that the results and observable side-effects of evaluating the form

(gcd x (gecd y z)) are always the same as the results and observable side-
effects of (gcd (gcd x y) z) for any x, y, and z.

Common Lisp specifies input and output with respect to a non-interactive
stream model. The specific details of how interactive input and output are
mapped onto that non-interactive model are implementation-defined.

For example, conforming implementations are permitted to differ in issues of
how interactive input is terminated. For example, the function read terminates
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when the final delimiter is typed on a non-interactive stream. In some imple-
mentations, an interactive call to read returns as soon as the final delimiter is
typed, even if that delimiter is not a newline. In other implementations, a final
newline is always required. In still other implementations, there might be a
command which “activates” a buffer full of input without the command itself
being visible on the program’s input stream.

[43

In the examples in this document, the notation “ |> ” precedes lines where
interactive input and output occurs. Within such a scenario, “|>>this
notation<<|” notates user input.

For example, the notation

(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))

[> [>>9 16 <<|

[> 7

= 8

shows an interaction in which “(+ 1 (print (+ (sqrt (read)) (sqrt
(read)))))” is a form to be evaluated, “9 16 7 is interactive input, “7” is
interactive output, and “8” is the value yielded from the evaluation.

The use of this notation is intended to disguise small differences in interactive
input and output behavior between implementations.

Sometimes, the non-interactive stream model calls for a newline. How that
newline character is interactively entered is an implementation-defined detail
of the user interface, but in that case, either the notation “<Newline>” or “[<—
~]” might be used.

(progn (format t "“&Who? ") (read-line))
|> Who? |>>Fred, Mary, and Sally [<--"]<<|
= "Fred, Mary, and Sally", false

1.4.1.7 Objects with Multiple Notations

Some objects in Common Lisp can be notated in more than one way. In such situations, the
choice of which notation to use is technically arbitrary, but conventions may exist which
convey a “point of view” or “sense of intent.”

1.4.1.8 Case in Symbols

While case is significant in the process of interning a symbol, the Lisp reader, by default,
attempts to canonicalize the case of a symbol prior to interning; see (undefined) [Effect of
Readtable Case on the Lisp Reader|, page (undefined). As such, case in symbols is not, by
default, significant. Throughout this document, except as explicitly noted otherwise, the
case in which a symbol appears is not significant; that is, HELLO, Hello, hE1lLo, and hello
are all equivalent ways to denote a symbol whose name is "HELLO".

The characters backslash and vertical-bar are used to explicitly quote the case and other
parsing-related aspects of characters. As such, the notations |hello| and \h\e\1\1l\o are
equivalent ways to refer to a symbol whose name is "hello", and which is distinct from
any symbol whose name is "HELLO".

The symbols that correspond to Common Lisp defined names have uppercase names even
though their names generally appear in lowercase in this document.
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1.4.1.9 Numbers

Although Common Lisp provides a variety of ways for programs to manipulate the input
and output radix for rational numbers, all numbers in this document are in decimal notation
unless explicitly noted otherwise.

1.4.1.10 Use of the Dot Character

The dot appearing by itself in an expression such as
(iteml item2 . tail)
means that tail represents a list of objects at the end of a list. For example,
(ABC . (DEF))
is notationally equivalent to:
(ABCDEPF)

Although dot is a valid constituent character in a symbol, no standardized symbols
contain the character dot, so a period that follows a reference to a symbol at the end of a
sentence in this document should always be interpreted as a period and never as part of
the symbol’s name. For example, within this document, a sentence such as “This sample
sentence refers to the symbol car.” refers to a symbol whose name is "CAR" (with three
letters), and never to a four-letter symbol "CAR."

1.4.1.11 NIL

nil has a variety of meanings. It is a symbol in the COMMON-LISP package with the name
"NIL", it is boolean (and generalized boolean) false, it is the empty list, and it is the name
of the empty type (a subtype of all types).

Within Common Lisp, nil can be notated interchangeably as either NIL or (). By
convention, the choice of notation offers a hint as to which of its many roles it is playing.

For Evaluation? Notation Typically Implied Role

Yes nil use as a boolean.

Yes ’nil use as a symbol.

Yes > () use as an empty list

No nil use as a symbol or boolean.
No O use as an empty list.

Figure 1-1: Notations for NIL

Within this document only, nil is also sometimes notated as false to emphasize its role
as a boolean.

For example:

(print ()) ;avoided
(defun three nil 3) ;avoided
’(nil nil) ;1ist of two symbols

(O O) ;list of empty lists
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(defun three () 3) ;Emphasize empty parameter list.
(append >0 0) = O ;Emphasize use of empty lists
(not nil) = true ;Emphasize use as Boolean false
(get ’nil ’color) ;Emphasize use as a symbol

A function is sometimes said to “be false” or “be true” in some circumstance. Since
no function object can be the same as nil and all function objects represent true when
viewed as booleans, it would be meaningless to say that the function was literally false and
uninteresting to say that it was literally true. Instead, these phrases are just traditional
alternative ways of saying that the function “returns false” or “returns true,” respectively.

1.4.1.12 Designators

A designator is an object that denotes another object.

Where a parameter of an operator is described as a designator, the description of the
operator is written in a way that assumes that the value of the parameter is the denoted
object; that is, that the parameter is already of the denoted type. (The specific nature of
the object denoted by a “<<type>> designator” or a “designator for a <<type>>” can be
found in the Glossary entry for “<<type>> designator.”)

For example, “nil” and “the value of *standard-output*” are operationally indistinguish-
able as stream designators. Similarly, the symbol foo and the string "FO0" are operationally
indistinguishable as string destgnators.

Except as otherwise noted, in a situation where the denoted object might be used multiple
times, it is implementation-dependent whether the object is coerced only once or whether
the coercion occurs each time the object must be used.

For example, mapcar receives a function designator as an argument, and its description
is written as if this were simply a function. In fact, it is implementation-dependent whether
the function designator is coerced right away or whether it is carried around internally in the
form that it was given as an argument and re-coerced each time it is needed. In most cases,
conforming programs cannot detect the distinction, but there are some pathological situ-
ations (particularly those involving self-redefining or mutually-redefining functions) which
do conform and which can detect this difference. The following program is a conforming
program, but might or might not have portably correct results, depending on whether its
correctness depends on one or the other of the results:

(defun add-some (x)
(defun add-some (x) (+ x 2))
(+ x 1)) = ADD-SOME
(mapcar ’add-some ’(1 2 3 4))
= (2345)
OR= (2 4 5 6)

In a few rare situations, there may be a need in a dictionary entry to refer to the object
that was the original designator for a parameter. Since naming the parameter would refer to
the denoted object, the phrase “the <<parameter-name>> designator” can be used to refer
to the designator which was the argument from which the value of <<parameter-name>>
was computed.
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1.4.1.13 Nonsense Words

When a word having no pre-attached semantics is required (e.g., in an example), it is

) )
common in the Lisp community to use one of the words “foo,” “bar,” “baz,” and “quux.”
For example, in

(defun foo (x) (+ x 1))

the use of the name foo is just a shorthand way of saying “please substitute your favorite
name here.”

These nonsense words have gained such prevalance of usage, that it is commonplace for
newcomers to the community to begin to wonder if there is an attached semantics which
they are overlooking—there is not.

1.4.2 Error Terminology

Situations in which errors might, should, or must be signaled are described in the standard.
The wording used to describe such situations is intended to have precise meaning. The
following list is a glossary of those meanings.

Safe code

This is code processed with the safety optimization at its highest setting (3).
safety is a lexical property of code. The phrase “the function F should signal an
error” means that if F is invoked from code processed with the highest safety
optimization, an error is signaled. It is implementation-dependent whether F or
the calling code signals the error.

Unsafe code
This is code processed with lower safety levels.

Unsafe code might do error checking. Implementations are permitted to treat
all code as safe code all the time.

An error is signaled
This means that an error is signaled in both safe and unsafe code. Conforming
code may rely on the fact that the error is signaled in both safe and unsafe
code. Every implementation is required to detect the error in both safe and
unsafe code. For example, “an error is signaled if unexport is given a symbol
not accessible in the current package.”

If an explicit error type is not specified, the default is error.

An error should be signaled
This means that an error is signaled in safe code, and an error might be signaled
in unsafe code. Conforming code may rely on the fact that the error is signaled
in safe code. Every implementation is required to detect the error at least in
safe code. When the error is not signaled, the “consequences are undefined”
(see below). For example, “+ should signal an error of type type-error if any
argument is not of type number.”

Should be prepared to signal an error
This is similar to “should be signaled” except that it does not imply that ‘extra
effort’ has to be taken on the part of an operator to discover an erroneous
situation if the normal action of that operator can be performed successfully
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with only ‘lazy’ checking. An implementation is always permitted to signal an
error, but even in safe code, it is only required to signal the error when failing
to signal it might lead to incorrect results. In wnsafe code, the consequences
are undefined.

For example, defining that “find should be prepared to signal an error of type
type-error if its second argument is not a proper list” does not imply that an
error is always signaled. The form

(find ’a ’(a b . ¢))

must either signal an error of type type-error in safe code, else return A. In
unsafe code, the consequences are undefined. By contrast,

(find °d ’(a b . ¢))

must signal an error of type type-error in safe code. In unsafe code, the conse-
quences are undefined. Also,

(find ’d ’#1=(a b . #1#))

in safe code might return nil (as an implementation-defined extension), might
never return, or might signal an error of type type-error. In unsafe code, the
consequences are undefined.

Typically, the “should be prepared to signal” terminology is used in type check-
ing situations where there are efficiency considerations that make it impractical
to detect errors that are not relevant to the correct operation of the operator.

The consequences are unspecified

This means that the consequences are unpredictable but harmless. Implementa-
tions are permitted to specify the consequences of this situation. No conforming
code may depend on the results or effects of this situation, and all conforming
code is required to treat the results and effects of this situation as unpredictable
but harmless. For example, “if the second argument to shared-initialize speci-
fies a name that does not correspond to any slots accessible in the object, the
results are unspecified.”

The consequences are undefined

This means that the consequences are unpredictable. The consequences may
range from harmless to fatal. No conforming code may depend on the results
or effects. Conforming code must treat the consequences as unpredictable. In
places where the words “must,” “must not,” or “may not” are used, then “the
consequences are undefined” if the stated requirement is not met and no specific
consequence is explicitly stated. An implementation is permitted to signal an
error in this case.

For example: “Once a name has been declared by defconstant to be constant,
any further assignment or binding of that variable has undefined consequences.”

An error might be signaled
This means that the situation has undefined consequences; however, if an error
is signaled, it is of the specified type. For example, “open might signal an error
of type file-error.”
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The return values are unspecified
This means that only the number and nature of the return values of a form are
not specified. However, the issue of whether or not any side-effects or transfer
of control occurs is still well-specified.

A program can be well-specified even if it uses a function whose returns values
are unspecified. For example, even if the return values of some function F are
unspecified, an expression such as (length (list (F))) is still well-specified
because it does not rely on any particular aspect of the value or values returned
by F.

Implementations may be extended to cover this situation
This means that the situation has undefined consequences; however, a conform-
ing implementation is free to treat the situation in a more specific way. For
example, an implementation might define that an error is signaled, or that an
error should be signaled, or even that a certain well-defined non-error behavior
occurs.

No conforming code may depend on the consequences of such a situation; all
conforming code must treat the consequences of the situation as undefined.
Implementations are required to document how the situation is treated.

For example, “implementations may be extended to define other type specifiers
to have a corresponding class.”

Implementations are free to extend the syntax

This means that in this situation implementations are permitted to define un-
ambiguous extensions to the syntax of the form being described. No conforming
code may depend on this extension. Implementations are required to document
each such extension. All conforming code is required to treat the syntax as
meaningless. The standard might disallow certain extensions while allowing
others. For example, “no implementation is free to extend the syntax of def-
class.”

A warning might be issued
This means that implementations are encouraged to issue a warning if the
context is appropriate (e.g., when compiling). However, a conforming imple-
mentation is not required to issue a warning.

1.4.3 Sections Not Formally Part Of This Standard

Front matter and back matter, such as the “Table of Contents,” “Index,” “Figures,” “Cred-
its,” and “Appendix” are not considered formally part of this standard, so that we retain
the flexibility needed to update these sections even at the last minute without fear of need-
ing a formal vote to change those parts of the document. These items are quite short and
very useful, however, and it is not recommended that they be removed even in an abridged
version of this document.

Within the concept sections, subsections whose names begin with the words “Note” or
“Notes” or “Example” or “Examples” are provided for illustration purposes only, and are
not considered part of the standard.
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An attempt has been made to place these sections last in their parent section, so that
they could be removed without disturbing the contiguous numbering of the surrounding
sections in order to produce a document of smaller size.

Likewise, the “Examples” and “Notes” sections in a dictionary entry are not considered
part of the standard and could be removed if necessary.

Nevertheless, the examples provide important clarifications and consistency checks for

the rest of the material, and such abridging is not recommended unless absolutely unavoid-
able.

1.4.4 Interpreting Dictionary Entries

The dictionary entry for each defined name is partitioned into sections. Except as explicitly
indicated otherwise below, each section is introduced by a label identifying that section.
The omission of a section implies that the section is either not applicable, or would provide
no interesting information.

This section defines the significance of each potential section in a dictionary entry.

1.4.4.1 The "Affected By" Section of a Dictionary Entry

For an operator, anything that can affect the side effects of or walues returned by the
operator.

For a variable, anything that can affect the value of the variable including functions that
bind or assign it.

1.4.4.2 The "Arguments" Section of a Dictionary Entry

This information describes the syntax information of entries such as those for declarations
and special expressions which are never evaluated as forms, and so do not return values.

1.4.4.3 The "Arguments and Values" Section of a Dictionary
Entry

An English language description of what arquments the operator accepts and what wvalues
it returns, including information about defaults for parameters corresponding to omittable
arqguments (such as optional parameters and keyword parameters). For special operators and
macros, their arguments are not evaluated unless it is explicitly stated in their descriptions
that they are evaluated.

1.4.4.4 The "Binding Types Affected" Section of a Dictionary
Entry

This information alerts the reader to the kinds of bindings that might potentially be af-

fected by a declaration. Whether in fact any particular such binding is actually affected is

dependent on additional factors as well. See The "Description" Section of the declaration
in question for details.

1.4.4.5 The "Class Precedence List" Section of a Dictionary Entry
This appears in the dictionary entry for a class, and contains an ordered list of the classes
defined by Common Lisp that must be in the class precedence list of this class.

It is permissible for other (implementation-defined) classes to appear in the implemen-
tation’s class precedence list for the class.
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It is permissible for either standard-object or structure-object to appear in the imple-
mentation’s class precedence list; for details, see (undefined) [Type Relationships], page (un-
defined).

Except as explicitly indicated otherwise somewhere in this specification, no additional
standardized classes may appear in the implementation’s class precedence list.

By definition of the relationship between classes and types, the classes listed in this
section are also supertypes of the type denoted by the class.

1.4.4.6 Dictionary Entries for Type Specifiers

The atomic type specifiers are those defined names listed in Figure™4—2. Such dictionary
entries are of kind “Class,” “Condition Type,” “System Class,” or “Type.” A description
of how to interpret a symbol naming one of these types or classes as an atomic type specifier
is found in The "Description" Section of such dictionary entries.

The compound type specifiers are those defined names listed in Figure™4—3. Such dictio-
nary entries are of kind “Class,” “System Class,” “Type,” or “Type Specifier.” A description
of how to interpret as a compound type specifier a list whose car is such a symbol is found
in the “Compound Type Specifier Kind,” “Compound Type Specifier Syntax,” “Compound
Type Specifier Arguments,” and “Compound Type Specifier Description” sections of such
dictionary entries.

1.4.4.7 The "Compound Type Specifier Kind" Section of a
Dictionary Entry

An “abbreviating” type specifier is one that describes a subtype for which it is in principle
possible to enumerate the elements, but for which in practice it is impractical to do so.

A “specializing” type specifier is one that describes a subtype by restricting the type of
one or more components of the type, such as element type or complex part type.

A “predicating” type specifier is one that describes a subtype containing only those objects
that satisfy a given predicate.

A “combining” type specifier is one that describes a subtype in a compositional way,
using combining operations (such as “and,” “or,” and “not”) on other types.

1.4.4.8 The "Compound Type Specifier Syntax" Section of a
Dictionary Entry

This information about a type describes the syntax of a compound type specifier for that
type.

Whether or not the type is acceptable as an atomic type specifier is not represented here;
see (undefined) [Dictionary Entries for Type Specifiers|, page (undefined).

1.4.4.9 The "Compound Type Specifier Arguments" Section of a
Dictionary Entry

This information describes type information for the structures defined in The "Compound
Type Specifier Syntax" Section.
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1.4.4.10 The "Compound Type Specifier Description" Section of a
Dictionary Entry

This information describes the meaning of the structures defined in The "Compound Type
Specifier Syntax" Section.

1.4.4.11 The "Constant Value" Section of a Dictionary Entry

This information describes the unchanging type and value of a constant variable.

1.4.4.12 The "Description" Section of a Dictionary Entry

A summary of the operator and all intended aspects of the operator, but does not necessarily
include all the fields referenced below it (“Side Effects,” “Exceptional Situations,” etc.)
1.4.4.13 The "Examples" Section of a Dictionary Entry

Examples of use of the operator. These examples are not considered part of the standard;
see (undefined) [Sections Not Formally Part Of This Standard], page (undefined).

1.4.4.14 The "Exceptional Situations" Section of a Dictionary

Entry
Three kinds of information may appear here:
* Situations that are detected by the function and formally signaled.
* Situations that are handled by the function.
* Situations that may be detected by the function.

This field does not include conditions that could be signaled by functions passed to
and called by this operator as arguments or through dynamic variables, nor by executing
subforms of this operator if it is a macro or special operator.

1.4.4.15 The "Initial Value" Section of a Dictionary Entry

This information describes the initial value of a dynamic variable. Since this variable might
change, see type restrictions in The "Value Type" Section.

1.4.4.16 The "Argument Precedence Order" Section of a
Dictionary Entry

This information describes the argument precedence order. If it is omitted, the argument
precedence order is the default (left to right).

1.4.4.17 The "Method Signature" Section of a Dictionary Entry

The description of a generic function includes descriptions of the methods that are defined
on that generic function by the standard. A method signature is used to describe the
parameters and parameter specializers for each method. Methods defined for the generic
function must be of the form described by the method signature.

F (z class) (y t) &optional z &key k

This signature indicates that this method on the generic function F has two required pa-
rameters: x, which must be a generalized instance of the class class; and y, which can be
any object (i.e., a generalized instance of the class t). In addition, there is an optional
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parameter z and a keyword parameter k. This signature also indicates that this method on
F is a primary method and has no qualifiers.

For each parameter, the argument supplied must be in the intersection of the type spec-
ified in the description of the corresponding generic function and the type given in the
signature of some method (including not only those methods defined in this specification,
but also implementation-defined or user-defined methods in situations where the definition
of such methods is permitted).

1.4.4.18 The "Name" Section of a Dictionary Entry
This section introduces the dictionary entry. It is not explicitly labeled. It appears preceded
and followed by a horizontal bar.

In large print at left, the defined name appears; if more than one defined name is to be
described by the entry, all such names are shown separated by commas.

In somewhat smaller italic print at right is an indication of what kind of dictionary entry
this is. Possible values are:

Accessor  This is an accessor function.
Class This is a class.

Condition Type
This is a subtype of type condition.

Constant Variable
This is a constant variable.

Declaration
This is a declaration identifier.

Function  This is a function.

Local Function
This is a function that is defined only lexically within the scope of some other
macro form.

Local Macro
This is a macro that is defined only lexically within the scope of some other
macro form.

Macro This is a macro.
Restart This is a restart.

Special Operator
This is a special operator.

Standard Generic Function
This is a standard generic function.

Symbol This is a symbol that is specially recognized in some particular situation, such
as the syntax of a macro.

System Class
This is like class, but it identifies a class that is potentially a built-in class. (No
class is actually required to be a built-in class.)
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Type This is an atomic type specifier, and depending on information for each partic-
ular entry, may subject to form other type specifiers.

Type Specifier
This is a defined name that is not an atomic type specifier, but that can be used
in constructing valid type specifiers.

Variable  This is a dynamic variable.

1.4.4.19 The "Notes" Section of a Dictionary Entry

Information not found elsewhere in this description which pertains to this operator. Among
other things, this might include cross reference information, code equivalences, stylistic
hints, implementation hints, typical uses. This information is not considered part of the
standard; any conforming implementation or conforming program is permitted to ignore
the presence of this information.

1.4.4.20 The "Pronunciation" Section of a Dictionary Entry

This offers a suggested pronunciation for defined names so that people not in verbal com-
munication with the original designers can figure out how to pronounce words that are not
in normal English usage. This information is advisory only, and is not considered part of
the standard. For brevity, it is only provided for entries with names that are specific to
Common Lisp and would not be found in Webster’s Third New International Dictionary
the English Language, Unabridged.

1.4.4.21 The "See Also" Section of a Dictionary Entry

List of references to other parts of this standard that offer information relevant to this
operator. This list is not part of the standard.

1.4.4.22 The "Side Effects" Section of a Dictionary Entry

Anything that is changed as a result of the evaluation of the form containing this operator.

1.4.4.23 The "Supertypes" Section of a Dictionary Entry

This appears in the dictionary entry for a type, and contains a list of the standardized types
that must be supertypes of this type.

In implementations where there is a corresponding class, the order of the classes in the
class precedence list is consistent with the order presented in this section.

1.4.4.24 The "Syntax" Section of a Dictionary Entry

This section describes how to use the defined name in code. The "Syntax” description for a
generic function describes the lambda list of the generic function itself, while The "Method
Signatures” describe the lambda lists of the defined methods. The "Syntax” description for
an ordinary function, a macro, or a special operator describes its parameters.

For example, an operator description might say:
F z y &optional z &key k

This description indicates that the function F has two required parameters, z and y. In
addition, there is an optional parameter z and a keyword parameter k.
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For macros and special operators, syntax is given in modified BNF notation; see (unde-
fined) [Modified BNF Syntax|, page (undefined). For functions a lambda list is given. In
both cases, however, the outermost parentheses are omitted, and default value information
is omitted.

1.4.4.25 Special "Syntax" Notations for Overloaded Operators

If two descriptions exist for the same operation but with different numbers of arguments,
then the extra arguments are to be treated as optional. For example, this pair of lines:

file-position stream = position
file-position stream position-spec = success-p
is operationally equivalent to this line:
file-position stream &optional position-spec = result

and differs only in that it provides on opportunity to introduce different names for parameter
and wvalues for each case. The separated (multi-line) notation is used when an operator is
overloaded in such a way that the parameters are used in different ways depending on how
many arguments are supplied (e.g., for the function /) or the return values are different in
the two cases (e.g., for the function file-position).

1.4.4.26 Naming Conventions for Rest Parameters

Within this specification, if the name of a rest parameter is chosen to be a plural noun, use
of that name in parameter font refers to the list to which the rest parameter is bound. Use
of the singular form of that name in parameter font refers to an element of that list.

For example, given a syntax description such as:
F &rest arguments
it is appropriate to refer either to the rest parameter named arguments by name, or to one

of its elements by speaking of “an argument,” “some argument,” “each argument” etc.

1.4.4.27 Requiring Non-Null Rest Parameters in The "Syntax"
Section

In some cases it is useful to refer to all arguments equally as a single aggregation using a rest
parameter while at the same time requiring at least one argument. A variety of imperative
and declarative means are available in code for expressing such a restriction, however they
generally do not manifest themselves in a lambda list. For descriptive purposes within this
specification,

F &rest arguments™+
means the same as
F &rest arguments

but introduces the additional requirement that there be at least one argument.

1.4.4.28 Return values in The "Syntax" Section
An evaluation arrow “=" precedes a list of values to be returned. For example:

Fabc= 1z
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indicates that F is an operator that has three required parameters (i.e., a, b, and ¢) and that
returns one value (i.e., ). If more than one value is returned by an operator, the names
of the values are separated by commas, as in:

Fabc=1zx 9, 2

1.4.4.29 No Arguments or Values in The "Syntax" Section

If no arguments are permitted, or no values are returned, a special notation is used to make
this more visually apparent. For example,

F <no arguments> = <no values>

indicates that F is an operator that accepts no arguments and returns no values.
1.4.4.30 Unconditional Transfer of Control in The "Syntax"
Section

Some operators perform an unconditional transfer of control, and so never have any return
values. Such operators are notated using a notation such as the following:

F a b ¢ = #<NoValue>

1.4.4.31 The "Valid Context" Section of a Dictionary Entry

This information is used by dictionary entries such as “Declarations” in order to restrict
the context in which the declaration may appear.

A given “Declaration” might appear in a declaration (i.e., a declare expression), a procla-
mation (i.e., a declaim or proclaim form), or both.
1.4.4.32 The "Value Type" Section of a Dictionary Entry

This information describes any type restrictions on a dynamic variable.

1.5 Conformance

This standard presents the syntax and semantics to be implemented by a conforming im-
plementation (and its accompanying documentation). In addition, it imposes requirements
on conforming programs.

1.5.1 Conforming Implementations

A conforming implementation shall adhere to the requirements outlined in this section.

1.5.1.1 Required Language Features

A conforming implementation shall accept all features (including deprecated features) of
the language specified in this standard, with the meanings defined in this standard.

A conforming implementation shall not require the inclusion of substitute or additional
language elements in code in order to accomplish a feature of the language that is specified
in this standard.

1.5.1.2 Documentation of Implementation-Dependent Features

A conforming implementation shall be accompanied by a document that provides a defini-
tion of all implementation-defined aspects of the language defined by this specification.
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In addition, a conforming implementation is encouraged (but not required) to document
items in this standard that are identified as implementation-dependent, although in some
cases such documentation might simply identify the item as “undefined.”

1.5.1.3 Documentation of Extensions

A conforming implementation shall be accompanied by a document that separately describes
any features accepted by the implementation that are not specified in this standard, but
that do not cause any ambiguity or contradiction when added to the language standard.
Such extensions shall be described as being “extensions to Common Lisp as specified by
ANSI <<standard number>>."

1.5.1.4 Treatment of Exceptional Situations

A conforming implementation shall treat exceptional situations in a manner consistent with
this specification.

1.5.1.5 Resolution of Apparent Conflicts in Exceptional Situations

If more than one passage in this specification appears to apply to the same situation but
in conflicting ways, the passage that appears to describe the situation in the most specific
way (not necessarily the passage that provides the most constrained kind of error detection)
takes precedence.

1.5.1.6 Examples of Resolution of Apparent Conflict in
Exceptional Situations

Suppose that function foo is a member of a set S of functions that operate on numbers.
Suppose that one passage states that an error must be signaled if any function in S is ever
given an argument of 17. Suppose that an apparently conflicting passage states that the
consequences are undefined if foo receives an argument of 17. Then the second passage
(the one specifically about foo) would dominate because the description of the situational
context is the most specific, and it would not be required that foo signal an error on an
argument of 17 even though other functions in the set S would be required to do so.

1.5.1.7 Conformance Statement

A conforming implementation shall produce a conformance statement as a consequence
of using the implementation, or that statement shall be included in the accompanying
documentation. If the implementation conforms in all respects with this standard, the
conformance statement shall be

“<<Implementation>> conforms with the requirements of ANSI <<standard
number>>"

If the implementation conforms with some but not all of the requirements of this stan-
dard, then the conformance statement shall be

“<<Implementation>> conforms with the requirements of ANSI <<standard
number>> with the following exceptions: <<reference to or complete list of
the requirements of the standard with which the implementation does not
conform>>.”
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1.5.2 Conforming Programs

Code conforming with the requirements of this standard shall adhere to the following:

1. Conforming code shall use only those features of the language syntax and se-
mantics that are either specified in this standard or defined using the extension
mechanisms specified in the standard.

2. Conforming code shall not rely on any particular interpretation of
implementation-dependent features.

3. Conforming code shall not depend on the consequences of undefined or unspec-
ified situations.

4. Conforming code does not use any constructions that are prohibited by the
standard.
5. Conforming code does not depend on extensions included in an implementation.

1.5.2.1 Use of Implementation-Defined Language Features

Note that conforming code may rely on particular implementation-defined values or features.
Also note that the requirements for conforming code and conforming implementations do
not require that the results produced by conforming code always be the same when processed
by a conforming implementation. The results may be the same, or they may differ.

Portable code is written using only standard characters.

Conforming code may run in all conforming implementations, but might have allowable
implementation-defined behavior that makes it non-portable code. For example, the follow-
ing are examples of forms that are conforming, but that might return different values in
different implementations:

(evenp most-positive-fixnum) = implementation-dependent
(random) = implementation-dependent

(> lambda-parameters-limit 93) = implementation-dependent
(char-name #\A) = implementation-dependent

1.5.2.2 Use of Read-Time Conditionals

Use of #+ and #- does not automatically disqualify a program from being conforming. A
program which uses #+ and #- is considered conforming if there is no set of features in which
the program would not be conforming. Of course, conforming programs are not necessarily
working programs. The following program is conforming:

(defun foo ()
#+ACME (acme:initialize-something)
(print ’hello-there))

However, this program might or might not work, depending on whether the presence
of the feature ACME really implies that a function named acme:initialize-something is
present in the environment. In effect, using #+ or #- in a conforming program means that
the variable *features*

becomes just one more piece of input data to that program. Like any other data coming
into a program, the programmer is responsible for assuring that the program does not make
unwarranted assumptions on the basis of input data.
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1.6 Language Extensions

A language extension is any documented implementation-defined behavior of a defined name
in this standard that varies from the behavior described in this standard, or a documented
consequence of a situation that the standard specifies as undefined, unspecified, or ex-
tendable by the implementation. For example, if this standard says that “the results are
unspecified,” an extension would be to specify the results.

[Reviewer Note by Barmar: This contradicts previous definitions of conforming code.]
If the correct behavior of a program depends on the results provided by an extension, only
implementations with the same extension will execute the program correctly. Note that such
a program might be non-conforming. Also, if this standard says that “an implementation
may be extended,” a conforming, but possibly non-portable, program can be written using
an extension.

An implementation can have extensions, provided they do not alter the behavior of
conforming code and provided they are not explicitly prohibited by this standard.

The term “extension” refers only to extensions available upon startup. An implementa-
tion is free to allow or prohibit redefinition of an extension.

The following list contains specific guidance to implementations concerning certain types
of extensions.

Extra return values
An implementation must return exactly the number of return values specified
by this standard unless the standard specifically indicates otherwise.

Unsolicited messages
No output can be produced by a function other than that specified in the
standard or due to the signaling of conditions detected by the function.

Unsolicited output, such as garbage collection notifications and autoload her-
alds, should not go directly to the stream that is the value of a stream variable
defined in this standard, but can go indirectly to terminal I/O by using a
synonym stream to *terminal-io*.

Progress reports from such functions as load and compile are considered so-
licited, and are not covered by this prohibition.

Implementation of macros and special forms
Macros and special operators defined in this standard must not be functions.

1.7 Language Subsets

The language described in this standard contains no subsets, though subsets are not for-
bidden.

For a language to be considered a subset, it must have the property that any valid pro-
gram in that language has equivalent semantics and will run directly (with no extralingual
pre-processing, and no special compatibility packages) in any conforming implementation
of the full language.

A language that conforms to this requirement shall be described as being a “subset of
Common Lisp as specified by ANSI <<standard number>>.”
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1.8 Deprecated Language Features

Deprecated language features are not expected to appear in future Common Lisp standards,
but are required to be implemented for conformance with this standard; see (undefined)
[Required Language Features|, page (undefined).

Conforming programs can use deprecated features; however, it is considered good pro-
gramming style to avoid them. It is permissible for the compiler to produce style warnings
about the use of such features at compile time, but there should be no such warnings at
program execution time.

1.8.1 Deprecated Functions

The functions in Figure 1-2 are deprecated.

assoc-if-not nsubst-if-not require
count-if-not nsubstitute-if-not set
delete-if-not position-if-not  subst-if-not
find-if-not  provide substitute-if-not
gentemp rassoc-if-not

member-if-not remove-if-not

Figure 1-2: Deprecated Functions

1.8.2 Deprecated Argument Conventions

The ability to pass a numeric argument to gensym has been deprecated.

The :test-not argument to the functions in Figure 1-3 are deprecated.

adjoin nset-difference  search

assoc nset-exclusive-or set-difference
count nsublis set-exclusive-or
delete nsubst sublis
delete-duplicates nsubstitute subsetp

find nunion subst
intersection position substitute
member rassoc tree-equal
mismatch remove union
nintersection remove-duplicates

Figure 1-3: Functions with Deprecated :TEST-NOT Arguments

The use of the situation names compile, load, and eval in eval-when is deprecated.

1.8.3 Deprecated Variables

The variable *modules* is deprecated.
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1.8.4 Deprecated Reader Syntax

The #S reader macro forces keyword names into the KEYWORD package; see (undefined)
[Sharpsign S|, page (undefined). This feature is deprecated; in the future, keyword names
will be taken in the package they are read in, so symbols that are actually in the KEYWORD
package should be used if that is what is desired.

1.9 Symbols in the COMMON-LISP Package

The figures on the next twelve pages contain a complete enumeration of the 978 external
symbols in the COMMON-LISP package.
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&allow-other-keys
&aux

&body
&environment
&key

&optional

&rest

&whole

*
k%
kKK

*break-on-signals™

*compile-file-pathname*
*compile-file-truename*

*compile-print*
*compile-verbose*
*debug-io*

*debugger-hook™
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*print-miser-width*
*print-pprint-dispatch*
*print-pretty*
*print-radix*
*print-readably™*
*print-right-margin*
*query-io*
*random-state*
*read-base*
*read-default-float-format*
*read-eval*
*read-suppress™
*readtable™®
*standard-input*
*standard-output*®
*terminal-io*
*trace-output™®
+

*default-pathname-defaults* ++

*error-output*
*features™
*gensym-counter™®
*load-pathname*
*load-print*
*load-truename*
*load-verbose*

*macroexpand-hook™

*modules™
*package™
*print-array*
*print-base*
*print-case™
*print-circle*®
*print-escape™®
*print-gensym*
*print-length*
*print-level
*print-lines™

Figure 1-4: Symbols in the COMMON-LISP package (part one of twelve).

+++

>=
abort
abs
acons
acos
acosh
add-method
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adjoin
adjust-array
adjustable-array-p
allocate-instance
alpha-char-p

atom boundp
base-char  break
base-string broadcast-stream
bignum broadcast-stream-streams
bit built-in-class

alphanumericp bit-and butlast

and bit-andcl  byte

append bit-andc2  byte-position
apply bit-eqv byte-size
apropos bit-ior caaaar
apropos-list bit-nand caaadr

aref bit-nor caaar
arithmetic-error bit-not caadar
arithmetic-error-operands bit-orcl caaddr
arithmetic-error-operation bit-orc2 caadr

array
array-dimension
array-dimension-limit
array-dimensions
array-displacement
array-element-type
array-has-fill-pointer-p
array-in-bounds-p
array-rank
array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit
arrayp

bit-vector  caar
bit-vector-p cadaar

bit-xor cadadr
block cadar
boole caddar

boole-1 cadddr
boole-2 caddr
boole-and cadr
boole-andcl call-arguments-limit
boole-andc2 call-method
boole-cl call-next-method
boole-c2 car
boole-clr case
boole-eqv  catch

ash boole-ior ccase
asin boole-nand  cdaaar
asinh boole-nor cdaadr
assert boole-orcl  cdaar
assoc boole-orc2  cdadar
assoc-if boole-set cdaddr

assoc-if-not
atan
atanh

Figure 1-5: Symbols in the COMMON-LISP package (part two of twelve).

boole-xor cdadr
boolean cdar
both-case-p cddaar

29
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cddadr
cddar
cdddar
cddddr
cdddr
cddr

cdr
ceiling
cell-error

cell-error-name

cerror

change-class

char
char-code

char-code-limit
char-downcase

char-equal

char-greaterp

char-int
char-lessp
char-name

char-not-equal
char-not-greaterp cond
char-not-lessp
char-upcase

char/=
char<
char<=
char=
char>
char>=
character
characterp
check-type
cis

class
class-name
class-of

Figure 1-6:
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clear-input copy-tree
clear-output cos
close cosh
clrhash count
code-char count-if
coerce count-if-not
compilation-speed ctypecase
compile debug
compile-file decf
compile-file-pathname declaim
compiled-function declaration
compiled-function-p declare

decode-float
decode-universal-time

compiler-macro
compiler-macro-function

complement defclass
complex defconstant
complexp defgeneric

compute-applicable-methods
compute-restarts
concatenate define-method-combination

concatenated-stream define-modify-macro

concatenated-stream-streams define-setf-expander
define-symbol-macro

define-compiler-macro
define-condition

condition defmacro
conjugate defmethod
cons defpackage
consp defparameter
constantly defsetf
constantp defstruct
continue deftype
control-error defun
copy-alist defvar
copy-list delete
copy-pprint-dispatch delete-duplicates
copy-readtable delete-file
copy-seq delete-if

delete-if-not
delete-package

copy-structure
copy-symbol

Symbols in the COMMON-LISP package (part three of twelve).
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denominator
deposit-field
describe
describe-object
destructuring-bind
digit-char
digit-char-p
directory
directory-namestring
disassemble
division-by-zero

do

do*

do-all-symbols
do-external-symbols
do-symbols
documentation
dolist

dotimes
double-float
double-float-epsilon

eq
eql
equal
equalp
error
etypecase
eval
eval-when
evenp
every
exp

export
expt

extended-char
fboundp
fceiling
fdefinition

fHoor

fifth
file-author
file-error

double-float-negative-epsilon file-error-pathname

dpb

dribble
dynamic-extent
ecase
echo-stream

echo-stream-input-stream

file-length
file-namestring

file-position

file-stream

file-string-length
file-write-date

echo-stream-output-stream fill

ed fill-pointer
eighth find

elt find-all-symbols

encode-universal-time
end-of-file

endp
enough-namestring

ensure-directories-exist
ensure-generic-function

Figure 1-7: Symbols in the COMMON-LISP package (part four of twelve).

find-class

find-if
find-if-not

find-method
find-package
find-restart

31
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find-symbol get-internal-run-time
finish-output get-macro-character
first get-output-stream-string
fixnum get-properties

flet get-setf-expansion

float get-universal-time
float-digits getf

float-precision gethash

float-radix go

float-sign graphic-char-p
floating-point-inexact handler-bind
floating-point-invalid-operation handler-case
floating-point-overflow hash-table
floating-point-underflow hash-table-count
floatp hash-table-p

floor hash-table-rehash-size
fmakunbound hash-table-rehash-threshold
force-output hash-table-size
format hash-table-test
formatter host-namestring
fourth identity

fresh-line if

fround ignorable

ftruncate ignore

ftype ignore-errors

funcall imagpart

function import
function-keywords in-package
function-lambda-expression incf

functionp initialize-instance

ged inline

generic-function input-stream-p
gensym inspect

gentemp integer

get integer-decode-float
get-decoded-time integer-length
get-dispatch-macro-character integerp
get-internal-real-time interactive-stream-p

Figure 1-8: Symbols in the COMMON-LISP package (part five of twelve).
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intern lisp-implementation-type
internal-time-units-per-second lisp-implementation-version
intersection list

invalid-method-error list*

invoke-debugger list-all-packages
invoke-restart list-length
invoke-restart-interactively listen

isqrt listp

keyword load

keywordp load-logical-pathname-translations
labels load-time-value

lambda locally

lambda-list-keywords log

lambda-parameters-limit logand

last logandcl

lem logandc2

ldb logbitp

ldb-test logcount

1diff logeqv

least-negative-double-float logical-pathname
least-negative-long-float logical-pathname-translations

least-negative-normalized-double-float logior
least-negative-normalized-long-float  lognand
least-negative-normalized-short-float  lognor
least-negative-normalized-single-float lognot

least-negative-short-float logorcl
least-negative-single-float logorc2
least-positive-double-float logtest
least-positive-long-float logxor

least-positive-normalized-double-float long-float
least-positive-normalized-long-float  long-float-epsilon
least-positive-normalized-short-float  long-float-negative-epsilon
least-positive-normalized-single-float long-site-name

least-positive-short-float loop
least-positive-single-float loop-finish
length lower-case-p

let machine-instance
let* machine-type

Figure 1-9: Symbols in the COMMON-LISP package (part six of twelve).
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machine-version mask-field

macro-function max

macroexpand member

macroexpand-1 member-if

macrolet member-if-not

make-array merge
make-broadcast-stream merge-pathnames
make-concatenated-stream method
make-condition method-combination
make-dispatch-macro-character method-combination-error
make-echo-stream method-qualifiers
make-hash-table min

make-instance minusp
make-instances-obsolete mismatch

make-list mod

make-load-form most-negative-double-float
make-load-form-saving-slots =~ most-negative-fixnum
make-method most-negative-long-float
make-package most-negative-short-float
make-pathname most-negative-single-float
make-random-state most-positive-double-float
make-sequence most-positive-fixnum
make-string most-positive-long-float
make-string-input-stream most-positive-short-float
make-string-output-stream most-positive-single-float
make-symbol muffle-warning
make-synonym-stream multiple-value-bind
make-two-way-stream multiple-value-call
makunbound multiple-value-list

map multiple-value-progl
map-into multiple-value-setq

mapc multiple-values-limit

mapcan name-char

mapcar namestring

mapcon nbutlast

maphash nconc

mapl next-method-p

maplist nil

Figure 1-10: Symbols in the COMMON-LISP package (part seven of twelve).
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nintersection package-error

ninth package-error-package
no-applicable-method package-name
no-next-method package-nicknames
not package-shadowing-symbols
notany package-use-list
notevery package-used-by-list
notinline packagep

nreconc pairlis

nreverse parse-error
nset-difference parse-integer

nset-exclusive-or ~ parse-namestring
nstring-capitalize  pathname

nstring-downcase pathname-device
nstring-upcase pathname-directory
nsublis pathname-host
nsubst pathname-match-p
nsubst-if pathname-name
nsubst-if-not pathname-type
nsubstitute pathname-version
nsubstitute-if pathnamep
nsubstitute-if-not  peek-char

nth phase

nth-value pi

nthedr plusp

null pop

number position

numberp position-if
numerator position-if-not
nunion pprint

oddp pprint-dispatch
open pprint-exit-if-list-exhausted
open-stream-p pprint-fill
optimize pprint-indent

or pprint-linear
otherwise pprint-logical-block
output-stream-p pprint-newline
package pprint-pop

Figure 1-11: Symbols in the COMMON-LISP package (part eight of twelve).
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pprint-tab
pprint-tabular
prinl
prinl-to-string
princ
princ-to-string
print

print-not-readable

ANSI and GNU Common Lisp Document

read-char
read-char-no-hang

read-delimited-list

read-from-string
read-line

read-preserving-whitespace
read-sequence

reader-error

print-not-readable-object readtable

print-object

print-unreadable-object

probe-file
proclaim
prog

prog*

progl

prog2

progn
program-error
progv
provide

psetf

psetq

push
pushnew
quote
random
random-state
random-state-p
rassoc
rassoc-if
rassoc-if-not
ratio

rational
rationalize
rationalp
read
read-byte

Figure 1-12: Symbols in the COMMON-LISP package (part nine of twelve).

readtable-case
readtablep
real
realp
realpart
reduce
reinitialize-instance
rem
remf
remhash
remove
remove-duplicates
remove-if
remove-if-not
remove-method
remprop
rename-file
rename-package
replace
require
rest
restart
restart-bind
restart-case
restart-name
return
return-from
revappend
reverse



Chapter 1: Introduction

room simple-bit-vector
rotatef simple-bit-vector-p
round simple-condition
row-major-aref simple-condition-format-arguments
rplaca simple-condition-format-control
rplacd simple-error

safety simple-string

satisfies simple-string-p

sbit simple-type-error
scale-float simple-vector

schar simple-vector-p

search simple-warning
second sin

sequence single-float
serious-condition single-float-epsilon
set single-float-negative-epsilon
set-difference sinh
set-dispatch-macro-character sixth
set-exclusive-or sleep
set-macro-character slot-boundp
set-pprint-dispatch slot-exists-p
set-syntax-from-char slot-makunbound
setf slot-missing

setq slot-unbound

seventh slot-value

shadow software-type
shadowing-import software-version
shared-initialize some

shiftf sort

short-float space
short-float-epsilon special
short-float-negative-epsilon special-operator-p
short-site-name speed

signal sqrt

signed-byte stable-sort

signum standard
simple-array standard-char
simple-base-string standard-char-p

Figure 1-13: Symbols in the COMMON-LISP package (part ten of twelve).
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standard-class
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sublis

standard-generic-function subseq

standard-method
standard-object
step
storage-condition
store-value
stream

stream-element-type

stream-error

stream-error-stream
stream-external-format

streamp

string
string-capitalize
string-downcase
string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal
string-not-greaterp
string-not-lessp
string-right-trim
string-stream
string-trim
string-upcase
string/=

string<
string<=
string=

string>
string>=
stringp
structure
structure-class
structure-object
style-warning

Figure 1-14: Symbols in the COMMON-LISP package (part eleven of twelve).

subsetp
subst

subst-if

subst-if-not
substitute
substitute-if
substitute-if-not
subtypep
svref
sxhash
symbol
symbol-function
symbol-macrolet
symbol-name
symbol-package
symbol-plist
symbol-value
symbolp
Synonym-stream
synonym-stream-symbol
t
tagbody
tailp
tan
tanh
tenth
terpri
the
third
throw
time
trace
translate-logical-pathname
translate-pathname
tree-equal
truename
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truncate values-list
two-way-stream variable
two-way-stream-input-stream vector
two-way-stream-output-stream vector-pop

type vector-push

type-error vector-push-extend
type-error-datum vectorp
type-error-expected-type warn

type-of warning

typecase when

typep wild-pathname-p
unbound-slot with-accessors
unbound-slot-instance with-compilation-unit
unbound-variable with-condition-restarts
undefined-function with-hash-table-iterator
unexport with-input-from-string
unintern with-open-file

union with-open-stream

unless with-output-to-string
unread-char with-package-iterator
unsigned-byte with-simple-restart
untrace with-slots

unuse-package with-standard-io-syntax
unwind-protect write

update-instance-for-different-class write-byte
update-instance-for-redefined-class write-char

upgraded-array-element-type write-line
upgraded-complex-part-type write-sequence
upper-case-p write-string
use-package write-to-string
use-value y-or-n-p
user-homedir-pathname yes-or-no-p
values Zerop

Figure 1-15: Symbols in the COMMON-LISP package (part twelve of twelve).
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2 Syntax

2.1 Character Syntax

The Lisp reader takes characters from a stream, interprets them as a printed representation
of an object, constructs that object, and returns it.

The syntax described by this chapter is called the standard syntax . Operations are
provided by Common Lisp so that various aspects of the syntax information represented by
a readtable can be modified under program control; see (undefined) [Reader], page (unde-
fined). Except as explicitly stated otherwise, the syntax used throughout this document is
standard syntax.

2.1.1 Readtables
Syntax information for use by the Lisp reader is embodied in an object called a readtable .
Among other things, the readtable contains the association between characters and syntax
types.

Figure 2-1 lists some defined names that are applicable to readtables.

*readtable* readtable-case

copy-readtable readtablep
get-dispatch-macro-character set-dispatch-macro-character
get-macro-character set-macro-character

make-dispatch-macro-character set-syntax-from-char

Figure 2—1: Readtable defined names

2.1.1.1 The Current Readtable

Several readtables describing different syntaxes can exist, but at any given time only one,
called the current readtable , affects the way in which expressions_2 are parsed into objects
by the Lisp reader. The current readtable in a given dynamic environment is the value
of *readtable* in that environment. To make a different readtable become the current
readtable, *readtable* can be assigned or bound.

2.1.1.2 The Standard Readtable

The standard readtable conforms to standard syntax. The consequences are undefined if
an attempt is made to modify the standard readtable. To achieve the effect of altering or
extending standard syntaz, a copy of the standard readtable can be created; see the function
copy-readtable.

The readtable case of the standard readtable is :upcase.

2.1.1.3 The Initial Readtable

The initial readtable is the readtable that is the current readtable at the time when the Lisp
tmage starts. At that time, it conforms to standard syntaz. The initial readtable is distinct



42 ANSI and GNU Common Lisp Document

from the standard readtable. 1t is permissible for a conforming program to modify the initial
readtable.

2.1.2 Variables that affect the Lisp Reader

The Lisp reader is influenced not only by the current readtable, but also by various dynamic
variables. Figure 2-2 lists the variables that influence the behavior of the Lisp reader.

*package®  *read-default-float-format* *readtable*
*read-base* *read-suppress*

Figure 2-2: Variables that influence the Lisp reader.

2.1.3 Standard Characters

All implementations must support a character repertoire called standard-char; characters
that are members of that repertoire are called standard characters .

The standard-char repertoire consists of the non-graphic character newline, the graphic
character space, and the following additional ninety-four graphic characters or their equiv-
alents:
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Graphic ID Glyph Description Graphic ID

LAO1
LA02
LB01
LB02
LCo1
LC02
LDO01
LDO02
LEO1
LE02
LFO01
LF02
LGO1
LGO02
LHO1
LHO02
LIO1
LI102
LJO1
LJo2
LKO01
LKO02
LLO1
LLO02
LMO1
LMO02

Figure 2-3: Standard Character Subrepertoire (Part 1 of 3: Latin Characters)

ey PHFxr e """ ne o Mmoo Q0 WO =

small a LNO1
capital A LNO02
small b LOO01
capital B LO02
small ¢ LPO1
capital C  LP02
small d LQO1
capital D LQO02
small e LRO1
capital E LRO2
small f LS01
capital F LS02
small g LTO1
capital G LT02
small h LUO1
capital H LU02
small i LVO01
capital I LV02
small j LWO01
capital J  LWO02
small k LXO01
capital K LX02
small 1 LYO01
capital L LYO02
small m LZ01
capital M LZ02

c;:’_]d'm wHD'_Q.-U"OOOZgj

< =
N b M=

Glyph Description
small n
capital N
small o
capital O
small p
capital P
small q
capital Q
small r
capital R

small s

capital S
small t
capital T
small u
capital U

small v
capital V

small w
capital W
small x
capital X
small y
capital Y
small z
capital Z

Graphic ID Glyph Description Graphic ID Glyph Description

NDoO1
NDO02
NDO03
NDO04
NDO05

Figure 2-4: Standard Character Subrepertoire (Part 2 of 3: Numeric Characters)

g W

digit 1 NDO06
digit 2 NDO7
digit 3 NDOS
digit 4  NDO09
digit 5  ND10

6

O O 00 N

digit 6
digit 7
digit 8
digit 9
digit 0
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Graphic ID Glyph Description

SP02 ! exclamation mark

SCO03 $  dollar sign

SP04 " quotation mark, or double quote
SP05 ) apostrophe, or [single] quote
SP06 ( left parenthesis, or open parenthesis
SP0O7 ) right parenthesis, or close parenthesis
SP08 R comma

SP09 _ low line, or underscore

SP10 - hyphen, or minus [sign]

SP11 . full stop, period, or dot

SP12 / solidus, or slash

SP13 : colon

SP14 ; semicolon

SP15 ? question mark

SA01 + plus [sign]

SA03 < less-than [sign]

SA04 = equals [sign]

SA05 > greater-than [sign]

SMO01 # number sign, or sharp[sign]
SM02 %  percent [sign]

SMO03 & ampersand

SMO04 * asterisk, or star

SMO05 @ commercial at, or at-sign

SMO06 [ left [square] bracket

SMO7 \ reverse solidus, or backslash
SMO08 ] right [square] bracket

SM11 { left curly bracket, or left brace
SM13 | vertical bar

SM14 } right curly bracket, or right brace
SD13 ¢ grave accent, or backquote
SD15 - circumflex accent

SD19 - tilde

Figure 2-5: Standard Character Subrepertoire (Part 3 of 3: Special Characters)

The graphic IDs are not used within Common Lisp, but are provided for cross reference
purposes with ISO 6937/2. Note that the first letter of the graphic ID categorizes the
character as follows: L—Latin, N—Numeric, S—Special.

2.1.4 Character Syntax Types

The Lisp reader constructs an object from the input text by interpreting each character
according to its syntar type. The Lisp reader cannot accept as input everything that the
Lisp printer produces, and the Lisp reader has features that are not used by the Lisp
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printer. The Lisp reader can be used as a lexical analyzer for a more general user-written
parser.

When the Lisp reader is invoked, it reads a single character from the input stream and
dispatches according to the syntax type of that character. Every character that can appear
in the input stream is of one of the syntax types shown in Figure™ 2-6.

constituent macro character single escape
mvalid multiple escape whitespace_2

Figure 2-6: Possible Character Syntax Types

The syntax type of a character in a readtable determines how that character is interpreted
by the Lisp reader while that readtable is the current readtable. At any given time, every
character has exactly one syntax type.

Figure™ 2-7 lists the syntaz type of each character in standard syntazx.

character syntax type character syntax type

Backspace constituent 0-9 constituent

Tab whitespace _2 : constituent

Newline  whitespace_2 ; terminating macro char

Linefeed whitespace_2 < constituent

Page whitespace_2 = constituent

Return whitespace_2 > constituent

Space whitespace_2 ? constituent™

! constituent™® ¢ constituent

" terminating macro char A-7 constituent

# non-terminating macro char [ constituent™®

$ constituent \ single escape

% constituent ] constituent™®

& constituent - constituent

’ terminating macro char _ constituent

( terminating macro char ‘ terminating macro char

) terminating macro char a—z constituent

* constituent { constituent™®

+ constituent I multiple escape

, terminating macro char } constituent™

- constituent - constituent
constituent Rubout constituent

/ constituent

Figure 2-7: Character Syntax Types in Standard Syntax

The characters marked with an asterisk (*) are initially constituents, but they are not
used in any standard Common Lisp notations. These characters are explicitly reserved to
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the programmer. ~ is not used in Common Lisp, and reserved to implementors. $ and %
are alphabetic_2 characters, but are not used in the names of any standard Common Lisp
defined names.

Whitespace _2 characters serve as separators but are otherwise ignored. Constituent and
escape characters are accumulated to make a token, which is then interpreted as a number
or symbol. Macro characters trigger the invocation of functions (possibly user-supplied)
that can perform arbitrary parsing actions. Macro characters are divided into two kinds,
terminating and non-terminating, depending on whether or not they terminate a token.
The following are descriptions of each kind of syntax type.

2.1.4.1 Constituent Characters

Constituent characters are used in tokems. A token is a representation of a number or a
symbol. Examples of constituent characters are letters and digits.

Letters in symbol names are sometimes converted to letters in the opposite case when
the name is read; see (undefined) [Effect of Readtable Case on the Lisp Reader|, page (un-
defined). Case conversion can be suppressed by the use of single escape or multiple escape
characters.

2.1.4.2 Constituent Traits

Every character has one or more constituent traits that define how the character is to be
interpreted by the Lisp reader when the character is a constituent character. These con-
stituent traits are alphabetic_2, digit, package marker, plus sign, minus sign, dot, decimal
point, ratio marker, exponent marker, and invalid. Figure™2-8 shows the constituent traits
of the standard characters and of certain semi-standard characters; no mechanism is pro-
vided for changing the constituent trait of a character. Any character with the alphadigit
constituent trait in that figure is a digit if the current input base is greater than that charac-
ter’s digit value, otherwise the character is alphabetic_2. Any character quoted by a single
escape is treated as an alphabetic_2 constituent, regardless of its normal syntax.
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constituent traits

47

constituent traits

character character

Backspace invalid { alphabetic_2

Tab invalid* } alphabetic_2

Newline  invalid* + alphabetic_2, plus sign
Linefeed  invalid* - alphabetic_2, minus sign

Page invalid* . alphabetic_2, dot, decimal point
Return invalid* / alphabetic_2, ratio marker
Space invalid* A a alphadigit

! alphabetic.2 B, b alphadigit

" alphabetic_2* C, ¢ alphadigit

# alphabetic_2* D, d
$ alphabetic.2 E, e

% alphabetic2 F, f
& alphabetic_2 G, g

* — —~

alphabetic_2* H, h
alphabetic_2* 1,1
alphabetic_2* ], j
alphabetic_.2 K, k
alphabetic_2* L,

0-9 alphadigit M, m
: package marker N, n
: alphabetic_2* O, o
< alphabetic_2 P, p
= alphabetic_.2 Q, q
> alphabetic_.2 R, r
? alphabetic_2 S, s
@ alphabetic_.2 T, t
[ alphabetic.2 U, u
\ alphabetic_2* V, v
] alphabetic.2 W, w
- alphabetic_2 X, x
_ alphabetic_.2 Y,y
‘ alphabetic_2* 7, z

alphabetic_2* Rubout

alphabetic_2

alphadigit, double-float exponent marker
alphadigit, float ezponent marker
alphadigit, single-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit, long-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit, short-float exponent marker
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
alphadigit
invalid

Figure 2-8: Constituent Traits of Standard Characters and Semi-Standard Characters

The interpretations in this table apply only to characters whose syntaz type is con-
stituent. Entries marked with an asterisk (*) are normally shadowed_-2 because the indi-
cated characters are of syntax type whitespace_2, macro character, single escape, or multiple
escape; these constituent traits apply to them only if their syntax types are changed to con-

stituent.
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2.1.4.3 Invalid Characters

Characters with the constituent trait invalid cannot ever appear in a token except under
the control of a single escape character. If an invalid character is encountered while an
object is being read, an error of type reader-error is signaled. If an invalid character is
preceded by a single escape character, it is treated as an alphabetic_2 constituent instead.

2.1.4.4 Macro Characters

When the Lisp reader encounters a macro character on an input stream, special parsing of
subsequent characters on the input stream is performed.

A macro character has an associated function called a reader macro function that im-
plements its specialized parsing behavior. An association of this kind can be established or
modified under control of a conforming program by using the functions set-macro-character
and set-dispatch-macro-character.

Upon encountering a macro character, the Lisp reader calls its reader macro function,
which parses one specially formatted object from the input stream. The function either
returns the parsed object, or else it returns no values to indicate that the characters scanned
by the function are being ignored (e.g., in the case of a comment). Examples of macro
characters are backquote, single-quote, left-parenthesis, and right-parenthesis.

A macro character is either terminating or non-terminating. The difference between ter-
minating and non-terminating macro characters lies in what happens when such characters
occur in the middle of a token. If a non-terminating macro character occurs in the middle
of a token, the function associated with the non-terminating macro character is not called,
and the non-terminating macro character does not terminate the token’s name; it becomes
part of the name as if the macro character were really a constituent character. A termi-
nating macro character terminates any token, and its associated reader macro function is
called no matter where the character appears. The only non-terminating macro character
in standard syntax is sharpsign.

If a character is a dispatching macro character C_1, its reader macro function is a
function supplied by the implementation. This function reads decimal digit characters until
a non-digit C_2 is read. If any digits were read, they are converted into a corresponding
integer infix parameter P; otherwise, the infix parameter P is nil. The terminating non-digit
C_2 is a character (sometimes called a “sub-character” to emphasize its subordinate role
in the dispatching) that is looked up in the dispatch table associated with the dispatching
macro character C_1. The reader macro function associated with the sub-character C_2 is
invoked with three arguments: the stream, the sub-character C_2, and the infix parameter
P. For more information about dispatch characters, see the function set-dispatch-macro-
character.

For information about the macro characters that are available in standard syntazx, see
(undefined) [Standard Macro Characters|, page (undefined).

2.1.4.5 Multiple Escape Characters

A pair of multiple escape characters is used to indicate that an enclosed sequence of charac-
ters, including possible macro characters and whitespace_2 characters, are to be treated as
alphabetic_2 characters with case preserved. Any single escape and multiple escape charac-
ters that are to appear in the sequence must be preceded by a single escape character.
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Vertical-bar is a multiple escape character in standard syntax.

2.1.4.6 Examples of Multiple Escape Characters

;5 The following examples assume the readtable case of *readtablex*
;; and *print-case* are both :upcase.

(eq ’abc ’ABC) = true

(eq ’abc ’|ABC|) = true

(eq ’abc ’alBlc) = true

(eq ’abc ’labc|) = false

2.1.4.7 Single Escape Character

A single escape is used to indicate that the next character is to be treated as an alphabetic_2
character with its case preserved, no matter what the character is or which constituent traits
it has.

Slash is a single escape character in standard syntaz.

2.1.4.8 Examples of Single Escape Characters

;; The following examples assume the readtable case of *readtablex
;; and *print-casex are both :upcase.

(eq ’abc ’\A\B\C) = true

(eq ’abc ’a\Bc) = true

(eq ’abc ’\ABC) = true

(eq ’abc ’\abc) = false

2.1.4.9 Whitespace Characters

Whitespace_2 characters are used to separate tokens.

Space and newline are whitespace_2 characters in standard syntazx.

2.1.4.10 Examples of Whitespace Characters

(length ’(this-that)) = 1
(length ’(this - that)) = 3
(length ’(a

b)) = 2
(+ 34) = 34
+34) = 7

2.2 Reader Algorithm

This section describes the algorithm used by the Lisp reader to parse objects from an input
character stream, including how the Lisp reader processes macro characters.

When dealing with tokens, the reader’s basic function is to distinguish representations
of symbols from those of numbers. When a token is accumulated, it is assumed to represent
a number if it satisfies the syntax for numbers listed in Figure™2-9. If it does not represent
a number, it is then assumed to be a potential number if it satisfies the rules governing the
syntax for a potential number. If a valid token is neither a representation of a number nor
a potential number, it represents a symbol.
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The algorithm performed by the Lisp reader is as follows:

If at end of file, end-of-file processing is performed as specified in read. Other-
wise, one character, z, is read from the input stream, and dispatched according
to the syntaz type of = to one of steps 2 to 7.

If z is an invalid character, an error of type reader-error is signaled.
If x is a whitespace_2 character, then it is discarded and step 1 is re-entered.

If x is a terminating or non-terminating macro character then its associated
reader macro function is called with two arguments, the input stream and .

The reader macro function may read characters from the input stream; if it
does, it will see those characters following the macro character. The Lisp
reader may be invoked recursively from the reader macro function.

The reader macro function must not have any side effects other than on the
input stream; because of backtracking and restarting of the read operation, front
ends to the Lisp reader (e.g., “editors” and “rubout handlers”) may cause the
reader macro function to be called repeatedly during the reading of a single
expression in which z only appears once.

The reader macro function may return zero values or one value. If one value
is returned, then that value is returned as the result of the read operation; the
algorithm is done. If zero values are returned, then step 1 is re-entered.

If = is a single escape character then the next character, y, is read, or an error
of type end-of-file is signaled if at the end of file. y is treated as if it is a
constituent whose only constituent trait is alphabetic_2. y is used to begin a
token, and step 8 is entered.

If z is a multiple escape character then a token (initially containing no charac-
ters) is begun and step 9 is entered.

If z is a constituent character, then it begins a token. After the token is read
in, it will be interpreted either as a Lisp object or as being of invalid syntax.
If the token represents an object, that object is returned as the result of the
read operation. If the token is of invalid syntax, an error is signaled. If x is a
character with case, it might be replaced with the corresponding character of
the opposite case, depending on the readtable case of the current readtable, as
outlined in (undefined) [Effect of Readtable Case on the Lisp Reader], page (un-
defined). X is used to begin a token, and step 8 is entered.

At this point a token is being accumulated, and an even number of multiple
escape characters have been encountered. If at end of file, step 10 is entered.
Otherwise, a character, y, is read, and one of the following actions is performed
according to its syntax type:

* If y is a constituent or non-terminating macro character:

- If y is a character with case, it might be replaced with
the corresponding character of the opposite case, de-
pending on the readtable case of the current readtable,
as outlined in (undefined) [Effect of Readtable Case on
the Lisp Reader], page (undefined).
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— Y is appended to the token being built.
- Step 8 is repeated.

* If y is a single escape character, then the next character, z, is read,
or an error of type end-of-file is signaled if at end of file. Z is treated
as if it is a constituent whose only constituent trait is alphabetic_2.
Z is appended to the token being built, and step 8 is repeated.

* If y is a multiple escape character, then step 9 is entered.

* If y is an inwvalid character, an error of type reader-error is signaled.

* If y is a terminating macro character, then it terminates the token.
First the character y is unread (see unread-char), and then step 10
is entered.

* If y is a whitespace_2 character, then it terminates the

token.  First the character y is unread if appropriate (see
read-preserving-whitespace), and then step 10 is entered.

9. At this point a token is being accumulated, and an odd number of multiple
escape characters have been encountered. If at end of file, an error of type end-
of-file is signaled. Otherwise, a character, y, is read, and one of the following
actions is performed according to its syntax type:

* If y is a constituent, macro, or whitespace_2 character, y is treated
as a constituent whose only constituent trait is alphabetic_2. Y is
appended to the token being built, and step 9 is repeated.

* If y is a single escape character, then the next character, z, is read,
or an error of type end-of-file is signaled if at end of file. Z is treated
as a constituent whose only constituent trait is alphabetic_2. Z is
appended to the token being built, and step 9 is repeated.

* If y is a multiple escape character, then step 8 is entered.
* If y is an invalid character, an error of type reader-error is signaled.
10. An entire token has been accumulated. The object represented by the token is

returned as the result of the read operation, or an error of type reader-error is
signaled if the token is not of valid syntax.

2.3 Interpretation of Tokens

2.3.1 Numbers as Tokens

When a token is read, it is interpreted as a number or symbol. The token is interpreted as
a number if it satisfies the syntax for numbers specified in Figure 2-9.



52 ANSI and GNU Common Lisp Document

numeric-token := linteger | !ratio | !float

integer = [sign] {decimal-digit}~+ decimal-point | [sign] {digit}~+

ratio = [sign] {digit}~+ slash {digit} "+

float = [sign] {decimal-digit}* decimal-point {decimal-digit}~+ [lexponent]
| [sign] {decimal-digit}~+ [decimal-point {decimal-digit}*] lezponent

exponent = exponent-marker [sign] {digit}~+

sign—a Sign.

slash—a slash

decimal-point—a dot.
exponent-marker—an exponent marker.
decimal-digit—a digit in radiz 10.
digit—a digit in the current input radiz.

Figure 2-9: Syntax for Numeric Tokens

2.3.1.1 Potential Numbers as Tokens

To allow implementors and future Common Lisp standards to extend the syntax of numbers,
a syntax for potential numbers is defined that is more general than the syntax for numbers.
A token is a potential number if it satisfies all of the following requirements:

1. The token consists entirely of digits, signs, ratio markers, decimal points (.),
extension characters (~ or _), and number markers. A number marker is a letter.
Whether a letter may be treated as a number marker depends on context, but
no letter that is adjacent to another letter may ever be treated as a number
marker. Fxponent markers are number markers.

2. The token contains at least one digit. Letters may be considered to be digits,
depending on the current input base, but only in tokens containing no decimal
points.

3. The token begins with a digit, sign, decimal point, or extension character,

[Reviewer Note by Barmar: This section is unnecessary because the first bul-
let already omits discussion of a colon (package marker).] but not a package
marker. The syntax involving a leading package marker followed by a potential
number is not well-defined. The consequences of the use of notation such as
:1, :1/2, and :273 in a position where an expression appropriate for read is
expected are unspecified.

4. The token does not end with a sign.

If a potential number has number syntax, a number of the appropriate type is constructed
and returned, if the number is representable in an implementation. A number will not be
representable in an implementation if it is outside the boundaries set by the implementation-
dependent constants for numbers. For example, specifying too large or too small an exponent
for a float may make the number impossible to represent in the implementation. A ratio
with denominator zero (such as -35/000) is not represented in any implementation. When
a token with the syntax of a number cannot be converted to an internal number, an error
of type reader-error is signaled. An error must not be signaled for specifying too many
significant digits for a float; a truncated or rounded value should be produced.
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If there is an ambiguity as to whether a letter should be treated as a digit or as a number
marker, the letter is treated as a digit.
2.3.1.2 Escape Characters and Potential Numbers

A potential number cannot contain any escape characters. An escape character robs the fol-
lowing character of all syntactic qualities, forcing it to be strictly alphabetic_2 and therefore
unsuitable for use in a potential number. For example, all of the following representations
are interpreted as symbols, not numbers:

\266 25\64 1.0\E6 [100] 3\.14159 13/41 3\/4 5]|

In each case, removing the escape character (or characters) would cause the token to be
a potential number.

2.3.1.3 Examples of Potential Numbers

As examples, the tokens in Figure 2-10 are potential numbers, but they are not actually
numbers, and so are reserved tokens; a conforming implementation is permitted, but not
required, to define their meaning.

1b5000 T77777q 1.7J -3/4+6.7J 12/25/83
27719 374/5 6//7 3.1.2.6 ~-43"
3.141_592_653_589_793_238_4 -3.7+2.6i-6.17j+19.6k

Figure 2-10: Examples of reserved tokens
The tokens in Figure 2-11 are not potential numbers; they are always treated as symbols:

/ /5 + 1+ 1-
foo+ ab.cd _ -~ ~/-

Figure 2—-11: Examples of symbols

The tokens in Figure 2—12 are potential numbers if the current input base is 16, but they
are always treated as symbols if the current input base is 10.

bad-face 25-dec-83 a/b fad_cafe f~

Figure 2—-12: Examples of symbols or potential numbers

2.3.2 Constructing Numbers from Tokens

A real is constructed directly from a corresponding numeric token; see Figure™2-9.

A complex is notated as a #C (or #c) followed by a list of two reals; see (undefined)
[Sharpsign C], page (undefined).
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The reader macros #B, #0, #X, and #R may also be useful in controlling the input radiz
in which rationals are parsed; see (undefined) [Sharpsign B], page (undefined), (undefined)
[Sharpsign O], page (undefined), (undefined) [Sharpsign X], page (undefined), and (unde-
fined) [Sharpsign R], page (undefined).

This section summarizes the full syntax for numbers.
2.3.2.1 Syntax of a Rational

2.3.2.2 Syntax of an Integer

Integers can be written as a sequence of digits, optionally preceded by a sign and optionally
followed by a decimal point; see Figure™2-9. When a decimal point is used, the digits are
taken to be in radiz 10; when no decimal point is used, the digits are taken to be in radix
given by the current input base.

For information on how integers are printed, see (undefined) [Printing Integers],
page (undefined).

2.3.2.3 Syntax of a Ratio

Ratios can be written as an optional sign followed by two non-empty sequences of digits
separated by a slash; see Figure™2-9. The second sequence may not consist entirely of zeros.
Examples of ratios are in Figure 2-13.

2/3 ;This is in canonical form

4/6 ;A non-canonical form for 2/3
-17/23 ;A ratio preceded by a sign
-30517578125/32768 ;This is (-5/2)~15

10/5 ;The canonical form for this is 2
#0-101/75 ;Octal notation for -65/61
#3r120/21 ;Ternary notation for 15/7
#Xbc/ad ;Hexadecimal notation for 188/173

#xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

Figure 2-13: Examples of Ratios

[Reviewer Note by Barmar: #o, #3r, #X, and #x mentioned above are not in the syntax
rules defined just above that.]

For information on how ratios are printed, see (undefined) [Printing Ratios|, page (un-
defined).

2.3.2.4 Syntax of a Float

Floats can be written in either decimal fraction or computerized scientific notation: an
optional sign, then a non-empty sequence of digits with an embedded decimal point, then
an optional decimal exponent specification. If there is no exponent specifier, then the
decimal point is required, and there must be digits after it. The exponent specifier consists
of an exponent marker, an optional sign, and a non-empty sequence of digits. If no exponent
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specifier is present, or if the exponent marker e (or E) is used, then the format specified by
*read-default-float-format* is used. See Figure™2-9.

An implementation may provide one or more kinds of float that collectively make up the
type float. The letters s, £, d, and 1 (or their respective uppercase equivalents) explicitly
specify the use of the types short-float, single-float, double-float, and long-float, respectively.

The internal format used for an external representation depends only on the exponent
marker, and not on the number of decimal digits in the external representation.

Figure 2—14 contains examples of notations for floats:

0.0 ;Floating-point zero in default format

0EO :As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.

0e0 ;As input, this is also floating-point zero in default format.
:As output, this would appear as 0.0.

-.0 :As input, this might be a zero or a minus zero,

; depending on whether the implementation supports
; a distinct minus zero.
;As output, 0.0 is zero and -0.0 is minus zero.
0. ;On input, the integer zero—not a floating-point number!
;Whether this appears as 0 or 0. on output depends
;on the value of *print-radix*.
0.0s0 ;A floating-point zero in short format
0s0 ;As input, this is a floating-point zero in short format.
;As output, such a zero would appear as 0.0s0
; (or as 0.0 if short-float was the default format).
6.02E+23 ;Avogadro’s number, in default format
602E+21 ;Also Avogadro’s number, in default format

Figure 2—14: Examples of Floating-point numbers

For information on how floats are printed, see (undefined) [Printing Floats], page (un-
defined).

2.3.2.5 Syntax of a Complex

A complex has a Cartesian structure, with a real part and an imaginary part each of which
is a
real.

The parts of a complexr are not necessarily floats but both parts must be of the same
type:

[Editorial Note by KMP: This is not the same as saying they must be the same type.
Maybe we mean they are of the same ‘precision’ or ‘format’? GLS had suggestions which
are not yet merged.] either both are rationals, or both are of the same float subtype. When
constructing a complez, if the specified parts are not the same type, the parts are converted
to be the same type internally (i.e., the rational part is converted to a float). An object of
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type (complex rational) is converted internally and represented thereafter as a rational
if its imaginary part is an integer whose value is 0.

For further information, see (undefined) [Sharpsign C], page (undefined), and (undefined)
[Printing Complexes|, page (undefined).

2.3.3 The Consing Dot

If a token consists solely of dots (with no escape characters), then an error of type reader-
error is signaled, except in one circumstance: if the token is a single dot and appears in
a situation where dotted pair notation permits a dot, then it is accepted as part of such
syntax and no error is signaled. See (undefined) [Left-Parenthesis|, page (undefined).

2.3.4 Symbols as Tokens

Any token that is not a potential number, does not contain a package marker, and does not
consist entirely of dots will always be interpreted as a symbol. Any token that is a potential
number but does not fit the number syntax is a reserved token and has an implementation-
dependent interpretation. In all other cases, the token is construed to be the name of a
symbol.

Examples of the printed representation of symbols are in Figure 2-15. For presentational
simplicity, these examples assume that the readtable case of the current readtable is :upcase.

FROBBOZ The symbol whose name is FROBBOZ.
frobboz Another way to notate the same symbol.
fRObBoz Yet another way to notate it.
unwind-protect A symbol with a hyphen in its name.
+$ The symbol named +$.

1+ The symbol named 1+.

+1 This is the integer 1, not a symbol.

pascal_style This symbol has an underscore in its name.
file.rel.43  This symbol has periods in its name.

\ ( The symbol whose name is (.

\+1 The symbol whose name is +1.

+\1 Also the symbol whose name is +1.
\frobboz The symbol whose name is fROBBOZ.

3.14159265\s0 The symbol whose name is 3.14159265s0.
3.14159265\S0 A different symbol, whose name is 3.1415926580.
3.14159265s0 A possible short float approximation to \pi.

Figure 2-15: Examples of the printed representation of symbols (Part 1 of 2)
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API\\360 The symbol whose name is APL\360.
apl\\360 Also the symbol whose name is APL\360.
\(b"2\)\ -\ 4xaxc The name is (B"2) - 4*Ax*C.
Parentheses and two spaces in it.
\(\b~2\)\ -\4x\ax\c The name is (b"2) - 4*a*c.
Letters explicitly lowercase.
"1 The same as writing \".

| (b~2) - 4xaxc]| The name is (b~2) - 4x*axc.

| frobboz | The name is frobboz, not FROBBOZ.

| APL\360 | The name is APL360.

| APLA\360 | The name is APL\360.

lap1\\360| The name is ap1\360.

INTNT Same as \|\| —the name is | |.

| (B~2) - 4xAxC| The name is (B"2) - 4*AxC.
Parentheses and two spaces in it.

| (b~2) - 4x*axc| The name is (b~2) - 4xaxc.

Figure 2-16: Examples of the printed representation of symbols (Part 2 of 2)

In the process of parsing a symbol, it is implementation-dependent which implementation-
defined attributes are removed from the characters forming a token that represents a symbol.

When parsing the syntax for a symbol, the Lisp reader looks up the name of that symbol
in the current package. This lookup may involve looking in other packages whose external
symbols are inherited by the current package. If the name is found, the corresponding symbol
is returned. If the name is not found (that is, there is no symbol of that name accessible
in the current package), a new symbol is created and is placed in the current package as
an internal symbol. The current package becomes the owner (home package) of the symbol,
and the symbol becomes interned in the current package. If the name is later read again
while this same package is current, the same symbol will be found and returned.

2.3.5 Valid Patterns for Tokens

The valid patterns for tokens are summarized in Figure 2-17.
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nnnnn a number

XXXXX a symbol in the current package

I XXXXX a symbol in the the KEYWORD package
PPPPP: XXXXX an external symbol in the ppppp package

PPPPP: : XXXXX a (possibly internal) symbol in the ppppp package
:nnnnn undefined

PpPppp: nonnn undefined
PpPppp: :nnnnn undefined
::aaaaa undefined
aaaaa: undefined

aaaaa:aaaaa:aaaaa undefined

Figure 2-17: Valid patterns for tokens

Note that nnnnn has number syntax, neither zzxzz nor ppppp has number syntax, and
aaaaa has any syntax.

A summary of rules concerning package markers follows. In each case, examples are
offered to illustrate the case; for presentational simplicity, the examples assume that the
readtable case of the current readtable is :upcase.

1. If there is a single package marker, and it occurs at the beginning of the token,
then the token is interpreted as a symbol in the KEYWORD package. It also sets
the symbol-value of the newly-created symbol to that same symbol so that the
symbol will self-evaluate.

For example, :bar, when read, interns BAR as an external symbol in the KEYWORD
package.

2. If there is a single package marker not at the beginning or end of the token,
then it divides the token into two parts. The first part specifies a package; the
second part is the name of an external symbol available in that package.

For example, foo:bar, when read, looks up BAR among the external symbols of
the package named FOO.

3. If there are two adjacent package markers not at the beginning or end of the
token, then they divide the token into two parts. The first part specifies a
package; the second part is the name of a symbol within that package (possibly
an internal symbol).

For example, foo: :bar, when read, interns BAR in the package named FOO.
4. If the token contains no package markers, and does not have potential number

syntax, then the entire token is the name of the symbol. The symbol is looked
up in the current package.

For example, bar, when read, interns BAR in the current package.

5. The consequences are unspecified if any other pattern of package markers in
a token is used. All other uses of package markers within names of symbols
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are not defined by this standard but are reserved for implementation-dependent
use.

For example, assuming the readtable case of the current readtable is :upcase,
editor:buffer refers to the external symbol named BUFFER present in the package
named editor, regardless of whether there is a symbol named BUFFER in the current
package. If there is no package named editor, or if no symbol named BUFFER is present in
editor, or if BUFFER is not exported by editor, the reader signals a correctable error. If
editor::buffer is seen, the effect is exactly the same as reading buffer with the EDITOR
package being the current package.

2.3.6 Package System Consistency Rules

The following rules apply to the package system as long as the value of *package* is not
changed:

Read-read consistency
Reading the same symbol name always results in the same symbol.

Print-read consistency
An interned symbol always prints as a sequence of characters that, when read
back in, yields the same symbol.

For information about how the Lisp printer treats symbols, see (undefined)
[Printing Symbols|, page (undefined).

Print-print consistency
If two interned symbols are not the same, then their printed representations
will be different sequences of characters.

These rules are true regardless of any implicit interning. As long as the current package
is not changed, results are reproducible regardless of the order of loading files or the exact
history of what symbols were typed in when. If the value of *package* is changed and then
changed back to the previous value, consistency is maintained. The rules can be violated
by changing the value of *package*, forcing a change to symbols or to packages or to both
by continuing from an error, or calling one of the following functions: unintern, unexport,
shadow, shadowing-import, or unuse-package.

An inconsistency only applies if one of the restrictions is violated between two of the
named symbols. shadow, unexport, unintern, and shadowing-import can only affect the
consistency of symbols with the same names (under string=) as the ones supplied as argu-
ments.

2.4 Standard Macro Characters

If the reader encounters a macro character, then its associated reader macro function is
invoked and may produce an object to be returned. This function may read the characters
following the macro character in the stream in any syntax and return the object represented
by that syntax.

Any character can be made to be a macro character. The macro characters defined
initially in a conforming implementation include the following;:



60 ANSI and GNU Common Lisp Document

2.4.1 Left-Parenthesis

The left-parenthesis initiates reading of a list. read is called recursively to read successive
objects until a right parenthesis is found in the input stream. A list of the objects read is
returned. Thus

(abc)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need
not immediately follow the printed representation of the last object; whitespace_2 characters
and comments may precede it.

If no objects precede the right parenthesis, it reads as a list of zero objects (the empty
list).

If a token that is just a dot not immediately preceded by an escape character is read
after some object then exactly one more object must follow the dot, possibly preceded or
followed by whitespace_2 or a comment, followed by the right parenthesis:

(abc . d

This means that the cdr of the last cons in the list is not nil, but rather the object
whose representation followed the dot. The above example might have been the result of
evaluating

(cons ’a (cons ’b (cons ’c ’d)))
Similarly,
(cons ’this-one ’that-one) = (this-one . that-one)
It is permissible for the object following the dot to be a list:
(abcd. (ef. (g)) =((a@abcdefg

For information on how the Lisp printer prints lists and conses, see (undefined) [Printing
Lists and Conses|, page (undefined).

2.4.2 Right-Parenthesis

The right-parenthesis is invalid except when used in conjunction with the left parenthesis
character. For more information, see (undefined) [Reader Algorithm], page (undefined).

2.4.3 Single-Quote

Syntax: ’<<exp>>

A single-quote introduces an expression to be “quoted.” Single-quote followed by an
expression exp is treated by the Lisp reader as an abbreviation for and is parsed identically
to the expression (quote exp). See the special operator quote.

2.4.3.1 Examples of Single-Quote

’foo = FOO
’>foo = (QUOTE FOO)
(car ’’foo) = QUOTE

2.4.4 Semicolon

Syntax: ;<<text>>

A semicolon introduces characters that are to be ignored, such as comments. The
semicolon and all characters up to and including the next newline or end of file are ignored.
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2.4.4.1 Examples of Semicolon

(+ 3 ; three
4)
= 7

2.4.4.2 Notes about Style for Semicolon

Some text editors make assumptions about desired indentation based on the number of
semicolons that begin a comment. The following style conventions are common, although
not by any means universal.

2.4.4.3 Use of Single Semicolon

Comments that begin with a single semicolon are all aligned to the same column at the right
(sometimes called the “comment column”). The text of such a comment generally applies
only to the line on which it appears. Occasionally two or three contain a single sentence
together; this is sometimes indicated by indenting all but the first with an additional space
(after the semicolon).

2.4.4.4 Use of Double Semicolon

Comments that begin with a double semicolon are all aligned to the same level of indentation
as a form would be at that same position in the code. The text of such a comment usually
describes the state of the program at the point where the comment occurs, the code which
follows the comment, or both.

2.4.4.5 Use of Triple Semicolon

Comments that begin with a triple semicolon are all aligned to the left margin. Usually
they are used prior to a definition or set of definitions, rather than within a definition.

2.4.4.6 Use of Quadruple Semicolon

Comments that begin with a quadruple semicolon are all aligned to the left margin, and
generally contain only a short piece of text that serve as a title for the code which follows,
and might be used in the header or footer of a program that prepares code for presentation
as a hardcopy document.

2.4.4.7 Examples of Style for Semicolon
;555 Math Utilities

;335 FIB computes the the Fibonacci function in the traditional
;33 recursive way.

(defun fib (n)
(check-type n integer)
;5 At this point we’re sure we have an integer argument.
;; Now we can get down to some serious computation.
(cond ((< n 0)
;; Hey, this is just supposed to be a simple example.
;3 Did you really expect me to handle the general case?
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(error "FIB got "D as an argument." n))

((<n 2) n) ;£ib[0]=0 and fib[1]=1

;3 The cheap cases didn’t work.

;3 Nothing more to do but recurse.

(t (+ (fib (- n 1)) ;The traditional formula
(fib (- n 2)))))) ; is fib[n-1]1+fib[n-2].

2.4.5 Double-Quote
Syntax: "<<text>>"

The double-quote is used to begin and end a string. When a double-quote is encountered,
characters are read from the input stream and accumulated until another double-quote is
encountered. If a single escape character is seen, the single escape character is discarded, the
next character is accumulated, and accumulation continues. The accumulated characters up
to but not including the matching double-quote are made into a simple string and returned.

It is implementation-dependent which attributes of the accumulated characters are re-
moved in this process.

Examples of the use of the double-quote character are in Figure 2-18.

"Foo" ;A string with three characters in it

e ;An empty string

"\"APL\\3607\" he cried." ;A string with twenty characters
"lx| = |-x|" ;A ten-character string

Figure 2-18: Examples of the use of double-quote

Note that to place a single escape character or a double-quote into a string, such a
character must be preceded by a single escape character. Note, too, that a multiple escape
character need not be quoted by a single escape character within a string.

For information on how the Lisp printer prints strings, see (undefined) [Printing Strings|,
page (undefined).

2.4.6 Backquote
The backquote introduces a template of a data structure to be built. For example, writing
‘(cond ((numberp ,x) ,Q@y) (t (print ,x) ,@y))
is roughly equivalent to writing

(list ’cond
(cons (list ’numberp x) y)
(list* ’t (list ’print x) y))

Where a comma occurs in the template, the expression following the comma is to be
evaluated to produce an object to be inserted at that point. Assume b has the value 3, for
example, then evaluating the form denoted by ‘(a b ,b ,(+ b 1) b) produces the result
(ab34b).
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If a comma is immediately followed by an at-sign, then the form following the at-sign
is evaluated to produce a list of objects. These objects are then “spliced” into place in the
template. For example, if x has the value (a b c), then

‘(x ,x ,0x foo ,(cadr x) bar ,(cdr x) baz ,Q@(cdr x))
= (x (abc) abc foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows.

* ‘basic is the same as ’basic, that is, (quote basic), for any expression basic
that is not a list or a general vector.

* ¢,form is the same as form, for any form, provided that the representation
of form does not begin with at-sign or dot. (A similar caveat holds for all
occurrences of a form after a comma.)

* ¢,0@form has undefined consequences.
* ‘(x1 x2 x3 ... xn . atom) may be interpreted to mean
(append [ x1 ] [ x2] [ %3] ... [ xn ] (quote atom))

where the brackets are used to indicate a transformation of an zj as follows:

— [form] is interpreted as (list ‘form), which contains a back-
quoted form that must then be further interpreted.

- [,form] is interpreted as (list form).

- [,@form] is interpreted as form.

* ‘(x1 x2 x3 ... xn) may be interpreted to mean the same as the backquoted
form ‘(x1 x2 x3 ... xn . nil), thereby reducing it to the previous case.
* ‘(x1 x2 x3 ... xn . ,form) may be interpreted to mean
(append [ x1 1 [ x2]1 [ %3] ... [ xn ] form)
where the brackets indicate a transformation of an xj as described above.
* ‘(x1 x2 x3 ... xn . ,@form) has undefined consequences.
* ‘#(x1 x2 x3 ... xn) may be interpreted to mean (apply #’vector ‘(x1 x2
x3 ... xn)).
Anywhere “,@” may be used, the syntax “,.” may be used instead to indicate that it

is permissible to operate destructively on the list structure produced by the form following
the “,.” (in effect, to use nconc instead of append).

If the backquote syntax is nested, the innermost backquoted form should be expanded
first. This means that if several commas occur in a row, the leftmost one belongs to the
innermost backquote.

An implementation is free to interpret a backquoted form F_1 as any form F_2 that,
when evaluated, will produce a result that is the same under equal as the result implied
by the above definition, provided that the side-effect behavior of the substitute form F_2
is also consistent with the description given above. The constructed copy of the template
might or might not share list structure with the template itself. As an example, the above
definition implies that

“(G,a b) ,c ,ed)



64 ANSI and GNU Common Lisp Document

will be interpreted as if it were
(append (list (append (list a) (1list ’b) ’nil)) (list c¢) d ’niD)
but it could also be legitimately interpreted to mean any of the following;:

(append (list (append (list a) (list ’b))) (list c) d)
(append (list (append (list a) ’(b))) (list c¢) d)
(1ist* (cons a ’(b)) c d)

(l1ist* (cons a (list ’b)) c d)

(append (list (cons a ’(b))) (list c) d)

(1ist* (cons a ’(b)) c (copy-list d))

2.4.6.1 Notes about Backquote

Since the exact manner in which the Lisp reader will parse an expression involving the back-
quote reader macro is not specified, an implementation is free to choose any representation
that preserves the semantics described.

Often an implementation will choose a representation that facilitates pretty printing
of the expression, so that (pprint ‘(a ,b)) will display ‘(a ,b) and not, for example,
(1ist ’a b). However, this is not a requirement.

Implementors who have no particular reason to make one choice or another might wish to
refer to IEEE Standard for the Scheme Programming Language, which identifies a popular
choice of representation for such expressions that might provide useful to be useful compat-
ibility for some user communities. There is no requirement, however, that any conforming
implementation use this particular representation. This information is provided merely for
cross-reference purposes.

2.4.7 Comma

The comma is part of the backquote syntax; see (undefined) [Backquote], page (undefined).
Commea is invalid if used other than inside the body of a backquote expression as described
above.

2.4.8 Sharpsign

Sharpsign is a non-terminating dispatching macro character. It reads an optional sequence
of digits and then one more character, and uses that character to select a function to run
as a reader macro function.

The standard syntax includes constructs introduced by the # character. The syntax of
these constructs is as follows: a character that identifies the type of construct is followed
by arguments in some form. If the character is a letter, its case is not important; #0 and
#o are considered to be equivalent, for example.

Certain # constructs allow an unsigned decimal number to appear between the # and
the character.

The reader macros associated with the dispatching macro character # are described later
in this section and summarized in Figure 2-19.
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dispatch char purpose
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Figure 2-19: Standard # Dispatching Macro Character Syntax

undefined* V,
undefined W%
undefined X
undefined Y,
balanced comment 7,z
undefined Rubout

v
w
, X
y

dispatch char purpose

undefined*
undefined*
read-time conditional
read-time conditional
read-time evaluation
undefined
array
binary rational
complex number
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
octal rational
pathname
undefined
radix-n rational
structure
undefined
undefined
undefined
undefined
hexadecimal rational
undefined
undefined
undefined
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The combinations marked by an asterisk (*) are explicitly reserved to the user. No

conforming

implementation defines them.

Note also that digits do not appear in the preceding table. This is because the notations
#0, #1, ..., #9 are reserved for another purpose which occupies the same syntactic space.
When a digit follows a sharpsign, it is not treated as a dispatch character. Instead, an
unsigned integer argument is accumulated and passed as an argument to the reader macro
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for the character that follows the digits. For example, #2A((1 2) (3 4)) is a use of #A
with an argument of 2.

2.4.8.1 Sharpsign Backslash
Syntax: #\<<x>>

When the token x is a single character long, this parses as the literal character char.
Uppercase and lowercase letters are distinguished after #\; #\A and #\a denote different
character objects. Any single character works after #\, even those that are normally special
to read, such as left-parenthesis and right-parenthesis.

In the single character case, the £ must be followed by a non-constituent character. After
#\ is read, the reader backs up over the slash and then reads a token, treating the initial
slash as a single escape character (whether it really is or not in the current readtable).

When the token z is more than one character long, the x must have the syntax of a
symbol with no embedded package markers. In this case, the sharpsign backslash notation
parses as the character whose name is (string-upcase x); see (undefined) [Character
Names], page (undefined).

For information about how the Lisp printer prints character objects, see (undefined)
[Printing Characters|, page (undefined).

2.4.8.2 Sharpsign Single-Quote

Any expression preceded by #’ (sharpsign followed by single-quote), as in #’ expression,
is treated by the Lisp reader as an abbreviation for and parsed identically to the expression
(function expression). See function. For example,

(apply #’+ 1) = (apply (function +) 1)
2.4.8.3 Sharpsign Left-Parenthesis

#( and ) are used to notate a simple vector.

If an unsigned decimal integer appears between the # and (, it specifies explicitly the
length of the wector. The consequences are undefined if the number of objects specified
before the closing ) exceeds the unsigned decimal integer. If the number of objects supplied
before the closing ) is less than the unsigned decimal integer but greater than zero, the last
object is used to fill all remaining elements of the vector.

[Editorial Note by Barmar: This should say "signals...".] The consequences are undefined
if the unsigned decimal integer is non-zero and number of objects supplied before the closing
) is zero. For example,

#(abcccc)
#6(a b ccc c)
#6(a b ¢)

#6(a b c c)

all mean the same thing: a vector of length 6 with elements a, b, and four occurrences
of c. Other examples follow:

#(a b ¢c) ;A vector of length 3
#(2 3 57 11 13 17 19 23 29 31 37 41 43 47)
;A vector containing the primes below 50
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#0O ;An empty vector
The notation #() denotes an empty wvector, as does #0().

For information on how the Lisp printer prints vectors, see (undefined) [Printing
Strings], page (undefined), (undefined) [Printing Bit Vectors|, page (undefined), or
(undefined) [Printing Other Vectors|, page (undefined).

2.4.8.4 Sharpsign Asterisk
Syntax: #*<<bits>>

A simple bit vector is constructed containing the indicated bits (0’s and 1’s), where the
leftmost bit has index zero and the subsequent bits have increasing indices.

Syntax: #<<n>>*<<bits>>

With an argument n, the vector to be created is of length n. If the number of bits is less
than n but greater than zero, the last bit is used to fill all remaining bits of the bit vector.

The notations #* and #0* each denote an empty bit vector.

Regardless of whether the optional numeric argument n is provided, the token that
follows the asterisk is delimited by a normal token delimiter. However, (unless the value
of *read-suppress* is true) an error of type reader-error is signaled if that token is not
composed entirely of 0’s and 1’s, or if n was supplied and the token is composed of more
than n bits, or if n is greater than one, but no bits were specified. Neither a single escape
nor a multiple escape is permitted in this token.

For information on how the Lisp printer prints bit vectors, see (undefined) [Printing Bit
Vectors], page (undefined).

2.4.8.5 Examples of Sharpsign Asterisk
For example,

#x101111
#6+x101111
#6%101
#6%1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1.
For example:

#x ;An empty bit-vector

2.4.8.6 Sharpsign Colon
Syntax: #:<<symbol-name>>

#: introduces an uninterned symbol whose name is symbol-name. Every time this syntax
is encountered, a distinct uninterned symbol is created. The symbol-name must have the
syntax of a symbol with no package prefix.

For information on how the Lisp reader prints uninterned symbols, see (undefined) [Print-
ing Symbols], page (undefined).
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2.4.8.7 Sharpsign Dot

#.foo is read as the object resulting from the evaluation of the object represented by foo.
The evaluation is done during the read process, when the #. notation is encountered. The
#. syntax therefore performs a read-time evaluation of foo.

The normal effect of #. is inhibited when the value of *read-eval* is false.
In that situation, an error of type reader-error is signaled.

For an object that does not have a convenient printed representation, a form that com-
putes the object can be given using the #. notation.

2.4.8.8 Sharpsign B
#Brational reads rational in binary (radix 2). For example,

#B1101 = 13 ;1101_2
#b101/11 = 5/3

The consequences are undefined if the token immediately following the #B does not have
the syntax of a binary (i.e., radix 2) rational.

2.4.8.9 Sharpsign O

#0rational reads rational in octal (radix 8). For example,
#037/15 = 31/13
#0777 511
#0105 69 ;105_8

The consequences are undefined if the token immediately following the #0 does not have
the syntax of an octal (i.e., radix 8) rational.

2.4.8.10 Sharpsign X

#Xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A
through F (the lowercase letters a through f are also acceptable). For example,

#xFO0O 3840
#x105 261 ;1056_16

The consequences are undefined if the token immediately following the #X does not have
the syntax of a hexadecimal (i.e., radix 16) rational.

2.4.8.11 Sharpsign R
#nR

#radixRrational reads rational in radix radiz. radiz must consist of only digits that are
interpreted as an integer in decimal radix; its value must be between 2 and 36 (inclusive).
Only valid digits for the specified radix may be used.

For example, #3r102 is another way of writing 11 (decimal), and #11R32 is another way
of writing 35 (decimal). For radices larger than 10, letters of the alphabet are used in order
for the digits after 9. No alternate # notation exists for the decimal radix since a decimal
point suffices.

Figure 2-20 contains examples of the use of #B, #0, #X, and #R.
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#2r11010101 ;Another way of writing 213 decimal
#b11010101 ;Ditto
#b+11010101 ;Ditto

#0325 ;Ditto, in octal radix

#xD5 ;Ditto, in hexadecimal radix
#16r+D5 ;Ditto

#0-300 ;Decimal -192, written in base 8

#3r-21010 ;Same thing in base 3
#25R-7H ;Same thing in base 25
#xACCEDED ;181202413, in hexadecimal radix

Figure 2-20: Radix Indicator Example

The consequences are undefined if the token immediately following the #nR does not
have the syntax of a rational in radix n.

2.4.8.12 Sharpsign C
#C reads a following object, which must be a list of length two whose elements are both
reals. These reals denote, respectively, the real and imaginary parts of a compler number.

If the two parts as notated are not of the same data type, then they are converted
according to the rules of floating-point contagion described in (undefined) [Contagion in
Numeric Operations|, page (undefined).

#C(real imag) is equivalent to #.(complex (quote real) (quote imag)), except
that #C is not affected by *read-eval*. See the function complex.

Figure 2-21 contains examples of the use of #C.

#C(3.0s1 2.0s-1) ;A complexr with small float parts.

#C(5 -3) ;A “Gaussian integer”
#C(5/3 7.0) ;Will be converted internally to #C(1.66666 7.0)
#C(0 1) ;The imaginary unit; that is, i.

Figure 2-21: Complex Number Example

For further information, see (undefined) [Printing Complexes], page (undefined), and
(undefined) [Syntax of a Complex], page (undefined).

2.4.8.13 Sharpsign A
#nA

#nAobject constructs an mn-dimensional array, using object as the value of the
:initial-contents argument to make-array.

For example, #2A((0 1 5) (foo 2 (hot dog))) represents a 2-by-3 matrix:
0 1 5
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foo 2 (hot dog)

In contrast, #1A((0 1 5) (foo 2 (hot dog))) represents a wvector of length 2 whose
elements are lists:

(0 1 5) (foo 2 (hot dog))

#0A((0 1 5) (foo 2 (hot dog))) represents a zero-dimensional array whose sole ele-
ment is a list:

((0 1 5) (foo 2 (hot dog)))

#0A foo represents a zero-dimensional array whose sole element is the symbol foo. The
notation #1A foo is not valid because foo is not a sequence.

If some dimension of the array whose representation is being parsed is found to be 0, all
dimensions to the right (i.e., the higher numbered dimensions) are also considered to be 0.

For information on how the Lisp printer prints arrays, see (undefined) [Printing Strings|,
page (undefined), (undefined) [Printing Bit Vectors], page (undefined), (undefined) [Printing
Other Vectors], page (undefined), or (undefined) [Printing Other Arrays], page (undefined).

2.4.8.14 Sharpsign S

#s(name slotl valuel slot2 value2 ...) denotes a structure. This is valid only if name
is the name of a structure type already defined by defstruct and if the structure type has
a standard constructor function. Let ¢m stand for the name of this constructor function;
then this syntax is equivalent to

#.(cm keywordl ’valuel keyword2 ’value2 ...)
where each keywordj is the result of computing
(intern (string slotj) (find-package ’keyword))

The net effect is that the constructor function is called with the specified slots having
the specified values.

(This coercion feature is deprecated; in the future, keyword names will be taken in the
package they are read in, so symbols that are actually in the KEYWORD package should be
used if that is what is desired.)

Whatever object the constructor function returns is returned by the #S syntax.

For information on how the Lisp printer prints structures, see (undefined) [Printing
Structures|, page (undefined).

2.4.8.15 Sharpsign P

#P reads a following object, which must be a string.

#P<<expression>> is equivalent to #. (parse-namestring ’<<expression>>), except
that #P is not affected by *read-eval*.

For information on how the Lisp printer prints pathnames, see (undefined) [Printing
Pathnames], page (undefined).

2.4.8.16 Sharpsign Equal-Sign
#n=

#n=object reads as whatever object has object as its printed representation. However,
that object is labeled by n, a required unsigned decimal integer, for possible reference by
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the syntax #n#. The scope of the label is the expression being read by the outermost call
to read; within this expression, the same label may not appear twice.

2.4.8.17 Sharpsign Sharpsign
#n#

#n#, where n is a required unsigned decimal integer, provides a reference to some object
labeled by #n=; that is, #n# represents a pointer to the same (eq) object labeled by #n=.
For example, a structure created in the variable y by this code:

(setq x (list ’p ’q@))
(setq y (List (1list ’a ’b) x ’foo x))
(rplacd (last y) (cdr y))

could be represented in this way:
((a b) . #1=(#2=(p q) foo #2# . #1#))

Without this notation, but with *print-length* set to 10 and *print-circle* set to nil,
the structure would print in this way:

((ab) (pq foo (pq (pq foo (pq (pq foo (pq ...)

A reference #n# may only occur after a label #n=; forward references are not permitted.
The reference may not appear as the labeled object itself (that is, #n=#n#) may not be
written because the object labeled by #n= is not well defined in this case.

2.4.8.18 Sharpsign Plus

#+ provides a read-time conditionalization facility; the syntax is #+test expression. If
the feature expression test succeeds, then this textual notation represents an object whose
printed representation is expression. If the feature expression test fails, then this textual
notation is treated as whitespace_2; that is, it is as if the “#+ test expression” did not appear
and only a space appeared in its place.

For a detailed description of success and failure in feature expressions, see (undefined)
[Feature Expressions|, page (undefined).

#+ operates by first reading the feature erpression and then skipping over the form if
the feature expression fails.

While reading the test, the current package is the KEYWORD package.

Skipping over the form is accomplished by binding *read-suppress* to true and then
calling read.

For examples, see (undefined) [Examples of Feature Expressions|, page (undefined).

2.4.8.19 Sharpsign Minus
#- is like #+ except that it skips the expression if the test succeeds; that is,

#-test expression = #+(not test) expression

For examples, see (undefined) [Examples of Feature Expressions|, page (undefined).

2.4.8.20 Sharpsign Vertical-Bar

#|...|#is treated as a comment by the reader. It must be balanced with respect to other
occurrences of #| and |#, but otherwise may contain any characters whatsoever.



72

ANSI and GNU Common Lisp Document

2.4.8.21 Examples of Sharpsign Vertical-Bar

The following are some examples that exploit the #| ... |# notation:

555
555
555
5505

39

In this example, some debugging code is commented out with #|...|#
Note that this kind of comment can occur in the middle of a line
(because a delimiter marks where the end of the comment occurs)
where a semicolon comment can only occur at the end of a line
(because it comments out the rest of the line).

(defun add3 (n) #|(format t ""&Adding 3 to “D." n)|# (+ n 3))

39

39

39

The examples that follow show issues related to #| ... |# nesting.

In this first example, #| and |# always occur properly paired,
so nesting works naturally.

(defun mention-fun-fact-1a ()

=

(format t "CL uses ; and #/|...|# in comments."))
MENTION-FUN-FACT-1A

(mention-fun-fact-1a)

| >

=
#1

CL uses ; and #|...|# in comments.
NIL
(defun mention-fun-fact-1b ()
(format t "CL uses ; and #/|...|# in comments.")) |#

(fboundp ’mention-fun-fact-1b) = NIL

555
555
555
555
555
555

39

In this example, vertical-bar followed by sharpsign needed to appear
in a string without any matching sharpsign followed by vertical-bar
having preceded this. To compensate, the programmer has included a
slash separating the two characters. In case 2a, the slash is

; unnecessary but harmless, but in case 2b, the slash is critical to

allowing the outer #| ... |# pair match. If the slash were not present,|]
the outer comment would terminate prematurely.

(defun mention-fun-fact-2a ()

=

(format t "Don’t use |\# unmatched or you’ll get in trouble!"))
MENTION-FUN-FACT-2A

(mention-fun-fact-2a)
|> Don’t use |# unmatched or you’ll get in trouble!

=
#1

NIL
(defun mention-fun-fact-2b ()
(format t "Don’t use |\# unmatched or you’ll get in trouble!") |#

(fboundp ’mention-fun-fact-2b) = NIL

555
555
555
555

29

In this example, the programmer attacks the mismatch problem in a
different way. The sharpsign vertical bar in the comment is not needed]]
for the correct parsing of the program normally (as in case 3a), but
becomes important to avoid premature termination of a comment when suchf]
a program is commented out (as in case 3b).

(defun mention-fun-fact-3a () ; #]|
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(format t "Don’t use |# unmatched or you’ll get in trouble!"))
= MENTION-FUN-FACT-3A
(mention-fun-fact-3a)
|> Don’t use |# unmatched or you’ll get in trouble!
= NIL
#]
(defun mention-fun-fact-3b () ; #]|
(format t "Don’t use |# unmatched or you’ll get in trouble!"))
|#
(fboundp ’mention-fun-fact-3b) = NIL

2.4.8.22 Notes about Style for Sharpsign Vertical-Bar

Some text editors that purport to understand Lisp syntax treat any | ... | as balanced pairs
that cannot nest (as if they were just balanced pairs of the multiple escapes used in notating
certain symbols). To compensate for this deficiency, some programmers use the notation
#l11...#]...11#...]|#instead of #|...#|...|#...|#. Note that this alternate usage is
not a different reader macro; it merely exploits the fact that the additional vertical-bars
occur within the comment in a way that tricks certain text editor into better supporting
nested comments. As such, one might sometimes see code like:

#11 (+ #1 3 |I1# 45) ||#
Such code is equivalent to:
#| (+ #| 3 |# 4 5) |#

2.4.8.23 Sharpsign Less-Than-Sign

#< is not valid reader syntax. The Lisp reader will signal an error
of type reader-error

on encountering #<. This syntax is typically used in the printed representation of objects
that cannot be read back in.

2.4.8.24 Sharpsign Whitespace

# followed immediately by whitespace_1 is not valid reader syntax. The Lisp reader will
signal an error of type reader-error if it encounters the reader macro notation #<Newline>
or #<Space>.

2.4.8.25 Sharpsign Right-Parenthesis

This is not valid reader syntax.
The Lisp reader will signal an error
of type reader-error

upon encountering #).

2.4.9 Re-Reading Abbreviated Expressions

Note that the Lisp reader will generally signal an error of type reader-error when reading
an expression_2 that has been abbreviated because of length or level limits (see *print-
level*, *print-length*, and *print-lines*) due to restrictions on “..”, “...” “#” followed
by whitespace_1, and “#)”.
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3 Evaluation and Compilation

3.1 Evaluation

Ezecution of code can be accomplished by a variety of means ranging from direct inter-
pretation of a form representing a program to invocation of compiled code produced by a
compiler.

Evaluation is the process by which a program is ezecuted in Common Lisp. The mecha-
nism of evaluation is manifested both implicitly through the effect of the Lisp read-eval-print
loop, and explicitly through the presence of the functions eval, compile, compile-file, and
load. Any of these facilities might share the same execution strategy, or each might use a
different one.

The behavior of a conforming program processed by eval and by compile-file might differ;
see (undefined) [Semantic Constraints], page (undefined).

Evaluation can be understood in terms of a model in which an interpreter recursively
traverses a form performing each step of the computation as it goes. This model, which de-
scribes the semantics of Common Lisp programs, is described in (undefined) [The Evaluation
Model], page (undefined).

3.1.1 Introduction to Environments

A binding is an association between a mame and that which the name denotes. Bindings
are established in a lexical environment or a dynamic environment by particular special
operators.

An environment is a set of bindings and other information used during evaluation (e.g.,
to associate meanings with names).

Bindings in an environment are partitioned into namespaces . A single name can simul-
taneously have more than one associated binding per environment, but can have only one
associated binding per namespace.

3.1.1.1 The Global Environment

The global environment is that part of an environment that contains bindings with both
indefinite scope and indefinite extent. The global environment contains, among other things,
the following:

* bindings of dynamic variables and constant variables.
* bindings of functions, macros, and special operators.
*

bindings of compiler macros.
* bindings of type and class names

* information about proclamations.
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3.1.1.2 Dynamic Environments

A dynamic environment for evaluation is that part of an environment that contains bindings
whose duration is bounded by points of establishment and disestablishment within the
execution of the form that established the binding. A dynamic environment contains,
among other things, the following:

* bindings for dynamic variables.

* information about active catch tags.

* information about exit points established by unwind-protect.
* information about active handlers and restarts.

The dynamic environment that is active at any given point in the execution of a program
is referred to by definite reference as “the current dynamic environment,” or sometimes as
just “the dynamic environment.”

Within a given namespace, a name is said to be bound in a dynamic environment if
there is a binding associated with its name in the dynamic environment or, if not, there is
a binding associated with its name in the global environment.

3.1.1.3 Lexical Environments

A lexical environment for evaluation at some position in a program is that part of the
environment that contains information having lexical scope within the forms containing
that position. A lezical environment contains, among other things, the following:

* bindings of lexical variables and symbol macros.

* bindings of functions and macros. (Implicit in this is information about those
compiler macros that are locally disabled.)

* bindings of block tags.
* bindings of go tags.
* information about declarations.

The lexical environment that is active at any given position in a program being seman-
tically processed is referred to by definite reference as “the current lexical environment,” or
sometimes as just “the lexical environment.”

Within a given namespace, a name is said to be bound in a lexical environment if there
is a binding associated with its name in the lexical environment or, if not, there is a binding
associated with its name in the global environment.

3.1.1.4 The Null Lexical Environment
The null lexical environment is equivalent to the global environment.

Although in general the representation of an environment object is implementation-
dependent, nil can be used in any situation where an environment object is called for in
order to denote the null lexical environment.
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3.1.1.5 Environment Objects

Some operators make use of an object, called an environment object , that represents the
set of lexical bindings needed to perform semantic analysis on a form in a given lexical
environment. The set of bindings in an environment object may be a subset of the bindings
that would be needed to actually perform an ewvaluation; for example, values associated
with variable names and function names in the corresponding lexical environment might
not be available in an environment object.

The type and nature of an environment object is implementation-dependent. The values
of environment parameters to macro functions are examples of environment objects.

The object nil when used as an environment object denotes the null lexical environment;
see (undefined) [The Null Lexical Environment], page (undefined).

3.1.2 The Evaluation Model

A Common Lisp system evaluates forms with respect to lexical, dynamic, and global enwi-
ronments. The following sections describe the components of the Common Lisp evaluation
model.

3.1.2.1 Form Evaluation

Forms fall into three categories: symbols, conses, and self-evaluating objects. The following
sections explain these categories.

3.1.2.2 Symbols as Forms

If a form is a symbol, then it is either a symbol macro or a variable.

The symbol names a symbol macro if there is a binding of the symbol as a symbol macro
in the current lexical environment

(see define-symbol-macro and symbol-macrolet).

If the symbol is a symbol macro, its expansion function is obtained. The expansion
function is a function of two arguments, and is invoked by calling the macroexpand hook
with the expansion function as its first argument, the symbol as its second argument, and an
environment object (corresponding to the current lexical environment) as its third argument.
The macroexpand hook, in turn, calls the expansion function with the form as its first
argument and the environment as its second argument. The value of the expansion function,
which is passed through by the macroexpand hook, is a form. This resulting form is processed
in place of the original symbol.

If a form is a symbol that is not a symbol macro, then it is the name of a variable, and
the value of that variable is returned. There are three kinds of variables: lexical variables,
dynamic variables, and constant variables. A wariable can store one object. The main
operations on a variable are to read_1 and to write_1 its value.

An error of type unbound-variable should be signaled if an unbound variable is referenced.

Non-constant variables can be assigned by using setq or bound_3 by using let. Figure 3-1
lists some defined names that are applicable to assigning, binding, and defining variables.
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boundp let progv
defconstant let* psetq
defparameter makunbound set

defvar multiple-value-bind setq

lambda multiple-value-setq symbol-value

Figure 3—1: Some Defined Names Applicable to Variables

The following is a description of each kind of variable.

3.1.2.3 Lexical Variables

A lezical variable is a variable that can be referenced only within the lexical scope of the
form that establishes that variable; lexical variables have lexical scope. Each time a form
creates a lexical binding of a variable, a fresh binding is established.

Within the scope of a binding for a lexical variable name, uses of that name as a variable
are considered to be references to that binding except where the variable is shadowed_2 by
a form that establishes a fresh binding for that variable name, or by a form that locally
declares the name special.

A lezical variable always has a value. There is no operator that introduces a binding for
a lexical variable without giving it an initial value, nor is there any operator that can make
a lexical variable be unbound.

Bindings of lexical variables are found in the lexical environment.

3.1.2.4 Dynamic Variables

A wvariable is a dynamic variable if one of the following conditions hold:
* It is locally declared or globally proclaimed special.

* It occurs textually within a form that creates a dynamic binding for a variable
of the same name, and the binding is not shadowed_2 by a form that creates a
lezical binding of the same variable name.

A dynamic variable can be referenced at any time in any program; there is no textual
limitation on references to dynamic variables. At any given time, all dynamic variables
with a given name refer to exactly one binding, either in the dynamic environment or in
the global environment.

The wvalue part of the binding for a dynamic variable might be empty; in this case, the
dynamic variable is said to have no wvalue, or to be unbound. A dynamic variable can be
made unbound by using makunbound.

The effect of binding a dynamic variable is to create a new binding to which all references
to that dynamic variable in any program refer for the duration of the evaluation of the form
that creates the dynamic binding.

A dynamic variable can be referenced outside the dynamic extent of a form that binds
it. Such a wvariable is sometimes called a “global variable” but is still in all respects just a
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dynamic variable whose binding happens to exist in the global environment rather than in
some dynamic environment.

A dynamic variable is unbound unless and until explicitly assigned a value, except for
those variables whose initial value is defined in this specification or by an implementation.

3.1.2.5 Constant Variables

Certain variables, called constant variables, are reserved as “named constants.” The con-
sequences are undefined if an attempt is made to assign a value to, or create a binding
for a constant variable, except that a ‘compatible’ redefinition of a constant variable using
defconstant is permitted; see the macro defconstant.

”

Keywords, symbols defined by Common Lisp or the implementation as constant (such as
nil, t, and pi), and symbols declared as constant using defconstant are constant variables.

3.1.2.6 Symbols Naming Both Lexical and Dynamic Variables

The same symbol can name both a lexical variable and a dynamic variable, but never in the
same lezical environment.

In the following example, the symbol x is used, at different times, as the name of a lexical
variable and as the name of a dynamic variable.

(let ((x 1)) ;Binds a special variable X
(declare (special x))
(let ((x 2)) ;Binds a lexical variable X
(+ x ;Reads a lexical variable X
(locally (declare (special x))
x)))) ;Reads a special variable X
= 3

3.1.2.7 Conses as Forms
A cons that is used as a form is called a compound form.

If the car of that compound form is a symbol, that symbol is the name of an operator,
and the form is either a special form, a macro form, or a function form, depending on
the function binding of the operator in the current lexical environment. If the operator is
neither a special operator nor a macro name, it is assumed to be a function name (even if
there is no definition for such a function).

If the car of the compound form is not a symbol, then that car must be a lambda
expression, in which case the compound form is a lambda form.

How a compound form is processed depends on whether it is classified as a special form,
a macro form, a function form, or a lambda form.

3.1.2.8 Special Forms

A special form is a form with special syntax, special evaluation rules, or both, possibly
manipulating the evaluation environment, control flow, or both. A special operator has
access to the current lexical environment and the current dynamic environment. Each
special operator defines the manner in which its subexpressions are treated—which are
forms, which are special syntax, etc.
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Some special operators create new lexical or dynamic environments for use during the
evaluation of subforms of the special form. For example, block creates a new lezical envi-
ronment that is the same as the one in force at the point of evaluation of the block form
with the addition of a binding of the block name to an exit point from the block.

The set of special operator names is fixed in Common Lisp; no way is provided for the
user to define a special operator. Figure 3-2 lists all of the Common Lisp symbols that have
definitions as special operators.

block let* return-from
catch load-time-value setq
eval-when locally symbol-macrolet
flet macrolet tagbody
function multiple-value-call the

go multiple-value-progl throw

if progn unwind-protect
labels  progv

let quote

Figure 3-2: Common Lisp Special Operators

3.1.2.9 Macro Forms

If the operator names a macro, its associated macro function is applied to the entire form
and the result of that application is used in place of the original form.

Specifically, a symbol names a macro in a given lexical environment if macro-function
is true of the symbol and that environment. The function returned by macro-function is
a function of two arguments, called the expansion function. The expansion function is
invoked by calling the macroexpand hook with the expansion function as its first argument,
the entire macro form as its second argument, and an environment object (corresponding
to the current lexical environment) as its third argument. The macroezpand hook, in turn,
calls the expansion function with the form as its first argument and the environment as
its second argument. The value of the expansion function, which is passed through by the
macroexpand hook, is a form. The returned form is evaluated in place of the original form.

The consequences are undefined if a macro function destructively modifies any part of
its form argument.

A macro name is not a function designator, and cannot be used as the function argument
to functions such as apply, funcall, or map.

An implementation is free to implement a Common Lisp special operator as a macro.
An implementation is free to implement any macro operator as a special operator, but only
if an equivalent definition of the macro is also provided.

Figure 3-3 lists some defined names that are applicable to macros.
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*macroexpand-hook* macro-function macroexpand-1
defmacro macroexpand  macrolet

Figure 3-3: Defined names applicable to macros

3.1.2.10 Function Forms

If the operator is a symbol naming a function, the form represents a function form, and the
cdr of the list contains the forms which when evaluated will supply the arguments passed
to the function.

When a function name is not defined, an error of type undefined-function should be
signaled at run time; see (undefined) [Semantic Constraints|, page (undefined).

A function form is evaluated as follows:

The subforms in the cdr of the original form are evaluated in left-to-right order in
the current lexical and dynamic environments. The primary value of each such evaluation
becomes an argument to the named function; any additional values returned by the subforms
are discarded.

The functional value of the operator is retrieved from the lexical environment, and that
function is invoked with the indicated arguments.

Although the order of evaluation of the argument subforms themselves is strictly left-to-
right, it is not specified whether the definition of the operator in a function form is looked
up before the evaluation of the argument subforms, after the evaluation of the argument
subforms, or between the evaluation of any two argument subforms if there is more than
one such argument subform. For example, the following might return 23 or~24.

(defun foo (x) (+ x 3))
(defun bar () (setf (symbol-function ’foo) #’(lambda (x) (+ x 4))))
(foo (progn (bar) 20))

A binding for a function name can be established in one of several ways. A binding for a
function name in the global environment can be established by defun, setf of fdefinition, setf
of symbol-function, ensure-generic-function, defmethod (implicitly, due to ensure-generic-
function), or defgeneric. A binding for a function name in the lexical environment can be
established by flet or labels.

Figure 3—4 lists some defined names that are applicable to functions.
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apply fdefinition mapcan
call-arguments-limit flet mapcar
complement fmakunbound mapcon
constantly funcall mapl

defgeneric function  maplist

defmethod functionp  multiple-value-call
defun labels reduce

fboundp map symbol-function

Figure 3—4: Some function-related defined names

3.1.2.11 Lambda Forms

A lambda form is similar to a function form, except that the function name is replaced by
a lambda expression.

A lambda form is equivalent to using funcall of a lexical closure of the lambda expression
on the given arguments. (In practice, some compilers are more likely to produce inline
code for a lambda form than for an arbitrary named function that has been declared inline;
however, such a difference is not semantic.)

For further information, see (undefined) [Lambda Expressions|, page (undefined).

3.1.2.12 Self-Evaluating Objects

A form that is neither a symbol nor a cons is defined to be a self-evaluating object. Evalu-
ating such an object yields the same object as a result.

Certain specific symbols and conses might also happen to be “self-evaluating” but only
as a special case of a more general set of rules for the evaluation of symbols and conses;
such objects are not considered to be self-evaluating objects.

The consequences are undefined if literal objects (including self-evaluating objects) are
destructively modified.

3.1.2.13 Examples of Self-Evaluating Objects

Numbers, pathnames, and arrays are examples of self-evaluating objects.

3= 3

#c(2/3 5/8) = #C(2/3 5/8)

#p"S: [BILL]OTHELLO.TXT" = #P"S:[BILL]OTHELLO.TXT"
#(abc) = #(A B O

"fred smith" = "fred smith"

3.1.3 Lambda Expressions

In a lambda expression, the body is evaluated in a lexical environment that is formed by
adding the binding of each parameter in the lambda list with the corresponding value from
the arguments to the current lexical environment.
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For further discussion of how bindings are established based on the lambda list, see (un-
defined) [Lambda Lists], page (undefined).

The body of a lambda expression is an implicit progn; the values it returns are returned
by the lambda expression.

3.1.4 Closures and Lexical Binding

A lexical closure is a function that can refer to and alter the values of lexical bindings
established by binding forms that textually include the function definition.

Consider this code, where x is not declared special:

(defun two-fums (x)
(1ist (function (lambda () x))
(function (lambda (y) (setq x y)))))
(setq funs (two-funs 6))
(funcall (car fumns)) = 6
(funcall (cadr funs) 43) = 43
(funcall (car fums)) = 43

The function special form coerces a lambda expression into a closure in which the lexical
environment in effect when the special form is evaluated is captured along with the lambda
exPTession.

The function two-funs returns a list of two functions, each of which refers to the binding
of the variable x created on entry to the function two-funs when it was called. This variable
has the value 6 initially, but setq can alter this binding. The lezical closure created for the
first lambda expression does not “snapshot” the value 6 for x when the closure is created;
rather it captures the binding of x. The second function can be used to alter the value in
the same (captured) binding (to 43, in the example), and this altered variable binding then
affects the value returned by the first function.

In situations where a closure of a lambda expression over the same set of bindings may be
produced more than once, the various resulting closures may or may not be identical, at the
discretion of the implementation. That is, two functions that are behaviorally indistinguish-
able might or might not be identical. Two functions that are behaviorally distinguishable
are distinct. For example:

(let ((x 5) (funs ’()))
(dotimes (j 10)
(push #’ (lambda (z)
(if (null z) (setq x 0) (+ x 2)))
funs))
funs)

The result of the above form is a list of ten closures. Each requires only the binding of
x. It is the same binding in each case, but the ten closure objects might or might not be
identical. On the other hand, the result of the form

(let ((funs *(0)))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)
(if (null z) (setq x 0) (+ x 2))))
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funs)))
funs)

is also a list of ten closures. However, in this case no two of the closure objects can be
tdentical because each closure is closed over a distinct binding of x, and these bindings can
be behaviorally distinguished because of the use of setq.

The result of the form

(let ((funs > ()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) (+ x 2)))
funs)))
funs)

is a list of ten closure objects that might or might not be identical. A different binding
of x is involved for each closure, but the bindings cannot be distinguished because their
values are the same and immutable (there being no occurrence of setq on x). A compiler
could internally transform the form to

(let ((funs *()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z)))
funs))
funs)

where the closures may be identical.

It is possible that a closure does not close over any variable bindings. In the code
fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside object. In
this case, the same closure might be returned for all evaluations of the function form.

3.1.5 Shadowing

If two forms that establish lexical bindings with the same name N are textually nested,
then references to N within the inner form refer to the binding established by the inner
form; the inner binding for N shadows the outer binding for N. Outside the inner form but
inside the outer one, references to N refer to the binding established by the outer form. For
example:
(defun test (x z)
(let ((z (x x 2)))
(print z))

z)

The binding of the variable z by let shadows the parameter binding for the function
test. The reference to the variable z in the print form refers to the let binding. The
reference to z at the end of the function test refers to the parameter named z.

Constructs that are lexically scoped act as if new names were generated for each object
on each execution. Therefore, dynamic shadowing cannot occur. For example:

(defun contorted-example (f g x)



Chapter 3: Evaluation and Compilation 85

(if (=x 0)
(funcall f)
(block here
(+ 5 (contorted-example g
#’ (lambda () (return-from here 4))
=x 1NN

Consider the call (contorted-example nil nil 2). This produces 4. During the
course of execution, there are three calls to contorted-example, interleaved with two
blocks:

(contorted-example nil nil 2)
(block here_1 ...)
(contorted-example nil #’(lambda () (return-from here_1 4)) 1)
(block here_2 ...)
(contorted-example #’(lambda () (return-from here_1 4))
#’ (lambda () (return-from here_2 4))
0)
(funcall f)
where f = #’(lambda () (return-from here_1 4))
(return-from here_1 4)

At the time the funcall is executed there are two block exit points outstanding, each
apparently named here. The return-from form executed as a result of the funcall opera-
tion refers to the outer outstanding ezit point (here_1), not the inner one (here_2). It refers
to that ezit point textually visible at the point of execution of function (here abbreviated by
the #’ syntax) that resulted in creation of the function object actually invoked by funcall.

If, in this example, one were to change the (funcall f) to (funcall g), then the value
of the call (contorted-example nil nil 2) would be 9. The value would change because
funcall would cause the execution of (return-from here_2 4), thereby causing a return
from the inner exit point (here_2). When that occurs, the value 4 is returned from the
middle invocation of contorted-example, 5 is added to that to get 9, and that value is
returned from the outer block and the outermost call to contorted-example. The point is
that the choice of exit point returned from has nothing to do with its being innermost or
outermost; rather, it depends on the lexical environment that is packaged up with a lambda
expression when function is executed.

3.1.6 Extent

Contorted-example works only because the function named by f is invoked during the
extent of the exit point. Once the flow of execution has left the block, the exit point is
disestablished. For example:

(defun invalid-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (invalid-example) to produce 5 by the following incorrect
reasoning: let binds y to the value of block; this value is a function resulting from the lambda
expression. Because y is not a number, it is invoked on the value 5. The return-from should
then return this value from the exit point named here, thereby exiting from the block again
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and giving y the value 5 which, being a number, is then returned as the value of the call to
invalid-example.

The argument fails only because exit points have dynamic extent. The argument is
correct up to the execution of return-from. The execution of return-from should signal
an error of type control-error, however, not because it cannot refer to the exit point, but
because it does correctly refer to an exit point and that exit point has been disestablished.

A reference by name to a dynamic exit point binding such as a catch tag refers to the most
recently established binding of that name that has not been disestablished. For example:

(defun funl (x)

(catch ’trap (+ 3 (fun2 x))))
(defun fun2 (y)

(catch ’trap (* 5 (fun3 y))))
(defun fun3 (z)

(throw ’trap z))

Consider the call (funl 7). The result is 10. At the time the throw is executed, there
are two outstanding catchers with the name trap: one established within procedure funi,
and the other within procedure fun2. The latter is the more recent, and so the value 7 is
returned from catch in fun2. Viewed from within fun3, the catch in fun2 shadows the one
in funl. Had fun2 been defined as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two ezit points would have different names, and therefore the one in fun1 would
not be shadowed. The result would then have been 7.

3.1.7 Return Values

Ordinarily the result of calling a function is a single object. Sometimes, however, it is
convenient for a function to compute several objects and return them.

In order to receive other than exactly one value from a form, one of several special forms
or macros must be used to request those values. If a form produces multiple values which
were not requested in this way, then the first value is given to the caller and all others are
discarded; if the form produces zero values, then the caller receives nil as a value.

Figure 3-5 lists some operators for receiving multiple values_2. These operators can be
used to specify one or more forms to evaluate and where to put the values returned by
those forms.

multiple-value-bind multiple-value-progl return-from
multiple-value-call multiple-value-setq throw
multiple-value-list return

Figure 3-5: Some operators applicable to receiving multiple values

The function values can produce multiple values_2. (values) returns zero values;
(values form) returns the primary value returned by form; (values forml form2) re-
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turns two values, the primary value of formi1 and the primary value of form2; and so
on.

See multiple-values-limit and values-list.
3.2 Compilation

3.2.1 Compiler Terminology

The following terminology is used in this section.

The compiler is a utility that translates code into an implementation-dependent form
that might be represented or executed efficiently. The term compiler refers to both of the
functions compile and compile-file.

The term compiled code refers to objects representing compiled programs, such as objects
constructed by compile or by load when loading a compiled file.

The term implicit compilation refers to compilation performed during evaluation.

The term literal object refers to a quoted object or a self-evaluating object or an object
that is a substructure of such an object. A constant variable is not itself a literal object.

The term coalesce is defined as follows. Suppose A and B are two literal constants in the
source code, and that A’ and B’ are the corresponding objects in the compiled code. If A’
and B’ are eql but A and B are not eql, then it is said that A and B have been coalesced by
the compiler.

The term minimal compilation refers to actions the compiler must take at compile time.
These actions are specified in (undefined) [Compilation Semantics|, page (undefined).

The verb process refers to performing minimal compilation, determining the time of
evaluation for a form, and possibly evaluating that form (if required).

The term further compilation refers to implementation-dependent compilation beyond
minimal compilation. That is, processing does not imply complete compilation. Block com-
pilation and generation of machine-specific instructions are examples of further compilation.
Further compilation is permitted to take place at run time.

Four different environments relevant to compilation are distinguished: the startup en-
vironment, the compilation environment, the evaluation environment, and the run-time
environment.

The startup environment is the environment of the Lisp image from which the compiler
was invoked.

The compilation environment is maintained by the compiler and is used to hold defini-
tions and declarations to be used internally by the compiler. Only those parts of a definition
needed for correct compilation are saved. The compilation environment is used as the en-
vironment argument to macro expanders called by the compiler. It is unspecified whether
a definition available in the compilation environment can be used in an evaluation initiated
in the startup environment or evaluation environment.

The evaluation environment is a run-time environment in which macro expanders and
code specified by eval-when to be evaluated are evaluated. All evaluations initiated by the
compiler take place in the evaluation environment.

The run-time environment is the environment in which the program being compiled will
be executed.
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The compilation environment inherits from the evaluation environment, and the compi-
lation environment and evaluation environment might be identical. The evaluation environ-
ment inherits from the startup environment, and the startup environment and evaluation
environment might be identical.

The term compile time refers to the duration of time that the compiler is processing
source code. At compile time, only the compilation environment and the evaluation enwvi-
ronment are available.

The term compile-time definition refers to a definition in the compilation environment.
For example, when compiling a file, the definition of a function might be retained in the
compilation environment if it is declared inline. This definition might not be available in
the evaluation environment.

The term run time refers to the duration of time that the loader is loading compiled
code or compiled code is being executed. At run time, only the run-time environment is
available.

The term run-time definition refers to a definition in the run-time environment.

The term run-time compiler refers to the function compile or implicit compilation, for
which the compilation and run-time environments are maintained in the same Lisp im-
age. Note that when the run-time compiler is used, the run-time environment and startup
environment are the same.

3.2.2 Compilation Semantics

Conceptually, compilation is a process that traverses code, performs certain kinds of syntac-
tic and semantic analyses using information (such as proclamations and macro definitions)
present in the compilation environment, and produces equivalent, possibly more efficient
code.

3.2.2.1 Compiler Macros

A compiler macro can be defined for a name that also names a function or macro. That is,
it is possible for a function name to name both a function and a compiler macro.

A function name names a compiler macro if compiler-macro-function is true of the
function name in the lexical environment in which it appears. Creating a lezical binding
for the function name not only creates a new local function or macro definition, but also
shadows_2 the compiler macro.

The function returned by compiler-macro-function is a function of two arguments, called
the expansion function. To expand a compiler macro, the expansion function is invoked by
calling the macroexpand hook with the expansion function as its first argument, the entire
compiler macro form as its second argument, and the current compilation environment
(or with the current lexical environment, if the form is being processed by something other
than compile-file) as its third argument. The macroezpand hook, in turn, calls the expansion
function with the form as its first argument and the environment as its second argument.
The return value from the expansion function, which is passed through by the macroexpand
hook, might either be the same form, or else a form that can, at the discretion of the code
doing the expansion, be used in place of the original form.
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*macroexpand-hook* compiler-macro-function define-compiler-macro

Figure 3—6: Defined names applicable to compiler macros

3.2.2.2 Purpose of Compiler Macros

The purpose of the compiler macro facility is to permit selective source code transformations
as optimization advice to the compiler. When a compound form is being processed (as by the
compiler), if the operator names a compiler macro then the compiler macro function may
be invoked on the form, and the resulting expansion recursively processed in preference to
performing the usual processing on the original form according to its normal interpretation
as a function form or macro form.

A compiler macro function, like a macro function, is a function of two arguments: the
entire call form and the environment. Unlike an ordinary macro function, a compiler macro
function can decline to provide an expansion merely by returning a value that is the same
as the original form. The consequences are undefined if a compiler macro function destruc-
tively modifies any part of its form argument.

The form passed to the compiler macro function can either be a list whose car is the
function name, or a list whose car is funcall and whose cadr is a list (function name);
note that this affects destructuring of the form argument by the compiler macro function.
define-compiler-macro arranges for destructuring of arguments to be performed correctly
for both possible formats.

When compile-file chooses to expand a top level form that is a compiler macro form, the
expansion is also treated as a top level form for the purposes of eval-when processing; see
(undefined) [Processing of Top Level Forms], page (undefined).

3.2.2.3 Naming of Compiler Macros
Compiler macros may be defined for function names that name macros as well as functions.

Compiler macro definitions are strictly global. There is no provision for defining local
compiler macros in the way that macrolet defines local macros. Lexical bindings of a
function name shadow any compiler macro definition associated with the name as well as
its global function or macro definition.

Note that the presence of a compiler macro definition does not affect the values returned
by

functions that access function definitions (e.g., fboundp) or macro definitions (e.g.,
macroexpand). Compiler macros are global, and the function compiler-macro-function is
sufficient to resolve their interaction with other lexical and global definitions.

3.2.2.4 When Compiler Macros Are Used

The presence of a compiler macro definition for a function or macro indicates that it is
desirable for the compiler to use the expansion of the compiler macro instead of the original
function form or macro form. However, no language processor (compiler, evaluator, or other
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code walker) is ever required to actually invoke compiler macro functions, or to make use
of the resulting expansion if it does invoke a compiler macro function.

When the compiler encounters a form during processing that represents a call to a
compiler macro name (that is not declared notinline), the compiler might expand the
compiler macro, and might use the expansion in place of the original form.

When eval encounters a form during processing that represents a call to a compiler
macro name (that is not declared notinline), eval might expand the compiler macro, and
might use the expansion in place of the original form.

There are two situations in which a compiler macro definition must not be applied by
any language processor:

* The global function name binding associated with the compiler macro is shad-
owed by a lexical binding of the function name.

* The function name has been declared or proclaimed notinline and the call form
appears within the scope of the declaration.

It is unspecified whether compiler macros are expanded or used in any other situations.

3.2.2.5 Notes about the Implementation of Compiler Macros

Although it is technically permissible, as described above, for eval to treat compiler macros
in the same situations as compiler might, this is not necessarily a good idea in interpreted
implementations.

Compiler macros exist for the purpose of trading compile-time speed for run-time speed.
Programmers who write compiler macros tend to assume that the compiler macros can take
more time than normal functions and macros in order to produce code which is especially
optimal for use at run time. Since eval in an interpreted implementation might perform
semantic analysis of the same form multiple times, it might be inefficient in general for the
implementation to choose to call compiler macros on every such evaluation.

Nevertheless, the decision about what to do in these situations is left to each implemen-
tation.

3.2.2.6 Minimal Compilation
Minimal compilation is defined as follows:

* All compiler macro calls appearing in the source code being compiled are ex-
panded, if at all, at compile time; they will not be expanded at run time.

* All macro and symbol macro calls appearing in the source code being compiled
are expanded at compile time in such a way that they will not be expanded
again at run time. macrolet

and symbol-macrolet
are effectively replaced by forms corresponding to their bodies in which calls
to macros are replaced by their expansions.

* The first argument in a load-time-value

form in source code processed by compile
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is evaluated at compile time; in source code processed by compile-file , the
compiler arranges for it to be evaluated at load time. In either case, the result
of the evaluation is remembered and used later as the value of the load-time-
value form at execution time.

3.2.2.7 Semantic Constraints

All conforming programs must obey the following constraints, which are designed to mini-
mize the observable differences between compiled and interpreted programs:

*

Definitions of any referenced macros must be present in the compilation envi-
ronment. Any form that is a list beginning with a symbol that does not name
a special operator or a macro defined in the compilation environment is treated
by the compiler as a function call.

Special proclamations for dynamic variables must be made in the compilation
environment. Any binding for which there is no special declaration or procla-
mation in the compilation environment is treated by the compiler as a lexical
binding.

The definition of a function that is defined and declared inline in the compilation
environment must be the same at run time.

Within a function named F, the compiler may (but is not required to) assume
that an apparent recursive call to a function named F refers to the same defini-
tion of F, unless that function has been declared notinline. The consequences
of redefining such a recursively defined function F while it is executing are
undefined.

A call within a file to a named function that is defined in the same file refers
to that function, unless that function has been declared notinline. The conse-
quences are unspecified if functions are redefined individually at run time or
multiply defined in the same file.

The argument syntax and number of return values for all functions whose ftype
is declared at compile time must remain the same at run time.

Constant variables defined in the compilation environment must have a similar
value at run time. A reference to a constant variable in source code is equivalent
to a reference to a literal object that is the value of the constant variable.

Type definitions made with deftype or defstruct in the compilation environment
must retain the same definition at run time. Classes defined by defclass in
the compilation environment must be defined at run time to have the same
superclasses and same metaclass.

This implies that subtype/supertype relationships of type specifiers must not
change between compile time and run time.

Type declarations present in the compilation environment must accurately de-
scribe the corresponding values at run time; otherwise, the consequences are
undefined. It is permissible for an unknown type to appear in a declaration at
compile time, though a warning might be signaled in such a case.
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* Except in the situations explicitly listed above, a function defined in the eval-
uation environment is permitted to have a different definition or a different
stgnature at run time, and the run-time definition prevails.

Conforming programs should not be written using any additional assumptions about
consistency between the run-time environment and the startup, evaluation, and compilation
environments.

Except where noted, when a compile-time and a run-time definition are different, one of
the following occurs at run time:

* an error of type error is signaled
* the compile-time definition prevails
* the run-time definition prevails

If the compiler processes a function form whose operator is not defined at compile time,
no error is signaled at compile time.

3.2.3 File Compilation

The function compile-file performs compilation of forms in a file following the rules specified
in (undefined) [Compilation Semantics|, page (undefined), and produces an output file that
can be loaded by using load.

Normally, the top level forms appearing in a file compiled with compile-file are evaluated
only when the resulting compiled file is loaded, and not when the file is compiled. However,
it is typically the case that some forms in the file need to be evaluated at compile time so
the remainder of the file can be read and compiled correctly.

The eval-when special form can be used to control whether a top level form is evaluated
at compile time, load time, or both. It is possible to specify any of three situations with eval-
when, denoted by the symbols :compile-toplevel, :load-toplevel, and :execute. For
top level eval-when forms, :compile-toplevel specifies that the compiler must evaluate
the body at compile time, and :load-toplevel specifies that the compiler must arrange
to evaluate the body at load time. For non-top level eval-when forms, :execute specifies
that the body must be executed in the run-time enwvironment.

The behavior of this form can be more precisely understood in terms of a model of how
compile-file processes forms in a file to be compiled. There are two processing modes, called
“not-compile-time” and “compile-time-too”.

Successive forms are read from the file by compile-file and processed in not-compile-time
mode; in this mode, compile-file arranges for forms to be evaluated only at load time and
not at compile time. When compile-file is in compile-time-too mode, forms are evaluated
both at compile time and load time.

3.2.3.1 Processing of Top Level Forms

Processing of top level forms in the file compiler is defined as follows:

1. If the form is a compiler macro form (not disabled by a notinline declaration),
the implementation might or might not choose to compute the compiler macro
expansion of the form and, having performed the expansion, might or might
not choose to process the result as a top level form in the same processing
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mode (compile-time-too or not-compile-time). If it declines to obtain or use
the expansion, it must process the original form.

2. If the form is a macro form, its macro expansion is computed and processed as
a top level form in the same processing mode (compile-time-too or not-compile-
time).

3. If the form is a progn form, each of its body forms is sequentially processed as

a top level form in the same processing mode.

4. If the form is a locally, macrolet, or symbol-macrolet, compile-file establishes
the appropriate bindings and processes the body forms as top level forms with
those bindings in effect in the same processing mode. (Note that this implies
that the lexical environment in which top level forms are processed is not nec-
essarily the null lezical environment.)

5. If the form is an eval-when form, it is handled according to Figure 3-7.
plus .5 fil \offinterlineskip

CT LT E Mode Action New Mode

Yes Yes — — Process compile-time-too
No Yes Yes CTT Process compile-time-too
No Yes Yes NCT Process not-compile-time
No Yes No Process not-compile-time
Yes No — — Evaluate —

No No Yes CTT Evaluate —

No No Yes NCT Discard —

No No No Discard

Figure 3-7: EVAL-WHEN processing

Column CT indicates whether :compile-toplevel is specified. Column LT
indicates whether :load-toplevel is specified. Column E indicates whether
:execute is specified. Column Mode indicates the processing mode; a dash
(—) indicates that the processing mode is not relevant.

The Action column specifies one of three actions:
Process: process the body as top level forms in the specified mode.

Evaluate: evaluate the body in the dynamic execution context of
the compiler, using the evaluation environment as the global envi-
ronment and the lexical environment in which the eval-when ap-
pears.

Discard: ignore the form.

The New Mode column indicates the new processing mode. A dash (—) indi-
cates the compiler remains in its current mode.

6. Otherwise, the form is a top level form that is not one of the special cases. In
compile-time-too mode, the compiler first evaluates the form in the evaluation
environment and then minimally compiles it. In not-compile-time mode, the
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form is simply minimally compiled. All subforms are treated as non-top-level
forms.

Note that top level forms are processed in the order in which they textually
appear in the file and that each top level form read by the compiler is processed
before the next is read. However, the order of processing (including macro
expansion) of subforms that are not top level forms and the order of further
compilation is unspecified as long as Common Lisp semantics are preserved.

eval-when forms cause compile-time evaluation only at top level. Both
:compile-toplevel and :load-toplevel situation specifications are ignored for
non-top-level forms. For non-top-level forms, an eval-when specifying the :execute
situation is treated as an implicit progn including the forms in the body of the eval-when
form; otherwise, the forms in the body are ignored.

3.2.3.2 Processing of Defining Macros

Defining macros (such as defmacro or defvar) appearing within a file being processed by
compile-file normally have compile-time side effects which affect how subsequent forms in
the same file are compiled. A convenient model for explaining how these side effects happen
is that the defining macro expands into one or more eval-when forms, and that the calls
which cause the compile-time side effects to happen appear in the body of an (eval-when
(:compile-toplevel) ...) form.

The compile-time side effects may cause information about the definition to be stored
differently than if the defining macro had been processed in the ‘normal’ way (either inter-
pretively or by loading the compiled file).

In particular, the information stored by the defining macros at compile time might or
might not be available to the interpreter (either during or after compilation), or during
subsequent calls to the compiler. For example, the following code is nonportable because
it assumes that the compiler stores the macro definition of foo where it is available to the
interpreter:

(defmacro foo (x) ‘(car ,x))
(eval-when (:execute :compile-toplevel :load-toplevel)
(print (foo ’(a b ¢))))

A portable way to do the same thing would be to include the macro definition inside the
eval-when form, as in:

(eval-when (:execute :compile-toplevel :load-toplevel)
(defmacro foo (x) ‘(car ,x))
(print (foo ’(a b ¢))))

Figure 3-8 lists macros that make definitions available both in the compilation and run-
time environments. It is not specified whether definitions made available in the compilation
environment are available in the evaluation environment, nor is it specified whether they
are available in subsequent compilation units or subsequent invocations of the compiler.
As with eval-when, these compile-time side effects happen only when the defining macros
appear at top level.
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declaim define-modify-macro defsetf
defclass define-setf-expander defstruct
defconstant defmacro deftype
define-compiler-macro defpackage defvar
define-condition defparameter

Figure 3-8: Defining Macros That Affect the Compile-Time Environment

3.2.3.3 Constraints on Macros and Compiler Macros

Except where explicitly stated otherwise, no macro defined in the Common Lisp standard
produces an expansion that could cause any of the subforms of the macro form to be
treated as top level forms. If an implementation also provides a special operator definition
of a Common Lisp macro, the special operator definition must be semantically equivalent
in this respect.

Compiler macro expansions must also have the same top level evaluation semantics as
the form which they replace. This is of concern both to conforming implementations and
to conforming programs.

3.2.4 Literal Objects in Compiled Files

The functions eval and compile are required to ensure that literal objects referenced within
the resulting interpreted or compiled code objects are the same as the corresponding objects
in the source code. compile-file, on the other hand, must produce a compiled file that, when
loaded with load, constructs the objects defined by the source code and produces references
to them.

In the case of compile-file, objects constructed by load of the compiled file cannot be
spoken of as being the same as the objects constructed at compile time, because the compiled
file may be loaded into a different Lisp image than the one in which it was compiled. This
section defines the concept of similarity which relates objects in the evaluation environment
to the corresponding objects in the run-time environment.

The constraints on literal objects described in this section apply only to compile-file; eval
and compile do not copy or coalesce constants.

3.2.4.1 Externalizable Objects

The fact that the file compiler represents literal objects externally in a compiled file and
must later reconstruct suitable equivalents of those objects when that file is loaded imposes
a need for constraints on the nature of the objects that can be used as literal objects in code
to be processed by the file compiler.

An object that can be used as a literal object in code to be processed by the file compiler
is called an externalizable object .

We define that two objects are similar if they satisfy a two-place conceptual equivalence
predicate (defined below), which is independent of the Lisp image so that the two objects in
different Lisp images can be understood to be equivalent under this predicate. Further, by
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inspecting the definition of this conceptual predicate, the programmer can anticipate what
aspects of an object are reliably preserved by file compilation.

The file compiler must cooperate with the loader in order to assure that in each case
where an externalizable object is processed as a literal object, the loader will construct a
stmilar object.

The set of objects that are externalizable objects are those for which the new conceptual
term “similar” is defined, such that when a compiled file is loaded, an object can be con-
structed which can be shown to be similar to the original object which existed at the time
the file compiler was operating.

3.2.4.2 Similarity of Literal Objects

3.2.4.3 Similarity of Aggregate Objects

Of the types over which similarity is defined, some are treated as aggregate objects. For
these types, similarity is defined recursively. We say that an object of these types has certain
“basic qualities” and to satisfy the similarity relationship, the values of the corresponding
qualities of the two objects must also be similar.

3.2.4.4 Definition of Similarity

Two objects S (in source code) and C (in compiled code) are defined to be similar if and
only if they are both of one of the types listed here (or defined by the implementation) and
they both satisfy all additional requirements of similarity indicated for that type.

number Two numbers S and C are similar if they are of the same type and represent
the same mathematical value.

character Two simple characters S and C are similar if they have similar code attributes.

Implementations providing additional, implementation-defined attributes must
define whether and how non-simple characters can be regarded as similar.

symbol Two apparently uninterned symbols S and C are similar if their names are
similar.

Two interned symbols S and C are similar if their names are similar, and if
either S is accessible in the current package at compile time and C is accessible
in the current package at load time, or C is accessible in the package that is
similar to the home package of S.

(Note that similarity of symbols is dependent on neither the current readtable

nor how the function read would parse the characters in the name of the sym-
bol.)

package Two packages S and C are similar if their names are similar.

Note that although a package object is an externalizable object, the programmer
is responsible for ensuring that the corresponding package is already in existence
when code referencing it as a literal object is loaded. The loader finds the
corresponding package object as if by calling find-package with that name as an
argument. An error is signaled by the loader if no package exists at load time.
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random-state

cons

array

hash-table

pathname

function

Two random states S and C are similar if S would always produce the same
sequence of pseudo-random numbers as a copy_5 of C when given as the random-
state argument to the function random, assuming equivalent limit arguments
in each case.

(Note that since C has been processed by the file compiler, it cannot be used
directly as an argument to random because random would perform a side effect.)

Two conses, S and C, are similar if the car_2 of S is similar to the car_2 of C,
and the cdr_2 of S is similar to the cdr_2 of C.

Two one-dimensional arrays, S and C, are similar if the length of S is similar to
the length of C, the actual array element type of S is similar to the actual array
element type of C, and each active element of S is similar to the corresponding
element of C.

Two arrays of rank other than one, S and C, are similar if the rank of S is
similar to the rank of C, each dimension_1 of S is similar to the corresponding
dimension_1 of C, the actual array element type of S is similar to the actual
array element type of C, and each element of S is similar to the corresponding
element of C.

In addition, if S is a simple array, then C must also be a simple array. If S is

a displaced array, has a fill pointer, or is actually adjustable, C is permitted to
lack any or all of these qualities.

Two hash tables S and C are similar if they meet the following three require-
ments:

1. They both have the same test (e.g., they are both eql hash tables).

2. There is a unique one-to-one correspondence between the keys of
the two hash tables, such that the corresponding keys are similar.

3. For all keys, the values associated with two corresponding keys are
stmilar.

If there is more than one possible one-to-one correspondence between the keys
of S and C, the consequences are unspecified. A conforming program cannot
use a table such as S as an externalizable constant.

Two pathnames S and C are similar if all corresponding pathname components
are similar.

Functions are not externalizable objects.

structure-object and standard-object

A general-purpose concept of similarity does not exist for structures and stan-
dard objects. However, a conforming program is permitted to define a make-
load-form method for any class K defined by that program that is a subclass
of either structure-object or standard-object. The effect of such a method is
to define that an object S of type K in source code is similar to an object C
of type K in compiled code if C was constructed from code produced by calling
make-load-form on S.



98 ANSI and GNU Common Lisp Document

3.2.4.5 Extensions to Similarity Rules

Some objects, such as streams, readtables, and methods are not externalizable objects under
the definition of similarity given above. That is, such objects may not portably appear as
literal objects in code to be processed by the file compiler.

An implementation is permitted to extend the rules of similarity, so that other kinds of
objects are externalizable objects for that implementation.

If for some kind of object, similarity is neither defined by this specification nor by the
implementation, then the file compiler must signal an error upon encountering such an
object as a literal constant.

3.2.4.6 Additional Constraints on Externalizable Objects

If two literal objects appearing in the source code for a single file processed with the file
compiler are the identical, the corresponding objects in the compiled code must also be the
identical.

With the exception of symbols and packages, any two literal objects in code being pro-
cessed by the file compiler may be coalesced if and only if they are similar; if they are either
both symbols or both packages, they may only be coalesced if and only if they are identical.

Objects containing circular references can be externalizable objects. The file compiler is
required to preserve eqlness of substructures within a file. Preserving eqlness means that
subobjects that are the same in the source code must be the same in the corresponding
compiled code.

In addition, the following are constraints on the handling of literal objects by the file
compiler:

array: If an array in the source code is a simple array, then the corresponding
array in the compiled code will also be a simple array. If an array in the source
code is displaced, has a fill pointer, or is actually adjustable, the corresponding
array in the compiled code might lack any or all of these qualities. If an array in
the source code has a fill pointer, then the corresponding array in the compiled
code might be only the size implied by the fill pointer.

packages: The loader is required to find the corresponding package object as
if by calling find-package with the package name as an argument. An error of
type package-error is signaled if no package of that name exists at load time.

random-state: A constant random state object cannot be used as the state
argument to the function random because random modifies this data structure.

structure, standard-object: Objects of type structure-object and standard-
object may appear in compiled constants if there is an appropriate make-load-
form method defined for that type.

The file compiler calls make-load-form on any object that is referenced as a
literal object if the object is a generalized instance of standard-object, structure-
object, condition, or any of a (possibly empty) implementation-dependent set
of other classes. The file compiler only calls make-load-form once for any given
object within a single file.
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symbol: In order to guarantee that compiled files can be loaded correctly, users
must ensure that the packages referenced in those files are defined consistently
at compile time and load time. Conforming programs must satisfy the following
requirements:

1. The current package when a top level form in the file is processed
by compile-file must be the same as the current package when the
code corresponding to that top level form in the compiled file is
executed by load. In particular:

a. Any top level form in a file that alters the current pack-
age must change it to a package of the same name both
at compile time and at load time.

b. If the first non-atomic top level form in the file is not
an in-package form, then the current package at the
time load is called must be a package with the same
name as the package that was the current package at
the time compile-file was called.

2. For all symbols appearing lexically within a top level form that
were accessible in the package that was the current package during
processing of that top level form at compile time, but whose home
package was another package, at load time there must be a symbol
with the same name that is accessible in both the load-time current
package and in the package with the same name as the compile-time
home package.

3. For all symbols represented in the compiled file that were exter-
nal symbols in their home package at compile time, there must be
a symbol with the same name that is an external symbol in the
package with the same name at load time.

If any of these conditions do not hold, the package in which the loader looks for
the affected symbols is unspecified. Implementations are permitted to signal an
error or to define this behavior.

3.2.5 Exceptional Situations in the Compiler

compile and compile-file are permitted to signal errors and warnings, including errors due
to compile-time processing of (eval-when (:compile-toplevel) ...) forms, macro ex-
pansion, and conditions signaled by the compiler itself.

Conditions of type error might be signaled by the compiler in situations where the
compilation cannot proceed without intervention.

In addition to situations for which the standard specifies that conditions of type warning
must or might be signaled, warnings might be signaled in situations where the compiler can
determine that the consequences are undefined or that a run-time error will be signaled.
Examples of this situation are as follows: violating type declarations, altering or assigning
the value of a constant defined with defconstant, calling built-in Lisp functions with a
wrong number of arguments or malformed keyword argument lists, and using unrecognized
declaration specifiers.



100 ANSI and GNU Common Lisp Document

The compiler is permitted to issue warnings about matters of programming style as con-
ditions of type style-warning. Examples of this situation are as follows: redefining a function
using a different argument list, calling a function with a wrong number of arguments, not
declaring ignore of a local variable that is not referenced, and referencing a variable declared
ignore.

Both compile and compile-file are permitted (but not required) to establish a handler for
conditions of type error. For example, they might signal a warning, and restart compilation
from some implementation-dependent point in order to let the compilation proceed without
manual intervention.

Both compile and compile-file return three values, the second two indicating whether
the source code being compiled contained errors and whether style warnings were issued.

Some warnings might be deferred until the end of compilation. See with-compilation-
unit.

3.3 Declarations
Declarations provide a way of specifying information for use by program processors, such
as the evaluator or the compiler.

Local declarations

can be embedded in executable code using declare. Global declarations , or proclamations
, are established by proclaim or declaim.

The the special form provides a shorthand notation for making a local declaration about
the type of the value of a given form.

The consequences are undefined if a program violates a declaration or a proclamation.

3.3.1 Minimal Declaration Processing Requirements

In general, an implementation is free to ignore declaration specifiers except for the declara-
tion , notinline , safety , and special declaration specifiers.

A declaration declaration must suppress warnings about unrecognized declarations of the
kind that it declares. If an implementation does not produce warnings about unrecognized
declarations, it may safely ignore this declaration.

A notinline declaration must be recognized by any implementation that supports inline
functions or compiler macros in order to disable those facilities. An implementation that
does not use inline functions or compiler macros may safely ignore this declaration.

A safety declaration that increases the current safety level must always be recognized.
An implementation that always processes code as if safety were high may safely ignore this
declaration.

A special declaration must be processed by all implementations.

3.3.2 Declaration Specifiers

A declaration specifier is an expression that can appear at top level of a declare expression
or a declaim form, or as the argument to proclaim. It is a list whose car is a declaration
identifier, and whose cdr is data interpreted according to rules specific to the declaration
identifier.
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3.3.3 Declaration Identifiers

Figure 3-9 shows a list of all declaration identifiers
defined by this standard.

declaration  ignore  special
dynamic-extent inline  type
ftype notinline
ignorable optimize

Figure 3-9: Common Lisp Declaration Identifiers

An implementation is free to support other (implementation-defined) declaration iden-
tifiers as well. A warning might be issued if a declaration identifier is not among those
defined above, is not defined by the implementation, is not a type name, and has not been
declared in a declaration proclamation.

3.3.3.1 Shorthand notation for Type Declarations

A type specifier can be used as a declaration identifier. (type-specifier {var}*) is taken
as shorthand for (type type-specifier {var}*).

3.3.4 Declaration Scope

Declarations can be divided into two kinds: those that apply to the bindings of variables
or functions; and those that do not apply to bindings.

A declaration that appears at the head of a binding form and applies to a variable or
function binding made by that form is called a bound declaration ; such a declaration affects
both the binding and any references within the scope of the declaration.

Declarations that are not bound declarations are called free declarations .

A free declaration in a form F1 that applies to a binding for a name N established by
some form F2 of which F1 is a subform affects only references to N within F1; it does not
to apply to other references to N outside of F1, nor does it affect the manner in which the
binding of N by F2 is established.

Declarations that do not apply to bindings can only appear as free declarations.

The scope of a bound declaration is the same as the lexical scope of the binding to which
it applies; for special variables, this means the scope that the binding would have had had
it been a lexical binding.

Unless explicitly stated otherwise, the scope of a free declaration includes only the body
subforms of the form at whose head it appears, and no other subforms. The scope of free
declarations specifically does not include initialization forms for bindings established by the
form containing the declarations.

Some iteration forms include step, end-test, or result subforms that are also included in
the scope of declarations that appear in the iteration form. Specifically, the iteration forms
and subforms involved are:

* do, do*: step-forms, end-test-form, and result-forms.
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* dolist, dotimes: result-form

* do-all-symbols, do-external-symbols, do-symbols: result-form

3.3.4.1 Examples of Declaration Scope

Here is an example illustrating the scope of bound declarations.

(let ((x 1)) ; [1] 1st occurrence of x
(declare (special x)) ; [2] 2nd occurrence of x
(let ((x 2)) ; [3] 3rd occurrence of x

(let ((old-x x) ; [4] 4th occurrence of x
(x 3)) ; [5] 5th occurrence of x
(declare (special x)) ;[6] 6th occurrence of x
(list old-x x)))) ; [7] 7th occurrence of x
= (2 3)

The first occurrence of x establishes a dynamic binding of x because of the special
declaration for x in the second line. The third occurrence of x establishes a lexical binding
of x (because there is no special declaration in the corresponding let form). The fourth
occurrence of x z is a reference to the lexical binding of x established in the third line. The
fifth occurrence of x establishes a dynamic binding of x for the body of the let form that
begins on that line because of the special declaration for x in the sixth line. The reference
to x in the fourth line is not affected by the special declaration in the sixth line because
that reference is not within the “would-be lexical scope” of the wvariable x in the fifth line.
The reference to x in the seventh line is a reference to the dynamic binding of x established
in the fifth line.

Here is another example, to illustrate the scope of a free declaration. In the following:

(lambda (&optional (x (foo 1))) ;[1]
(declare (notinline foo0)) ; [2]
(foo x)) ; [3]

the call to foo in the first line might be compiled inline even though the call to foo in
the third line must not be. This is because the notinline declaration for foo in the second
line applies only to the body on the third line. In order to suppress inlining for both calls,
one might write:

(locally (declare (notinline foo)) ;[1]
(lambda (&optional (x (foo 1))) ;[2]

(foo x))) ; 3]
or, alternatively:
(lambda (&optional ; [1]
(x (locally (declare (notinline foo)) ;[2]
(foo 1)))) ; [3]
(declare (notinline foo)) ; [4]
(foo x)) ; [5]
Finally, here is an example that shows the scope of declarations in an iteration form.
(let ((x 1)) ; [1]
(declare (special x)) ; [2]

(let ((x 2)) ; [3]
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(dotimes (i x x) ; [4]
(declare (special x))))) ;I[5]
= 1

In this example, the first reference to x on the fourth line is to the lexical binding of x
established on the third line. However, the second occurrence of x on the fourth line lies
within the scope of the free declaration on the fifth line (because this is the result-form of
the dotimes) and therefore refers to the dynamic binding of x.

3.4 Lambda Lists

A lambda list is a list that specifies a set of parameters (sometimes called lambda variables)
and a protocol for receiving wvalues for those parameters.

There are several kinds of lambda lists.

Context Kind of Lambda List

defun form ordinary lambda list
defmacro form macro lambda list

lambda expression ordinary lambda list

flet local function definition ordinary lambda list

labels local function definition ordinary lambda list
handler-case clause specification ordinary lambda list
restart-case clause specification ordinary lambda list
macrolet local macro definition macro lambda list
define-method-combination ordinary lambda list
define-method-combination :arguments option define-method-combination arguments lambda list |
defstruct :constructor option boa lambda list
defgeneric form generic function lambda list
defgeneric method clause specialized lambda list
defmethod form specialized lambda list
defsetf form defsetf lambda list
define-setf-expander form macro lambda list
deftype form deftype lambda list
destructuring-bind form destructuring lambda list
define-compiler-macro form macro lambda list
define-modify-macro form define-modify-macro lambda list

Figure 3-10: What Kind of Lambda Lists to Use

Figure 3—11 lists some defined names that are applicable to lambda lists.

lambda-list-keywords lambda-parameters-limit

Figure 3—11: Defined names applicable to lambda lists
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3.4.1 Ordinary Lambda Lists

An ordinary lambda list is used to describe how a set of arguments is received by an ordinary
function. The defined names in Figure 3-12 are those which use ordinary lambda lists:

define-method-combination handler-case restart-case
defun labels
flet lambda

Figure 3-12: Standardized Operators that use Ordinary Lambda Lists
An ordinary lambda list can contain the lambda list keywords shown in Figure 3-13.

&allow-other-keys &key &rest
&aux &optional

Figure 3-13: Lambda List Keywords used by Ordinary Lambda Lists

Each element of a lambda list is either a parameter specifier or a lambda list keyword.
Implementations are free to provide additional lambda list keywords. For a list of all lambda
list keywords used by the implementation, see lambda-list-keywords.

The syntax for ordinary lambda lists is as follows:

lambda-list :==({var}* [&optional {var | (var [init-form [supplied-p-parameter |])}*]
[&rest var] [&key {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter|])}* pt [&allow-o
[&aux {var | (var [init-form])}*1)

A wvar or supplied-p-parameter must be a symbol that is not the name of a constant
variable.

An init-form can be any form. Whenever any init-form is evaluated for any parameter
specifier, that form may refer to any parameter variable to the left of the specifier in which
the init-form appears, including any supplied-p-parameter variables, and may rely on the
fact that no other parameter variable has yet been bound (including its own parameter
variable).

A keyword-name can be any symbol, but by convention is normally a keyword_1; all
standardized functions follow that convention.

An ordinary lambda list has five parts, any or all of which may be empty. For information
about the treatment of argument mismatches, see (undefined) [Error Checking in Function
Calls], page (undefined).

3.4.1.1 Specifiers for the required parameters

These are all the parameter specifiers up to the first lambda list keyword; if there are no
lambda list keywords, then all the specifiers are for required parameters. Each required
parameter is specified by a parameter variable var. var is bound as a lexical variable unless
it is declared special.
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If there are n required parameters (n may be zero), there must be at least n passed
arguments, and the required parameters are bound to the first n passed arguments; see
(undefined) [Error Checking in Function Calls], page (undefined). The other parameters
are then processed using any remaining arguments.

3.4.1.2 Specifiers for optional parameters

If &optional is present, the optional parameter specifiers are those following &optional up to
the next lambda list keyword or the end of the list. If optional parameters are specified, then
each one is processed as follows. If any unprocessed arguments remain, then the parameter
variable var is bound to the next remaining argument, just as for a required parameter. If
no arguments remain, however, then init-form is evaluated, and the parameter variable is
bound to the resulting value (or to nil if no init-form appears in the parameter specifier).
If another variable name supplied-p-parameter appears in the specifier, it is bound to true
if an argument had been available, and to false if no argument remained (and therefore
init-form had to be evaluated). Supplied-p-parameter is bound not to an argument but to a
value indicating whether or not an argument had been supplied for the corresponding wvar.

3.4.1.3 A specifier for a rest parameter

&rest, if present, must be followed by a single rest parameter specifier, which in turn must
be followed by another lambda list keyword or the end of the lambda list. After all optional
parameter specifiers have been processed, then there may or may not be a rest parameter.
If there is a rest parameter, it is bound to a list of all as-yet-unprocessed arguments. If no
unprocessed arguments remain, the rest parameter is bound to the empty list. If there is
no rest parameter and there are no keyword parameters, then an error should be signaled
if any unprocessed arguments remain; see (undefined) [Error Checking in Function Calls],
page (undefined). The value of a rest parameter is permitted, but not required, to share
structure with the last argument to apply.

3.4.1.4 Specifiers for keyword parameters

If &key is present, all specifiers up to the next lambda list keyword or the end of the
list are keyword parameter specifiers. When keyword parameters are processed, the same
arguments are processed that would be made into a list for a rest parameter. It is permitted
to specify both &rest and &key. In this case the remaining arguments are used for both
purposes; that is, all remaining arguments are made into a list for the rest parameter, and
are also processed for the &key parameters.

If &key is specified, there must remain an even number of arguments; see (undefined)
[Odd Number of Keyword Arguments|, page (undefined).

These arguments are considered as pairs, the first argument in each pair being interpreted
as a name and the second as the corresponding value. The first object of each pair must
be a symbol; see (undefined) [Invalid Keyword Arguments], page (undefined). The keyword
parameter specifiers may optionally be followed by the lambda list keyword &allow-other-
keys.

In each keyword parameter specifier must be a name var for the parameter variable.

If the var appears alone or in a (var init-form) combination, the keyword name used
when matching arguments to parameters is a symbol in the KEYWORD package whose name
is the same (under string=) as var’s. If the notation ((keyword-name var) init-form)
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is used, then the keyword name used to match arguments to parameters is keyword-name,
which may be a symbol in any package. (Of course, if it is not a symbol in the KEYWORD
package, it does not necessarily self-evaluate, so care must be taken when calling the function
to make sure that normal evaluation still yields the keyword name.)

Thus
(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed
from left to right. For each keyword parameter specifier, if there is an argument pair whose
name matches that specifier’s name (that is, the names are eq), then the parameter variable
for that specifier is bound to the second item (the value) of that argument pair. If more than
one such argument pair matches, the leftmost argument pair is used. If no such argument
pair exists, then the init-form for that specifier is evaluated and the parameter variable is
bound to that value (or to nil if no init-form was specified). supplied-p-parameter is treated
as for &optional parameters: it is bound to true if there was a matching argument pair,
and to false otherwise.

Unless keyword argument checking is suppressed, an argument pair must a name matched
by a parameter specifier; see (undefined) [Unrecognized Keyword Arguments|, page (unde-
fined).

If keyword argument checking is suppressed, then it is permitted for an argument pair
to match no parameter specifier, and the argument pair is ignored, but such an argument
pair is accessible through the rest parameter if one was supplied. The purpose of these
mechanisms is to allow sharing of argument lists among several lambda expressions and to
allow either the caller or the called lambda expression to specify that such sharing may be
taking place.

Note that if &key is present, a keyword argument of :allow-other-keys is always
permitted—regardless of whether the associated value is true or false. However, if the value
is false, other non-matching keywords are not tolerated (unless &allow-other-keys was used).

Furthermore, if the receiving argument list specifies a regular argument which would
be flagged by :allow-other-keys, then :allow-other-keys has both its special-cased
meaning (identifying whether additional keywords are permitted) and its normal meaning
(data flow into the function in question).

3.4.1.5 Suppressing Keyword Argument Checking

If &allow-other-keys was specified in the lambda list of a function, keyword_2 argument
checking is suppressed in calls to that function.

If the :allow-other-keys argument is true in a call to a function, keyword_2 argument
checking is suppressed in that call.

The :allow-other-keys argument is permissible in all situations involving keyword _2
arguments, even when its associated wvalue is false.

3.4.1.6 Examples of Suppressing Keyword Argument Checking
;55 The caller can supply :ALLOW-OTHER-KEYS T to suppress checking.
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((lambda (&key x) x) :x 1 :y 2 :allow-other-keys t) = 1
;55 The callee can use &ALLOW-OTHER-KEYS to suppress checking.
((lambda (&key x &allow-other-keys) x) :x 1 :y 2) = 1
;55 ‘ALLOW-OTHER-KEYS NIL is always permitted.
((lambda (&key) t) :allow-other-keys nil) = T
;35 As with other keyword arguments, only the left-most pair
;35 named :ALLOW-OTHER-KEYS has any effect.
((lambda (&key x) x)
:x 1 :y 2 :allow-other-keys t :allow-other-keys nil)
= 1
;35 Only the left-most pair named :ALLOW-OTHER-KEYS has any effect,
;35 so in safe code this signals a PROGRAM-ERROR (and might enter the
;;; debugger). In unsafe code, the consequences are undefined.
((lambda (&key x) x) ;This call is not valid
:x 1 :y 2 :allow-other-keys nil :allow-other-keys t)

3.4.1.7 Specifiers for &aux variables

These are not really parameters. If the lambda list keyword &aux is present, all specifiers
after it are auxiliary variable specifiers. After all parameter specifiers have been processed,
the auxiliary variable specifiers (those following &aux) are processed from left to right. For
each one, init-form is evaluated and var is bound to that value (or to nil if no nit-form
was specified). &aux variable processing is analogous to let* processing.

(lambda (x y &aux (a (car x)) (b 2) c) (list x y a b c))
= (lambda (x y) (letx ((a (car x)) (b 2) ¢) (list x y a b ¢)))

3.4.1.8 Examples of Ordinary Lambda Lists

Here are some examples involving optional parameters and rest parameters:

((lambda (a b) (+ a (* b 3))) 4 5) = 19

((lambda (a &optional (b 2)) (+ a (x b 3))) 4 5) = 19

((lambda (a &optional (b 2)) (+ a (x b 3))) 4) = 10

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
= (2 NIL 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6)
= (6 T 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x)) 6 3)
= (6 T 3 T NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3 8)
= (6 T3T (8))

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))

6 389 10 11)
= (6 t3t (8910 11))

Here are some examples involving keyword parameters:

((lambda (a b &key c d) (list a b c d)) 1 2) = (1 2 NIL NIL)
((lambda (a b &key c d) (list abcd)) 12 :c 6) = (1 2 6 NIL)
((lambda (a b &key c d) (list abc d)) 12 :d 8) = (1 2 NIL 8)
((lambda (a b &key c d) (list abc d)) 12 :c 6 :d8) = (126 8)

[ e INe]
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((lambda (a b &key ¢ d) (list abcd)) 12 :d8 :c6) = (1268)
((lambda (a b &key c d) (list a b c d)) a1l :d8 :c 6) = (:al68)
((lambda (a b &key c d) (list a b c d)) :a :b :c :d) = (:a :b :d NIL)

((lambda (a b &key ((:sea c)) d) (list a b c d)) 1 2 :sea 6) = (1 2 6 NIL)J
((lambda (a b &key ((c ¢)) d) (list abc d)) 1 2 ’c 6) = (1 2 6 NIL)

Here are some examples involving optional parameters, rest parameters, and keyword
parameters together:

((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcd x)) 1)
= (1 3NIL 1 ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 12
= (1 2NIL 1 )
((lambda (a &optional (b 3) &rest x &key c (d a))
(1ist abcd x)) :c7)
= (:c 7 NIL :c ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :c7)
= (1671 (:cT))
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :4d8)
= (1 6 NIL 8 (:d 8))
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :d8 :c9 :d 10)
= (1698 (:d8 :c9 :d10))

As an example of the use of &allow-other-keys and :allow-other-keys, consider a
function that takes two named arguments of its own and also accepts additional named
arguments to be passed to make-array:

(defun array-of-strings (str dims &rest named-pairs
&key (start 0) end &allow-other-keys)
(apply #’make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
named-pairs))

This function takes a string and dimensioning information and returns an array of the
specified dimensions, each of whose elements is the specified string. However, :start and
:end named arguments may be used to specify that a substring of the given string should
be used. In addition, the presence of &allow-other-keys in the lambda list indicates that
the caller may supply additional named arguments; the rest parameter provides access to
them. These additional named arguments are passed to make-array. The function make-
array normally does not allow the named arguments :start and :end to be used, and an
error should be signaled if such named arguments are supplied to make-array. However,
the presence in the call to make-array of the named argument :allow-other-keys with
a true value causes any extraneous named arguments, including :start and :end, to be
acceptable and ignored.
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3.4.2 Generic Function Lambda Lists

A generic function lambda list is used to describe the overall shape of the argument list to be
accepted by a generic function. Individual method signatures might contribute additional
keyword parameters to the lambda list of the effective method.

A generic function lambda list is used by defgeneric.
A generic function lambda list has the following syntax:

lambda-list :=({var}* [&optional {var | (var)}*1 [&rest var] [&key {var | ({var |

A generic function lambda list can contain the lambda list keywords shown in Figure
3-14.

&allow-other-keys &optional
&key &rest

Figure 3-14: Lambda List Keywords used by Generic Function Lambda Lists

A generic function lambda list differs from an ordinary lambda list in the following ways:

Required arguments
Zero or more required parameters must be specified.

Optional and keyword arguments
Optional parameters and keyword parameters may not have default initial value
forms nor use supplied-p parameters.

Use of &aux
The use of &aux is not allowed.

3.4.3 Specialized Lambda Lists

A specialized lambda list is used to specialize a method for a particular signature and to
describe how arguments matching that signature are received by the method. The defined
names in Figure 3-15 use specialized lambda lists in some way; see the dictionary entry for
each for information about how.

defmethod defgeneric

Figure 3—15: Standardized Operators that use Specialized Lambda Lists

A specialized lambda list can contain the lambda list keywords shown in Figure 3-16.

(keyword-name v
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&allow-other-keys &key &rest
&aux &optional

Figure 3—16: Lambda List Keywords used by Specialized Lambda Lists

A specialized lambda list is syntactically the same as an ordinary lambda list except that
each required parameter may optionally be associated with a class or object for which that
parameter is specialized.

lambda-list :=({var | (var [specializer])}* [&optional {var | (var [init-form [supplied-p-parameter]])}*]]
[&rest var]l [&key {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter|])}* [&allow-othe
[&aux {var | (var [init-form])}*1)

3.4.4 Macro Lambda Lists

A macro lambda list is used in describing macros defined by the operators in Figure 3-17.

define-compiler-macro defmacro macrolet
define-setf-expander

Figure 3-17: Operators that use Macro Lambda Lists

With the additional restriction that an environment parameter may appear only once
(at any of the positions indicated), a macro lambda list has the following syntax:

requars ::=={var | !pattern}*
optvars ::=[&optional {var | ({var | !pattern} [init-form [supplied-p-parameter]])}*]
restvar ::=[{&rest | &body} {var | Ipattern}]

keyvars ::=[&key {var | ({var | (keyword-name {var | !pattern})} [init-form [supplied-p-parameter]]) }*|}
[£allow-other-keys]]

auzvars = [&aux {var | (var [init-form])}*]
envvar :=[&environment var]
wholevar ::=[&whole var]

lambda-list ::=(lwholevar 'envvar requars lenvvar loptvars lenvvar !restvar lenvvar lkeyvars lenvvar laua
(lwholevar 'envvar requars 'envvar loptvars lenvvar . var)

pattern ::=(wholevar requars loptvars restvar keyvars lauzvars) | (lwholevar requars loptvars . var)f
A macro lambda list can contain the lambda list keywords shown in Figure 3—18.

&allow-other-keys &environment &rest
&aux &key &whole
&body &optional

Figure 3-18: Lambda List Keywords used by Macro Lambda Lists
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Optional parameters (introduced by &optional) and keyword parameters (introduced by
&key) can be supplied in a macro lambda list, just as in an ordinary lambda list. Both may
contain default initialization forms and supplied-p parameters.

&body

is identical in function to &rest, but it can be used to inform certain output-formatting
and editing functions that the remainder of the form is treated as a body, and should be
indented accordingly. Only one of &body or &rest can be used at any particular level; see
(undefined) [Destructuring by Lambda Lists|, page (undefined).

&body can appear at any level of a macro lambda list; for details, see (undefined)
[Destructuring by Lambda Lists], page (undefined).

&whole

is followed by a single variable that is bound to the entire macro-call form; this is the
value that the macro function receives as its first argument.

If &whole and a following variable appear, they must appear first in lambda-list,
before any other parameter or lambda list keyword.

&whole can appear at any level of a macro lambda list. At inner levels, the &whole
variable is bound to the corresponding part of the argument, as with &rest, but unlike
&rest, other arguments are also allowed. The use of &whole does not affect the pattern of
arguments specified.

&environment

is followed by a single variable that is bound to an environment representing the lexical
environment in which the macro call is to be interpreted. This environment should be used
with

macro-function,

get-setf-expansion,

compiler-macro-function,

and macroexpand (for example) in computing the expansion of the macro, to ensure that
any lexical bindings or definitions established in the compilation environment are taken into
account.

&environment can only appear at the top level of a macro lambda list, and can only
appear once, but can appear anywhere in that list;

the &environment parameter is bound along with &whole before any other variables in
the lambda list, regardless of where &environment appears in the lambda list.

The object that is bound to the environment parameter has dynamic extent.

Destructuring allows a macro lambda list to express the structure of a macro call syntax.
If no lambda list keywords appear, then the macro lambda list is a tree containing parameter
names at the leaves. The pattern and the macro form must have compatible tree structure;
that is, their tree structure must be equivalent, or it must differ only in that some leaves of
the pattern match non-atomic objects of the macro form.

For information about error detection in this situation, see (undefined) [Destructuring
Mismatch], page (undefined).
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A destructuring lambda list (whether at top level or embedded) can be dotted, ending
in a parameter name. This situation is treated exactly as if the parameter name that ends
the list had appeared preceded by &rest.

It is permissible for a macro form (or a subexpression of a macro form) to be a dotted list
only when (... &rest var) or (... . var) is used to match it. It is the responsibility
of the macro to recognize and deal with such situations.

[Editorial Note by KMP: Apparently the dotted-macro-forms cleanup doesn’t allow for
the macro to ‘manually’ notice dotted forms and fix them as well. It shouldn’t be required
that this be done only by &REST or a dotted pattern; it should only matter that ultimately
the non-macro result of a full-macro expansion not contain dots. Anyway, I plan to address
this editorially unless someone raises an objection.]

3.4.4.1 Destructuring by Lambda Lists

Anywhere in a macro lambda list where a parameter name can appear, and where ordinary
lambda list syntax (as described in (undefined) [Ordinary Lambda Lists|, page (undefined))
does not otherwise allow a list, a destructuring lambda list can appear in place of the
parameter name. When this is done, then the argument that would match the parameter
is treated as a (possibly dotted) list, to be used as an argument list for satisfying the
parameters in the embedded lambda list. This is known as destructuring.

Destructuring is the process of decomposing a compound object into its component
parts, using an abbreviated, declarative syntax, rather than writing it out by hand using
the primitive component-accessing functions. Each component part is bound to a variable.

A destructuring operation requires an object to be decomposed, a pattern that specifies
what components are to be extracted, and the names of the variables whose values are to
be the components.

3.4.4.2 Data-directed Destructuring by Lambda Lists

In data-directed destructuring, the pattern is a sample object of the type to be decomposed.
Wherever a component is to be extracted, a symbol appears in the pattern; this symbol is
the name of the variable whose value will be that component.

3.4.4.3 Examples of Data-directed Destructuring by Lambda Lists
An example pattern is
(a b c)

which destructures a list of three elements. The variable a is assigned to the first element,
b to the second, etc. A more complex example is

((first . rest) . more)

The important features of data-directed destructuring are its syntactic simplicity and
the ability to extend it to lambda-list-directed destructuring.

3.4.4.4 Lambda-list-directed Destructuring by Lambda Lists

An extension of data-directed destructuring of trees is lambda-list-directed destructuring.
This derives from the analogy between the three-element destructuring pattern

(first second third)
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and the three-argument lambda list
(first second third)

Lambda-list-directed destructuring is identical to data-directed destructuring if no
lambda list keywords appear in the pattern. Any list in the pattern (whether a sub-list
or the whole pattern itself) that contains a lambda list keyword is interpreted specially.
FElements of the list to the left of the first lambda list keyword are treated as destructuring
patterns, as usual, but the remaining elements of the list are treated like a function’s
lambda list except that where a variable would normally be required, an arbitrary
destructuring pattern is allowed. Note that in case of ambiguity, lambda list syntax is
preferred over destructuring syntax. Thus, after &optional a list of elements is a list of a
destructuring pattern and a default value form.

The detailed behavior of each lambda list keyword in a lambda-list-directed destructuring
pattern is as follows:

&optional Each following element is a variable or a list of a destructuring pattern, a default
value form, and a supplied-p variable. The default value and the supplied-
p variable can be omitted. If the list being destructured ends early, so that
it does not have an element to match against this destructuring (sub)-pattern,
the default form is evaluated and destructured instead. The supplied-p variable
receives the value nil if the default form is used, t otherwise.

&rest, &body
The next element is a destructuring pattern that matches the rest of the list.
&body is identical to &rest but declares that what is being matched is a list of
forms that constitutes the body of form. This next element must be the last
unless a lambda list keyword follows it.

&aux The remaining elements are not destructuring patterns at all, but are auxiliary
variable bindings.

&whole The next element is a destructuring pattern that matches the entire form in a
macro, or the entire subexpression at inner levels.

&key Each following element is one of
a variable,
or a list of a variable, an optional initialization form, and an optional

supplied-p variable.

or a list of a list of a keyword and a destructuring pattern, an optional
initialization form, and an optional supplied-p variable.

The rest of the list being destructured is taken to be alternating keywords and
values and is taken apart appropriately.

&allow-other-keys
Stands by itself.

3.4.5 Destructuring Lambda Lists

A destructuring lambda list is used by destructuring-bind.
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Destructuring lambda lists are closely related to macro lambda lists; see (undefined)
[Macro Lambda Lists|, page (undefined). A destructuring lambda list can contain all of the
lambda list keywords listed for macro lambda lists except for &environment, and supports
destructuring in the same way. Inner lambda lists nested within a macro lambda list have
the syntax of destructuring lambda lists.

A destructuring lambda list has the following syntax:

requars :={var | !lambda-list}*

optvars ::=[&optional {var | ({var | lambda-list} [init-form [supplied-p-parameter]])}*1J}

restvar ::=[{&rest | &body} {var | llambda-list}]

keyvars ::=[&key {var | ({var | (keyword-name {var | lambda-list})} [init-form [supplied-p-parameter]])
[£allow-other-keys]]

auzvars :=[&aux {var | (var [init-form])}*]
envvar :=[&environment var]
wholevar ::=[&whole var]

lambda-list ::=(lwholevar requars loptvars \restvar 'keyvars lauzvars) |
(lwholevar requars loptvars . var)

3.4.6 Boa Lambda Lists

A boa lambda list is a lambda list that is syntactically like an ordinary lambda list, but that
is processed in “by order of argument” style.

A boa lambda list is used only in a defstruct form, when explicitly specifying the lambda
list of a constructor function (sometimes called a “boa constructor”).

The &optional, &rest, &aux,
&key, and &allow-other-keys

lambda list keywords are recognized in a boa lambda list. The way these lambda list
keywords differ from their use in an ordinary lambda list follows.

Consider this example, which describes how destruct processes its : constructor option.

(:constructor create-foo
(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines create-foo to be a constructor of one or more arguments. The first argu-
ment is used to initialize the a slot. The second argument is used to initialize the b slot. If
there isn’t any second argument, then the default value given in the body of the defstruct
(if given) is used instead. The third argument is used to initialize the ¢ slot. If there isn’t
any third argument, then the symbol sea is used instead. Any arguments following the
third argument are collected into a list and used to initialize the d slot. If there are three
or fewer arguments, then nil is placed in the d slot. The e slot is not initialized; its initial
value is implementation-defined. Finally, the £ slot is initialized to contain the symbol eff.

&key and &allow-other-keys arguments default in a manner similar to that of &optional
arguments: if no default is supplied in the lambda list then the default value given in the
body of the defstruct (if given) is used instead. For example:

(defstruct (foo (:constructor CREATE-FO0 (a &optional b (c ’sea)
&key (d 2)
&aux e (f ’eff))))
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(@ 1) (b2) (c 3 (d4 (eb) (f6))

(create-foo 10) = #S(FOO A 10 B 2 C SEA D 2 E implemention-dependent F EFF)|]
(create-foo 10 ’bee ’see :d ’dee)
= #S(FOO A 10 B BEE C SEE D DEE E implemention-dependent F EFF)

If keyword arguments of the form ((key var) [default [svar]]) are specified, the slot
name is matched with var (not key).

The actions taken in the b and e cases were carefully chosen to allow the user to specify
all possible behaviors. The &aux variables can be used to completely override the default
initializations given in the body.

If no default value is supplied for an aux variable variable, the consequences are undefined
if an attempt is later made to read the corresponding slot’s value before a value is explicitly
assigned. If such a slot has a :type option specified, this suppressed initialization does not
imply a type mismatch situation; the declared type is only required to apply when the slot
is finally assigned.

With this definition, the following can be written:
(create-foo 1 2)
instead of
(make-foo :a 1 :b 2)
and create-foo provides defaulting different from that of make-foo.

Additional arguments that do not correspond to slot names but are merely present to
supply values used in subsequent initialization computations are allowed. For example, in
the definition

(defstruct (frob (:comstructor create-frob
(a &key (b 3 have-b) (c-token ’c)
(c (list c-token (if have-b 7 2))))))
abc)

the c-token argument is used merely to supply a value used in the initialization of
the c slot. The supplied-p parameters associated with optional parameters and keyword
parameters might also be used this way.

3.4.7 Defsetf Lambda Lists

A defsetf lambda list is used by defsetf.
A defsetf lambda list has the following syntax:
lambda-list :=({var}* [&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var] [&key {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter|])}* pt [&allow-o
[&environment var]

A defsetf lambda list can contain the lambda list keywords shown in Figure 3—19.

&allow-other-keys &key &rest
&environment &optional

Figure 3-19: Lambda List Keywords used by Defsetf Lambda Lists
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A defsetf lambda list differs from an ordinary lambda list only in that it does not permit
the use of &aux, and that it permits use of &environment, which introduces an environment
parameter.

3.4.8 Deftype Lambda Lists
A deftype lambda list is used by deftype.

A deftype lambda list has the same syntax as a macro lambda list, and can therefore
contain the lambda list keywords as a macro lambda list.

A deftype lambda list differs from a macro lambda list only in that if no init-form is
supplied for an optional parameter or keyword parameter in the lambda-list, the default
value for that parameter is the symbol * (rather than nil).

3.4.9 Define-modify-macro Lambda Lists

A define-modify-macro lambda list is used by define-modify-macro.

A define-modify-macro lambda list can contain the lambda list keywords shown in Figure
3-20.

&optional &rest

Figure 3—20: Lambda List Keywords used by Define-modify-macro Lambda Lists

Define-modify-macro lambda lists are similar to ordinary lambda lists, but do not support
keyword arguments. define-modify-macro has no need match keyword arguments, and a
rest parameter is sufficient. Auz variables are also not supported, since define-modify-macro
has no body forms which could refer to such bindings. See the macro define-modify-macro.

3.4.10 Define-method-combination Arguments Lambda Lists

A define-method-combination arguments lambda list is used by the :arguments option to
define-method-combination.

A define-method-combination arguments lambda list can contain the lambda list keywords
shown in Figure 3-21.

&allow-other-keys &key &rest
&aux &optional &whole

Figure 3-21: Lambda List Keywords used by Define-method-combination arguments Lambda Listsfi

Define-method-combination arguments lambda lists are similar to ordinary lambda lists,
but also permit the use of &whole.
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3.4.11 Syntactic Interaction of Documentation Strings and
Declarations

In a number of situations, a documentation string can appear amidst a series of declare

expressions prior to a series of forms.

In that case, if a string S appears where a documentation string is permissible and is not
followed by either a declare expression or a form then S is taken to be a form; otherwise,
S is taken as a documentation string. The consequences are unspecified if more than one
such documentation string is present.

3.5 Error Checking in Function Calls

3.5.1 Argument Mismatch Detection
3.5.1.1 Safe and Unsafe Calls

A call is a safe call if each of the following is either safe code or system code (other than
system code that results from macro expansion of programmer code):

* the call.
* the definition of the function being called.
* the point of functional evaluation

The following special cases require some elaboration:

* If the function being called is a generic function, it is considered safe if all of
the following are

safe code or system code:

- its definition (if it was defined explicitly).

— the method definitions for all applicable methods.
- the definition of its method combination.

* For the form (coerce x ’function), where z is a lambda expression, the value
of the optimize quality safety in the global environment at the time the coerce
is executed applies to the resulting function.

* For a call to the function ensure-generic-function, the value of the optimize
quality safety in the environment object passed as the :environment argument
applies to the resulting generic function.

* For a call to compile with a lambda expression as the argument, the value of the
optimize quality safety in the global environment at the time compile is called
applies to the resulting compiled function.

* For a call to compile with only one argument, if the original definition of the
function was safe, then the resulting compiled function must also be safe.

* A call to a method by call-next-method must be considered safe if each of the
following is

safe code or system code:

- the definition of the generic function (if it was defined explicitly).
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- the method definitions for all applicable methods.
- the definition of the method combination.

- the point of entry into the body of the method defining form, where
the binding of call-next-method is established.

- the point of functional evaluation of the name call-next-method.

An unsafe call is a call that is not a safe call.

The informal intent is that the programmer can rely on a call to be safe, even when
system code is involved, if all reasonable steps have been taken to ensure that the call is
safe. For example, if a programmer calls mapcar from safe code and supplies a function
that was compiled as safe, the implementation is required to ensure that mapcar makes a
safe call as well.

3.5.1.2 Error Detection Time in Safe Calls

If an error is signaled in a safe call, the exact point of the signal is implementation-dependent.
In particular, it might be signaled at compile time or at run time, and if signaled at run
time, it might be prior to, during, or after executing the call. However, it is always prior to
the execution of the body of the function being called.

3.5.1.3 Too Few Arguments

It is not permitted to supply too few arguments to a function. Too few arguments means
fewer arguments than the number of required parameters for the function.

If this situation occurs in a safe call,

an error of type program-error must be signaled; and in an unsafe call the situation has
undefined consequences.

3.5.1.4 Too Many Arguments

It is not permitted to supply too many arguments to a function. Too many arguments
means more arguments than the number of required parameters plus the number of optional
parameters; however, if the function uses &rest or &key, it is not possible for it to receive
too many arguments.

If this situation occurs in a safe call,

an error of type program-error must be signaled; and in an unsafe call the situation has
undefined consequences.

3.5.1.5 Unrecognized Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not
recognized by that function unless keyword argument checking is suppressed as described
in (undefined) [Suppressing Keyword Argument Checking], page (undefined).

If this situation occurs in a safe call,

an error of type program-error must be signaled; and in an unsafe call the situation has
undefined consequences.
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3.5.1.6 Invalid Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not a
symbol.

If this situation occurs in a safe call,

an error of type program-error must be signaled unless keyword argument checking

is suppressed as described in (undefined) [Suppressing Keyword Argument Checking],
page (undefined); and in an unsafe call the situation has undefined consequences.

3.5.1.7 Odd Number of Keyword Arguments

An odd number of arguments must not be supplied for the keyword parameters.
If this situation occurs in a safe call,

an error of type program-error must be signaled unless keyword argument checking
is suppressed as described in (undefined) [Suppressing Keyword Argument Checking],
page (undefined); and in an unsafe call the situation has undefined consequences.

3.5.1.8 Destructuring Mismatch

When matching a destructuring lambda list against a form, the pattern and the form must
have compatible tree structure, as described in (undefined) [Macro Lambda Lists|, page (un-
defined).

Otherwise, in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

3.5.1.9 Errors When Calling a Next Method

If call-next-method is called with arguments, the ordered set of applicable methods for
the changed set of arguments for call-next-method must be the same as the ordered set
of applicable methods for the original arguments to the generic function, or else an error
should be signaled.

The comparison between the set of methods applicable to the new arguments and the
set applicable to the original arguments is insensitive to order differences among methods
with the same specializers.

If call-next-method is called with arguments that specify a different ordered set of appli-
cable methods and there is no next method available, the test for different methods and the
associated error signaling (when present) takes precedence over calling no-next-method.

3.6 Traversal Rules and Side Effects

The consequences are undefined when code executed during an object-traversing operation
destructively modifies the object in a way that might affect the ongoing traversal operation.
In particular, the following rules apply.

List traversal
For list traversal operations, the cdr chain of the list is not allowed to be
destructively modified.

Array traversal
For array traversal operations, the array is not allowed to be adjusted and its
fill pointer, if any, is not allowed to be changed.
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Hash-table traversal
For hash table traversal operations, new elements may not be added or deleted
except that the element corresponding to the current hash key may be changed
or removed.

Package traversal
For package traversal operations (e.g., do-symbols), new symbols may not be
interned in or uninterned from the package being traversed or any package that
it uses except that the current symbol may be uninterned from the package
being traversed.

3.7 Destructive Operations

3.7.1 Modification of Literal Objects

The consequences are undefined if literal objects are destructively modified. For this pur-
pose, the following operations are considered destructive:

random-state
Using it as an argument to the function random.

cons Changing the car_1 or cdr_1 of the cons, or performing a destructive operation
on an object which is either the car_2 or the cdr_2 of the cons.

array Storing a new value into some element of the array, or performing a destructive
operation on an object that is already such an element.

Changing the fill pointer, dimensions, or displacement of the array (regardless
of whether the array is actually adjustable).

Performing a destructive operation on another array that is displaced to the
array or that otherwise shares its contents with the array.
hash-table Performing a destructive operation on any key.

Storing a new value_4 for any key, or performing a destructive operation on any
object that is such a value.

Adding or removing entries from the hash table.
structure-object

Storing a new value into any slot, or performing a destructive operation on an
object that is the value of some slot.

standard-object
Storing a new value into any slot, or performing a destructive operation on an
object that is the value of some slot.

Changing the class of the object (e.g., using the function change-class).

readtable Altering the readtable case.
Altering the syntax type of any character in this readtable.

Altering the reader macro function associated with any character in the
readtable, or altering the reader macro functions associated with characters
defined as dispatching macro characters in the readtable.
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stream Performing I/O operations on the stream, or closing the stream.

All other standardized types
[This category includes, for example, character, condition, function, method-
combination, method, number, package, pathname, restart, and symbol.]

There are no standardized destructive operations defined on objects of these
types.

3.7.2 Transfer of Control during a Destructive Operation

Should a transfer of control out of a destructive operation occur (e.g., due to an error) the
state of the object being modified is implementation-dependent.

3.7.2.1 Examples of Transfer of Control during a Destructive
Operation

The following examples illustrate some of the many ways in which the implementation-

dependent nature of the modification can manifest itself.

(let ((a (list 2 1 4 37 6 ’five)))
(ignore-errors (sort a #°<))
a)

= (12346 7 FIVE)

OR= (2 1 4 37 6 FIVE)

OR= (2)

(prog foo ((a (list 1 23456 7 8 9 10)))
(sort a #’(lambda (x y) (if (zerop (random 5)) (return-from foo a) (> x y)))))J
= (1234567389 10)
OR= (34562789 10 1)
OR= (1 2 4 3)

3.8 Evaluation and Compilation Dictionary

3.8.1 lambda [Symbol]

Syntax::
lambda lambda-list [[{declaration}* | documentation]] {form}*

Arguments::

lambda-list—an ordinary lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description::

A lambda expression is a list that can be used in place of a function name in certain contexts
to denote a function by directly describing its behavior rather than indirectly by referring
to the name of an established function.
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Documentation is attached to the denoted function (if any is actually created) as a
documentation string.

See Also::

function, (undefined) [documentation]|, page (undefined), , (undefined) [Lambda Expres-
sions|, page (undefined), (undefined) [Lambda Forms], page (undefined), (undefined) [Syn-
tactic Interaction of Documentation Strings and Declarations|, page (undefined),

Notes::
The lambda form
((lambda lambda-list . body) . arguments)
is semantically equivalent to the function form

(funcall #’(lambda lambda-list . body) . arguments)

3.8.2 lambda [Macro]
lambda lambda-list [[{declaration}* | documentation]] {form}* = function

Arguments and Values::

lambda-list—an ordinary lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.
form—a form.

function—a function.

Description::
Provides a shorthand notation for a function special form involving a lambda expression
such that:

(lambda lambda-list [[{declaration}* | documentation]] {form}*)
(function (lambda lambda-list [[{declaration}* | documentation]] {form}x*))N
#’ (lambda lambda-list [[{declaration}* | documentation]] {form}x*)

Examples::
(funcall (lambda (x) (+ x 3)) 4) = 7

See Also::
lambda (symbol)

Notes::

This macro could be implemented by:

(defmacro lambda (&whole form &rest bvl-decls-and-body)
(declare (ignore bvl-decls-and-body))
‘#° ,form)



Chapter 3: Evaluation and Compilation 123

3.8.3 compile [Function]

compile name &optional definition = function, warnings-p, failure-p

Arguments and Values::
name—a function name, or nil.

definition—a lambda expression or a function. The default is the function definition of
name if it names a function, or the macro function of name if it names a macro. The
consequences are undefined if no definition is supplied when the name is nil.

function—the function-name,
or a compiled function.
warnings-p—a generalized boolean.

failure-p—a generalized boolean.

Description::
Compiles an interpreted function.

compile produces a compiled function from definition. If the definition is a lambda
expression, it is coerced to a function.

If the definition is already a compiled function, compile either produces that function
itself (i.e., is an identity operation) or an equivalent function.

[Editorial Note by KMP: There are a number of ambiguities here that still need resolu-
tion.] If the name is nil, the resulting compiled function is returned directly as the primary
value. If a non-nil name is given, then the resulting compiled function replaces the existing
function definition of name and the name is returned as the primary value; if name is a
symbol that names a macro, its macro function is updated and the name is returned as the
primary value.

Literal objects appearing in code processed by the compile function are neither copied
nor coalesced. The code resulting from the execution of compile references objects that are
eql to the corresponding objects in the source code.

compile is permitted, but not required, to establish a handler for conditions of type
error. For example, the handler might issue a warning and restart compilation from some
implementation-dependent point in order to let the compilation proceed without manual
intervention.

The secondary value, warnings-p, is false if no conditions of type error or warning were
detected by the compiler, and true otherwise.

The tertiary value, failure-p, is false if no conditions of type error or warning (other
than style-warning) were detected by the compiler, and true otherwise.

Examples::

(defun foo () "bar") = FOO

(compiled-function-p #’foo) = implementation-dependent
(compile ’foo) = FOO

(compiled-function-p #’foo) = true

(setf (symbol-function ’foo)
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(compile nil ’(lambda () "replaced"))) = #<Compiled-Function>
(foo) = '"replaced"

Affected By::
*error-output™®,
*macroexpand-hook*.

The presence of macro definitions and proclamations.

Exceptional Situations::

The consequences are undefined if the lexical environment surrounding the function to be
compiled contains any bindings other than those for macros, symbol macros, or declarations.

For information about errors detected during the compilation process, see (undefined)
[Exceptional Situations in the Compiler], page (undefined).

See Also::
(undefined) [compile-file], page (undefined),

3.8.4 eval [Function]
eval form = {result}*

Arguments and Values::
form—a form.

results—the values yielded by the evaluation of form.

Description::

Evaluates form in the current dynamic environment and the null lexical environment.
eval is a user interface to the evaluator.
The evaluator expands macro calls as if through the use of macroexpand-1.

Constants appearing in code processed by eval are not copied nor coalesced. The code
resulting from the execution of eval references objects that are eql to the corresponding
objects in the source code.

Examples::

(setq form ’(1+ a) a 999) = 999

(eval form) = 1000

(eval ’form) = (1+ A)

(let ((a ’(this would break if eval used local value))) (eval form))
= 1000

See Also::
macroexpand-1, (undefined) [The Evaluation Model], page (undefined),
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Notes::

To obtain the current dynamic value of a symbol, use of symbol-value is equivalent (and
usually preferable) to use of eval.

Note that an eval form involves two levels of evaluation for its argument. First, form is
evaluated by the normal argument evaluation mechanism as would occur with any call. The
object that results from this normal argument evaluation becomes the value of the form
parameter, and is then evaluated as part of the eval form. For example:

(eval (1list ’cdr (car ’((quote (a . b)) c)))) = D

The argument form (list ’cdr (car ’((quote (a . b)) c¢))) is evaluated in the
usual way to produce the argument (cdr (quote (a . b))); eval then evaluates its argu-
ment, (cdr (quote (a . b))), to produce b. Since a single evaluation already occurs for
any argument form in any function form, eval is sometimes said to perform “an extra level
of evaluation.”

3.8.5 eval-when [Special Operator]
eval-when ({situation}*) {form}* = {result}*

Arguments and Values::
situation—One of the symbols : compile-toplevel , :load-toplevel , :execute , compile
, load , or eval .

The use of eval, compile, and load is deprecated.

forms—an implicit progn.

results—the values of the forms if they are executed, or nil if they are not.

Description::

The body of an eval-when form is processed as an implicit progn, but only in the situations
listed.

The use of the situations :compile-toplevel (or compile) and :load-toplevel (or
load) controls whether and when evaluation occurs when eval-when appears as a top level
form in code processed by compile-file. See (undefined) [File Compilation], page (unde-
fined).

The use of the situation :execute (or eval) controls whether evaluation occurs for other
eval-when forms; that is, those that are not top level forms, or those in code processed by
eval or compile. If the :execute situation is specified in such a form, then the body forms
are processed as an implicit progn; otherwise, the eval-when form returns nil.

eval-when normally appears as a top level form, but it is meaningful for it to appear
as a non-top-level form. However, the compile-time side effects described in (undefined)
[Compilation]|, page (undefined), only take place when eval-when appears as a top level
form.

Examples::

One example of the use of eval-when is that for the compiler to be able to read a file properly
when it uses user-defined reader macros, it is necessary to write

(eval-when (:compile-toplevel :load-toplevel :execute)
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(set-macro-character #\$ #’(lambda (stream char)
(declare (ignore char))
(list ’dollar (read stream))))) = T

This causes the call to set-macro-character to be executed in the compiler’s execution
environment, thereby modifying its reader syntax table.

533 The EVAL-WHEN in this case is not at toplevel, so only the :EXECUTE]]
e keyword is considered. At compile time, this has no effect.
e At load time (if the LET is at toplevel), or at execution time
g (if the LET is embedded in some other form which does not executell
5 until later) this sets (SYMBOL-FUNCTION ’F001) to a function whichfi
e returns 1.
(let ((x 1))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’fool) #’(lambda () x))))

e If this expression occurs at the toplevel of a file to be compiled,|]
M it has BOTH a compile time AND a load-time effect of setting
HH (SYMBOL-FUNCTION ’F002) to a function which returns 2.
(eval-when (:execute :load-toplevel :compile-toplevel)
(let ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo2) #’(lambda () x)))))

N If this expression occurs at the toplevel of a file to be compiled,]}
e it has BOTH a compile time AND a load-time effect of setting the
e function cell of FOO03 to a function which returns 3.
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo03) #’(lambda () 3)))

;55 #4: This always does nothing. It simply returns NIL.
(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

H If this form occurs at toplevel of a file to be compiled, FO05 isfi
HH printed at compile time. If this form occurs in a non-top-level
I position, nothing is printed at compile time. Regardless of context,|]
I nothing is ever printed at load time or execution time.
(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’foo05)))

e If this form occurs at toplevel of a file to be compiled, F006 is|j
I printed at compile time. If this form occurs in a non-top-level

HH position, nothing is printed at compile time. Regardless of context,|}
e nothing is ever printed at load time or execution time.
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(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)

(print ’fo006)))

See Also::
(undefined) [compile-file], page (undefined), , (undefined) [Compilation|, page (undefined),

Notes::

The following effects are logical consequences of the definition of eval-when:

*

*

Execution of a single eval-when expression executes the body code at most once.

Macros intended for use in top level forms should be written so that side-
effects are done by the forms in the macro expansion. The macro-expander
itself should not do the side-effects.

For example:
Wrong:
(defmacro foo ()
(really-foo)
‘(really-foo))
Right:
(defmacro foo ()
“(eval-when (:compile-toplevel :execute :load-toplevel) (really-foo)))J]

Adherence to this convention means that such macros behave intuitively when
appearing as non-top-level forms.

Placing a variable binding around an eval-when reliably captures the binding
because the compile-time-too mode cannot occur (i.e., introducing a variable
binding means that the eval-when is not a top level form). For example,
(let ((x 3))
(eval-when (:execute :load-toplevel :compile-toplevel) (print x)))J
prints 3 at execution (i.e., load) time, and does not print anything at compile
time. This is important so that expansions of defun and defmacro can be done
in terms of eval-when and can correctly capture the lexical environment.
(defun bar (x) (defun foo () (+ x 3)))
might expand into
(defun bar (x)
(progn (eval-when (:compile-toplevel)
(compiler::notice-function-definition ’foo ’(x)))
(eval-when (:execute :load-toplevel)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))))I
which would be treated by the above rules the same as

(defun bar (x)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))

when the definition of bar is not a top level form.
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3.8.6 load-time-value [Special Operator|

load-time-value form &optional read-only-p = object

Arguments and Values::
form—a form; evaluated as described below.
read-only-p—a boolean; not evaluated.

object—the primary value resulting from evaluating form.

Description::

load-time-value provides a mechanism for delaying evaluation of form until the expression
is in the run-time environment; see (undefined) [Compilation], page (undefined).

Read-only-p designates whether the result can be considered a constant object. If t, the
result is a read-only quantity that can, if appropriate to the implementation, be copied into
read-only space and/or coalesced with similar constant objects from other programs. If nil
(the default), the result must be neither copied nor coalesced; it must be considered to be
potentially modifiable data.

If a load-time-value expression is processed by compile-file, the compiler performs its
normal semantic processing (such as macro expansion and translation into machine code)
on form, but arranges for the execution of form to occur at load time in a null lexical
environment, with the result of this evaluation then being treated as a literal object at run
time. It is guaranteed that the evaluation of form will take place only once when the file is
loaded, but the order of evaluation with respect to the evaluation of top level forms in the
file is implementation-dependent.

If a load-time-value expression appears within a function compiled with compile, the
form is evaluated at compile time in a null lexical environment. The result of this compile-
time evaluation is treated as a literal object in the compiled code.

If a load-time-value expression is processed by eval, form is evaluated in a null lexical
environment, and one value is returned. Implementations that implicitly compile (or par-
tially compile) expressions processed by eval might evaluate form only once, at the time
this compilation is performed.

If the same list (load-time-value form) is evaluated or compiled more than once,
it is implementation-dependent whether form is evaluated only once or is evaluated more
than once. This can happen both when an expression being evaluated or compiled shares
substructure, and when the same form is processed by eval or compile multiple times. Since
a load-time-value expression can be referenced in more than one place and can be evaluated
multiple times by eval, it is implementation-dependent whether each execution returns a
fresh object or returns the same object as some other execution. Users must use caution
when destructively modifying the resulting object.

If two lists (load-time-value form) that are the same under equal but are not identical
are evaluated or compiled, their values always come from distinct evaluations of form. Their
values may not be coalesced unless read-only-p is t.

Examples::

;35 The function INCR1 always returns the same value, even in different images.|}



Chapter 3: Evaluation and Compilation 129

;35 The function INCR2 always returns the same value in a given image,
;35 but the value it returns might vary from image to image.

(defun incrl (x) (+ x #.(random 17)))

(defun incr2 (x) (+ x (load-time-value (random 17))))

;33 The function FOO1-REF references the nth element of the first of
;55 the *FOO-ARRAYS* that is available at load time. It is permissible forj}
;3; that array to be modified (e.g., by SET-FOO1-REF); FOO1-REF will see thel]
;55 updated values.
(defvar *foo-arrays* (list (make-array 7) (make-array 8)))
(defun fool-ref (n) (aref (load-time-value (first *my-arrays*) nil) n))
(defun set-fool-ref (n val)

(setf (aref (load-time-value (first *my-arrays*) nil) n) val))

;33 The function BAR1-REF references the nth element of the first of

;55 the *BAR-ARRAYS* that is available at load time. The programmer has
;35 promised that the array will be treated as read-only, so the system
;53 can copy or coalesce the array.

(defvar *bar-arrays* (list (make-array 7) (make-array 8)))

(defun barl-ref (n) (aref (load-time-value (first *my-arrays*) t) n))

;35 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced]]
;55 even though NIL was specified, because the object was already read-onlylj]
;;; when it was written as a literal vector rather than created by a constructor.|}
;55 User programs must treat the vector v as read-only.
(defun baz-ref (n)
(let ((v (load-time-value #(A B C) nil)))
(values (svref v n) v)))

;35 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced]]
;35 even though NIL was specified in the outer situation because T was specified]
;35 1in the inner situation. User programs must treat the vector v as read-only.|}
(defun baz-ref (n)
(let ((v (load-time-value (load-time-value (vector 1 2 3) t) nil)))
(values (svref v n) v)))

See Also::

(undefined) [compile-file], page (undefined), , (undefined) [compile], page (undefined), , (un-
defined) [eval], page (undefined), , (undefined) [Minimal Compilation], page (undefined),
(undefined) [Compilation], page (undefined),

Notes::

load-time-value must appear outside of quoted structure in a “for evaluation” position. In
situations which would appear to call for use of load-time-value within a quoted structure,
the backquote reader macro is probably called for; see (undefined) [Backquote|, page (un-
defined).
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Specifying nil for read-only-p is not a way to force an object to become modifiable if
it has already been made read-only. It is only a way to say that, for an object that is
modifiable, this operation is not intended to make that object read-only.

3.8.7 quote [Special Operator]
quote object = object

Arguments and Values::

object—an object; not evaluated.

Description::
The quote special operator just returns object.

The consequences are undefined if literal objects (including quoted objects) are destruc-
tively modified.

Examples::

(setqa 1) == 1

(quote (setq a 3)) = (SETQ A 3)

a=> 1

’a = A

’’a = (QUOTE A)

’22a = (QUOTE (QUOTE A))

(setq a 43) = 43

(1ist a (cons a 3)) = (43 (43 . 3))
(1ist (quote a) (quote (cons a 3))) = (A (CONS A 3))
1= 1

1 = 1

"foo" = "foo"

'"foo" = "foo"

(car ’(a b)) = A

’(car ’(a b)) = (CAR (QUOTE (A B)))
#(car ’(a b)) = #(CAR (QUOTE (A B)))
"#(car ’(a b)) = #(CAR (QUOTE (A B)))

See Also::

(undefined) [Evaluation], page (undefined), (undefined) [Single-Quote], page (undefined),
(undefined) [Compiler Terminology], page (undefined),

Notes::

The textual notation ’object is equivalent to (quote object); see (undefined) [Compiler
Terminology], page (undefined).

Some objects, called self-evaluating objects, do not require quotation by quote. However,
symbols and lists are used to represent parts of programs, and so would not be useable as
constant data in a program without quote. Since quote suppresses the evaluation of these
objects, they become data rather than program.
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3.8.8 compiler-macro-function [Accessor]
compiler-macro-function name &optional environment = function

(setf ( compiler-macro-function name &optional environment) new-function)

Arguments and Values::
name—a function name.
environment—an environment object.

function, new-function—a compiler macro function, or nil.

Description::
Accesses the compiler macro function named name, if any, in the environment.

A value of nil denotes the absence of a compiler macro function named name.

Exceptional Situations::

The consequences are undefined if environment is non-nil in a use of setf of compiler-macro-
function.

See Also::

(undefined) [define-compiler-macro|, page (undefined), , (undefined) [Compiler Macros],
page (undefined),

3.8.9 define-compiler-macro [Macro]

define-compiler-macro name lambda-list [[{declaration}* | documentation]] {form}*
= name

Arguments and Values::

name—a function name.
lambda-list—a macro lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description::

[Editorial Note by KMP: This definition probably needs to be fully expanded to not refer
through the definition of defmacro, but should suffice for now.]

This is the normal mechanism for defining a compiler macro function. Its manner of
definition is the same as for defmacro; the only differences are:

* The name can be a function name naming any function or macro.

* The expander function is installed as a compiler macro function for the name,
rather than as a macro function.
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* The &whole argument is bound to the form argument that is passed to the
compiler macro function. The remaining lambda-list parameters are specified
as if this form contained the function name in the car and the actual arguments
in the cdr, but if the car of the actual form is the symbol funcall, then the
destructuring of the arguments is actually performed using its cddr instead.

*
Documentation is attached as a documentation string to name (as kind
compiler-macro) and to the compiler macro function.

* Unlike an ordinary macro, a compiler macro can decline to provide an expansion
merely by returning a form that is the same as the original (which can be
obtained by using &whole).

Examples::

(defun square (x) (expt x 2)) = SQUARE
(define-compiler-macro square (&whole form arg)
(if (atom arg)
‘(expt ,arg 2)
(case (car arg)
(square (if (= (length arg) 2)
‘(expt ,(nth 1 arg) 4)
form))
(expt  (if (= (length arg) 3)
(if (numberp (nth 2 arg))
“(expt ,(nth 1 arg) ,(* 2 (nth 2 arg)))
‘(expt ,(nth 1 arg) (x 2 ,(nth 2 arg))))
form))
(otherwise ‘(expt ,arg 2))))) = SQUARE
(square (square 3)) = 81
(macroexpand ’(square x)) = (SQUARE X), false
(funcall (compiler-macro-function ’square) ’(square x) nil)
= (EXPT X 2)
(funcall (compiler-macro-function ’square) ’(square (square x)) nil)
= (EXPT X 4)
(funcall (compiler-macro-function ’square) ’(funcall #’square x) nil)
= (EXPT X 2)

(defun distance-positional (x1 yl x2 y2)
(sqrt (+ (expt (- x2 x1) 2) (expt (- y2 y1) 2))))
= DISTANCE-POSITIONAL
(defun distance (&key (x1 0) (y1 0) (x2 x1) (y2 y1))
(distance-positional x1 y1 x2 y2))
= DISTANCE
(define-compiler-macro distance (&whole form
&rest key-value-pairs
&key (x1 0 x1-p)
(y1 0 yi-p)
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(x2 x1 x2-p)
(y2 y1 y2-p)
&allow-other-keys
&environment env)
(flet ((key (n) (nth (* n 2) key-value-pairs))
(arg (n) (nth (1+ (x n 2)) key-value-pairs))
(simplep (x)
(let ((expanded-x (macroexpand x env)))
(or (constantp expanded-x env)
(symbolp expanded-x)))))
(let ((n (/ (length key-value-pairs) 2)))
(multiple-value-bind (x1s yls x2s y2s others)
(loop for (key) on key-value-pairs by #’cddr
count (eq key ’:x1) into xls
count (eq key ’:yl1) into yls
count (eq key ’:x2) into x2s
count (eq key ’:yl) into y2s
count (not (member key ’(:x1 :x2 :yl :y2)))
into others
finally (return (values xls yls x2s y2s others)))
(cond ((and (= n 4)
(eq (key 0) :x1)
(eq (key 1) :y1)
(eq (key 2) :x2)
(eq (key 3) :y2))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (if x1-p (and (= xl1ls 1) (simplep x1)) t)
(if y1-p (and (= yls 1) (simplep y1)) t)
(if x2-p (and (= x2s 1) (simplep x2)) t)
(if y2-p (and (= y2s 1) (simplep y2)) t)
(zerop others))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (< x1s 2) (< y1s 2) (< x2s 2) (< y2s 2)
(zerop others))
(let ((temps (loop repeat n collect (gensym))))
‘(let ,(loop for i below n
collect (list (nth i temps) (arg i)))
(distance
,@(loop for i below n
append (list (key i) (nth i temps)))))))
(t form))))))
= DISTANCE
(dolist (form
’((distance :x1 (setq
(distance :x1 (setq
(distance :x1 (setq
(distance :x1 (setq

7) :x2 (decf x) :yl (decf x) :y2 (decf x))Jj
7) :yl (decf x) :x2 (decf x) :y2 (decf x))J
7) :yl (incf x))

7) :yl (incf x) :x1 (incf x))
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(distance :x1 al :yl bl :x2 a2 :y2 b2)
(distance :x1 al :x2 a2 :yl bl :y2 b2)
(distance :x1 al :yl bl :zl cl :x2 a2 :y2 b2 :z2 c2)))
(print (funcall (compiler-macro-function ’distance) form nil)))
[> (LET ((#:G6558 (SETQ X 7))

[> (#:G6559 (DECF X))
[> (#:G6560 (DECF X))
|> (#:G6561 (DECF X)))

|> (DISTANCE :X1 #:G6558 :X2 #:G6559 :Y1 #:G6560 :Y2 #:G6561))
|> (DISTANCE-POSITIONAL (SETQ X 7) (DECF X) (DECF X) (DECF X))
> (LET ((#:G6567 (SETQ X 7))
[> (#:G6568 (INCF X)))
[ > (DISTANCE :X1 #:G6567 :Y1 #:G6568))
> (DISTANCE :X1 (SETQ X 7) :Y1 (INCF X) :X1 (INCF X))
|> (DISTANCE-POSITIONAL A1 Bl A2 B2)
|> (DISTANCE-POSITIONAL A1l Bl A2 B2)
|> (DISTANCE :X1 Al :Y1 Bl :Z1 C1 :X2 A2 :Y2 B2 :Z2 C2)
= NIL

See Also::

(undefined) [compiler-macro-function], page (undefined), , (undefined) [defmacro], page (un-
defined), , (undefined) [documentation], page (undefined), , (undefined) [Syntactic Interac-
tion of Documentation Strings and Declarations|, page (undefined),

Notes::

The consequences of writing a compiler macro definition for a function in the COMMON-LISP
package are undefined; it is quite possible that in some implementations such an attempt
would override an equivalent or equally important definition. In general, it is recommended
that a programmer only write compiler macro definitions for functions he or she person-
ally maintains—writing a compiler macro definition for a function maintained elsewhere is
normally considered a violation of traditional rules of modularity and data abstraction.

3.8.10 defmacro [Macro]

defmacro name lambda-list [[{ declaration}* | documentation]] {form}*
= name

Arguments and Values::

name—a symbol.
lambda-list—a macro lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.
form—a form.

Description::

Defines name as a macro by associating a macro function with that name in the global
environment.
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The macro function is defined in the same lexical environment in which the defmacro
form appears.

The parameter variables in lambda-list are bound to destructured portions of the macro
call.

The expansion function accepts two arguments, a form and an environment. The ex-
pansion function returns a form. The body of the expansion function is specified by forms.
Forms are executed in order. The value of the last form executed is returned as the expan-
sion of the macro.

The body forms of the expansion function (but not the lambda-list)
are implicitly enclosed in a block whose name is name.

The lambda-list conforms to the requirements described in (undefined) [Macro Lambda
Lists], page (undefined).

Documentation is attached as a documentation string to name (as kind function) and
to the macro function.

defmacro can be used to redefine a macro or to replace a function definition with a
macro definition.

Recursive expansion of the form returned must terminate, including the expansion of
other macros which are subforms of other forms returned.

The consequences are undefined if the result of fully macroexpanding a form contains
any circular list structure except in literal objects.

If a defmacro form appears as a top level form, the compiler must store the macro
definition at compile time, so that occurrences of the macro later on in the file can be
expanded correctly. Users must ensure that the body of the macro can be evaluated at
compile time if it is referenced within the file being compiled.

Examples::

(defmacro macl (a b) "Macl multiplies and adds"
‘(+ ,a (* ,b 3))) = MAC1
(macl 4 5) = 19
(documentation ’macl ’function) = "Macl multiplies and adds"
(defmacro mac2 (&optional (a 2 b) (¢ 3 d) &rest x) ‘’(,a ,b ,c ,d ,x)) = MAC2J
(mac2 6) = (6 T 3 NIL NIL)
(mac2 6 38) = (6 T3T (8)
(defmacro mac3 (&whole r a &optional (b 3) &rest x &key c (d a))
“(,r ,a ,b ,c ,d ,x)) = MAC3
(mac3 1 6 :d 8 :¢c 9 :d 10) = ((MAC3 16 :D8 :C9 :D10) 1698 (:D8 :C9 :D 10))
The stipulation that an embedded destructuring lambda list is permitted only where

ordinary lambda list syntax would permit a parameter name but not a list is made to
prevent ambiguity. For example, the following is not valid:

(defmacro loser (x &optional (a b &rest c) &rest z)

D)

because ordinary lambda list syntax does permit a list following &optional; the list (a b
&rest c) would be interpreted as describing an optional parameter named a whose default
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value is that of the form b, with a supplied-p parameter named &rest (not valid), and an
extraneous symbol c in the list (also not valid). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)
)

The extra set of parentheses removes the ambiguity. However, the definition is now
incorrect because a macro call such as (loser (car pool)) would not provide any argu-
ment form for the lambda list (a b &rest c), and so the default value against which to
match the lambda list would be nil because no explicit default value was specified. The
consequences of this are unspecified since the empty list, nil, does not have forms to satisfy
the parameters a and b. The fully correct definition would be either

(defmacro loser (x &optional ((a b &rest c) ’(nil nil)) &rest z)
)
or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)
)
These differ slightly: the first requires that if the macro call specifies a explicitly then
it must also specify b explicitly, whereas the second does not have this requirement. For
example,

(loser (car pool) ((+ x 1)))
would be a valid call for the second definition but not for the first.

(defmacro dmla (&whole x) ¢’,x)
(macroexpand ’(dmia)) = (QUOTE (DM1A))
(macroexpand ’(dmla a)) is an error.

(defmacro dmlb (&whole x a &optional b) ‘’(,x ,a ,b))
(macroexpand ’(dmlb)) is an error.

(macroexpand ’(dmib q)) = (QUOTE ((DM1B Q) Q NIL))
(macroexpand ’(dmlb q r)) = (QUOTE ((DM1B Q R) Q R))
(macroexpand ’(dmlb q r s)) is an error.

(defmacro dm2a (&whole form a b) ‘’(form ,form a ,a b ,b))
(macroexpand ’(dm2a x y)) = (QUOTE (FORM (DM2A X Y) A X B Y))
(dm2a x y) = (FORM (DM2A X Y) AXB Y)

(defmacro dm2b (&whole form a (&whole b (c . d) &optional (e 5))
&body f &environment env)
““(,’,form ,,a ,’,b ,’,(macroexpand c env) ,’,d ,’,e ,’,f))
;Note that because backquote is involved, implementations may differ
;slightly in the nature (though not the functionality) of the expansion.[}
(macroexpand ’(dm2b x1 (((incf x2) x3 x4)) x5 x6))
= (LIST* ’(DM2B X1 (((INCF X2) X3 X4))
X5 X6)
X1
»((((INCF X2) X3 X4)) (SETQ X2 (+ X2 1)) (X3 X4) 5 (X5 X6))).1
T

(let ((x1 5))
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(macrolet ((segundo (x) ‘(cadr ,x)))
(dm2b x1 (((segundo x2) x3 x4)) x5 x6)))
= ((DM2B X1 (((SEGUNDO X2) X3 X4)) X5 X6)
5 (((SEGUNDO X2) X3 X4)) (CADR X2) (X3 X4) 5 (X5 X6))

See Also::

(undefined) [define-compiler-macro|, page (undefined), ,

(undefined) [destructuring-bind], page (undefined), , (undefined) [documentation],
page (undefined), , (undefined) [macroexpand], page (undefined), , *macroexpand-hook*,
macrolet, (undefined) [macro-function], page (undefined), , (undefined) [Evaluation],
page (undefined), (undefined) [Compilation|, page (undefined), (undefined) [Syntactic
Interaction of Documentation Strings and Declarations], page (undefined),

3.8.11 macro-function [Accessor]

macro-function symbol &optional environment = function

(setf ( macro-function symbol &optional environment) new-function)

Arguments and Values::

symbol—a, symbol.
environment—an environment object.
function—a macro function or nil.

new-function—a macro function.

Description::

Determines whether symbol has a function definition as a macro in the specified enwviron-
ment.

If so, the macro expansion function, a function of two arguments, is returned. If symbol
has no function definition in the lexical environment environment, or its definition is not a
macro, macro-function returns nil.

It is possible for both macro-function and

special-operator-p

to return true of symbol. The macro definition must be available for use by programs
that understand only the standard Common Lisp special forms.

Examples::

(defmacro macfun (x) ’(macro-function ’macfun)) = MACFUN
(not (macro-function ’macfun)) = false

(macrolet ((foo (&environment env)
(if (macro-function ’bar env)
) 7yes
’’n0)))
(1ist (foo)
(macrolet ((bar () :beep))
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(f00))))

= (NO YES)

Affected By::

(setf macro-function), defmacro, and macrolet.

Exceptional Situations::

The consequences are undefined if environment is non-nil in a use of setf of macro-function.

See Also::
(undefined) [defmacro], page (undefined), , (undefined) [Evaluation|, page (undefined),

Notes::

setf can be used with macro-function to install a macro as a symbol’s global function
definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, the entire macro call
and an environment, and computes the expansion for that call. Performing this operation
causes symbol to have only that macro definition as its global function definition; any
previous definition, whether as a macro or as a function, is lost.

3.8.12 macroexpand, macroexpand-1 [Function]

macroexpand form &optional env = expansion, expanded-p

macroexpand- 1 = form &optional env expansion, expanded-p

Arguments and Values::

form—a form.
env—an environment object. The default is nil.
expansion—a form.

expanded-p—a generalized boolean.

Description::
macroexpand and macroexpand-1 expand macros.
If form is a macro form, then macroexpand-1 expands the macro form call once.

macroexpand repeatedly expands form until it is no longer a macro form. In effect,
macroexpand calls macroexpand-1 repeatedly until the secondary value it returns is nil.

If form is a macro form, then the expansion is a macro expansion and expanded-p is
true. Otherwise, the expansion is the given form and expanded-p is false.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that
the form is a macro form, it obtains an appropriate expansion function for the macro or
symbol macro. The value of *macroexpand-hook* is

coerced to a function and
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then called as a function of three arguments: the expansion function, the form, and the

env. The value returned from this call is taken to be the expansion of the form.

In addition to macro definitions in the global environment, any local macro definitions
established within env by macrolet or symbol-macrolet are considered. If only form is
supplied as an argument, then the environment is effectively null, and only global macro
definitions as established by defmacro are considered. Macro definitions are shadowed by

local function definitions.

Examples::

[

[

(defmacro alpha (x y) ‘(beta ,x ,y)) = ALPHA
(defmacro beta (x y) ‘(gamma ,x ,y)) = BETA
(defmacro delta (x y) ‘(gamma ,x ,y)) = EPSILON
(defmacro expand (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand form env)
‘(values ’,expansion ’,expanded-p))) = EXPAND
(defmacro expand-1 (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand-1 form env)
‘(values ’,expansion ’,expanded-p))) = EXPAND-1

; Simple examples involving just the global environment
(macroexpand-1 ’(alpha a b)) = (BETA A B), true

(expand-1 (alpha a b)) = (BETA A B), true

(macroexpand ’(alpha a b)) = (GAMMA A B), true

(expand (alpha a b)) = (GAMMA A B), true

(macroexpand-1 ’not-a-macro) = NOT-A-MACRO, false

(expand-1 not-a-macro) = NOT-A-MACRO, false

(macroexpand ’ (not-a-macro a b)) = (NOT-A-MACRO A B), false
(expand (not-a-macro a b)) = (NOT-A-MACRO A B), false

; Examples involving lexical environments
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand-1 ’(alpha a b))) = (BETA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand-1 (alpha a b))) = (DELTA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand ’(alpha a b))) = (GAMMA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand (alpha a b))) = (GAMMA A B), true
(macrolet ((beta (x y) ‘(epsilon ,x ,y)))

(expand (alpha a b))) = (EPSILON A B), true
(let ((x (list 1 2 3)))

(symbol-macrolet ((a (first x)))

(expand a))) = (FIRST X), true

(let ((x (1ist 1 2 3)))
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(symbol-macrolet ((a (first x)))
(macroexpand ’a))) = A, false
(symbol-macrolet ((b (alpha x y)))
(expand-1 b)) = (ALPHA X Y), true
(symbol-macrolet ((b (alpha x y)))
(expand b)) = (GAMMA X Y), true
(symbol-macrolet ((b (alpha x y))
(a b))
(expand-1 a)) = B, true
(symbol-macrolet ((b (alpha x y))
(a b))
(expand a)) = (GAMMA X Y), true

;; Examples of shadowing behavior
(flet ((beta (x y) (+ x ¥)))
(expand (alpha a b))) = (BETA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))
(flet ((alpha (x y) (+ x y)))
(expand (alpha a b)))) = (ALPHA A B), false
(let ((x (list 1 2 3)))
(symbol-macrolet ((a (first x)))
(let ((a x))
(expand a)))) = A, false

Affected By::

defmacro, setf of macro-function, macrolet, symbol-macrolet

See Also::

*macroexpand-hook®, (undefined) [defmacro], page (undefined), , (undefined) [setf],

page (undefined), of (undefined) [macro-function|, page (undefined), , macrolet, (undefined)
[symbol-macrolet], page (undefined), , (undefined) [Evaluation], page (undefined),

Notes::

Neither macroexpand nor macroexpand-1 makes any explicit attempt to expand macro
forms that are either subforms of the form or subforms of the expansion. Such expansion
might occur implicitly, however, due to the semantics or implementation of the macro
function.

3.8.13 define-symbol-macro [Macro]

define-symbol-macro symbol expansion
= symbol

Arguments and Values::
symbol—a symbol.

erpansion—a form.
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Description::

Provides a mechanism for globally affecting the macro expansion of the indicated symbol.

Globally establishes an expansion function for the symbol macro named by symbol. The
only guaranteed property of an expansion function for a symbol macro is that when it is
applied to the form and the environment it returns the correct expansion. (In particular, it
is implementation-dependent whether the expansion is conceptually stored in the expansion
function, the environment, or both.)

Each global reference to symbol (i.e., not shadowed_2 by a binding for a wvariable or
symbol macro named by the same symbol) is expanded by the normal macro expansion
process; see (undefined) [Symbols as Forms|, page (undefined). The expansion of a symbol
macro is subject to further macro expansion in the same lexical environment as the symbol
macro reference, exactly analogous to normal macros.

The consequences are unspecified if a special declaration is made for symbol while in the
scope of this definition (i.e., when it is not shadowed_2 by a binding for a variable or symbol
macro named by the same symbol).

Any use of setq to set the value of the symbol while in the scope of this definition is
treated as if it were a setf. psetq of symbol is treated as if it were a psetf, and multiple-
value-setq is treated as if it were a setf of values.

A binding for a symbol macro can be shadowed_2 by let or symbol-macrolet.

Examples::
(defvar *things* (list ’alpha ’beta ’gamma)) = *THINGS*

(define-symbol-macro thingl (first *things*)) = THING1
(define-symbol-macro thing2 (second *things*)) = THING2
(define-symbol-macro thing3 (third *things*)) = THING3

thingl = ALPHA

(setq thingl ’ONE) = ONE

xthings* = (ONE BETA GAMMA)

(multiple-value-setq (thing2 thing3) (values ’two ’three)) = TWO
thing3 = THREE

*things* = (ONE TWO THREE)

(1ist thing2 (let ((thing2 2)) thing2)) = (TWO 2)

Exceptional Situations::

If symbol is already defined as a global variable, an error of type program-error is signaled.

See Also::

(undefined) [symbol-macrolet], page (undefined), , (undefined) [macroexpand], page (unde-
fined),
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3.8.14 symbol-macrolet [Special Operator|

symbol-macrolet ({(symbol expansion )}*) {declaration}* {form} *
= {result}*

Arguments and Values::

symbol—a symbol.
expansion—a form.
declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description::

symbol-macrolet provides a mechanism for affecting the macro erpansion environment for
symbols.

symbol-macrolet lexically establishes expansion functions for each of the symbol macros
named by symbols.

The only guaranteed property of an expansion function for a symbol macro is that
when it is applied to the form and the environment it returns the correct expansion. (In
particular, it is implementation-dependent whether the expansion is conceptually stored in
the expansion function, the environment, or both.)

Each reference to symbol as a variable within the lexical scope of symbol-macrolet is
expanded by the normal macro expansion process; see (undefined) [Symbols as Forms],
page (undefined). The expansion of a symbol macro is subject to further macro expansion
in the same lexical environment as the symbol macro invocation, exactly analogous to
normal macros.

Exactly the same declarations are allowed as for let with one exception: symbol-macrolet
signals an error if a special declaration names one of the symbols being defined by symbol-
macrolet.

When the forms of the symbol-macrolet form are expanded, any use of setq to set the
value of one of the specified variables is treated as if it were a setf. psetq of a symbol defined
as a symbol macro is treated as if it were a psetf, and multiple-value-setq is treated as if it
were a setf of values.

The use of symbol-macrolet can be shadowed by let. In other words, symbol-macrolet
only substitutes for occurrences of symbol that would be in the scope of a lexical binding of
symbol surrounding the forms.

Examples::

;35 The following is equivalent to
5 (list ’foo (let ((x ’bar)) x)),
;55 not
i3 (1ist ’foo (let ((’foo ’bar)) ’foo))
(symbol-macrolet ((x ’foo))
(1ist x (let ((x ’bar)) x)))
= (foo bar)
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NOT= (foo foo)

(symbol-macrolet ((x ’(foo x)))
(list x))
= ((FOO X))

Exceptional Situations::

If an attempt is made to bind a symbol that is defined as a global variable, an error of type
program-error is signaled.

If declaration contains a special declaration that names one of the symbols being bound
by symbol-macrolet, an error of type program-error is signaled.

See Also::
(undefined) [with-slots], page (undefined), , (undefined) [macroexpand], page (undefined),

Notes::

The special form symbol-macrolet is the basic mechanism that is used to implement with-
slots.

If a symbol-macrolet form is a top level form, the forms are also processed as top level
forms. See (undefined) [File Compilation], page (undefined).

3.8.15 *macroexpand-hook* [Variable]

Value Type::

a designator for a function of three arguments: a macro function, a macro form, and an
environment object.

Initial Value::

a designator for a function that is equivalent to the function funcall, but that might have
additional implementation-dependent side-effects.

Description::

Used as the expansion interface hook by macroexpand-1 to control the macro expansion
process. When a macro form is to be expanded, this function is called with three arguments:
the macro function, the macro form, and the environment in which the macro form is to
be expanded.

The environment object has dynamic extent; the consequences are undefined if the envi-
ronment object is referred to outside the dynamic extent of the macro expansion function.

Examples::

(defun hook (expander form env)

(format t "Now expanding: ~S~

(funcall expander form env)) = HOOK
(defmacro machook (x y) ‘(/ (+ ,x ,y) 2)) = MACHOOK
(macroexpand ’(machook 1 2)) = (/ (+ 1 2) 2), true



144 ANSI and GNU Common Lisp Document

(let ((*macroexpand-hook* #’hook)) (macroexpand ’(machook 1 2)))
|> Now expanding (MACHOOK 1 2)
= (/ (+12) 2), true

See Also::

(undefined) [macroexpand], page (undefined), , macroexpand-1, (undefined) [funcall],
page (undefined), , (undefined) [Evaluation|, page (undefined),

Notes::

The net effect of the chosen initial value is to just invoke the macro function, giving it the
macro form and environment as its two arguments.

Users or user programs can assign this variable to customize or trace the macro expansion
mechanism. Note, however, that this variable is a global resource, potentially shared by
multiple programs; as such, if any two programs depend for their correctness on the setting
of this wvariable, those programs may not be able to run in the same Lisp image. For this
reason, it is frequently best to confine its uses to debugging situations.

Users who put their own function into *macroexpand-hook* should consider saving the
previous value of the hook, and calling that value from their own.
3.8.16 proclaim [Function]

proclaim declaration-specifier = implementation-dependent

Arguments and Values::

declaration-specifier—a declaration specifier.

Description::
Establishes the declaration specified by declaration-specifier in the global environment.

Such a declaration, sometimes called a global declaration or a proclamation, is always in
force unless locally shadowed.

Names of variables and functions within declaration-specifier refer to dynamic variables
and global function definitions, respectively.

Figure 3-22 shows a list of declaration identifiers that can be used with proclaim.

declaration inline  optimize type
ftype notinline special

Figure 3-22: Global Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration iden-
tifiers as well.

Examples::
(defun declare-variable-types-globally (type vars)
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(proclaim ‘(type ,type ,Q@vars))
type)

;; Once this form is executed, the dynamic variable *TOLERANCEx*
;; must always contain a float.
(declare-variable-types-globally ’float ’(*tolerancex*))

= FLOAT

See Also::

(undefined) [declaim], page (undefined), , declare, (undefined) [Compilation], page (unde-
fined),

Notes::

Although the ezxecution of a proclaim form has effects that might affect compilation, the
compiler does not make any attempt to recognize and specially process proclaim forms. A
proclamation such as the following, even if a top level form, does not have any effect until
it is executed:

(proclaim ’(special *x*))
If compile time side effects are desired, eval-when may be useful. For example:

(eval-when (:execute :compile-toplevel :load-toplevel)
(proclaim ’(special *x*)))

In most such cases, however, it is preferrable to use declaim for this purpose.

Since proclaim forms are ordinary function forms, macro forms can expand into them.

3.8.17 declaim [Macro]

declaim {declaration-specifier} * = implementation-dependent

Arguments and Values::

declaration-specifier—a declaration specifier; not evaluated.

Description::
Establishes the declarations specified by the declaration-specifiers.

If a use of this macro appears as a top level form in a file being processed by the file
compiler, the proclamations are also made at compile-time. As with other defining macros,
it is unspecified whether or not the compile-time side-effects of a declaim persist after the
file has been compiled.

Examples::

See Also::
declare, (undefined) [proclaim], page (undefined),

3.8.18 declare [Symbol]
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Syntax::

declare {declaration-specifier} *

Arguments::

declaration-specifier—a declaration specifier; not evaluated.

Description::

A declare expression, sometimes called a declaration, can occur only at the beginning of the
bodies of certain forms; that is, it may be preceded only by other declare expressions, or
by a documentation string if the context permits.

A declare expression can occur in a lambda expression or in any of the forms listed in
Figure 3-23.

defgeneric do-external-symbols prog
define-compiler-macro do-symbols prog*
define-method-combination dolist restart-case
define-setf-expander dotimes symbol-macrolet
defmacro flet with-accessors
defmethod handler-case with-hash-table-iterator
defsetf labels with-input-from-string
deftype let with-open-file

defun let* with-open-stream
destructuring-bind locally with-output-to-string
do macrolet with-package-iterator
do* multiple-value-bind  with-slots
do-all-symbols pprint-logical-block

Figure 3-23: Standardized Forms In Which Declarations Can Occur

A declare expression can only occur where specified by the syntax of these forms. The
consequences of attempting to evaluate a declare expression are undefined. In situations
where such expressions can appear, explicit checks are made for their presence and they
are never actually evaluated; it is for this reason that they are called “declare ezpressions”
rather than “declare forms.”

Macro forms cannot expand into declarations; declare expressions must appear as actual
subexpressions of the form to which they refer.

Figure 3-24 shows a list of declaration identifiers that can be used with declare.
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dynamic-extent ignore  optimize
ftype inline  special
ignorable notinline type

Figure 3-24: Local Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration iden-
tifiers as well.

Examples::
(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ;Second call to foo
(x (* k k)))
(declare (inline foo) (special x z))
(foo x j 2))) ;Third call to foo

In this example, the inline declaration applies only to the third call to foo, but not
to the first or second ones. The special declaration of x causes let to make a dynamic
binding for x, and causes the reference to x in the body of let to be a dynamic reference.
The reference to x in the second call to foo is a local reference to the second parameter
of nonsense. The reference to x in the first call to foo is a local reference, not a special
one. The special declaration of z causes the reference to z in the third call to foo to be a
dynamic reference; it does not refer to the parameter to nonsense named z, because that
parameter binding has not been declared to be special. (The special declaration of z does
not appear in the body of defun, but in an inner form, and therefore does not affect the
binding of the parameter.)

Exceptional Situations::

The consequences of trying to use a declare expression as a form to be evaluated are
undefined.

[Editorial Note by KMP: Probably we need to say something here about ill-formed
declare expressions.]
See Also::
(undefined) [proclaim], page (undefined), , (undefined) [Type Specifiers|, page (undefined),
declaration, dynamic-extent, ftype, ignorable, ignore, inline, notinline, optimize, type

3.8.19 ignore, ignorable [Declaration)]

Syntax::
(ignore {var | (function fn)}*)

(ignorable {var | (function fn)}*)
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Arguments::
var—a variable name.

fn—a function name.

Valid Context::

declaration

Binding Types Affected::

variable, function

Description::
The ignore and ignorable declarations refer to for-value references to variable bindings for
the vars and to function bindings for the fns.

An ignore declaration specifies that for-value references to the indicated bindings will
not occur within the scope of the declaration. Within the scope of such a declaration, it is
desirable for a compiler to issue a warning about the presence of either a for-value reference
to any wvar or fn, or a special declaration for any var.

An ignorable declaration specifies that for-value references to the indicated bindings
might or might not occur within the scope of the declaration. Within the scope of such
a declaration, it is not desirable for a compiler to issue a warning about the presence or
absence of either a for-value reference to any var or fn, or a special declaration for any var.

When not within the scope of a ignore or ignorable declaration, it is desirable for a
compiler to issue a warning about any war for which there is neither a for-value reference
nor a special declaration, or about any fn for which there is no for-value reference.

Any warning about a “used” or “unused” binding must be of type style-warning, and
may not affect program semantics.

The stream variables established by with-open-file, with-open-stream, with-input-from-
string, and with-output-to-string, and all iteration wvariables are, by definition, always
“used”. Using (declare (ignore v)), for such a variable v has unspecified consequences.

See Also::

declare

3.8.20 dynamic-extent [Declaration]

Syntax::
(dynamic-extent [[{var}* | (function fn)*11)
Arguments::

var—a variable name.

fn—a function name.

Valid Context::

declaration
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Binding Types Affected::

variable, function

Description::

In some containing form, F, this declaration asserts for each var_i (which need not be bound
by F'), and for each value v_{ij} that var_i takes on, and for each object z_{ijk} that is an
otherwise inaccessible part of v_{ij} at any time when v_{ij} becomes the value of var_i,
that just after the execution of F' terminates, x_{ijk} is either inaccessible (if F' established
a binding for var_i) or still an otherwise inaccessible part of the current value of var_i (if F
did not establish a binding for var_i).

The same relation holds for each fn_i, except that the bindings are in the function
namespace.

The compiler is permitted to use this information in any way that is appropriate to the
implementation and that does not conflict with the semantics of Common Lisp.

dynamic-extent declarations can be free declarations or bound declarations.

The vars and fns named in a dynamic-extent declaration must not refer to symbol macro
or macro bindings.

Examples::

Since stack allocation of the initial value entails knowing at the object’s creation time
that the object can be stack-allocated, it is not generally useful to make a dynamic-extent
declaration for variables which have no lexically apparent initial value. For example, it is
probably useful to write:

(defun £ ()
(let ((x (list 1 2 3)))
(declare (dynamic-extent x))

cea))

This would permit those compilers that wish to do so to stack allocate the list held by
the local variable x. It is permissible, but in practice probably not as useful, to write:

(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ () (g (list 1 2 3)))

Most compilers would probably not stack allocate the argument to g in £ because it
would be a modularity violation for the compiler to assume facts about g from within £.
Only an implementation that was willing to be responsible for recompiling £ if the definition
of g changed incompatibly could legitimately stack allocate the list argument to g in £.

Here is another example:
(declaim (inline g))

(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ () (g (list 1 2 3)))

(defun £ ()
(flet ((g (x) (declare (dynamic-extent x)) ...))
(g (list 1 2 3))))
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In the previous example, some compilers might determine that optimization was possible
and others might not.

A variant of this is the so-called “stack allocated rest list” that can be achieved (in
implementations supporting the optimization) by:

(defun f (&rest x)
(declare (dynamic-extent x))

)

Note that although the initial value of x is not explicit, the £ function is responsible for
assembling the list x from the passed arguments, so the £ function can be optimized by the
compiler to construct a stack-allocated list instead of a heap-allocated list in implementa-
tions that support such.

In the following example,

(let ((x (list ’al ’bl ’c1))
(y (cons ’a2 (cons ’b2 (cons ’c2 nil)))))
(declare (dynamic-extent x y))

D)

The otherwise inaccessible parts of x are three conses, and the otherwise inaccessible
parts of y are three other conses. None of the symbols al, b1, c1, a2, b2, c2, or nil is an
otherwise inaccessible part of x or y because each is interned and hence accessible by the
package (or packages) in which it is interned. However, if a freshly allocated uninterned
symbol had been used, it would have been an otherwise inaccessible part of the list which
contained it.

;5 In this example, the implementation is permitted to stack allocate
;; the list that is bound to X.
(let ((x (list 1 2 3)))
(declare (dynamic-extent x))
(print x)
:done)
[> (12 3)
= :DONE

;3 In this example, the list to be bound to L can be stack-allocated.
(defun zap (x y 2)
(do ((1 (list x y 2z) (cdr 1)))
((null 1))
(declare (dynamic-extent 1))
(prinl (car 1)))) = ZAP
(zap 1 2 3)
[> 123
= NIL

;; Some implementations might open-code LIST-ALL-PACKAGES in a way
;; that permits using stack allocation of the list to be bound to L.
(do ((1 (list-all-packages) (cdr 1)))

((null 1))
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(declare (dynamic-extent 1))
(let ((name (package-name (car 1))))
(when (string-search "COMMON-LISP" name) (print name))))
|> "COMMON-LISP"
|> "COMMON-LISP-USER"
= NIL

;; Some implementations might have the ability to stack allocate
;; rest lists. A declaration such as the following should be a cue
;5 to such implementations that stack-allocation of the rest list
;; would be desirable.
(defun add (&rest x)
(declare (dynamic-extent x))
(apply #’+ x)) = ADD
(add 1 2 3) = 6

(defun zap (n m)
;; Computes (RANDOM (+ M 1)) at relative speed of roughly O(N).
;; It may be slow, but with a good compiler at least it
;; doesn’t waste much heap storage. :-}
(let ((a (make-array n)))
(declare (dynamic-extent a))
(dotimes (i n)
(declare (dynamic-extent i))
(setf (aref a i) (random (+ i 1))))
(aref a m))) = ZAP
(< (zap 5 3) 3) = true
The following are in error, since the value of x is used outside of its extent:
(length (list (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x))

x)))

(progn (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x))
x)
nil)

See Also::

declare

Notes::

The most common optimization is to stack allocate the initial value of the objects named
by the vars.

It is permissible for an implementation to simply ignore this declaration.

3.8.21 type [Declaration]
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Syntax::
(type typespec {var}x)
(typespec {var}*)

Arguments::
typespec—a type specifier.

var—a variable name.

Valid Context::

declaration or proclamation

Binding Types Affected::

variable

Description::

Affects only variable bindings and specifies that the vars take on values only of the specified
typespec. In particular, values assigned to the variables by setq, as well as the initial values
of the wars must be of the specified typespec. type declarations never apply to function
bindings (see ftype).

A type declaration of a symbol defined by symbol-macrolet is equivalent to wrapping a
the expression around the expansion of that symbol,

although the symbol’s macro expansion is not actually affected.

The meaning of a type declaration is equivalent to changing each reference to a variable
(var) within the scope of the declaration to (the typespec var), changing each expression
assigned to the variable (new-value) within the scope of the declaration to (the typespec
new-value), and executing (the typespec var) at the moment the scope of the declara-
tion is entered.

A type declaration is valid in all declarations. The interpretation of a type declaration
is as follows:

1. During the execution of any reference to the declared variable within the scope
of the declaration, the consequences are undefined if the value of the declared
variable is not of the declared type.

2. During the execution of any setq of the declared variable within the scope of
the declaration, the consequences are undefined if the newly assigned value of
the declared variable is not of the declared type.

3. At the moment the scope of the declaration is entered, the consequences are
undefined if the value of the declared variable is not of the declared type.

A type declaration affects only variable references within its scope.

If nested type declarations refer to the same variable, then the value of the variable must
be a member of the intersection of the declared types.

If there is a local type declaration for a dynamic variable, and there is also a global type
proclamation for that same variable, then the value of the variable within the scope of the
local declaration must be a member of the intersection of the two declared types.
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type declarations can be free declarations or bound declarations.

A symbol cannot be both the name of a type and the name of a declaration. Defining
a symbol as the name of a class, structure, condition, or type, when the symbol has been
declared as a declaration name, or vice versa, signals an error.

Within the lexical scope of an array type declaration, all references to array elements
are assumed to satisfy the expressed array element type (as opposed to the upgraded array
element type). A compiler can treat the code within the scope of the array type declaration
as if each access of an array element were surrounded by an appropriate the form.

Examples::

(defun f (x y)
(declare (type fixnum x y))
(et ((z (+ x P
(declare (type fixnum z))
z)) = F
(f12) = 3
;3 The previous definition of F is equivalent to
(defun f (x y)
;3 This declaration is a shorthand form of the TYPE declaration
(declare (fixnum x y))
;; To declare the type of a return value, it’s not necessary to
;; create a named variable. A THE special form can be used instead.
(the fixnum (+ x y))) = F
(f12) = 3

(defvar *one-array* (make-array 10 :element-type ’(signed-byte 5)))
(defvar *another-array* (make-array 10 :element-type ’(signed-byte 8)))

(defun frob (an-array)
(declare (type (array (signed-byte 5) 1) an-array))
(setf (aref an-array 1) 31)
(setf (aref an-array 2) 127)
(setf (aref an-array 3) (x 2 (aref an-array 3)))
(let ((foo 0))
(declare (type (signed-byte 5) foo))
(setf foo (aref an-array 0))))

(frob *one-arrayx*)
(frob *another-arrayx*)

The above definition of frob is equivalent to:

(defun frob (an-array)
(setf (the (signed-byte 5) (aref an-array 1)) 31)
(setf (the (signed-byte 5) (aref an-array 2)) 127)
(setf (the (signed-byte 5) (aref an-array 3))
(* 2 (the (signed-byte 5) (aref an-array 3))))
(let ((foo 0))
(declare (type (signed-byte 5) foo))
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(setf foo (the (signed-byte 5) (aref an-array 0)))))

Given an implementation in which fiznums are 29 bits but fixnum arrays are upgraded
to signed 32-bit arrays, the following could be compiled with all fiznum arithmetic:
(defun bump-counters (counters)
(declare (type (array fixnum *) bump-counters))
(dotimes (i (length counters))
(incf (aref counters i))))

See Also::
declare, (undefined) [declaim], page (undefined), , (undefined) [proclaim|, page (undefined),

Notes::
(typespec {var}*) is an abbreviation for (type typespec {var}*).

A type declaration for the arguments to a function does not necessarily imply anything
about the type of the result. The following function is not permitted to be compiled using
implementation-dependent fixnum-only arithmetic:

(defun f (x y) (declare (fixnum x y)) (+ x y))

To see why, consider (f most-positive-fixnum 1). Common Lisp defines that F must
return a bignum here, rather than signal an error or produce a mathematically incorrect
result. If you have special knowledge such “fiznum overflow” cases will not come up, you
can declare the result value to be in the fiznum range, enabling some compilers to use more
efficient arithmetic:

(defun f (x y)
(declare (fixnum x y))
(the fixnum (+ x y)))

Note, however, that in the three-argument case, because of the possibility of an implicit
intermediate value growing too large, the following will not cause implementation-dependent
fixnum-only arithmetic to be used:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ x y z)))

To see why, consider (f most-positive-fixnum 1 -1). Although the arguments and
the result are all fiznums, an intermediate value is not a firnum. If it is important that
implementation-dependent fiznum-only arithmetic be selected in implementations that pro-
vide it, consider writing something like this instead:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) 2)))

3.8.22 inline, notinline [Declaration]

Syntax::
(inline {function-name}*)

(notinline {function-namel}x*)
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Arguments::

function-name—a function name.

Valid Context::

declaration or proclamation

Binding Types Affected::

function

Description::

inline specifies that it is desirable for the compiler to produce inline calls to the functions
named by function-names; that is, the code for a specified function-name

should be integrated into the calling routine, appearing “in line” in place of a procedure
call. A compiler is free to ignore this declaration. inline declarations never apply to variable
bindings.

If one of the functions mentioned has a lexically apparent local definition (as made by
flet or labels), then the declaration applies to that local definition and not to the global
function definition.

While no conforming implementation is required to perform inline expansion of user-
defined functions, those implementations that do attempt to recognize the following para-
digm:

To define a function £ that is not inline by default but for which (declare (inline
£)) will make f be locally inlined, the proper definition sequence is:

(declaim (inline f))
(defun £ ...)
(declaim (notinline £f))

The inline proclamation preceding the defun form ensures that the compiler has the
opportunity save the information necessary for inline expansion, and the notinline procla-
mation following the defun form prevents f from being expanded inline everywhere.

notinline specifies that it is
undesirable to compile the functions named by function-names in-line. A compiler is

not free to ignore this declaration; calls to the specified functions must be implemented as
out-of-line subroutine calls.

If one of the functions mentioned has a lexically apparent local definition (as made by
flet or labels), then the declaration applies to that local definition and not to the global
function definition.

In the presence of a compiler macro definition for function-name, a notinline declaration
prevents that

compiler macro from being used.

An inline declaration may be used to encourage use of compiler macro definitions. inline
and notinline declarations otherwise have no effect when the lexically visible definition of
function-name is a macro definition.

inline and notinline declarations can be free declarations or bound declarations. inline
and notinline declarations of functions that appear before the body of a flet or labels
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form that defines that function are bound declarations. Such declarations in other con-
texts are free declarations.

Examples::

;; The globally defined function DISPATCH should be open-coded,
;; 1f the implementation supports inlining, unless a NOTINLINE
;; declaration overrides this effect.
(declaim (inline dispatch))
(defun dispatch (x) (funcall (get (car x) ’dispatch) x))
;; Here is an example where inlining would be encouraged.
(defun top-level-1 () (dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(defun top-level-2 ()

(declare (notinline dispatch))

(dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(declaim (notinline dispatch))
(defun top-level-3 () (dispatch (read-command)))
;; Here is an example where inlining would be encouraged.
(defun top-level-4 ()

(declare (inline dispatch))

(dispatch (read-command)))

See Also::
declare, (undefined) [declaim], page (undefined), , (undefined) [proclaim]|, page (undefined),

3.8.23 ftype [Declaration]

Syntax::
(ftype type {function-name}*)

Arguments::

function-name—a function name.
type—a type specifier.

Valid Context::

declaration or proclamation

Binding Types Affected::

function

Description::

Specifies that the functions named by function-names are of the functional type type. For
example:

(declare (ftype (function (integer list) t) ith)
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(ftype (function (number) float) sine cosine))

If one of the functions mentioned has a lexically apparent local definition (as made by
flet or labels), then the declaration applies to that local definition and not to the global
function definition. ftype declarations never apply to variable bindings (see type).

The lexically apparent bindings of function-names must not be macro definitions. (This
is because ftype declares the functional definition of each function name to be of a particular
subtype of function, and macros do not denote functions.)

ftype

declarations can be free declarations or bound declarations. ftype declarations of func-
tions that appear before the body of a flet or labels

form that defines that function are bound declarations. Such declarations in other con-
texts are free declarations.

See Also::
declare, (undefined) [declaim], page (undefined), , (undefined) [proclaim]|, page (undefined),

3.8.24 declaration [Declaration]

Syntax::

(declaration {namel}*)

Arguments::

name—a symbol.

Valid Context::

proclamation only

Description::

Advises the compiler that each name is a valid but potentially non-standard declaration
name. The purpose of this is to tell one compiler not to issue warnings for declarations
meant for another compiler or other program processor.

Examples::

(declaim (declaration author target-language target-machine))
(declaim (target-language ada))
(declaim (target-machine IBM-650))
(defun strangep (x)
(declare (author "Harry Tweeker"))
(member x ’(strange weird odd peculiar)))

See Also::
(undefined) [declaim], page (undefined), , (undefined) [proclaim], page (undefined),

3.8.25 optimize [Declaration]
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Syntax::
(optimize {quality | (quality value)}*)
Arguments::
quality—an optimize quality.
value—one of the integers 0, 1, 2, or 3.

Valid Context::

declaration or proclamation

Description::

Adyvises the compiler that each quality should be given attention according to the specified
corresponding value. Each quality must be a symbol naming an optimize quality; the names
and meanings of the standard optimize qualities are shown in Figure 3-25.

Name Meaning

compilation-speed speed of the compilation process
debug ease of debugging

safety run-time error checking

space both code size and run-time space
speed speed of the object code

Figure 3-25: Optimize qualities

There may be other, implementation-defined optimize qualities.

A wvalue 0 means that the corresponding quality is totally unimportant, and 3 that the
quality is extremely important; 1 and 2 are intermediate values, with 1 the neutral value.
(quality 3) can be abbreviated to quality.

Note that code which has the optimization (safety 3), or just safety, is called safe
code.

The consequences are unspecified if a quality appears more than once with different
values.

Examples::

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)
(hairy-setup x)
(do ((1 O (+ 1 1))
(z x (cdr 2)))
((null z))
;; This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum i))
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)

See Also::

declare, (undefined) [declaim], page (undefined), , (undefined) [proclaim]|, page (undefined),
, (undefined) [Declaration Scope], page (undefined),

Notes::

An optimize declaration never applies to either a wvariable or a function binding. An op-
timize declaration can only be a free declaration. For more information, see (undefined)
[Declaration Scope], page (undefined).

3.8.26 special [Declaration]

Syntax::
(special {var}*)

Arguments::

var—a symbol.

Valid Context::

declaration or proclamation

Binding Types Affected::

variable

Description::

Specifies that all of the vars named are dynamic. This specifier affects variable bindings
and affects references. All variable bindings affected are made to be dynamic bindings, and
affected variable references refer to the current dynamic binding. For example:

(defun hack (thing *mod*) ;The binding of the parameter
(declare (special #*mod*)) ; *mod* is visible to hackl,
(hackl (car thing))) ; but not that of thing.

(defun hackl (arg)
(declare (special *mod*)) ;Declare references to *modx
;within hackl to be special.
(if (atom arg) *modx*
(cons (hackl (car arg)) (hackl (cdr arg)))))
A special declaration does not affect inner bindings of a var; the inner bindings implic-
itly shadow a special declaration and must be explicitly re-declared to be special. special
declarations never apply to function bindings.

special declarations can be either bound declarations, affecting both a binding and refer-
ences, or free declarations, affecting only references, depending on whether the declaration
is attached to a variable binding.

When used in a proclamation, a special declaration specifier applies to all bindings as
well as to all references of the mentioned variables. For example, after

(declaim (special x))
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then in a function definition such as
(defun example (x) ...)

the parameter x is bound as a dynamic variable rather than as a lexical variable.

Examples::
(defun declare-eg (y) ;this y is special
(declare (special y))
(let ((y t)) ;this y is lexical
(list y

(locally (declare (special y)) y)))) ;this y refers to the
;special binding of y
= DECLARE-EG
(declare-eg nil) = (T NIL)

(setf (symbol-value ’x) 6)

(defun foo (x) ;a lexical binding of x

(print x)

(let ((x (1+ x))) ;a special binding of x
(declare (special x)) ;and a lexical reference
(bar))

(1+ %))

(defun bar ()
(print (locally (declare (special x))

x)))

(foo 10)

[> 10

[> 11
= 11
(setf (symbol-value ’x) 6)
(defun bar (x y) ; [11 1st occurrence of x

(let ((old-x x) ; [2] 2nd occurrence of x -- same as 1st occurrencell

(x y)» ; [3] 3rd occurrence of x

(declare (special x))
(list old-x x)))
(bar ’first ’second) = (FIRST SECOND)

(defun few (x &optional (y *foox*))
(declare (special xfoox*))

D)

The reference to *foo* in the first line of this example is not special even though there
is a special declaration in the second line.

(declaim (special prosp)) = implementation-dependent
(setq prosp 1 reg 1) = 1

(let ((prosp 2) (reg 2)) ;the binding of prosp is special
(set ’prosp 3) (set ’reg 3) ;due to the preceding proclamation,
(list prosp reg)) ;whereas the variable reg is lexical

= (3 2)
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(list prosp reg) = (1 3)

(declaim (special x)) ;X is always special.
(defun example (x y)
(declare (special y))
(let ((y 3) (x (x x 2)))
(print (+ y (locally (declare (special y)) y)))
(let ((y 4)) (declare (special y)) (foo x)))) = EXAMPLE
In the contorted code above, the outermost and innermost bindings of y are dynamic,
but the middle binding is lexical. The two arguments to + are different, one being the
value, which is 3, of the lexical variable y, and the other being the value of the dynamic
variable named y (a binding of which happens, coincidentally, to lexically surround it at an
outer level). All the bindings of x and references to x are dynamic, however, because of the
proclamation that x is always special.

See Also::
(undefined) [defparameter], page (undefined), , defvar

3.8.27 locally [Special Operator]
locally {declaration}* {form}* = {result}*

Arguments and Values::
Declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values of the forms.

Description::

Sequentially evaluates a body of forms in a lexical environment where the given declarations
have effect.

Examples::

(defun sample-function (y) ;this y is regarded as special
(declare (special y))
(Qet ((y t)) ;this y is regarded as lexical
(list y
(locally (declare (special y))
;5 this next y is regarded as special
¥y))))
= SAMPLE-FUNCTION
(sample-function nil) = (T NIL)
(setq x ’(1 23) y (4 .5) = (4.5

;35 The following declarations are not notably useful in specific.
;55 They just offer a sample of valid declaration syntax using LOCALLY.
(locally (declare (inline floor) (notinline car cdr))
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(declare (optimize space))
(floor (car x) (cdr y))) = 0, 1

;35 This example shows a definition of a function that has a particular set]]
;35 of OPTIMIZE settings made locally to that definition.
(locally (declare (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w)))
= FROB

;35 This is like the previous example, except that the optimize settings
;55 remain in effect for subsequent definitions in the same compilation unit.|}
(declaim (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w))
= FROB

See Also::

declare

Notes::

The special declaration may be used with locally to affect references to, rather than bindings
of, variables.

If a locally form is a top level form, the body forms are also processed as top level forms.
See (undefined) [File Compilation], page (undefined).

3.8.28 the [Special Operator]
the value-type form = {result}*

Arguments and Values::
value-type—a type specifier; not evaluated.
form—a form; evaluated.

results—the wvalues resulting from the evaluation of form. These values must conform
to the type supplied by value-type; see below.

Description::

the specifies that the values_{la} returned by form are of the types specified by value-type.
The consequences are undefined if any result is not of the declared type.

It is permissible for form to yield a different number of values than are specified by
value-type, provided that the values for which types are declared are indeed of those types.
Missing values are treated as nil for the purposes of checking their types.

Regardless of number of wvalues declared by wvalue-type, the number of values returned
by the the special form is the same as the number of values returned by form.



Chapter 3: Evaluation and Compilation 163

Examples::

(the symbol (car (list (gensym)))) = #:G9876
(the fixnum (+ 5 7)) = 12
(the (values) (truncate 3.2 2)) = 1, 1.2
(the integer (truncate 3.2 2)) = 1, 1.2
(the (values integer) (truncate 3.2 2)) = 1, 1.2
(the (values integer float) (truncate 3.2 2)) = 1, 1.2
(the (values integer float symbol) (truncate 3.2 2)) = 1, 1.2
(the (values integer float symbol t null list)
(truncate 3.2 2)) = 1, 1.2

(let ((i 100))

(declare (fixnum 1))

(the fixnum (1+ i))) = 101
(let* ((x (list ’a ’b ’c))

(y 5))
(setf (the fixnum (car x)) y)
x) = (6 BC

Exceptional Situations::

The consequences are undefined if the values yielded by the form are not of the type specified
by wvalue-type.

See Also::

values

Notes::

The values type specifier can be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the-string-table))

setf can be used with the type declarations. In this case the declaration is transferred
to the form that specifies the new value. The resulting setf form is then analyzed.

3.8.29 special-operator-p [Function]

special-operator-p symbol = generalized-boolean

Arguments and Values::
symbol—a symbol.

generalized-boolean—a generalized boolean.

Description::

Returns true if symbol is a special operator; otherwise, returns false.

Examples::

(special-operator-p ’if) = true
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(special-operator-p ’car) = false
(special-operator-p ’one) = false

Exceptional Situations::

Should signal type-error if its argument is not a symbol.

Notes::

Historically, this function was called special-form-p. The name was finally declared a
misnomer and changed, since it returned true for special operators, not special forms.

3.8.30 constantp [Function]

constantp form &optional environment = generalized-boolean

Arguments and Values::

form—a form.

environment—an environment object. The default is nil.

generalized-boolean—a generalized boolean.

Description::

Returns true if form can be determined by the implementation to be a constant form in
the indicated environment; otherwise, it returns false indicating either that the form is not
a constant form or that it cannot be determined whether or not form is a constant form.

The following kinds of forms are considered constant forms:

Self-evaluating objects (such as numbers, characters, and the various kinds of
arrays) are always considered constant forms and must be recognized as such
by constantp.

Constant variables, such as keywords, symbols defined by Common Lisp as
constant (such as nil, t, and pi), and symbols declared as constant by the user
in the indicated environment using defconstant are always considered constant
forms and must be recognized as such by constantp.

quote forms are always considered constant forms and must be recognized as
such by constantp.

An implementation is permitted, but not required, to detect additional constant
forms. If it does, it is also permitted, but not required, to make use of infor-
mation in the environment. Examples of constant forms for which constantp
might or might not return true are: (sqrt pi), (+ 3 2), (length ’(a b ¢)),
and (let ((x 7)) (zerop x)).

If an implementation chooses to make use of the environment information, such actions
as expanding macros or performing function inlining are permitted to be used, but not
required; however, expanding compiler macros is not permitted.
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Examples::

(constantp 1) = true

(constantp ’temp) = false

(constantp ’’temp)) = true

(defconstant this-is-a-constant ’never-changing) => THIS-IS-A-CONSTANT

(constantp ’this-is-a-constant) = true

(constantp "temp") = true

(setq a 6) = 6

(constantp a) = true

(constantp ’(sin pi)) = implementation-dependent

(constantp ’(car ’(x))) = implementation-dependent

(constantp ’(eql x x)) = implementation-dependent

(constantp ’(typep x ’nil)) = implementation-dependent

(constantp ’(typep x ’t)) = implementation-dependent

(constantp ’(values this-is-a-constant)) = implementation-dependent

(constantp ’(values ’x ’y)) = implementation-dependent

(constantp ’(let ((a ’(a b ¢))) (+ (length a) 6))) = implementation-
dependent

Affected By::

The state of the global environment (e.g., which symbols have been declared to be the names
of constant variables).

See Also::
(undefined) [defconstant], page (undefined),
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4 Types and Classes

4.1 Introduction

A type is a (possibly infinite) set of objects. An object can belong to more than one type.
Types are never explicitly represented as objects by Common Lisp. Instead, they are referred
to indirectly by the use of type specifiers, which are objects that denote types.

New types can be defined using deftype, defstruct, defclass, and define-condition.

The function typep, a set membership test, is used to determine whether a given object
is of a given type. The function subtypep, a subset test, is used to determine whether a
given type is a subtype of another given type. The function type-of returns a particular type
to which a given object belongs, even though that object must belong to one or more other
types as well. (For example, every object is of type t, but type-of always returns a type
specifier for a type more specific than t.)

Objects, not wvariables, have types. Normally, any variable can have any object as its
value. It is possible to declare that a wvariable takes on only values of a given type by
making an explicit type declaration. Types are arranged in a directed acyclic graph, except
for the presence of equivalences.

Declarations can be made about types using declare, proclaim, declaim, or the. For
more information about declarations, see (undefined) [Declarations], page (undefined).

Among the fundamental objects of the object system are classes. A class determines the
structure and behavior of a set of other objects, which are called its instances. Every object
is a direct instance of a class. The class of an object determines the set of operations that
can be performed on the object. For more information, see (undefined) [Classes], page (un-
defined).

It is possible to write functions that have behavior specialized to the class of the objects
which are their arguments. For more information, see (undefined) [Generic Functions and
Methods], page (undefined).

The class of the class of an object is called its metaclass . For more information about
metaclasses, see (undefined) [Meta-Objects|, page (undefined).

4.2 Types

4.2.1 Data Type Definition

Information about type usage is located in the sections specified in Figure™/—1. Figure™ 4—7
lists some classes that are particularly relevant to the object system. Figure™9-1 lists the
defined condition types.
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Data Type

o~~~ o~~~ o~~~

undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined

Classes|, page (undefined),
Slots|, page (undefined), Object System types

Objects], page (undefined), Object System types

Generic Functions and Methods], page (undefined), Object System types
Condition System Concepts], page (undefined), Condition System types
Types and Classes|, page (undefined), Miscellaneous types
Syntax], page (undefined),

The Lisp Printer|, page (undefined),
Compilation|, page (undefined),

Object System types

All types—print syntax
All types—compilation issues

NGNS NGRS

Figure 4-1: Cross-References to Data Type Information

4.2.2 Type Relationships

*

The types cons, symbol, array, number, character, hash-table,
function,

readtable, package, pathname, stream, random-state, condition, restart, and
any single other type created by defstruct,

define-condition,

or defclass are pairwise disjoint, except for type relations explicitly established
by specifying superclasses in defclass

or define-condition
or the :include option of destruct.

Any two types created by defstruct are disjoint unless one is a supertype of the
other by virtue of the defstruct :include option.

[Editorial Note by KMP: The comments in the source say gray suggested some
change from “common superclass” to “common subclass” in the following, but
the result looks suspicious to me.]

Any two distinct classes created by defclass or define-condition are disjoint
unless they have a common subclass or one class is a subclass of the other.

An implementation may be extended to add other subtype relationships be-
tween the specified types, as long as they do not violate the type relationships
and disjointness requirements specified here. An implementation may define
additional types that are subtypes or supertypes of any specified types, as long
as each additional type is a subtype of type t and a supertype of type nil and the
disjointness requirements are not violated.

At the discretion of the implementation, either standard-object or structure-
object might appear in any class precedence list for a system class that does not
already specify either standard-object or structure-object. If it does, it must
precede the class t and follow all other standardized classes.

All types—read and print syntax [j
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4.2.3 Type Specifiers

Type specifiers can be symbols, classes, or lists. Figure™4-2 lists symbols that are stan-
dardized atomic type specifiers, and Figure™4-3 lists standardized compound type specifier
names. For syntax information, see the dictionary entry for the corresponding type speci-
fier. It is possible to define new type specifiers using defclass, define-condition, defstruct,
or deftype.

arithmetic-error function simple-condition
array generic-function simple-error
atom hash-table simple-string
base-char integer simple-type-error
base-string keyword simple-vector
bignum list simple-warning

bit logical-pathname single-float
bit-vector long-float standard-char
broadcast-stream method standard-class
built-in-class method-combination standard-generic-function
cell-error nil standard-method
character null standard-object
class number storage-condition
compiled-function package stream
complex package-error stream-error
concatenated-stream parse-error string
condition pathname string-stream
cons print-not-readable structure-class
control-error program-error structure-object
division-by-zero random-state style-warning
double-float ratio symbol
echo-stream rational synonym-stream
end-of-file reader-error t

error readtable two-way-stream
extended-char real type-error
file-error restart unbound-slot
file-stream sequence unbound-variable
fixnum serious-condition undefined-function
float short-float unsigned-byte
floating-point-inexact signed-byte vector
floating-point-invalid-operation simple-array warning
floating-point-overflow simple-base-string
floating-point-underflow simple-bit-vector

Figure 4-2: Standardized Atomic Type Specifiers

\indent If a type specifier is a list, the car of the list is a symbol, and the rest of the
list is subsidiary type information. Such a type specifier is called a compound type specifier
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Except as explicitly stated otherwise, the subsidiary items can be unspecified. The
unspecified subsidiary items are indicated by writing *. For example, to completely specify
a vector, the type of the elements and the length of the vector must be present.

(vector double-float 100)

The following leaves the length unspecified:
(vector double-float *)

The following leaves the element type unspecified:
(vector * 100)

Suppose that two type specifiers are the same except that the first has a * where the
second has a more explicit specification. Then the second denotes a subtype of the type
denoted by the first.

If a list has one or more unspecified items at the end, those items can be dropped.
If dropping all occurrences of * results in a singleton list, then the parentheses can be
dropped as well (the list can be replaced by the symbol in its car). For example, (vector
double-float *) can be abbreviated to (vector double-float), and (vector * *) can
be abbreviated to (vector) and then to vector.

and long-float  simple-base-string
array member simple-bit-vector
base-string mod simple-string
bit-vector  not simple-vector
complex or single-float

cons rational string

double-float real unsigned-byte

eql satisfies  values

float short-float  vector

function signed-byte

integer simple-array

Figure 4-3: Standardized Compound Type Specifier Names

Figure 4-4 show the defined names that can be used as compound type specifier names
but that cannot be used as atomic type specifiers.

and mod satisfies
eql  not wvalues
member or

Figure 4—4: Standardized Compound-Only Type Specifier Names

New type specifiers can come into existence in two ways.
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* Defining a structure by using defstruct without using the :type specifier or
defining a class by using defclass or define-condition automatically causes the
name of the structure or class to be a new type specifier symbol.

* deftype can be used to define derived type specifiers , which act as ‘abbrevia-
tions’ for other type specifiers.

A class object can be used as a type specifier. When used this way, it denotes the set of
all members of that class.

Figure 4-5 shows some defined names relating to types and declarations.

coerce defstruct subtypep
declaim deftype the
declare ftype type
defclass locally  type-of

define-condition proclaim typep

Figure 4-5: Defined names relating to types and declarations.

Figure 4-6 shows all defined names that are type specifier names, whether for atomic

type specifiers or compound type specifiers; this list is the union of the lists in Figure™4-2
and Figure™4-35.



172 ANSI and GNU Common Lisp Document
and function simple-array
arithmetic-error generic-function simple-base-string
array hash-table simple-bit-vector
atom integer simple-condition
base-char keyword simple-error
base-string list simple-string

bignum logical-pathname simple-type-error
bit long-float simple-vector
bit-vector member simple-warning
broadcast-stream method single-float

built-in-class

method-combination standard-char

cell-error mod standard-class

character nil standard-generic-function
class not standard-method
compiled-function null standard-object
complex number storage-condition
concatenated-stream or stream

condition package stream-error

cons package-error string

control-error
division-by-zero
double-float
echo-stream

parse-error string-stream
pathname structure-class

print-not-readable structure-object
program-error style-warning

end-of-file random-state symbol

eql ratio Synonym-stream
error rational t

extended-char reader-error two-way-stream
file-error readtable type-error
file-stream real unbound-slot
fixnum restart unbound-variable
float satisfies undefined-function
floating-point-inexact sequence unsigned-byte

floating-point-invalid-operation serious-condition values
floating-point-overflow short-float vector
floating-point-underflow signed-byte warning

Figure 4-6: Standardized Type Specifier Names

4.3 Classes

While the object system is general enough to describe all standardized classes (including,
for example, number, hash-table, and symbol), Figure 4-7 contains a list of classes that are
especially relevant to understanding the object system.
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built-in-class  method-combination standard-object
class standard-class structure-class
generic-function standard-generic-function structure-object
method standard-method

Figure 4-7: Object System Classes

4.3.1 Introduction to Classes

A class is an object that determines the structure and behavior of a set of other objects,
which are called its instances .

A class can inherit structure and behavior from other classes. A class whose definition
refers to other classes for the purpose of inheriting from them is said to be a subclass of
each of those classes. The classes that are designated for purposes of inheritance are said
to be superclasses of the inheriting class.

A class can have a name. The function class-name takes a class object and returns
its name. The name of an anonymous class is nil. A symbol can name a class. The
function find-class takes a symbol and returns the class that the symbol names. A class
has a proper name if the name is a symbol and if the name of the class names that class.
That is, a class™C has the proper name~S if S= (class-name C) and C= (find-class
S). Notice that it is possible for (find-class S_1) = (find-class S_2) and S_1!= S_2.
If C= (find-class 8), we say that C is the class named S.

A class C_1 is a direct superclass of a class C_2 if C_2 explicitly designates C_1 as a
superclass in its definition. In this case C_2 is a direct subclass of C_1. A class C_n is a
superclass of a class C_1 if there exists a series of classes C_2,...,C_{n-1} such that C_{i+1}
is a direct superclass of C_i for 1 <= i<n. In this case, C_1 is a subclass of C_n. A class
is considered neither a superclass nor a subclass of itself. That is, if C_1 is a superclass of
C-2, then C_1 != C_2. The set of classes consisting of some given class C along with all of
its superclasses is called “C and its superclasses.”

Each class has a class precedence list , which is a total ordering on the set of the given
class and its superclasses. The total ordering is expressed as a list ordered from most
specific to least specific. The class precedence list is used in several ways. In general, more
specific classes can shadow _1 features that would otherwise be inherited from less specific
classes. The method selection and combination process uses the class precedence list to
order methods from most specific to least specific.

When a class is defined, the order in which its direct superclasses are mentioned in the
defining form is important. Each class has a local precedence order , which is a list consisting
of the class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class
in the list. The classes in each local precedence order appear within the class precedence
list in the same order. If the local precedence orders are inconsistent with each other, no
class precedence list can be constructed, and an error is signaled. The class precedence list
and its computation is discussed in (undefined) [Determining the Class Precedence List],
page (undefined).
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classes are organized into a directed acyclic graph. There are two distinguished classes,
named t and standard-object. The class named t has no superclasses. It is a superclass
of every class except itself. The class named standard-object is an instance of the class
standard-class and is a superclass of every class that is an instance of the class standard-
class except itself.

[Reviewer Note by Barmar: This or something like it needs to be said in the introduction.]
There is a mapping from the object system class space into the type space. Many of the
standard types specified in this document have a corresponding class that has the same name
as the type. Some types do not have a corresponding class. The integration of the type and
class systems is discussed in (undefined) [Integrating Types and Classes], page (undefined).

Classes are represented by objects that are themselves instances of classes. The class
of the class of an object is termed the metaclass of that object. When no misinterpretation
is possible, the term metaclass is used to refer to a class that has instances that are
themselves classes. The metaclass determines the form of inheritance used by the classes
that are its instances and the representation of the instances of those classes. The object
system provides a default metaclass, standard-class, that is appropriate for most programs.

Except where otherwise specified, all classes mentioned in this standard are instances of
the class standard-class, all generic functions are instances of the class standard-generic-
function, and all methods are instances of the class standard-method.

4.3.1.1 Standard Metaclasses

The object system provides a number of predefined metaclasses. These include the classes
standard-class, built-in-class, and structure-class:

* The class standard-class is the default class of classes defined by defclass.

* The class built-in-class is the class whose instances are classes that have special
implementations with restricted capabilities. Any class that corresponds to
a standard type might be an instance of built-in-class. The predefined type
specifiers that are required to have corresponding classes are listed in Figure™ 4—
8. It is implementation-dependent whether each of these classes is implemented
as a built-in class.

* All classes defined by means of defstruct are instances of the class structure-
class.

4.3.2 Defining Classes

The macro defclass is used to define a new named class.

The definition of a class includes:

* The name of the new class. For newly-defined classes this name is a proper
name.

* The list of the direct superclasses of the new class.

* A set of slot specifiers . Each slot specifier includes the name of the slot and

zero or more slot options. A slot option pertains only to a single slot. If a class
definition contains two slot specifiers with the same name, an error is signaled.

* A set of class options. Each class option pertains to the class as a whole.
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The slot options and class options of the defclass form provide mechanisms for the
following;:

* Supplying a default initial value form for a given slot.

* Requesting that methods for generic functions be automatically generated for
reading or writing slots.

* Controlling whether a given slot is shared by all instances of the class or whether
each instance of the class has its own slot.

* Supplying a set of initialization arguments and initialization argument defaults
to be used in instance creation.

* Indicating that the metaclass is to be other than the default. The :metaclass
option is reserved for future use; an implementation can be extended to make
use of the :metaclass option.

* Indicating the expected type for the value stored in the slot.

* Indicating the documentation string for the slot.

4.3.3 Creating Instances of Classes

The generic function make-instance creates and returns a new instance of a class. The object
system provides several mechanisms for specifying how a new instance is to be initialized.
For example, it is possible to specify the initial values for slots in newly created instances
either by giving arguments to make-instance or by providing default initial values. Further
initialization activities can be performed by methods written for generic functions that
are part of the initialization protocol. The complete initialization protocol is described in
(undefined) [Object Creation and Initialization], page (undefined).

4.3.4 Inheritance

A class can inherit methods, slots, and some defclass options from its superclasses. Other
sections describe the inheritance of methods, the inheritance of slots and slot options, and
the inheritance of class options.

4.3.4.1 Examples of Inheritance

(defclass C1 ()
((S81 :initform 5.4 :type number)
(S2 :allocation :class)))

(defclass C2 (C1)
((S81 :initform 5 :type integer)
(S2 :allocation :instance)
(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial value is 5.4
and whose value should always be a number. The class C1 also has a shared slot named S2.

There is a local slot named S1 in instances of C2. The default initial value of S1 is 5.
The value of S1 should always be of type (and integer number). There are also local slots
named S2 and S3 in instances of C2. The class C2 has a method for C2-S3 for reading the
value of slot S3; there is also a method for (setf C2-S3) that writes the value of S3.
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4.3.4.2 Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted initialization ar-
guments for a class is the union of the sets of initialization arguments supplied in the
:default-initargs class options of the class and its superclasses. When more than one
default initial value form is supplied for a given initialization argument, the default initial
value form that is used is the one supplied by the class that is most specific according to
the class precedence list.

If a given :default-initargs class option specifies an initialization argument of the
same name more than once, an error of type program-error is signaled.

4.3.5 Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its direct super-
classes. This ordering is called the local precedence order . It is an ordered list of the class
and its direct superclasses. The class precedence list for a class C is a total ordering on C
and its superclasses that is consistent with the local precedence orders for each of C and its
superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other direct
superclasses specified to its right in the superclasses list of the defclass form. For every class
C, define

R_C={(C,C-1),(C-1,C_2),...,(C_{n-1},C_n)}
where C_1,...,C_n are the direct superclasses of C in the order in which they are mentioned
in the defclass form. These ordered pairs generate the total ordering on the class C and its
direct superclasses.

Let S_C be the set of C and its superclasses. Let R be
R=\bigcup_{c\in S_C }R_c

[Reviewer Note by Barmar: “Consistent” needs to be defined, or maybe we should say
“logically consistent” ?]

The set R might or might not generate a partial ordering, depending on whether the
R_c, c\in S_C, are consistent; it is assumed that they are consistent and that R generates
a partial ordering. When the R_c are not consistent, it is said that R is inconsistent.

To compute the class precedence list for™C, topologically sort the elements of S_C with
respect to the partial ordering generated by R. When the topological sort must select a
class from a set of two or more classes, none of which are preceded by other classes with
respect to™R, the class selected is chosen deterministically, as described below.

If R is inconsistent, an error is signaled.

4.3.5.1 Topological Sorting

Topological sorting proceeds by finding a class C in”S_C such that no other class precedes
that element according to the elements in"R. The class C is placed first in the result.
Remove C from S_C, and remove all pairs of the form (C,D), D\in S_C, from R. Repeat
the process, adding classes with no predecessors to the end of the result. Stop when no
element can be found that has no predecessor.

If S_C is not empty and the process has stopped, the set R is inconsistent. If every class
in the finite set of classes is preceded by another, then R contains a loop. That is, there is
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a chain of classes C_1,...,C_n such that C_i precedes C_{i+1}, 1<= i<n, and C_n precedes
C_1.

Sometimes there are several classes from S_C with no predecessors. In this case select
the one that has a direct subclass rightmost in the class precedence list computed so far.
(If there is no such candidate class, R does not generate a partial ordering—the R_c, c\in
S_C, are inconsistent.)

In more precise terms, let {N_1,...N_m}, m>= 2, be the classes from S_C with no
predecessors. Let (C_1... C_n), n>= 1, be the class precedence list constructed so far. C_1
is the most specific class, and C_n is the least specific. Let 1<= j<= n be the largest number
such that there exists an i where 1<= i<= m and N_i is a direct superclass of C_j; N_i is
placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that the
classes in a simple superclass chain are adjacent in the class precedence list and that classes
in each relatively separated subgraph are adjacent in the class precedence list. For example,
let T_1 and T_2 be subgraphs whose only element in common is the class J. Suppose that
no superclass of J appears in either T_1 or T_2, and that J is in the superclass chain of
every class in both T_1 and T_2. Let C_1 be the bottom of T_1; and let C_2 be the bottom
of T_2. Suppose C is a class whose direct superclasses are C_1 and C_2 in that order, then
the class precedence list for C starts with C and is followed by all classes in T_1 except J.
All the classes of T_2 are next. The class J and its superclasses appear last.

4.3.5.2 Examples of Class Precedence List Determination

This example determines a class precedence list for the class pie. The following classes are
defined:

(defclass pie (apple cinnamon) ())
(defclass apple (fruit) ()
(defclass cinnamon (spice) ()
(defclass fruit (food) (O))
(defclass spice (food) ()

(defclass food () ())

The set S_{pie}~= {pie, apple, cinnamon, fruit, spice, food, standard-object, t }. The
set R~™= { (pie, apple), (apple, cinnamon), (apple, fruit), (cinnamon, spice), \break (fruit,
food), (spice, food), (food, standard-object), (standard-object, t) }.

The class pie is not preceded by anything, so it comes first; the result so far is (pie).
Remove pie from S and pairs mentioning pie from R to get S™= {apple, cinnamon, fruit,
spice, food, standard-object, t } and R~="{(apple, cinnamon), (apple, fruit), (cinnamon,
spice),\break (fruit, food), (spice, food), (food, standard-object), (standard-object, t) }.

The class apple is not preceded by anything, so it is next; the result is (pie apple). Re-
moving apple and the relevant pairs results in S™= { cinnamon, fruit, spice, food, standard-
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object, t } and R"= { (cinnamon, spice), (fruit, food), (spice, food), (food, standard-
object),\break (standard-object, t) }.

The classes cinnamon and fruit are not preceded by anything, so the one with a direct
subclass rightmost in the class precedence list computed so far goes next. The class apple
is a direct subclass of fruit, and the class pie is a direct subclass of cinnamon. Because
apple appears to the right of pie in the class precedence list, fruit goes next, and the
result so far is (pie apple fruit). S”= { cinnamon, spice, food, standard-object, t };
R~= {(cinnamon, spice), (spice, food),\break (food, standard-object), (standard-object, t)
}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon).
At this point S~= { spice, food, standard-object, t }; R"= { (spice, food), (food, standard-
object), (standard-object, t) }.

The classes spice, food, standard-object, and t are added in that order, and the class
precedence list is (pie apple fruit cinnamon spice food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) ()

(defclass apple (fruit) ()

The class fruit must precede apple because the local ordering of superclasses must be
preserved. The class apple must precede fruit because a class always precedes its own
superclasses. When this situation occurs, an error is signaled, as happens here when the
system tries to compute the class precedence list of new-class.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())
(defclass pastry (cinnamon apple) ()
(defclass apple () ()

(defclass cinnamon () ())
The class precedence list for pie is (pie apple cinnamon standard-object t).
The class precedence list for pastry is (pastry cinnamon apple standard-object t).

It is not a problem for apple to precede cinnamon in the ordering of the superclasses
of pie but not in the ordering for pastry. However, it is not possible to build a new class
that has both pie and pastry as superclasses.

4.3.6 Redefining Classes

A class that is a direct instance of standard-class can be redefined if the new class is also
a direct instance of standard-class. Redefining a class modifies the existing class object to
reflect the new class definition; it does not create a new class object for the class. Any
method object created by a :reader, :writer, or :accessor option specified by the old
defclass form is removed from the corresponding generic function. Methods specified by the
new defclass form are added.
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When the class C is redefined, changes are propagated to its instances and to instances
of any of its subclasses. Updating such an instance occurs at an implementation-dependent
time, but no later than the next time a slot of that instance is read or written. Updating an
instance does not change its identity as defined by the function eq. The updating process
may change the slots of that particular instance, but it does not create a new instance.
Whether updating an instance consumes storage is implementation-dependent.

Note that redefining a class may cause slots to be added or deleted. If a class is redefined
in a way that changes the set of local slots accessible in instances, the instances are updated.
It is implementation-dependent whether instances are updated if a class is redefined in a
way that does not change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new class is
retained. If such a shared slot was unbound in the old class, it is unbound in the new class.
Slots that were local in the old class and that are shared in the new class are initialized.
Newly added shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured initialization
form for the slot that was specified in the defclass form for the new class. If there was no
initialization form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an instance of
the class is changed, a two-step process of updating the instances of the class takes place.
The process may be explicitly started by invoking the generic function make-instances-
obsolete. This two-step process can happen in other circumstances in some implementations.
For example, in some implementations this two-step process is triggered if the order of slots
in storage is changed.

The first step modifies the structure of the instance by adding new local slots and
discarding local slots that are not defined in the new version of the class. The second
step initializes the newly-added local slots and performs any other user-defined actions.
These two steps are further specified in the next two sections.

4.3.6.1 Modifying the Structure of Instances
[Reviewer Note by Barmar: What about shared slots that are deleted?]

The first step modifies the structure of instances of the redefined class to conform to its
new class definition. Local slots specified by the new class definition that are not specified
as either local or shared by the old class are added, and slots not specified as either local or
shared by the new class definition that are specified as local by the old class are discarded.
The names of these added and discarded slots are passed as arguments to update-instance-
for-redefined-class as described in the next section.

The values of local slots specified by both the new and old classes are retained. If such
a local slot was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new
class is retained. If such a shared slot was unbound, the local slot is unbound.

4.3.6.2 Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any other user-defined
actions. This step is implemented by the generic function update-instance-for-redefined-
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class, which is called after completion of the first step of modifying the structure of the
instance.

The generic function update-instance-for-redefined-class takes four required arguments:
the instance being updated after it has undergone the first step, a list of the names of
local slots that were added, a list of the names of local slots that were discarded, and a
property list containing the slot names and values of slots that were discarded and had
values. Included among the discarded slots are slots that were local in the old class and
that are shared in the new class.

The generic function update-instance-for-redefined-class also takes any number of ini-
tialization arguments. When it is called by the system to update an instance whose class
has been redefined, no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-redefined-class whose
parameter specializer for its instance argument is the class standard-object. First this
method checks the validity of initialization arguments and signals an error if an initialization
argument is supplied that is not declared as valid. (For more information, see (undefined)
[Declaring the Validity of Initialization Arguments|, page (undefined).) Then it calls the
generic function shared-initialize with the following arguments: the instance, the list of
names of the newly added slots, and the initialization arguments it received.

4.3.6.3 Customizing Class Redefinition
[Reviewer Note by Barmar: This description is hard to follow.]

Methods for update-instance-for-redefined-class may be defined to specify actions to be
taken when an instance is updated. If only after methods for update-instance-for-redefined-
class are defined, they will be run after the system-supplied primary method for initialization
and therefore will not interfere with the default behavior of update-instance-for-redefined-
class. Because no initialization arguments are passed to update-instance-for-redefined-class
when it is called by the system, the initialization forms for slots that are filled by before
methods for update-instance-for-redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition. For more
information, see (undefined) [Shared-Initialize], page (undefined).

4.3.7 Integrating Types and Classes

The object system maps the space of classes into the space of types. Every class that has
a proper name has a corresponding type with the same name.

The proper name of every class is a valid type specifier. In addition, every class object
is a valid type specifier. Thus the expression (typep object class) evaluates to true if
the class of object is class itself or a subclass of class. The evaluation of the expression
(subtypep classl class2) returns the values true and true if classl is a subclass of
class?2 or if they are the same class; otherwise it returns the values false and true. If 1 is
an instance of some class C named S and C is an instance of standard-class, the evaluation
of the expression (type-of I\/) returns S if S is the proper name of C; otherwise, it returns

C.

Because the names of classes and class objects are type specifiers, they may be used in
the special form the and in type declarations.
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Many but not all of the predefined type specifiers have a corresponding class with the
same proper name as the type. These type specifiers are listed in Figure™/-8. For example,
the type array has a corresponding class named array. No type specifier that is a list, such
as (vector double-float 100), has a corresponding class. The operator deftype does not
create any classes.

Each class that corresponds to a predefined type specifier can be implemented in one of
three ways, at the discretion of each implementation. It can be a standard class, a structure
class,

or a system class.

A built-in class is one whose generalized instances have restricted capabilities or special
representations. Attempting to use defclass to define subclasses of a built-in-class signals
an error. Calling make-instance to create a generalized instance of a built-in class signals
an error. Calling slot-value on a generalized instance of a built-in class signals an error.
Redefining a built-in class or using change-class to change the class of an object to or
from a built-in class signals an error. However, built-in classes can be used as parameter
specializers in methods.

It is possible to determine whether a class is a built-in class by checking the metaclass.
A standard class is an instance of the class standard-class, a built-in class is an instance of
the class built-in-class, and a structure class is an instance of the class structure-class.

Each structure type created by defstruct without using the :type option has a cor-
responding class. This class is a generalized instance of the class structure-class. The
:include option of defstruct creates a direct subclass of the class that corresponds to the
included structure type.

It is implementation-dependent whether slots are involved in the operation of functions
defined in this specification on instances of classes defined in this specification, except when
slots are explicitly defined by this specification.

If in a particular implementation a class defined in this specification has slots that are
not defined by this specfication, the names of these slots must not be external symbols of
packages defined in this specification nor otherwise accessible in the CL-USER package.

The purpose of specifying that many of the standard type specifiers have a corresponding
class is to enable users to write methods that discriminate on these types. Method selection
requires that a class precedence list can be determined for each class.

The hierarchical relationships among the type specifiers are mirrored by relationships
among the classes corresponding to those types.

Figure™ /-8 lists the set of classes that correspond to predefined type specifiers.
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arithmetic-error
array

bit-vector
broadcast-stream
built-in-class
cell-error
character

class

complex
concatenated-stream
condition

cons
control-error
division-by-zero
echo-stream
end-of-file

error

file-error
file-stream

float
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generic-function simple-error
hash-table simple-type-error
integer simple-warning
list standard-class
logical-pathname standard-generic-function
method standard-method
method-combination standard-object
null storage-condition
number stream
package stream-error
package-error string
parse-error string-stream
pathname structure-class
print-not-readable structure-object
program-error style-warning

random-state symbol
ratio synonym-stream
rational t
reader-error two-way-stream
readtable type-error
real unbound-slot

floating-point-inexact
floating-point-invalid-operation restart unbound-variable
floating-point-overflow sequence undefined-function
floating-point-underflow serious-condition vector

function simple-condition warning

Figure 4-8: Classes that correspond to pre-defined type specifiers

The class precedence list information specified in the entries for each of these classes are
those that are required by the object system.

Individual implementations may be extended to define other type specifiers to have a
corresponding class. Individual implementations may be extended to add other subclass
relationships and to add other elements to the class precedence lists as long as they do not
violate the type relationships and disjointness requirements specified by this standard. A
standard class defined with no direct superclasses is guaranteed to be disjoint from all of
the classes in the table, except for the class named t.

4.4 Types and Classes Dictionary
4.4.1 nil [Type]

Supertypes::
all types
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Description::

The type nil contains no objects and so is also called the empty type. The type nil is a
subtype of every type. No object is of type nil.

Notes::

The type containing the object nil is the type null, not the type nil.

4.4.2 boolean [Type]

Supertypes::

boolean, symbol, t

Description::

The type boolean contains the symbols t and nil, which represent true and false, respectively.

See Also::

t (constant variable), nil (constant variable), (undefined) [if], page (undefined), , (undefined)
[not], page (undefined), , (undefined) [complement], page (undefined),

Notes::

Conditional operations, such as if, permit the use of generalized booleans, not just booleans;
any non-nil value, not just t, counts as true for a generalized boolean. However, as a matter
of convention, the symbol t is considered the canonical value to use even for a generalized
boolean when no better choice presents itself.

4.4.3 function [System Class]

Class Precedence List::

function, t

Description::

A function is an object that represents code to be executed when an appropriate number
of arguments is supplied. A function is produced by the function special form, the function
coerce,

or the function compile. A function can be directly invoked by using it as the first
argument to funcall, apply, or multiple-value-call.

Compound Type Specifier Kind::

Specializing.

Compound Type Specifier Syntax::
(function{ [arg-typespec [value-typespec]]})

arg-typespec ::=({typespec}* [&optional {typespec}*] [&rest typespec]
[&key {(keyword typespec )}*]1)
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Compound Type Specifier Arguments::

typespec—a type specifier.
value-typespec—a type specifier.

Compound Type Specifier Description::

[Editorial Note by KMP: Isn’t there some context info about ftype declarations to be merged
here?]

[Editorial Note by KMP: This could still use some cleaning up.]

[Editorial Note by Sandra: Still need clarification about what happens if the number of
arguments doesn’t match the FUNCTION type declaration.]

The list form of the function type-specifier can be used only for declaration and not for
discrimination. Every element of this type is a function that accepts arguments of the types
specified by the argj-types and returns values that are members of the types specified by
value-type. The &optional, &rest, &key,

and &allow-other-keys
markers can appear in the list of argument types.

The type specifier provided with &rest is the type of each actual argument, not the type
of the corresponding variable.

The &key parameters should be supplied as lists of the form (keyword type). The
keyword must be a valid keyword-name symbol as must be supplied in the actual arguments
of a call.

This is usually a symbol in the KEYWORD package but can be any symbol.

When &key is given in a function type specifier lambda list, the keyword parameters given
are exhaustive unless &allow-other-keys is also present. &allow-other-keys is an indication
that other keyword arguments might actually be supplied and, if supplied, can be used. For
example, the type of the function make-list could be declared as follows:

(function ((integer 0) &key (:initial-element t)) list)

The value-type can be a values type specifier in order to indicate the types of multiple
values.

Consider a declaration of the following form:
(ftype (function (argO-type argl-type ...) val-type) £f))

Any form (f arg0 argl ...) within the scope of that declaration is equivalent to the
following:

(the val-type (f (the argO-type arg0O) (the argl-type argl) ...))

That is, the consequences are undefined if any of the arguments are not of the specified
types or the result is not of the specified type. In particular, if any argument is not of the
correct type, the result is not guaranteed to be of the specified type.

Thus, an ftype declaration for a function describes calls to the function, not the actual
definition of the function.

Consider a declaration of the following form:

(type (function (argO-type argl-type ...) val-type) fn-valued-variable)
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This declaration has the interpretation that, within the scope of the declaration, the
consequences are unspecified if the value of fn-valued-variable is called with arguments
not of the specified types; the value resulting from a valid call will be of type val-type.

As with variable type declarations, nested declarations imply intersections of types, as
follows:
* Consider the following two declarations of ftype:
(ftype (function (argO-typel argl-typel ...) val-typel) £f))
and
(ftype (function (argO-type2 argl-type2 ...) val-type2) f))

If both these declarations are in effect, then within the shared scope of the
declarations, calls to f can be treated as if £ were declared as follows:

(ftype (function ((and argO-typel argO-type2) (and argl-typel argl-type2 ..

(and val-typel val-type2))
£))

It is permitted to ignore one or all of the ftype declarations in force.

* If two (or more) type declarations are in effect for a variable, and they are both
function declarations, the declarations combine similarly.

4.4.4 compiled-function [Type]

Supertypes::

compiled-function, function, t

Description::

Any function may be considered by an implementation to be a a compiled function if
it contains no references to macros that must be expanded at run time, and it contains
no unresolved references to load time values. See (undefined) [Compilation Semantics],
page (undefined).

Functions whose definitions appear lexically within a file that has been compiled with
compile-file and then loaded with load are of type compiled-function.

Functions produced by the compile function are of type compiled-function.

Other functions might also be of type compiled-function.
4.4.5 generic-function [System Class]

Class Precedence List::

generic-function, function, t

Description::

A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object contains a set of methods, a lambda list,
a method combination type, and other information. The methods define the class-specific
behavior and operations of the generic function; a method is said to specialize a generic
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function. When invoked, a generic function executes a subset of its methods based on the
classes or identities of its arguments.

A generic function can be used in the same ways that an ordinary function can be used;
specifically, a generic function can be used as an argument to funcall and apply, and can
be given a global or a local name.

4.4.6 standard-generic-function [System Class]

Class Precedence List::

standard-generic-function, generic-function, function, t

Description::
The class standard-generic-function is the default class of generic functions established by
defmethod, ensure-generic-function, defgeneric,

and defclass forms.

4.4.7 class [System Class]

Class Precedence List::

class,
standard-object,
t

Description::

The type class represents objects that determine the structure and behavior of their in-
stances. Associated with an object of type class is information describing its place in the
directed acyclic graph of classes, its slots, and its options.

4.4.8 built-in-class [System Class|

Class Precedence List::
built-in-class, class,
standard-object,
t

Description::

A built-in class is a class whose instances have restricted capabilities or special representa-
tions. Attempting to use defclass to define subclasses of a built-in class signals an error of
type error. Calling make-instance to create an instance of a built-in class signals an error
of type error. Calling slot-value on an instance of a built-in class signals an error of type
error. Redefining a built-in class or using change-class to change the class of an instance
to or from a built-in class signals an error of type error. However, built-in classes can be
used as parameter specializers in methods.

4.4.9 structure-class [System Class]
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Class Precedence List::

structure-class, class,
standard-object,
t

Description::

All classes defined by means of defstruct are instances of the class structure-class.

4.4.10 standard-class [System Class]

Class Precedence List::
standard-class, class,

standard-object,
t

Description::

The class standard-class is the default class of classes defined by defclass.
4.4.11 method [System Class]

Class Precedence List::
method, t

Description::
A method is an object that represents a modular part of the behavior of a generic function.

A method contains code to implement the method’s behavior, a sequence of parameter
specializers that specify when the given method is applicable, and a sequence of qualifiers
that is used by the method combination facility to distinguish among methods. Each re-
quired parameter of each method has an associated parameter specializer, and the method
will be invoked only on arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which
they are run, and the values that are returned by the generic function. The object system
offers a default method combination type and provides a facility for declaring new types of
method combination.

See Also::
(undefined) [Generic Functions and Methods], page (undefined),

4.4.12 standard-method [System Class]

Class Precedence List::

standard-method, method,
standard-object,
t
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Description::
The class standard-method is the default class of methods defined by the defmethod and
defgeneric forms.

4.4.13 structure-object [Class]

Class Precedence List::

structure-object, t

Description::

The class structure-object is an instance of structure-class and is a superclass of every class
that is an instance of structure-class except itself, and is a superclass of every class that is
defined by defstruct.

See Also::

(undefined) [defstruct], page (undefined), , (undefined) [Sharpsign S|, page (undefined),
(undefined) [Printing Structures], page (undefined),

4.4.14 standard-object [Class]

Class Precedence List::
standard-object, t

Description::
The class standard-object is an instance of standard-class and is a superclass of every class

that is an instance of standard-class except itself.

4.4.15 method-combination [System Class]

Class Precedence List::

method-combination, t

Description::

Every method combination object is an indirect instance of the class method-combination.
A method combination object represents the information about the method combination
being used by a generic function. A method combination object contains information about
both the type of method combination and the arguments being used with that type.

4.4.16 t [System Class]

Class Precedence List::
t

Description::

The set of all objects. The type t is a supertype of every type, including itself. Every object
is of type t.
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4.4.17 satisfies [Type Specifier]

Compound Type Specifier Kind::
Predicating.

Compound Type Specifier Syntax::

(satisfies{predicate-name})

Compound Type Specifier Arguments::

predicate-name—a symbol.

Compound Type Specifier Description::

This denotes the set of all objects that satisfy the predicate predicate-name, which must be
a symbol whose global function definition is a one-argument predicate. A name is required
for predicate-name; lambda expressions are not allowed. For example, the type specifier
(and integer (satisfies evenp)) denotes the set of all even integers. The form (typep
x ’(satisfies p)) is equivalent to (if (p x) t nil).

The argument is required. The symbol * can be the argument, but it denotes itself (the
symbol *), and does not represent an unspecified value.

The symbol satisfies is not valid as a type specifier.
4.4.18 member [Type Specifier]
Compound Type Specifier Kind::

Combining.

Compound Type Specifier Syntax::
(member{{object} *})

Compound Type Specifier Arguments::

object—an object.

Compound Type Specifier Description::

This denotes the set containing the named objects. An object is of this type if and only if it
is eql to one of the specified objects.

The type specifiers (member) and nil are equivalent. * can be among the objects, but if
so it denotes itself (the symbol *) and does not represent an unspecified value. The symbol
member is not valid as a type specifier; and, specifically, it is not an abbreviation for either
(member) or (member *).

See Also::
the type eql

4.4.19 not [Type Specifier|



190 ANSI and GNU Common Lisp Document

Compound Type Specifier Kind::

Combining.

Compound Type Specifier Syntax::
(not{typespec})

Compound Type Specifier Arguments::
typespec—a type specifier.

Compound Type Specifier Description::
This denotes the set of all objects that are not of the type typespec.
The argument is required, and cannot be *.

The symbol not is not valid as a type specifier.

4.4.20 and [Type Specifier]

Compound Type Specifier Kind::

Combining.

Compound Type Specifier Syntax::
(and{{typespec} *})

Compound Type Specifier Arguments::
typespec—a type specifier.

Compound Type Specifier Description::

This denotes the set of all objects of the type determined by the intersection of the typespecs.
* is not permitted as an argument.
The type specifiers (and) and t are equivalent. The symbol and is not valid as a type

specifier, and, specifically, it is not an abbreviation for (and).

4.4.21 or [Type Specifier]

Compound Type Specifier Kind::

Combining.

Compound Type Specifier Syntax::
(or{{typespec} *})

Compound Type Specifier Arguments::
typespec—a type specifier.
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Compound Type Specifier Description::

This denotes the set of all objects of the type determined by the union of the typespecs.
For example, the type list by definition is the same as (or null comns). Also, the value
returned by position is an object of type (or null (integer 0 *)); i.e., either nil or a
non-negative integer.

* is not permitted as an argument.

The type specifiers (or) and nil are equivalent. The symbol or is not valid as a type
specifier; and, specifically, it is not an abbreviation for (or).

4.4.22 values [Type Specifier]
Compound Type Specifier Kind::

Specializing.

Compound Type Specifier Syntax::
(values{/value-typespec})
[Reviewer Note by Barmar: Missing &key]
value-typespec ::={typespec}* [&optional {typespec}*1 [&rest typespec 1 [&allow-other-keys]|]

Compound Type Specifier Arguments::
typespec—a type specifier.

Compound Type Specifier Description::

This type specifier can be used only as the wvalue-type in a function type specifier or a the
special form. It is used to specify individual types when multiple values are involved. The
&optional and &rest markers can appear in the value-type list; they indicate the parameter
list of a function that, when given to multiple-value-call along with the values, would
correctly receive those values.

The symbol * may not be among the value-types.
The symbol values is not valid as a type specifier; and, specifically, it is not an abbrevi-

ation for (values).

4.4.23 eql [Type Specifier]

Compound Type Specifier Kind::

Combining.

Compound Type Specifier Syntax::
(eql{object})

Compound Type Specifier Arguments::

object—an object.



192 ANSI and GNU Common Lisp Document

Compound Type Specifier Description::
Represents the type whose only element is object.

The argument object is required. The object can be *, but if so it denotes itself (the
symbol *) and does not represent an unspecified value. The symbol eql is not valid as an
atomic type specifier.

4.4.24 coerce [Function]

coerce object result-type = result

Arguments and Values::
object—an object.
result-type—a type specifier.

result—an object, of type result-type except in situations described in (undefined) [Rule
of Canonical Representation for Complex Rationals|, page (undefined).

Description::
Coerces the object to type result-type.

If object is already of type result-type, the object itself is returned, regardless of whether
it would have been possible in general to coerce an object of some other type to result-type.

Otherwise, the object is coerced to type result-type according to the following rules:

sequence

If the result-type is a recognizable subtype of list, and the object is a sequence,
then the result is a list that has the same elements as object.

If the result-type is a recognizable subtype of vector, and the object is a sequence,
then the result is a vector that has the same elements as object. If result-type
is a specialized type, the result has an actual array element type that is the
result of upgrading the element type part of that specialized type. If no element
type is specified, the element type defaults to t. If the implementation cannot
determine the element type, an error is signaled.

character If the result-type is character and the object is a character designator, the result
is the character it denotes.

complex If the result-type is complex and the object is a number, then the result is
obtained by constructing a complex whose real part is the object and whose
imaginary part is the result of coercing an integer zero to the type of the object
(using coerce). (If the real part is a rational, however, then the result must
be represented as a rational rather than a complex; see (undefined) [Rule of
Canonical Representation for Complex Rationals], page (undefined). So, for
example, (coerce 3 ’complex) is permissible, but will return 3, which is not
a complex.)

float If the result-type is any of float, short-float, single-float, double-float, long-float,
and the object is a

real,
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then the result is a float of type result-type which is equal in sign and magnitude
to the object to whatever degree of representational precision is permitted by
that float representation. (If the result-type is float and object is not already a
float, then the result is a single float.)

function  If the result-type is function, and object is any
function name

that is fbound but that is globally defined neither as a macro name nor as a
special operator, then the result is the functional value of object.

If the result-type is function, and object is a lambda expression, then the result
is a closure of object in the null lexical environment.

t Any object can be coerced to an object of type t. In this case, the object is
simply returned.

Examples::

(coerce ’(a b c) ’vector) = #(A B C)
(coerce ’a ’character) = #\A

(coerce 4.56 ’complex) = #C(4.56 0.0)
(coerce 4.5s0 ’complex) = #C(4.5s0 0.0s0)
(coerce 7/2 ’complex) = 7/2

(coerce 0 ’short-float) = 0.0s0

(coerce 3.5L0 ’float) = 3.5L0

(coerce 7/2 ’float) = 3.5

(coerce (cons 1 2) t) = (1 . 2)

All the following forms should signal an error:

(coerce ’(a b c) ’(vector * 4))
(coerce #(a b c) ’(vector * 4))
(coerce ’(a b c) ’(vector * 2))
(coerce #(a b c) ’(vector * 2))
(coerce "foo" ’(string 2))

(coerce #(#\a #\b #\c) ’(string 2))
(coerce ’(0 1) ’(simple-bit-vector 3))

Exceptional Situations::
If a coercion is not possible, an error of type type-error is signaled.
(coerce x ’nil) always signals an error of type type-error.

An error of type error is signaled if the result-type is function but object is a symbol that
is not fbound or if the symbol names a macro or a special operator.

An error of type type-error should be signaled if result-type specifies the number of
elements and object is of a different length.

See Also::

(undefined) [rational (Function)]|, page (undefined), , (undefined) [floor|, page (undefined),
, (undefined) [char-code], page (undefined), , (undefined) [char-int], page (undefined),
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Notes::
Coercions from floats to rationals and from ratios to integers are not provided because of
rounding problems.

(coerce x ’t) = (identity x) = x

4.4.25 deftype [Macro]

deftype name lambda-list [[{declaration}* | documentation]] {form}* = name

Arguments and Values::

name—a symbol.
lambda-list—a deftype lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description::
deftype defines a derived type specifier named name.

The meaning of the new type specifier is given in terms of a function which expands
the type specifier into another type specifier, which itself will be expanded if it contains
references to another derived type specifier.

The newly defined type specifier may be referenced as a list of the form (name arg_1
arg_2 ...)\/. The number of arguments must be appropriate to the lambda-list. If the
new type specifier takes no arguments, or if all of its arguments are optional, the type
specifier may be used as an atomic type specifier.

The argument expressions to the type specifier, arg_1 ... arg_n, are not evaluated. In-
stead, these literal objects become the objects to which corresponding parameters become
bound.

The body of the deftype form

(but not the lambda-list)

is

implicitly enclosed in a block named name,

and is evaluated as an implicit progn, returning a new type specifier.

The lexical environment of the body is the one which was current at the time the deftype
form was evaluated, augmented by the variables in the lambda-list.

Recursive expansion of the type specifier returned as the expansion must terminate,
including the expansion of type specifiers which are nested within the expansion.

The consequences are undefined if the result of fully expanding a type specifier con-
tains any circular structure, except within the objects referred to by member and eql type
specifiers.

Documentation is attached to name as a documentation string of kind type.

If a deftype form appears as a top level form, the compiler must ensure that the name is
recognized in subsequent type declarations. The programmer must ensure that the body of
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a deftype form can be evaluated at compile time if the name is referenced in subsequent type
declarations. If the expansion of a type specifier is not defined fully at compile time (perhaps
because it expands into an unknown type specifier or a satisfies of a named function that isn’t
defined in the compile-time environment), an implementation may ignore any references to
this type in declarations and/or signal a warning.

Examples::

(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #’= (array-dimensions a)))) = EQUIDIMENSIONAL
(deftype square-matrix (&optional type size)
‘(and (array ,type (,size ,size))
(satisfies equidimensional))) = SQUARE-MATRIX

See Also::

declare, (undefined) [defmacro], page (undefined), , (undefined) [documentation|, page (un-
defined), , (undefined) [Type Specifiers|, page (undefined), (undefined) [Syntactic Interac-
tion of Documentation Strings and Declarations|, page (undefined),

4.4.26 subtypep [Function]
subtypep type-1 type-2 &optional environment = subtype-p, valid-p

Arguments and Values::

type-1—a type specifier.
type-2—a type specifier.

environment—an environment object. The default is nil, denoting the null lexical envi-
ronment and the current global environment.

subtype-p—a generalized boolean.
valid-p—a generalized boolean.

Description::

If type-1 is a recognizable subtype of type-2, the first value is true. Otherwise, the first value
is false, indicating that either type-1 is not a subtype of type-2, or else type-1 is a subtype
of type-2 but is not a recognizable subtype.

A second walue is also returned indicating the ‘certainty’ of the first value. If this value is
true, then the first value is an accurate indication of the subtype relationship. (The second
value is always true when the first value is true.)

Figure 4-9 summarizes the possible combinations of values that might result.
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Value 1 Value 2 Meaning
true true type-1 is definitely a subtype of type-2.
false  true type-1 is definitely not a subtype of type-2.
false  false  subtypep could not determine the relationship,
S0 type-1 might or might not be a subtype of type-2.

Figure 4-9: Result possibilities for subtypep

subtypep is permitted to return the values false and false only when at least one ar-
gument involves one of these type specifiers: and, eql, the list form of function, member,
not, or, satisfies, or values. (A type specifier ‘involves’ such a symbol if, after being type
expanded, it contains that symbol in a position that would call for its meaning as a type
specifier to be used.) One consequence of this is that if neither type-1 nor type-2 involves
any of these type specifiers, then subtypep is obliged to determine the relationship accu-
rately. In particular, subtypep returns the values true and true if the arguments are equal
and do not involve any of these type specifiers.

subtypep never returns a second value of nil when both type-1 and type-2 involve only the
names in Figure™4—2, or names of types defined by defstruct, define-condition, or defclass, or
derived types that expand into only those names. While type specifiers listed in Figure™4—2
and names of defclass and defstruct can in some cases be implemented as derived types,
subtypep regards them as primitive.

The relationships between types reflected by subtypep are those specific to the partic-
ular implementation. For example, if an implementation supports only a single type of
floating-point numbers, in that implementation (subtypep ’float ’long-float) returns
the values true and true (since the two types are identical).

For all T1 and T2 other than *, (array T1) and (array T2) are two different type
specifiers that always refer to the same sets of things if and only if they refer to arrays
of exactly the same specialized representation, i.e., if (upgraded-array-element-type
’T1) and (upgraded-array-element-type ’T2) return two different type specifiers that
always refer to the same sets of objects. This is another way of saying that ¢ (array type-
specifier) and ¢ (array , (upgraded-array-element-type ’type-specifier)) refer to
the same set of specialized array representations. For all 71 and T2 other than *, the
intersection of (array T1) and (array T2) is the empty set if and only if they refer to
arrays of different, distinct specialized representations.

Therefore,
(subtypep ’(array T1) ’(array T2)) = true
if and only if

(upgraded-array-element-type ’T1) and
(upgraded-array-element-type ’T2)

return two different type specifiers that always refer to the same sets of objects.
For all type-specifiers T1 and T2 other than *,
(subtypep ’(complex T1) ’(complex T2)) = true, true
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if:

1. T1 is a subtype of T2, or

2. (upgraded-complex-part-type ’T1) and (upgraded-complex-part-type

’T2) return two different type specifiers that always refer to the same sets of
objects; in this case, (complex T1) and (complex T2) both refer to the same
specialized representation.
The values are false and true otherwise.
The form
(subtypep ’(complex single-float) ’(complex float))
must return true in all implementations, but
(subtypep ’(array single-float) ’(array float))

returns true only in implementations that do not have a specialized array representation
for single floats distinct from that for other floats.

Examples::
(subtypep ’compiled-function ’function) = true, true
(subtypep ’null ’list) = true, true
(subtypep ’null ’symbol) = true, true
(subtypep ’integer ’string) = false, true
(subtypep ’(satisfies dummy) nil) = false, implementation-dependent
(subtypep ’(integer 1 3) ’(integer 1 4)) = true, true
(subtypep ’(integer (0) (0)) ’nil) = true, true
(subtypep ’nil ’(integer (0) (0))) = true, true
(subtypep ’(integer (0) (0)) ’(member)) = true, true ;or false, false
(subtypep ’(member) ’nil) = true, true ;or false, false
(subtypep ’nil ’(member)) = true, true ;or false, false

Let <aet-x> and <aet-y> be two distinct type specifiers that do not always refer to the
same sets of objects in a given implementation, but for which make-array, will return an
object of the same array type.

Thus, in each case,

(subtypep (array-element-type (make-array O :element-type ’<aet-x>))
(array-element-type (make-array O :element-type ’<aet-y>)))

= true, true
(subtypep (array-element-type (make-array O :element-type ’<aet-y>))
(array-element-type (make-array O :element-type ’<aet-x>)))

= true, true

If (array <aet-x>) and (array <aet-y>) are different names for exactly the same set
of objects, these names should always refer to the same sets of objects. That implies that
the following set of tests are also true:

true
true

(subtypep ’(array <aet-x>) ’(array <aet-y>)) =
(subtypep ’(array <aet-y>) ’(array <aet-x>)) =

true,
true,
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See Also::
(undefined) [Types|, page (undefined),

Notes::

The small differences between the subtypep specification for the array and complex types are
necessary because there is no creation function for compleres which allows the specification
of the resultant part type independently of the actual types of the parts. Thus in the case
of the type complex, the actual type of the parts is referred to, although a number can be
a member of more than one type. For example, 17 is of type (mod 18) as well as type (mod
256) and type integer; and 2.3f5 is of type single-float as well as type float.

4.4.27 type-of [Function]
type-of object = typespec

Arguments and Values::
object—an object.

typespec—a type specifier.

Description::

Returns a type specifier, typespec, for a type that has the object as an element. The typespec
satisfies the following:

1. For any object that is an element of some built-in type:
a. the type returned is a recognizable subtype of that built-in type.
b. the type returned does not involve and, eql, member, not, or,

satisfies, or values.

2. For all objects, (typep object (type-of object)) returns true. Implicit in
this is that type specifiers which are not valid for use with typep, such as the
list form of the function type specifier, are never returned by type-of.

3. The type returned by type-of is always a recognizable subtype of the class re-
turned by class-of. That is,
(subtypep (type-of object) (class-of object)) = true, true

4. For objects of metaclass structure-class or standard-class,
and for conditions,

type-of returns the proper name of the class returned by class-of if it has a
proper name, and otherwise returns the class itself. In particular, for objects
created by the constructor function of a structure defined with defstruct without
a :type option, type-of returns the structure name; and for objects created by
make-condition, the typespec is the name of the condition type.

5. For each of the types short-float, single-float, double-float, or long-float of which
the object is an element, the typespec is a recognizable subtype of that type.
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Examples::

(type-of ’a) = SYMBOL
(type-of (1 . 2))

= CONS

OR= (CONS FIXNUM FIXNUM)
(type-of #c(0 1))

= COMPLEX

OR=- (COMPLEX INTEGER)
(defstruct temp-struct x y z) = TEMP-STRUCT
(type-of (make-temp-struct)) = TEMP-STRUCT
(type-of "abc")

= STRING

OR= (STRING 3)
(subtypep (type-of "abc") ’string) = true, true
(type-of (expt 2 40))

= BIGNUM

OR= INTEGER

OR=- (INTEGER 1099511627776 1099511627776)

OR=> SYSTEM: :TWO-WORD-BIGNUM

OR= FIXNUM
(subtypep (type-of 112312) ’integer) = true, true
(defvar *foo* (make-array 5 :element-type t)) = *F00%
(class-name (class-of *foo*)) = VECTOR
(type-of *foox)

= VECTOR

OR=- (VECTOR T 5)

See Also::

(undefined) [array-element-type]|, page (undefined), , (undefined) [class-of], page (unde-
fined), , (undefined) [defstruct], page (undefined), , (undefined) [typecase], page (undefined),
, (undefined) [typep], page (undefined), , (undefined) [Types], page (undefined),

Notes::

Implementors are encouraged to arrange for type-of to return

a portable value.

4.4.28 typep [Function]

typep object type-specifier &optional environment = generalized-boolean

Arguments and Values::
object—an object.
type-specifier—any type specifier except
values, or a type specifier list whose first element is either function or values.

environment—an environment object. The default is nil, denoting the null lexical envi-
ronment and the and current global environment.
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generalized-boolean—a generalized boolean.

Description::
Returns true if object is of the type specified by type-specifier; otherwise, returns false.

A type-specifier of the form (satisfies fn) is handled by applying the function fn to
object.

(typep object ’(array type-specifier)), where type-specifier is not *, returns true
if and only if object is an array that could be the result of supplying type-specifier as the
:element-type argument to make-array. (array *) refers to all arrays regardless of ele-
ment type, while (array type-specifier) refers only to those arrays that can result from
giving type-specifier as the :element-type argument to make-array. A similar interpre-
tation applies to (simple-array type-specifier) and (vector type-specifier). See
(undefined) [Array Upgrading], page (undefined).

(typep object ’(complex type-specifier)) returns true for all complex numbers
that can result from giving numbers of type type-specifier to the function complex, plus
all other complex numbers of the same specialized representation. Both the real and the
imaginary parts of any such complex number must satisfy:

(typep realpart ’type-specifier)
(typep imagpart ’type-specifier)
See the function upgraded-complex-part-type.

Examples::

(typep 12 ’integer) = true

(typep (1+ most-positive-fixnum) ’fixnum) = false

(typep nil t) = true

(typep nil nil) = false

(typep 1 ’(mod 2)) = true

(typep #c(1 1) ’(complex (eql 1))) = true

;; To understand this next example, you might need to refer to

R (undefined> [Rule of Canonical Representation for Complex Rationals],
page (undefined).

(typep #c(0 0) ’(complex (eql 0))) = false

Let A_x and A_y be two type specifiers that denote different types, but for which
(upgraded-array-element-type ’A_x)

and
(upgraded-array-element-type ’A_y)

denote the same type. Notice that

(typep (make-array O :element-type ’A_x) ’(array A_x)) = true
(typep (make-array O :element-type ’A_y) ’(array A_y)) = true
(typep (make-array O :element-type ’A_x) ’(array A_y)) = true
(typep (make-array O :element-type ’A_y) ’(array A_x)) = true



Chapter 4: Types and Classes 201

Exceptional Situations::

An error of type error is signaled if type-specifier is values, or a type specifier list whose
first element is either function or values.

The consequences are undefined if the type-specifier is not a type specifier.

See Also::

(undefined) [type-of], page (undefined), , (undefined) [upgraded-array-element-type],
page (undefined), , (undefined) [upgraded-complex-part-type], page (undefined), |,
(undefined) [Type Specifiers|, page (undefined),

Notes::

Implementations are encouraged to recognize and optimize the case of (typep x (the
class y)), since it does not involve any need for expansion of deftype information at
runtime.

4.4.29 type-error [Condition Type]

Class Precedence List::

type-error, error, serious-condition, condition, t

Description::

The type type-error represents a situation in which an object is not of the expected type.
The “offending datum” and “expected type” are initialized by the initialization arguments
named :datum and :expected-type to make-condition, and are accessed by the functions
type-error-datum and type-error-expected-type.

See Also::
(undefined) [type-error-datum], page (undefined), , type-error-expected-type

4.4.30 type-error-datum, type-error-expected-type [Function]
type-error-datum condition = datum

type-error-expected-type condition = expected-type

Arguments and Values::
condition—a condition of type type-error.
datum—an object.

expected-type—a type specifier.

Description::
type-error-datum returns the offending datum in the situation represented by the condition.

type-error-expected-type returns the expected type of the offending datum in the situ-
ation represented by the condition.
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Examples::

(defun fix-digits (condition)
(check-type condition type-error)
(let* ((digits ’(zero one two three four
five six seven eight nine))
(val (position (type-error-datum condition) digits)))
(if (and val (subtypep ’fixnum (type-error-expected-type condition)))]]
(store-value 7))))

(defun foo (x)
(handler-bind ((type-error #’fix-digits))
(check-type x number)
+ x 3))

(foo ’seven)
= 10
See Also::
type-error, (undefined) [Conditions], page (undefined),

4.4.31 simple-type-error [Condition Type]

Class Precedence List::

simple-type-error, simple-condition, type-error, error, serious-condition, condition, t

Description::

Conditions of type simple-type-error are like conditions of type type-error, except that they
provide an alternate mechanism for specifying how the condition is to be reported; see the
type simple-condition.

See Also::
simple-condition,
(undefined) [simple-condition-format-control], page (undefined), ,

simple-condition-format-arguments, (undefined) [type-error-datum]|, page (undefined), ,
type-error-expected-type
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5 Data and Control Flow

5.1 Generalized Reference

5.1.1 Overview of Places and Generalized Reference

A generalized reference is the use of a form, sometimes called a place , as if it were a variable
that could be read and written. The value of a place is the object to which the place form
evaluates. The wvalue of a place can be changed by using setf. The concept of binding a
place is not defined in Common Lisp, but an implementation is permitted to extend the
language by defining this concept.

Figure 5-1 contains examples of the use of setf. Note that the values returned by
evaluating the forms in column two are not necessarily the same as those obtained by
evaluating the forms in column three. In general, the exact macro expansion of a setf form
is not guaranteed and can even be implementation-dependent; all that is guaranteed is that
the expansion is an update form that works for that particular implementation, that the
left-to-right evaluation of subforms is preserved, and that the ultimate result of evaluating
setf is the value or values being stored.

Access function Update Function Update using setf

X (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x) (set x datum) (setf (symbol-value x) datum)

Figure 5-1: Examples of setf

Figure 52 shows operators relating to places and generalized reference.

assert defsetf push

ccase get-setf-expansion remf
ctypecase getf rotatef
decf incf setf
define-modify-macro pop shiftf

define-setf-expander psetf

Figure 5-2: Operators relating to places and generalized reference.

Some of the operators above manipulate places and some manipulate setf expanders. A
setf expansion can be derived from any place.

New setf expanders can be defined by using defsetf and define-setf-expander.

5.1.1.1 Evaluation of Subforms to Places

The following rules apply to the evaluation of subforms in a place:
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The evaluation ordering of subforms within a place is determined by the order
specified by the second value returned by

get-setf-expansion.

For all places defined by this specification (e.g., getf, ldb, ...), this order of
evaluation is left-to-right.

When a place is derived from a macro expansion, this rule is applied after the
macro is expanded to find the appropriate place.

Places defined by using defmacro or
define-setf-expander

use the evaluation order defined by those definitions. For example, consider the
following:

(defmacro wrong-order (x y) ‘(getf ,y ,x))

This following form evaluates place2 first and then placel because that is the
order they are evaluated in the macro expansion:

(push value (wrong-order placel place2))

For the macros that manipulate places (push, pushnew, remf, incf, decf, shiftf,
rotatef, psetf, setf, pop, and those defined by define-modify-macro) the sub-
forms of the macro call are evaluated exactly once in left-to-right order, with
the subforms of the places evaluated in the order specified in (1).

push, pushnew, remf, incf, decf, shiftf, rotatef, psetf, pop evaluate all subforms
before modifying any of the place locations. setf (in the case when setf has
more than two arguments) performs its operation on each pair in sequence. For
example, in

(setf placel valuel place2 value2 ...)

the subforms of placel and valuel are evaluated, the location specified by
placel is modified to contain the value returned by valuel, and then the rest
of the setf form is processed in a like manner.

For check-type, ctypecase, and ccase, subforms of the place are evaluated once
as in (1), but might be evaluated again if the type check fails in the case of
check-type or none of the cases hold in ctypecase and ccase.

For assert, the order of evaluation of the generalized references is not specified.

Rules 2, 3 and 4 cover all standardized macros that manipulate places.

5.1.1.2 Examples of Evaluation of Subforms to Places
(let ((ref2 (list >())))

| >
=

(push (progn (princ "1") ’ref-1)

(car (progn (princ "2") ref2))))
12
(REF1)
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(let (%)
(push (setq x (list ’a))
(car (setq x (list ’b))))
x)

= ((4) . B))

push first evaluates (setq x (list ’a)) = (a), then evaluates (setq x (list ’b))
= (b)), then modifies the car of this latest value to be ((a) . b).

5.1.1.3 Setf Expansions

Sometimes it is possible to avoid evaluating subforms of a place multiple times or in the
wrong order. A

setf expansion

for a given access form can be expressed as an ordered collection of five objects:

List of temporary variables
a list of symbols naming temporary variables to be bound sequentially, as if by
let*, to values resulting from value forms.

List of value forms
a list of forms (typically, subforms of the place) which when evaluated yield the
values to which the corresponding temporary variables should be bound.

List of store variables
a list of symbols naming temporary store variables which are to hold the new
values that will be assigned to the place.

Storing form
a form which can reference both the temporary and the store variables, and
which changes the value of the place and guarantees to return as its values the
values of the store variables, which are the correct values for setf to return.

Accessing form
a form which can reference the temporary variables, and which returns the
value of the place.

The value returned by the accessing form is affected by execution of the storing form,
but either of these forms might be evaluated any number of times.

It is possible to do more than one setf in parallel via psetf, shiftf, and rotatef. Because
of this, the

setf expander

must produce new temporary and store variable names every time. For examples of how
to do this, see gensym.

For each standardized accessor function F), unless it is explicitly documented otherwise,
it is implementation-dependent whether the ability to use an F form as a setf place is
implemented by a setf expander or a setf function. Also, it follows from this that it is
implementation-dependent whether the name (setf F) is fbound.
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5.1.1.4 Examples of Setf Expansions

Examples of the contents of the constituents of setf expansions follow.

For a variable z:

O ;list of temporary variables
O :list of value forms
(g0001) ;list of store variables
(setq x g0001) ;storing form

z ;accessing form

Figure 5-3: Sample Setf Expansion of a Variable

For (car exp):

(g0002) ;list of temporary variables
(exp) ;list of value forms

(g0003) :list of store variables
(progn (rplaca g0002 g0003) g0003) ;storing form
(car g0002) ;accessing form

Figure 5—4: Sample Setf Expansion of a CAR Form

For (subseq seq s e):

(g0004 g0005 g0006) ;list of temporary variables
(seq s e) ;list of value forms
(g0007) ;list of store variables

(progn (replace g0004 g0O007 :startl gO005 :endl g0006) gO0007)
;storing form
(subseq g0004 g0005 g0006) ; accessing form

Figure 5-5: Sample Setf Expansion of a SUBSEQ Form

In some cases, if a subform of a place is itself a place, it is necessary to expand the
subform in order to compute some of the values in the expansion of the outer place. For
(1db bs (car exp)):
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(g0001 g0002) ;list of temporary variables
(bs exp) ;list of value forms
(g0003) ;list of store variables

(progn (rplaca g0002 (dpb g0003 g0001 (car g0002))) g0003)
;storing form
(1db g0001 (car g0002)) ; accessing form

Figure 5—6: Sample Setf Expansion of a LDB Form

5.1.2 Kinds of Places

Several kinds of places are defined by Common Lisp; this section enumerates them. This
set can be extended by implementations and by programmer code.

5.1.2.1 Variable Names as Places

The name of a lexical variable or dynamic variable can be used as a place.

5.1.2.2 Function Call Forms as Places
A function form can be used as a place if it falls into one of the following categories:

* A function call form whose first element is the name of any one of the functions
in Figure 5-7.
[Editorial Note by KMP: Note that what are in some places still called ‘condi-
tion accessors’ are deliberately omitted from this table, and are not labeled as
accessors in their entries. I have not yet had time to do a full search for these
items and eliminate stray references to them as ‘accessors’, which they are not,
but I will do that at some point.]
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aref cdadr get

bit  cdar gethash

caaaar cddaar logical-pathname-translations
caaadr cddadr macro-function
caaar cddar ninth

caadar cdddar nth

caaddr cddddr readtable-case
caadr cdddr rest

caar cddr row-major-aref
cadaar cdr sbit

cadadr char schar

cadar class-name second
caddar compiler-macro-function seventh
cadddr documentation sixth
caddr eighth slot-value
cadr elt subseq

car fdefinition svref

cdaaar fifth symbol-function
cdaadr fill-pointer symbol-plist
cdaar find-class symbol-value
cdadar first tenth

cdaddr fourth third

Figure 5-7: Functions that setf can be used with—1

In the case of subseq, the replacement value must be a sequence whose elements
might be contained by the sequence argument to subseq, but does not have to
be a sequence of the same type as the sequence of which the subsequence is
specified. If the length of the replacement value does not equal the length of
the subsequence to be replaced, then the shorter length determines the number
of elements to be stored, as for replace.

A function call form whose first element is the name of a selector function
constructed by defstruct.

The function name must refer to the global function definition, rather than a
locally defined function.

A function call form whose first element is the name of any one of the functions
in Figure 5-8, provided that the supplied argument to that function is in turn
a place form; in this case the new place has stored back into it the result of
applying the supplied “update” function.
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Function name Argument that is a place Update function used

1db
mask-field
getf

second dpb
second deposit-field
first implementation-dependent

Figure 5-8: Functions that setf can be used with—2

During the setf expansion of these forms, it is necessary to call

get-setf-expansion

in order to figure out how the inner, nested generalized variable must be treated.

The information from

get-setf-expansion

is used as follows.

1db

In a form such as:
(setf (1db byte-spec place-form) value-form)

the place referred to by the place-form must always be both read
and written; note that the update is to the generalized variable
specified by place-form, not to any object of type integer.

Thus this setf should generate code to do the following:

1. Evaluate byte-spec (and bind it into a temporary vari-
able).

2. Bind the temporary variables for place-form.

3. Evaluate value-form (and bind

its value or values into the store variable).

4. Do the read from place-form.

5. Do the write into place-form with the given bits of the
integer fetched in step 4 replaced with the value from
step 3.

If the evaluation of walue-form in step 3 alters what is found in
place-form, such as setting different bits of integer, then the change
of the bits denoted by byte-spec is to that altered integer, because
step 4 is done after the value-form evaluation. Nevertheless, the
evaluations required for binding the temporary variables are done in
steps 1 and 2, and thus the expected left-to-right evaluation order
is seen. For example:

(setq integer #x69) = #x69
(rotatef (1db (byte 4 4) integer)

(1db (byte 4 0) integer))
integer = #x96
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;35 This example is trying to swap two independent bit fields|
;55 in an integer. Note that the generalized variable of]}
;3; interest here is just the (possibly local) program variable]]

;55 integer.

mask-field This case is the same as 1db in all essential aspects.

getf

In a form such as:
(setf (getf place-form ind-form) value-form)

the place referred to by place-form must always be both read and
written; note that the update is to the generalized variable speci-
fied by place-form, not necessarily to the particular list that is the
property list in question.

Thus this setf should generate code to do the following:

1. Bind the temporary variables for place-form.

2. Evaluate ind-form (and bind it into a temporary vari-
able).

3. Evaluate value-form (and bind

its value or values into the store variable).
4. Do the read from place-form.

5. Do the write into place-form with a possibly-new prop-
erty list obtained by combining the values from steps 2,
3, and 4. (Note that the phrase “possibly-new property
list” can mean that the former property list is some-
how destructively re-used, or it can mean partial or
full copying of it. Since either copying or destructive
re-use can occur, the treatment of the resultant value
for the possibly-new property list must proceed as if it
were a different copy needing to be stored back into the
generalized variable.)

If the evaluation of walue-form in step 3 alters what is found in
place-form, such as setting a different named property in the list,
then the change of the property denoted by ind-form is to that
altered list, because step 4 is done after the value-form evaluation.
Nevertheless, the evaluations required for binding the temporary
variables are done in steps 1 and 2, and thus the expected left-to-
right evaluation order is seen.
For example:

(setq s (setq r (list (list ’a 1 ’b 2 ’c 3)))) =

(setf (getf (car r) ’b)

(progn (setq r nil) 6)) = 6
r = NIL
s = ((A1B6C23))

(a1b2c3)

;33 Note that the (setq r nil) does not affect the actions ofl
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;;; the SETF because the value of R had already been saved inf}
;3; a temporary variable as part of the step 1. Only the CARJ
;55 of this value will be retrieved, and subsequently modified]]
;55 after the value computation.

5.1.2.3 VALUES Forms as Places

A values form can be used as a place, provided that each of its subforms is also a place
form.

A form such as
(setf (values place-1 \dots place-n) values-form)

does the following:
1. The subforms of each nested place are evaluated in left-to-right order.

2. The walues-form is evaluated, and the first store variable from each place is
bound to its return values as if by multiple-value-bind.

3. If the setf expansion for any place involves more than one store variable, then
the additional store variables are bound to nil.

4. The storing forms for each place are evaluated in left-to-right order.

The storing form in the setf expansion of values returns as multiple values_2 the values
of the store variables in step 2. That is, the number of values returned is the same as
the number of place forms. This may be more or fewer values than are produced by the
values-form.

5.1.2.4 THE Forms as Places

A the form can be used as a place, in which case the declaration is transferred to the
newvalue form, and the resulting setf is analyzed. For example,

(setf (the integer (cadr x)) (+y 3))
is processed as if it were

(setf (cadr x) (the integer (+ y 3)))
5.1.2.5 APPLY Forms as Places
The following situations involving setf of apply must be supported:

* (setf (apply #’aref array {subscript}* more-subscripts)
new-element)

* (setf (apply #’bit array {subscript}* more-subscripts) new-
element)
* (setf (apply #’sbit array {subscript}* more-subscripts)

new-element)

In all three cases, the element of array designated by the concatenation of subscripts
and more-subscripts (i.e., the same element which would be read by the call to apply if it
were not part of a setf form) is changed to have the value given by new-element.
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For these usages, the function name (aref, bit, or sbit) must refer to the global function
definition, rather than a locally defined function.

No other standardized function is required to be supported, but an implementation may
define such support. An implementation may also define support for implementation-defined
operators.

If a user-defined function is used in this context, the following equivalence is true, except
that care is taken to preserve proper left-to-right evaluation of argument subforms:

(setf (apply #’name {arg}*) val)
= (apply #’(setf name) val {arg}t*)

5.1.2.6 Setf Expansions and Places
Any compound form for which the operator has a
setf expander
defined can be used as a place.

The operator must refer to the global function definition, rather than a locally defined
function or macro.

5.1.2.7 Macro Forms as Places

A macro form can be used as a place, in which case Common Lisp expands the macro form
as if by macroexpand-1
and then uses the macro expansion in place of the original place.

Such macro expansion is attempted only after exhausting all other possibilities other
than expanding into a call to a function named (setf reader).

5.1.2.8 Symbol Macros as Places

A reference to a symbol that has been established as a symbol macro can be used as a place.
In this case, setf expands the reference and then analyzes the resulting form.

5.1.2.9 Other Compound Forms as Places

For any other compound form for which the operator is a symbol f, the setf form expands
into a call to the function named (setf f). The first argument in the newly constructed
function form is newvalue and the remaining arguments are the remaining elements of place.
This expansion occurs regardless of whether f or (setf f) is defined as a function locally,
globally, or not at all. For example,

(setf (f argl arg2 ...) new-value)
expands into a form with the same effect and value as

(let ((#:temp-1 argl) ;force correct order of evaluation
(#:temp-2 arg2)

(#:temp-0 new-value))
(funcall (function (setf f)) #:temp-O #:temp-1 #:temp-2...))

A function named (setf f) must return its first argument as its only value in order to
preserve the semantics of setf.



Chapter 5: Data and Control Flow 213

5.1.3 Treatment of Other Macros Based on SETF

For each of the “read-modify-write” operators in Figure 5-9, and for any additional macros
defined by the programmer using define-modify-macro, an exception is made to the normal
rule of left-to-right evaluation of arguments. Evaluation of argument forms occurs in left-
to-right order, with the exception that for the place argument, the actual read of the “old
value” from that place happens after all of the argument form evaluations, and just before
a “‘new value” is computed and written back into the place.

Specifically, each of these operators can be viewed as involving a form with the following
general syntax:

(operator {preceding-form}* place {following-form}*)

The evaluation of each such form proceeds like this:
1. Evaluate each of the preceding-forms, in left-to-right order.

2. Evaluate the subforms of the place, in the order specified by the second value
of the setf expansion for that place.

Evaluate each of the following-forms, in left-to-right order.
Read the old value from place.

Compute the new value.

A

Store the new value into place.

decf pop pushnew
incf push remf

Figure 5-9: Read-Modify-Write Macros

5.2 Transfer of Control to an Exit Point

When a transfer of control is initiated by go, return-from, or throw the following events
occur in order to accomplish the transfer of control. Note that for go, the exit point is
the form within the tagbody that is being executed at the time the go is performed; for
return-from, the ezit point is the corresponding block form; and for throw, the exit point
is the corresponding catch form.

1. Intervening ezit points are “abandoned” (i.e., their extent ends and it is no
longer valid to attempt to transfer control through them).

2. The cleanup clauses of any intervening unwind-protect clauses are evaluated.

3. Intervening dynamic bindings of special variables, catch tags, condition han-
dlers, and restarts are undone.

4. The extent of the exit point being invoked ends, and control is passed to the
target.
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The extent of an exit being “abandoned” because it is being passed over ends as soon as
the transfer of control is initiated. That is, event 1 occurs at the beginning of the initiation
of the transfer of control. The consequences are undefined if an attempt is made to transfer
control to an exit point whose dynamic extent has ended.

Events 2 and 3 are actually performed interleaved, in the order corresponding to the
reverse order in which they were established. The effect of this is that the cleanup clauses
of an unwind-protect see the same dynamic bindings of variables and catch tags as were
visible when the unwind-protect was entered.

Event 4 occurs at the end of the transfer of control.

5.3 Data and Control Flow Dictionary

5.3.1 apply [Function]
apply function &rest args™+ = {result}*

Arguments and Values::

function—a function designator.
args—a spreadable argument list designator.

results—the values returned by function.

Description::
Applies the function to the args.

When the function receives its arguments via &rest, it is permissible (but not required)
for the implementation to bind the rest parameter to an object that shares structure with
the last argument to apply. Because a function can neither detect whether it was called via
apply nor whether (if so) the last argument to apply was a constant, conforming programs
must neither rely on the list structure of a rest list to be freshly consed, nor modify that
list structure.

setf can be used with apply in certain circumstances; see (undefined) [APPLY Forms as
Places], page (undefined).

Examples::

(setq £ ’+) = +

(apply £ °(1 2)) = 3

(setq f #’-) = #<FUNCTION ->

(apply £ °(1 2)) = -1

(apply #’max 35 °(27 3)) = 7

(apply ’cons ’((+ 2 3) 4)) = ((+23) . 4)
(apply #°+ °Q) = 0

(defparameter *some-list* ’(a b c))
(defun strange-test (&rest x) (eq x *some-listx))

(apply #’strange-test *some-list*) = implementation-dependent

(defun bad-boy (&rest x) (rplacd x ’y))
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(bad-boy ’a ’b ’c) has undefined consequences.
(apply #’bad-boy *some-list*) has undefined consequences.

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(if double (concatenate (type-of v) v v) v)))
(foo 4 :initial-contents ’(a b c¢c d) :double t)
= #(ABCDABCD)

See Also::

(undefined) [funcall], page (undefined), , (undefined) [fdefinition], page (undefined), , func-
tion, (undefined) [Evaluation], page (undefined), (undefined) [APPLY Forms as Places],
page (undefined),

5.3.2 defun [Macro]

defun function-name lambda-list [[{declaration}* | documentation]] {form}*
= function-name

Arguments and Values::

function-name—a function name.
lambda-list—an ordinary lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.
forms—an implicit progn.

block-name—the function block name of the function-name.

Description::

Defines a new function named function-name in the global environment. The body of the
function defined by defun consists of forms; they are executed as an implicit progn when
the function is called. defun can be used to define a new function, to install a corrected
version of an incorrect definition, to redefine an already-defined function, or to redefine a
macro as a function.

defun implicitly puts a block named block-name around the body forms
(but not the forms in the lambda-list)
of the function defined.

Documentation is attached as a documentation string to name (as kind function) and
to the function object.

Evaluating defun causes function-name to be a global name for the function specified
by the lambda expression

(lambda lambda-list
[{ declaration}* | documentation)]
(block block-name {form}*))

processed in the lexical environment in which defun was executed.

(None of the arguments are evaluated at macro expansion time.)
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defun is not required to perform any compile-time side effects. In particular, defun
does not make the function definition available at compile time. An implementation may
choose to store information about the function for the purposes of compile-time error-
checking (such as checking the number of arguments on calls), or to enable the function to
be expanded inline.

Examples::

(defun recur (x)

(when (> x 0)
(recur (1- x)))) = RECUR

(defun ex (a b &optional c (d 66) &rest keys &key test (start 0))
(list a b c d keys test start)) = EX

(ex 1 2) = (1 2 NIL 66 NIL NIL 0)

(ex 1 2 3 4 :test ’equal :start 50)

= (1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)
(ex :test 1 :start 2) = (:TEST 1 :START 2 NIL NIL 0)

;3 This function assumes its callers have checked the types of the
;; arguments, and authorizes the compiler to build in that assumption.
(defun discriminant (a b c)
(declare (number a b c))
"Compute the discriminant for a quadratic equation."
(- (*xbb) (*x 4ac))) = DISCRIMINANT
(discriminant 1 2/3 -2) = 76/9

;3 This function assumes its callers have not checked the types of the
;; arguments, and performs explicit type checks before making any assumptions.|j
(defun careful-discriminant (a b c¢)

"Compute the discriminant for a quadratic equation."

(check-type a number)

(check-type b number)

(check-type c number)

(locally (declare (number a b c))

(- (xbb) (x 4ac)))) = CAREFUL-DISCRIMINANT

(careful-discriminant 1 2/3 -2) = 76/9

See Also::

(undefined) [flet], page (undefined), , labels, (undefined) [block], page (undefined), , (unde-
fined) [return-from|, page (undefined), , declare, (undefined) [documentation|, page (unde-
fined), , (undefined) [Evaluation], page (undefined), (undefined) [Ordinary Lambda Lists],
page (undefined), (undefined) [Syntactic Interaction of Documentation Strings and Decla-
rations|, page (undefined),

Notes::

return-from can be used to return prematurely from a function defined by defun.
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Additional side effects might take place when additional information (typically debugging
information) about the function definition is recorded.

5.3.3 fdefinition [Accessor]

fdefinition function-name = definition

(setf ( fdefinition function-name) new-definition)

Arguments and Values::

function-name—a function name.
In the non-setf case, the name must be fbound in the global environment.
definition—Current global function definition named by function-name.

new-definition—a function.

Description::

fdefinition accesses the current global function definition named by function-name. The
definition may be a function or may be an object representing a special form or macro.

The value returned by fdefinition when fboundp returns true but the function-name
denotes a macro or special form is not well-defined, but fdefinition does not signal an error.

Exceptional Situations::
Should signal an error of type type-error if function-name is not a function name.

An error of type undefined-function is signaled in the non-setf case if function-name is
not fbound.

See Also::

(undefined) [fboundp], page (undefined), , (undefined) [fmakunbound], page (undefined), ,
(undefined) [macro-function], page (undefined), ,

(undefined) [special-operator-p|, page (undefined), ,
(undefined) [symbol-function], page (undefined),

Notes::

fdefinition cannot access the value of a lexical function name produced by flet or labels; it
can access only the global function value.

setf can be used with fdefinition to replace a global function definition when the function-
name’s function definition does not represent a special form.

setf of fdefinition requires a function as the new value. It is an error to set the fdefinition
of a function-name to a symbol, a list, or the value returned by fdefinition on the name of
a macro or special form.

5.3.4 fboundp [Function]

fboundp name = generalized-boolean
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Pronunciation::

pronounced ,ef ’baund p\=e

Arguments and Values::

name—a function name.

generalized-boolean—a generalized boolean.

Description::

Returns true if name is fbound; otherwise, returns false.

Examples::

(fboundp ’car) = true
(fboundp ’nth-value) = false
(fboundp ’with-open-file) = true
(fboundp ’unwind-protect) = true
(defun my-function (x) x) = MY-FUNCTION
(fboundp ’my-function) = true
(let ((saved-definition (symbol-function ’my-function)))
(unwind-protect (progn (fmakunbound ’my-function)
(fboundp ’my-function))
(setf (symbol-function ’my-function) saved-definition)))
= false
(fboundp ’my-function) = true
(defmacro my-macro (x) ‘’,x) = MY-MACRO
(fboundp ’my-macro) = true
(fmakunbound ’my-function) = MY-FUNCTION
(fboundp ’my-function) = false
(flet ((my-function (x) x))
(fboundp ’my-function)) = false

Exceptional Situations::

Should signal an error of type type-error if name is not a function name.

See Also::

(undefined) [symbol-function], page (undefined), , (undefined) [fmakunbound], page (unde-
fined), , (undefined) [fdefinition], page (undefined),

Notes::

It is permissible to call symbol-function on any symbol that is fbound.
fboundp is sometimes used to “guard” an access to the function cell, as in:
(if (fboundp x) (symbol-function x))
Defining a setf expander F does not cause the setf function (setf F) to become defined.

5.3.5 fmakunbound [Function]

fmakunbound name = name
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Pronunciation::

pronounced ,ef 'mak e n,baund or pronounced ,ef 'm\=a k e n,baund

Arguments and Values::

name—a function name.

Description::

Removes the function or macro definition, if any, of name in the global environment.

Examples::

(defun add-some (x) (+ x 19)) = ADD-SOME
(fboundp ’add-some) = true
(flet ((add-some (x) (+ x 37)))
(fmakunbound ’add-some)
(add-some 1)) = 38
(fboundp ’add-some) = false

Exceptional Situations::

Should signal an error of type type-error if name is not a function name.
The consequences are undefined if name is a special operator.

See Also::
(undefined) [fboundp], page (undefined), , (undefined) [makunbound], page (undefined),

5.3.6 flet, labels, macrolet [Special Operator]

flet  ({(function-name lambda-list [[{local-declaration}* |  local-documentation))

{local-form} *)} *) {declaration} * {form}*
= {result}*

labels ({(function-name lambda-list [[{local-declaration}* | local-documentation)|

{local-form} *)} *) {declaration}* {form}*
= {result}*

macrolet ({(name lambda-list [[{local-declaration}* |  local-documentation]]

{local-form} *)} *) {declaration}* {form}*
= {result}*

Arguments and Values::

function-name—a function name.
name—a symbol.

lambda-list—a lambda list; for flet and labels, it is an ordinary lambda list; for macrolet,
it is a macro lambda list.

local-declaration—a declare expression; not evaluated.
declaration—a declare expression; not evaluated.
local-documentation—a string; not evaluated.
local-forms, forms—an implicit progn.

results—the values of the forms.
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Description::

flet, labels, and macrolet define local functions and macros, and execute forms using the
local definitions. Forms are executed in order of occurrence.

The body forms (but not the lambda list)

of each function created by flet and labels and each macro created by macrolet are
enclosed in an implicit block whose name is the function block name of the function-name
or mame, as appropriate.

The scope of the declarations between the list of local function/macro definitions and the
body forms in flet and labels does not include the bodies of the locally defined functions,
except that for labels, any inline, notinline, or ftype declarations that refer to the locally
defined functions do apply to the local function bodies. That is, their scope is the same as
the function name that they affect.

The scope of these declarations does not include the bodies of the macro expander
functions defined by macrolet.

flet flet defines locally named functions and executes a series of forms with these
definition bindings. Any number of such local functions can be defined.

The scope of the name binding encompasses only the body. Within the body of
flet, function-names matching those defined by flet refer to the locally defined
functions rather than to the global function definitions of the same name.

Also, within the scope of flet, global setf expander definitions of the function-
name defined by flet do not apply. Note that this applies to (defsetf f ...),
not (defmethod (setf f) ...).

The names of functions defined by flet are in the lexical environment; they
retain their local definitions only within the body of flet. The function definition
bindings are visible only in the body of flet, not the definitions themselves.
Within the function definitions, local function names that match those being
defined refer to functions or macros defined outside the flet. flet can locally
shadow a global function name, and the new definition can refer to the global
definition.

Any local-documentation is attached to the corresponding local function (if one
is actually created) as a documentation string.

labels labels is equivalent to flet except that the scope of the defined function names
for labels encompasses the function definitions themselves as well as the body.

macrolet  macrolet establishes local macro definitions, using the same format used by
defmacro.

Within the body of macrolet, global setf expander definitions of the names
defined by the macrolet do not apply; rather, setf expands the macro form and
recursively process the resulting form.

The macro-expansion functions defined by macrolet are defined in the

lexical environment in which the macrolet form appears. Declarations and
macrolet and symbol-macrolet definitions affect the local macro definitions in
a macrolet, but the consequences are undefined if the local macro definitions



Chapter 5: Data and Control Flow 221

reference any local variable or function bindings that are visible in that lexical
environment.

Any local-documentation is attached to the corresponding local macro function
as a documentation string.

Examples::

(defun foo (x flag)
(macrolet ((fudge (z)
;The parameters x and flag are not accessible
; at this point; a reference to flag would be to
; the global variable of that name.
¢ (if flag (x ,z ,2) ,2z)))
;The parameters x and flag are accessible here.
(+ x
(fudge x)
(fudge (+ x 1)))))

(defun foo (x flag)
(+ x
(if flag (*x x x) x)
(if flag (x (+ x 1) (+ x 1)) (+ x 1))))

after macro expansion. The occurrences of x and flag legitimately refer to the param-
eters of the function foo because those parameters are visible at the site of the macro call
which produced the expansion.
(flet ((fletl (n) (+ n n)))
(flet ((fletl (n) (+ 2 (fletl n))))
(fletl 2))) = 6

(defun dummy-function () ’top-level) = DUMMY-FUNCTION
(funcall #’dummy-function) = TOP-LEVEL
(flet ((dummy-function () ’shadow))

(funcall #’dummy-function)) = SHADOW

(eq (funcall #’dummy-function) (funcall ’dummy-function))
= true

(flet ((dummy-function () ’shadow))
(eq (funcall #’dummy-function)

(funcall ’dummy-function)))
= false

(defun recursive-times (k n)
(labels ((temp (n)

(if (zerop n) 0 (+ k (temp (1- mn))))))
(temp n))) = RECURSIVE-TIMES
(recursive-times 2 3) = 6

(defmacro mlets (x &environment env)
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(let ((form ‘(babbit ,x)))
(macroexpand form env))) = MLETS
(macrolet ((babbit (z) ‘(+ ,z ,z))) (mlets 5)) = 10

(flet ((safesqrt (x) (sqrt (abs x))))
;3 The safesqrt function is used in two places.
(safesqrt (apply #’+ (map ’list #’safesqrt (1 2 3 4 5 6)))))
= 3.291173

(defun integer-power (n k)
(declare (integer n))
(declare (type (integer 0 *) k))
(labels ((expt0 (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (*x x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (*x x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (*x x a))))))
(exptO n k 1))) = INTEGER-POWER

(defun example (y 1)
(flet ((attach (x)
(setq 1 (append 1 (list x)))))
(declare (inline attach))
(dolist (x y)
(unless (null (cdr x))
(attach x)))
1))

(example ’((a apple apricot) (b banana) (c cherry) (d) (e))
»((1) (2) (3) (4 2) (B) (63 2)))
= ((1) (2) (3) (4 2) (5) (6 3 2) (A APPLE APRICOT) (B BANANA) (C CHERRY))N

See Also::

declare, (undefined) [defmacro], page (undefined), , (undefined) [defun], page (undefined), ,
(undefined) [documentation|, page (undefined), , (undefined) [let], page (undefined), , (unde-
fined) [Evaluation], page (undefined), (undefined) [Syntactic Interaction of Documentation
Strings and Declarations], page (undefined),

Notes::

It is not possible to define recursive functions with flet. labels can be used to define mutually
recursive functions.

If a macrolet form is a top level form, the body forms are also processed as top level
forms. See (undefined) [File Compilation], page (undefined).
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5.3.7 funcall [Function]
funcall function &rest args = {result}*

Arguments and Values::
function—a function designator.
args—arguments to the function.

results—the values returned by the function.

Description::
funcall applies function to args.

If function is a symbol, it is coerced to a function as if by finding its functional value in
the global environment.

Examples::

(funcall #’+ 1 2 3) = 6
(funcall ’car (1 2 3)) = 1
(funcall ’position 1 ’(1 2 3 2 1) :start 1) = 4
(cons 1 2) = (1. 2)
(flet ((cons (x y) ‘(komns ,x ,y)))
(let ((cons (symbol-function ’+)))
(funcall #’cons
(funcall ’cons 1 2)
(funcall cons 1 2))))
= (KONS (1 . 2) 3)

Exceptional Situations::

An error of type undefined-function should be signaled if function is a symbol that does not
have a global definition as a function or that has a global definition as a macro or a special
operator.

See Also::
(undefined) [apply], page (undefined), , function, (undefined) [Evaluation|, page (undefined),

Notes::

(funcall function argl arg2 ...)
(apply function argl arg2 ... nil)
(apply function (list argl arg2 ...))

The difference between funcall and an ordinary function call is that in the former case the
function is obtained by ordinary evaluation of a form, and in the latter case it is obtained
by the special interpretation of the function position that normally occurs.

5.3.8 function [Special Operator]

function name = function
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Arguments and Values::

name—a function name or lambda expression.

function—a function object.

Description::

The value of function is the functional value of name in the current lexical environment.

If name is a function name, the functional definition of that name is that established by
the innermost lexically enclosing flet, labels, or macrolet form, if there is one. Otherwise
the global functional definition of the function name is returned.

If name is a lambda expression, then a lexical closure is returned. In situations where
a closure over the same set of bindings might be produced more than once, the various
resulting closures might or might not be eq.

It is an error to use function on a function name that does not denote a function in the
lexical environment in which the function form appears. Specifically, it is an error to use
function on a symbol that denotes a macro or special form. An implementation may choose
not to signal this error for performance reasons, but implementations are forbidden from
defining the failure to signal an error as a useful behavior.

Examples::

(defun adder (x) (function (lambda (y) (+ x y))))
The result of (adder 3) is a function that adds 3 to its argument:

(setq add3 (adder 3))
(funcall add3 5) = 8

This works because function creates a closure of the lambda expression that is able to
refer to the wvalue 3 of the variable x even after control has returned from the function
adder.

See Also::

(undefined) [defun], page (undefined), , (undefined) [fdefinition], page (undefined), , (un-
defined) [flet], page (undefined), , labels, (undefined) [symbol-function], page (undefined),
, (undefined) [Symbols as Forms|, page (undefined), (undefined) [Sharpsign Single-Quote],
page (undefined), (undefined) [Printing Other Objects], page (undefined),

Notes::

The notation #’name may be used as an abbreviation for (function name).

5.3.9 function-lambda-expression [Function]

function-lambda-expression function
= lambda-expression, closure-p, name

Arguments and Values::

function—a function.
lambda-expression—a lambda expression or nil.
closure-p—a generalized boolean.

name—an object.
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Description::
Returns information about function as follows:

The primary value, lambda-expression, is function’s defining lambda expression, or nil
if the information is not available. The lambda expression may have been pre-processed
in some ways, but it should remain a suitable argument to compile or function. Any
implementation may legitimately return nil as the lambda-expression of any function.

The secondary value, closure-p, is nil if function’s definition was enclosed in the null
lezical environment or something non-nil if function’s definition might have been enclosed
in some non-null lexical environment. Any implementation may legitimately return true as
the closure-p of any function.

The tertiary value, name, is the “name” of function. The name is intended for debug-
ging only and is not necessarily one that would be valid for use as a name in defun or
function, for example. By convention, nil is used to mean that function has no name. Any
implementation may legitimately return nil as the name of any function.

Examples::

The following examples illustrate some possible return values, but are not intended to be
exhaustive:

(function-lambda-expression #’(lambda (x) x))
= NIL, false, NIL

OR= NIL, true, NIL

OR= (LAMBDA (X) X), true, NIL

OR= (LAMBDA (X) X), false, NIL

(function-lambda-expression
(funcall #’(lambda () #’(lambda (x) x))))
= NIL, false, NIL
OR= NIL, true, NIL
OR= (LAMBDA (X) X), true, NIL
OR= (LAMBDA (X) X), false, NIL

(function-lambda-expression
(funcall #’(lambda (x) #’(lambda () x)) nil))
= NIL, true, NIL
OR=- (LAMBDA () X), true, NIL
NOT= NIL, false, NIL
NOT= (LAMBDA () X), false, NIL

(flet ((foo (x) x))
(setf (symbol-function ’bar) #’foo)
(function-lambda-expression #’bar))
= NIL, false, NIL
OR= NIL, true, NIL
OR= (LAMBDA (X) (BLOCK FOO X)), true, NIL
OR= (LAMBDA (X) (BLOCK FOO X)), false, FOO
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OR=- (SI::BLOCK-LAMBDA FOO (X) X), false, FOO

(defun foo ()

(flet ((bar (x) %))

#’bar))

(function-lambda-expression (foo))
= NIL, false, NIL
OR= NIL, true, NIL
OR= (LAMBDA (X) (BLOCK BAR X)), true, NIL
OR=- (LAMBDA (X) (BLOCK BAR X)), true, (:INTERNAL FOO O BAR)
OR= (LAMBDA (X) (BLOCK BAR X)), false, "BAR in FOO"

Notes::

Although implementations are free to return “nil, true, nil” in all cases, they are encouraged
to return a lambda expression as the primary value in the case where the argument was
created by a call to compile or eval (as opposed to being created by loading a compiled file).

5.3.10 functionp [Function]

functionp object = generalized-boolean

Arguments and Values::
object—an object.

generalized-boolean—a generalized boolean.

Description::

Returns true if object is of type function; otherwise, returns false.

Examples::

(functionp ’append) = false

(functionp #’append) = true

(functionp (symbol-function ’append)) = true
(flet ((f () 1)) (functionp #’f)) = true
(functionp (compile nil ’(lambda () 259))) = true
(functionp nil) = false

(functionp 12) = false

(functionp ’(lambda (x) (* x x))) = false
(functionp #’(lambda (x) (* x x))) = true

Notes::
(functionp object) = (typep object ’function)

5.3.11 compiled-function-p [Function]

compiled-function-p object = generalized-boolean

Arguments and Values::

object—an object.
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generalized-boolean—a generalized boolean.

Description::

Returns true if object is of type compiled-function; otherwise, returns false.

Examples::

(defun £ (x) x) = F

(compiled-function-p #’f)

= false

OR= true

(compiled-function-p ’f) = false

(compile ’f) = F

(compiled-function-p #’f) = true
(compiled-function-p ’f) = false
(compiled-function-p (compile nil ’(lambda (x) x)))
= true

(compiled-function-p #’(lambda (x) x))

= false

OR= true

(compiled-function-p ’(lambda (x) x)) = false

See Also::

(undefined) [compile], page (undefined), , (undefined) [compile-file], page (undefined), ,
(undefined) [compiled-function], page (undefined),

Notes::
(compiled-function-p object) = (typep object ’compiled-function)

5.3.12 call-arguments-limit [Constant Variable]

Constant Value::

An integer not smaller than 50 and at least as great as the value of lambda-parameters-limit,
the exact magnitude of which is implementation-dependent.

Description::

The upper exclusive bound on the number of arguments that may be passed to a function.

See Also::

(undefined) [lambda-parameters-limit], page (undefined), , (undefined) [multiple-values-
limit|, page (undefined),

5.3.13 lambda-list-keywords [Constant Variable]

Constant Value::

a list, the elements of which are implementation-dependent, but which must contain at least
the symbols &allow-other-keys, &aux, &body, &environment, &key, &optional, &rest, and
&whole.
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Description::

A list of all the lambda list keywords used in the implementation, including the additional
ones used only by macro definition forms.

See Also::

(undefined) [defun], page (undefined), , (undefined) [flet], page (undefined), , (undefined)
[defmacro], page (undefined), , macrolet, (undefined) [The Evaluation Model], page (unde-
fined),

5.3.14 lambda-parameters-limit [Constant Variable]

Constant Value::

implementation-dependent, but not smaller than 50.

Description::

A positive integer that is the upper exclusive bound on the number of parameter names
that can appear in a single lambda list.

See Also::

(undefined) [call-arguments-limit], page (undefined),

Notes::

Implementors are encouraged to make the walue of lambda-parameters-limit as large as
possible.

5.3.15 defconstant [Macro]

defconstant name initial-value [documentation] = name

Arguments and Values::
name—a symbol; not evaluated.
initial-value—a form; evaluated.

documentation—a string; not evaluated.

Description::

defconstant causes the global variable named by name to be given a value that is the result
of evaluating initial-value.

A constant defined by defconstant can be redefined with defconstant. However, the
consequences are undefined if an attempt is made to assign a wvalue to the symbol using
another operator, or to assign it to a different value using a subsequent defconstant.

If documentation is supplied, it is attached to name as a documentation string of kind
variable.

defconstant normally appears as a top level form, but it is meaningful for it to appear
as a non-top-level form. However, the compile-time side effects described below only take
place when defconstant appears as a top level form.
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The consequences are undefined if there are any bindings of the variable named by name
at the time defconstant is executed or if the value is not eql to the value of initial-value.

The consequences are undefined when constant symbols are rebound as either lexical or
dynamic variables. In other words, a reference to a symbol declared with defconstant always
refers to its global value.

The side effects of the execution of defconstant must be equivalent to at least the side
effects of the execution of the following code:

(setf (symbol-value ’name) initial-value)
(setf (documentation ’name ’variable) ’documentation)

If a defconstant form appears as a top level form, the compiler must recognize that name
names a constant variable. An implementation may choose to evaluate the value-form at
compile time, load time, or both. Therefore, users must ensure that the initial-value can be
evaluated at compile time (regardless of whether or not references to name appear in the
file) and that it always evaluates to the same value.

[Editorial Note by KMP: Does “same value” here mean eql or similar?]

[Reviewer Note by Moon: Probably depends on whether load time is compared to compile
time, or two compiles.]

Examples::

(defconstant this-is-a-constant ’never-changing "for a test") = THIS-IS-A-CONSTANT]
this-is-a-constant = NEVER-CHANGING

(documentation ’this-is-a-constant ’variable) = "for a test"

(constantp ’this-is-a-constant) = true

See Also::

(undefined) [declaim], page (undefined), , (undefined) [defparameter|, page (undefined), ,
defvar, (undefined) [documentation], page (undefined), , (undefined) [proclaim], page (un-
defined), , (undefined) [Constant Variables|, page (undefined), (undefined) [Compilation],
page (undefined),

5.3.16 defparameter, defvar [Macro|

defparameter name initial-value [documentation] = name

defvar name [initial-value [documentation]] = name

Arguments and Values::

name—a symbol; not evaluated.

initial-value—a form; for defparameter, it is always evaluated, but for defvar it is eval-
uated only if name is not already bound.

documentation—a string; not evaluated.

Description::
defparameter and defvar establish name as a dynamic variable.

defparameter unconditionally assigns the initial-value to the dynamic variable named
name. defvar, by contrast, assigns initial-value (if supplied) to the dynamic variable named
name only if name is not already bound.
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If no initial-value is supplied, defvar leaves the value cell of the dynamic variable named
name undisturbed; if name was previously bound, its old walue persists, and if it was
previously unbound, it remains unbound.

If documentation is supplied, it is attached to name as a documentation string of kind
variable.

defparameter and defvar normally appear as a top level form, but it is meaningful for
them to appear as non-top-level forms. However, the compile-time side effects described
below only take place when they appear as top level forms.

Examples::

(defparameter *p* 1) = *Px
*pk = 1

(constantp ’*p*) = false
(setq *px 2) = 2
(defparameter *p* 3) = *Px
*p*x = 3

(defvar *vx 1) = *Vx
vk = 1

(constantp ’*vx) = false
(setq *v* 2) = 2

(defvar *v* 3) = *Vx
*vk = 2

(defun foo ()
(et ((xp*x ’p) (xvx ’v))
(bar))) = FOO
(defun bar () (list *p* *v*x)) = BAR
(foo) = (P V)

The principal operational distinction between defparameter and defvar is that defparam-
eter makes an unconditional assignment to name, while defvar makes a conditional one. In
practice, this means that defparameter is useful in situations where loading or reloading
the definition would want to pick up a new value of the variable, while defvar is used in
situations where the old value would want to be retained if the file were loaded or reloaded.
For example, one might create a file which contained:

(defvar *the-interesting-numbers* ’())
(defmacro define-interesting-number (name n)
‘(progn (defvar ,name ,n)
(pushnew ,name *the-interesting-numbers*)
> name))
(define-interesting-number *my-height* 168) ;cm
(define-interesting-number *my-weight* 13) ;stones
Here the initial value, (), for the variable *the-interesting-numbers* is just a seed
that we are never likely to want to reset to something else once something has been grown
from it. As such, we have used defvar to avoid having the *interesting-numbersx* in-
formation reset if the file is loaded a second time. It is true that the two calls to define-
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interesting-number here would be reprocessed, but if there were additional calls in another
file, they would not be and that information would be lost. On the other hand, consider
the following code:

(defparameter *default-beep-count* 3)
(defun beep (&optional (n *default-beep-countx*))
(dotimes (i n) (si:

Here we could easily imagine editing the code to change the initial value of
xdefault-beep-count*, and then reloading the file to pick up the new value. In order to
make value updating easy, we have used defparameter.

On the other hand, there is potential value to using defvar in this situation. For example,
suppose that someone had predefined an alternate value for *default-beep-count*, or had
loaded the file and then manually changed the value. In both cases, if we had used defvar

instead of defparameter, those user preferences would not be overridden by (re)loading the
file.

The choice of whether to use defparameter or defvar has visible consequences to pro-
grams, but is nevertheless often made for subjective reasons.

Side Effects::

If a defvar or defparameter form appears as a top level form, the compiler must recognize
that the name has been proclaimed special. However, it must neither evaluate the initial-
value form nor assign the dynamic variable named name at compile time.

There may be additional (implementation-defined) compile-time or run-time side effects,
as long as such effects do not interfere with the correct operation of conforming programs.

Affected By::

defvar is affected by whether name is already bound.

See Also::

(undefined) [declaim], page (undefined), , (undefined) [defconstant], page (undefined), , (un-
defined) [documentation], page (undefined), , (undefined) [Compilation|, page (undefined),

Notes::

It is customary to name dynamic variables with an asterisk at the beginning and end of
the name. e.g., *foo* is a good name for a dynamic variable, but not for a lexical variable;
foo is a good name for a lexical variable, but not for a dynamic variable. This naming
convention is observed for all defined names in Common Lisp; however, neither conforming
programs nor conforming implementations are obliged to adhere to this convention.

The intent of the permission for additional side effects is to allow implementations to do
normal “bookkeeping” that accompanies definitions. For example, the macro expansion of
a defvar or defparameter form might include code that arranges to record the name of the
source file in which the definition occurs.

defparameter and defvar might be defined as follows:

(defmacro defparameter (name initial-value
&optional (documentation nil documentation-p))
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“(progn (declaim (special ,name))
(setf (symbol-value ’,name) ,initial-value)
, (when documentation-p
‘(setf (documentation ’,name ’variable) ’,documentation))
’ ‘name))
(defmacro defvar (name &optional
(initial-value nil initial-value-p)
(documentation nil documentation-p))
‘(progn (declaim (special ,name))
, (when initial-value-p
‘(unless (boundp ’,name)
(setf (symbol-value ’,name) ,initial-value)))
, (when documentation-p
‘(setf (documentation ’,name ’variable) ’,documentation))
> name))

5.3.17 destructuring-bind [Macro]

destructuring-bind lambda-list expression {declaration}* {form}*
= {result}*

Arguments and Values::

lambda-list—a destructuring lambda list.
expression—a, form.
declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description::

destructuring-bind binds the variables specified in lambda-list to the corresponding values
in the tree structure resulting from the evaluation of expression; then destructuring-bind
evaluates forms.

The lambda-list supports destructuring as described in (undefined) [Destructuring
Lambda Lists], page (undefined).
Examples::

(defun iota (n) (loop for i from 1 to n collect i)) ;helper
(destructuring-bind ((a &optional (b ’bee)) one two three)
‘((alpha) ,@(iota 3))
(list a b three two one)) = (ALPHA BEE 3 2 1)
Exceptional Situations::

If the result of evaluating the expression does not match the destructuring pattern, an error
of type error should be signaled.

See Also::

macrolet, (undefined) [defmacro], page (undefined),
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5.3.18 let, let* [Special Operator|
let ({var | (var [init-form])}*) {declaration}* {form}* = {result}*
let* ({war | (var [init-form])}*) {declaration}* {form}* = {result}*

Arguments and Values::

var—a symbol.
init-form—a form.
declaration—a declare expression; not evaluated.
form—a form.

results—the values returned by the forms.

Description::

let and let* create new variable bindings and execute a series of forms that use these
bindings. let performs the bindings in parallel and let* does them sequentially.

The form

(let ((varl init-form-1)
(var2 init-form-2)

(varm init-form-m))
declarationl
declaration2

declarationp
forml
form2

formn)
first evaluates the expressions init-form-1, init-form-2, and so on,
in that order, saving the resulting values. Then all of the variables varj are bound to
the corresponding values; each binding is lexical unless there is a special declaration to the

contrary. The expressions formk are then evaluated in order; the values of all but the last
are discarded (that is, the body of a let is an implicit progn).

let* is similar to let, but the bindings of variables are performed sequentially rather than
in parallel. The expression for the init-form of a var can refer to vars previously bound in
the let*.

The form

(let* ((varl init-form-1)
(var2 init-form-2)

(varm init-form-m))
declarationl
declaration2
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declarationp
forml
form2

formn)
first evaluates the expression init-form-1, then binds the variable var! to that value;

then it evaluates init-form-2 and binds

var2, and so on. The expressions formj are then evaluated in order; the values of all but
the last are discarded (that is, the body of let* is an implicit progn).

For both let and let*, if there is not an init-form associated with a var, var is initialized
to nil.

The special form let has the property that the scope of the name binding does not include
any initial value form. For let*, a variable’s scope also includes the remaining initial value
forms for subsequent variable bindings.

Examples::

(setq a ’top) = TOP
(defun dummy-function () a) = DUMMY-FUNCTION
(let ((a ’inside) (b a))
(format nil ""S °S “S" a b (dummy-function))) = "INSIDE TOP TOP"
(let* ((a ’inside) (b a))
(format nil ""S “S “S" a b (dummy-function))) = "INSIDE INSIDE TOP"|j
(let ((a ’inside) (b a))
(declare (special a))
(format nil "“S ~S “S" a b (dummy-function))) = "INSIDE TOP INSIDE"J
The code
(let (x)
(declare (integer x))
(setq x (gcd y 2))
2

is incorrect; although x is indeed set before it is used, and is set to a value of the
declared type integer, nevertheless x initially takes on the value nil in violation of the type
declaration.

See Also::
(undefined) [progv], page (undefined),

5.3.19 progv [Special Operator]

progv symbols values {form}* = {result}*

Arguments and Values::

symbols—a list of symbols; evaluated.
values—a list of objects; evaluated.
forms—an implicit progn.
results—the values returned by the forms.



Chapter 5: Data and Control Flow 235

Description::

progv creates new dynamic variable bindings and executes each form using those bindings.
Each form is evaluated in order.

progv allows binding one or more dynamic variables whose names may be determined
at run time. Each form is evaluated in order with the dynamic variables whose names are
in symbols bound to corresponding values. If too few wvalues are supplied, the remaining
symbols are bound and then made to have no value. If too many wvalues are supplied, the
excess values are ignored. The bindings of the dynamic variables are undone on exit from
progv.
Examples::

(setq *x*x 1) = 1
(progv > (*xx*) ’(2) *xx) = 2
*x* = 1

Assuming *x* is not globally special,

(let ((xx*x 3))
(progv ’ (*xx) ’(4)
(1ist *x* (symbol-value ’*x*)))) = (3 4)
See Also::

(undefined) [let], page (undefined), , (undefined) [Evaluation], page (undefined),

Notes::

Among other things, progv is useful when writing interpreters for languages embedded in
Lisp; it provides a handle on the mechanism for binding dynamic variables.

5.3.20 setq [Special Form]

setq {/pair}* = result

pair ::=var form

Pronunciation::

pronounced ’set ,ky\"u

Arguments and Values::
var—a symbol naming a variable other than a constant variable.
form—a form.

result—the primary value of the last form, or nil if no pairs were supplied.

Description::
Assigns values to variables.

(setq varl forml var2 form2 ...) is the simple variable assignment statement of
Lisp. First form1 is evaluated and the result is stored in the variable vari, then form2 is
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evaluated and the result stored in var2, and so forth. setq may be used for assignment of
both lexical and dynamic variables.

If any var refers to a binding made by symbol-macrolet, then that var is treated as if
setf (not setq) had been used.
Examples::

;; A simple use of SETQ to establish values for variables.
(setqal1b2c3 = 3

a=> 1
b= 2
c = 3

;; Use of SETQ to update values by sequential assignment.
(setg a (1+ b) b (1+ a) ¢ (+ a b)) = 7

a = 3
b= 4
c = 7

;3 This illustrates the use of SETQ on a symbol macro.
(let ((x (list 10 20 30)))
(symbol-macrolet ((y (car x)) (z (cadr x)))
(setq y (1+ z) z (1+ y))
(list x y 2)))
= ((21 22 30) 21 22)
Side Effects::

The primary value of each form is assigned to the corresponding var.

See Also::

(undefined) [psetq], page (undefined), , (undefined) [set], page (undefined), , (undefined)
[setf], page (undefined),

5.3.21 psetq [Macro]
psetq {/pair}* = nil
pagr ::=var form

Pronunciation::

psetq: pronounced pe’set kyi

Arguments and Values::
var—a symbol naming a variable other than a constant variable.

form—a form.

Description::

Assigns values to variables.
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This is just like setq, except that the assignments happen “in parallel.” That is, first all
of the forms are evaluated, and only then are the variables set to the resulting values. In
this way, the assignment to one variable does not affect the value computation of another
in the way that would occur with setq’s sequential assignment.

If any wvar refers to a binding made by symbol-macrolet, then that var is treated as if
psetf (not psetq) had been used.

Examples::

;3 A simple use of PSETQ to establish values for variables.

;3 As a matter of style, many programmers would prefer SETQ

;; 1n a simple situation like this where parallel assignment
;3 1s not needed, but the two have equivalent effect.

(psetq a 1 b 2 ¢ 3) = NIL

a= 1
b= 2
c = 3

;3 Use of PSETQ to update values by parallel assignment.
;3 The effect here is very different than if SETQ had been used.
(psetq a (1+ b) b (1+ a) ¢ (+ a b)) = NIL

a= 3
b= 2
c = 3

;; Use of PSETQ on a symbol macro.
(let ((x (list 10 20 30)))
(symbol-macrolet ((y (car x)) (z (cadr x)))
(psetq y (1+ z) z (1+ y))
(list x y 2)))
= ((21 11 30) 21 11)

;; Use of parallel assignment to swap values of A and B.
(let ((a 1) (b 2))
(psetq a b b a)
(values a b))
= 2,1
Side Effects::

The values of forms are assigned to wvars.

See Also::
psetf, (undefined) [setq], page (undefined),

5.3.22 block [Special Operator]

block name form* = {result}*
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Arguments and Values::
name—a symbol.
form—a form.

results—the values of the forms if a normal return occurs, or else, if an explicit return
occurs, the values that were transferred.

Description::
block establishes a block named name and then evaluates forms as an implicit progn.

The special operators block and return-from work together to provide a structured,
lexical, non-local exit facility. At any point lexically contained within forms, return-from
can be used with the given name to return control and values from the block form, except
when an intervening block with the same name has been established, in which case the outer
block is shadowed by the inner one.

The block named name has lexical scope and dynamic extent.

Once established, a block may only be exited once, whether by normal return or explicit
return.

Examples::

(block empty) = NIL
(block whocares (values 1 2) (values 3 4)) = 3, 4
(let ((x 1))
(block stop (setq x 2) (return-from stop) (setq x 3))
x) = 2
(block early (return-from early (values 1 2)) (values 3 4)) = 1, 2
(block outer (block inner (return-from outer 1)) 2) = 1
(block twin (block twin (return-from twin 1)) 2) = 2
;; Contrast behavior of this example with corresponding example of CATCH.|J}
(block b
(flet ((b1 () (return-from b 1)))
(block b (b1l) (print ’unreachable))
2)) = 1

See Also::

(undefined) [return|, page (undefined), , (undefined) [return-from], page (undefined), , (un-
defined) [Evaluation], page (undefined),

Notes::

5.3.23 catch [Special Operator]|
catch tag {form}* = {result}*

Arguments and Values::
tag—a catch tag; evaluated.

forms—an implicit progn.
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results—if the forms exit normally, the values returned by the forms; if a throw occurs
to the tag, the values that are thrown.

Description::

catch is used as the destination of a non-local control transfer by throw. Tags are used
to find the catch to which a throw is transferring control. (catch ’foo form) catches a
(throw ’foo form) but not a (throw ’bar form).

The order of execution of catch follows:
1. Tag is evaluated. It serves as the name of the catch.

2. Forms are then evaluated as an implicit progn, and the results of the last form
are returned unless a throw occurs.

3. If a throw occurs during the execution of one of the forms, control is transferred
to the catch form whose tag is eq to the tag argument of the throw and which
is the most recently established catch with that tag. No further evaluation of
forms occurs.

4. The tag established by catch is disestablished just before the results are returned.

If during the execution of one of the forms, a throw is executed whose tag is eq to
the catch tag, then the values specified by the throw are returned as the result of the
dynamically most recently established catch form with that tag.

The mechanism for catch and throw works even if throw is not within the lexical scope
of catch. throw must occur within the dynamic extent of the evaluation of the body of a
catch with a corresponding tag.

Examples::

(catch ’dummy-tag 1 2 (throw ’dummy-tag 3) 4) = 3
(catch ’dummy-tag 1 2 3 4) = 4

(defun throw-back (tag) (throw tag t)) = THROW-BACK
(catch ’dummy-tag (throw-back ’dummy-tag) 2) = T

;; Contrast behavior of this example with corresponding example of BLOCK.|J}
(catch ’c
(flet ((c1 (O (throw ’c 1)))
(catch ’c (c1) (print ’unreachable))
2)) = 2

Exceptional Situations::

An error of type control-error is signaled if throw is done when there is no suitable catch
tag.

See Also::
(undefined) [throw], page (undefined), , (undefined) [Evaluation|, page (undefined),



240 ANSI and GNU Common Lisp Document

Notes::
It is customary for symbols to be used as tags, but any object is permitted. However,
numbers should not be used because the comparison is done using eq.

catch differs from block in that catch tags have dynamic scope while block names have
lexical scope.

5.3.24 go [Special Operator]
go tag = #<NoValue>

Arguments and Values::

tag—a go tag.

Description::

go transfers control to the point in the body of an enclosing tagbody form labeled by a tag
eql to tag. If there is no such tag in the body, the bodies of lexically containing tagbody
forms (if any) are examined as well. If several tags are eql to tag, control is transferred to
whichever matching tag is contained in the innermost tagbody form that contains the go.
The consequences are undefined if there is no matching tag lexically visible to the point of
the go.

The transfer of control initiated by go is performed as described in (undefined) [Transfer
of Control to an Exit Point], page (undefined).

Examples::

(tagbody
(setq val 2)
(go 1p)
(incf val 3)
1lp (incf val 4)) = NIL
val = 6
The following is in error because there is a normal exit of the tagbody before the go is
executed.
(let ((a nil))
(tagbody t (setq a #’(lambda () (go t))))
(funcall a))
The following is in error because the tagbody is passed over before the go form is
executed.
(funcall (block nil
(tagbody a (return #’(lambda () (go a))))))

See Also::
(undefined) [tagbody], page (undefined),

5.3.25 return-from [Special Operator]

return-from name [result] = #<NoValue>
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Arguments and Values::

name—a block tag; not evaluated.

result—a form; evaluated. The default is nil.

Description::
Returns control and multiple values_2 from a lexically enclosing block.

A block form named name must lexically enclose the occurrence of return-from; any
values yielded by the evaluation of result are immediately returned from the innermost
such lexically enclosing block.

The transfer of control initiated by return-from is performed as described in (undefined)
[Transfer of Control to an Exit Point], page (undefined).

Examples::

(block alpha (return-from alpha) 1) = NIL
(block alpha (return-from alpha 1) 2) = 1
(block alpha (return-from alpha (values 1 2)) 3) = 1, 2
(let ((a 0))
(dotimes (i 10) (incf a) (when (oddp i) (return)))
a) = 2
(defun temp (x)
(if x (return-from temp ’dummy))
44) = TEMP
(temp nil) = 44
(temp t) = DUMMY
(block out
(flet ((exit (n) (return-from out n)))
(block out (exit 1)))
2) = 1
(block nil
(unwind-protect (return-from nil 1)
(return-from nil 2)))

= 2
(dolist (flag ’(nil t))
(block nil

(let ((x 5))
(declare (special x))
(unwind-protect (return-from nil)
(print x))))
(print ’here))

|> 5
|> HERE
|> 5
|> HERE
= NIL

(dolist (flag ’(nil t))
(block nil
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(let ((x 5))
(declare (special x))
(unwind-protect
(if flag (return-from nil))
(print x))))
(print ’here))

|> 5
|> HERE
|> 5
|> HERE
= NIL

The following has undefined consequences because the block form exits normally before
the return-from form is attempted.

(funcall (block nil #’(lambda () (return-from nil)))) is an error.

See Also::

(undefined) [block], page (undefined), , (undefined) [return], page (undefined), , (undefined)
[Evaluation], page (undefined),

5.3.26 return [Macro]

return [result] = #<NoValue>

Arguments and Values::

result—a form; evaluated. The default is nil.

Description::

Returns, as if by return-from, from the block named nil.

Examples::

(block nil (return) 1) = NIL
(block nil (return 1) 2) = 1
(block nil (return (values 1 2)) 3) = 1
(block nil (block alpha (return 1) 2)) =
(block alpha (block nil (return 1)) 2) =
(block nil (block nil (return 1) 2)) = 1

See Also::

(undefined) [block], page (undefined), , (undefined) [return-from], page (undefined), , (un-
defined) [Evaluation], page (undefined),

b

2
1
2

Notes::
(return) = (return-from nil)
(return form) = (return-from nil form)

The implicit blocks established by macros such as do are often named nil, so that return
can be used to exit from such forms.
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5.3.27 tagbody [Special Operator]
tagbody {tag | statement}* = nil

Arguments and Values::
tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

Description::

Executes zero or more statements in a lexical environment that provides for control transfers
to labels indicated by the tags.

The statements in a tagbody are evaluated in order from left to right, and their values are
discarded. If at any time there are no remaining statements, taghbody returns nil. However,
if (go tag) is ewvaluated, control jumps to the part of the body labeled with the tag. (Tags
are compared with eql.)

A tag established by tagbody has lexical scope and has dynamic extent. Once tagbody
has been exited, it is no longer valid to go to a tag in its body. It is permissible for go to jump
to a tagbody that is not the innermost tagbody containing that go; the tags established by
a tagbody only shadow other tags of like name.

The determination of which elements of the body are tags and which are statements is
made prior to any macro expansion of that element. If a statement is a macro form and its
macro expansion is an atom, that atom is treated as a statement, not a tag.

Examples::

(let (val)
(tagbody
(setq val 1)
(go point-a)
(incf val 16)
point-c
(incf val 04)
(go point-b)
(incf val 32)
point-a
(incf val 02)
(go point-c)
(incf val 64)
point-b
(incf val 08))
val)
= 15
(defun f1 (flag)
(let ((n 1))
(tagbody
(setq n (£2 flag #’(lambda () (go out))))
out
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(prinl n))))
= F1
(defun f2 (flag escape)
(if flag (funcall escape) 2))

= F2
(f1 nil)
> 2

= NIL
(f1 t)
[> 1

= NIL

See Also::
(undefined) [go], page (undefined),

Notes::

The macros in Figure 5-10 have implicit tagbodies.

do do-external-symbols dotimes
do* do-symbols prog
do-all-symbols dolist prog*

Figure 5-10: Macros that have implicit tagbodies.

5.3.28 throw [Special Operator]|

throw tag result-form = #<NoValue>

Arguments and Values::

tag—a catch tag; evaluated.

result-form—a form; evaluated as described below.

Description::
throw causes a non-local control transfer to a catch whose tag is eq to tag.

Tag is evaluated first to produce an object called the throw tag; then result-form is
evaluated, and its results are saved. If the result-form produces multiple values, then all
the values are saved. The most recent outstanding catch whose tag is eq to the throw tag
is exited; the saved results are returned as the value or values of catch.

The transfer of control initiated by throw is performed as described in (undefined) [Trans-
fer of Control to an Exit Point], page (undefined).
Examples::

(catch ’result
(setqg i 0 j 0)
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(loop (incf j 3) (incf i)
(if (= i 3) (throw ’result (values i j))))) = 3, 9

(catch nil
(unwind-protect (throw nil 1)
(throw nil 2))) = 2

The consequences of the following are undefined because the catch of b is passed over by
the first throw, hence portable programs must assume that its dynamic extent is terminated.
The binding of the catch tag is not yet disestablished and therefore it is the target of the
second throw.

(catch ’a
(catch ’b
(unwind-protect (throw ’a 1)
(throw ’b 2))))

The following prints “The inner catch returns :SECOND-THROW” and then returns
:outer-catch.

(catch ’foo

(format t "The inner catch returns “s.~

(catch ’foo
(unwind-protect (throw ’foo :first-throw)
(throw ’foo :second-throw))))

:outer-catch)

|> The inner catch returns :SECOND-THROW
= :0UTER-CATCH

Exceptional Situations::

If there is no outstanding catch tag that matches the throw tag, no unwinding of the stack
is performed, and an error of type control-error is signaled. When the error is signaled, the
dynamic environment is that which was in force at the point of the throw.

See Also::

(undefined) [block], page (undefined), , (undefined) [catch], page (undefined), , (undefined)
[return-from|, page (undefined), , (undefined) [unwind-protect], page (undefined), , (unde-
fined) [Evaluation|, page (undefined),

Notes::

catch and throw are normally used when the exit point must have dynamic scope (e.g., the
throw is not lexically enclosed by the catch), while block and return are used when lezical
scope is sufficient.

5.3.29 unwind-protect [Special Operator]

unwind-protect protected-form {cleanup-form}* = {result}*

Arguments and Values::

protected-form—a form.
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cleanup-form—a form.

results—the values of the protected-form.

Description::

unwind-protect evaluates protected-form and guarantees that cleanup-forms are executed
before unwind-protect exits, whether it terminates normally or is aborted by a control
transfer of some kind. unwind-protect is intended to be used to make sure that certain side
effects take place after the evaluation of protected-form.

If a non-local exit occurs during execution of cleanup-forms, no special action is taken.
The cleanup-forms of unwind-protect are not protected by that unwind-protect.

unwind-protect protects against all attempts to exit from protected-form, including go,
handler-case, ignore-errors, restart-case, return-from, throw, and with-simple-restart.

Undoing of handler and restart bindings during an exit happens in parallel with the
undoing of the bindings of dynamic variables and catch tags, in the reverse order in which
they were established. The effect of this is that cleanup-form sees the same handler and
restart bindings, as well as dynamic variable bindings and catch tags, as were visible when
the unwind-protect was entered.

Examples::

(tagbody
(et ((x 3))

(unwind-protect
(if (numberp x) (go out))
(print x)))

out
)
When go is executed, the call to print is executed first, and then the transfer of control
to the tag out is completed.

(defun dummy-function (x)
(setq state ’running)
(unless (numberp x) (throw ’abort ’not-a-number))
(setq state (1+ x))) = DUMMY-FUNCTION
(catch ’abort (dummy-function 1)) = 2
state = 2
(catch ’abort (dummy-function ’trash)) = NOT-A-NUMBER
state = RUNNING
(catch ’abort (unwind-protect (dummy-function ’trash)
(setq state ’aborted))) = NOT-A-NUMBER
state = ABORTED

The following code is not correct:

(unwind-protect
(progn (incf *access-countx)
(perform-access))
(decf *access-countx*))
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If an exit occurs before completion of incf, the decf form is executed anyway, resulting
in an incorrect value for *access-count*. The correct way to code this is as follows:

(let ((old-count *access-count*))
(unwind-protect
(progn (incf *access-countx)
(perform-access))
(setq *access-count* old-count)))

;33 The following returns 2.
(block nil
(unwind-protect (return 1)
(return 2)))

;35 The following has undefined consequences.
(block a
(block b
(unwind-protect (return-from a 1)
(return-from b 2))))

;33 The following returns 2.
(catch nil
(unwind-protect (throw nil 1)
(throw nil 2)))

;33 The following has undefined consequences because the catch of B is
;35 passed over by the first THROW, hence portable programs must assume
;35 1ts dynamic extent is terminated. The binding of the catch tag is not]}
;55 yet disestablished and therefore it is the target of the second throw.[j}
(catch ’a
(catch Db
(unwind-protect (throw ’a 1)
(throw ’b 2))))

;33 The following prints "The inner catch returns :SECOND-THROW"
;33 and then returns :0UTER-CATCH.
(catch ’foo

(format t "The inner catch returns “s.~

(catch ’foo
(unwind-protect (throw ’foo :first-throw)
(throw ’foo :second-throw))))
:outer-catch)

;33 The following returns 10. The inner CATCH of A is passed over, but
;;; because that CATCH is disestablished before the THROW to A is executed,li
;53 it isn’t seen.
(catch ’a
(catch ’b
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(unwind-protect (1+ (catch ’a (throw ’b 1)))
(throw ’a 10))))

;55 The following has undefined consequences because the extent of
;;; the (CATCH ’BAR ...) exit ends when the (THROW ’F00 ...)
;33 commences.
(catch ’foo
(catch ’bar
(unwind-protect (throw ’foo 3)
(throw ’bar 4)
(print ’xxx))))

;55 The following returns 4; XXX is not printed.
;3; The (THROW °FOQ ...) has no effect on the scope of the BAR
;;; catch tag or the extent of the (CATCH ’BAR ...) exit.
(catch ’bar
(catch ’foo
(unwind-protect (throw ’foo 3)
(throw ’bar 4)
(print ’xxx))))

;55 The following prints 5.
(block nil
(let ((x 5))
(declare (special x))
(unwind-protect (return)
(print x))))

See Also::

(undefined) [catch], page (undefined), , (undefined) [go], page (undefined), , (undefined)
[handler-case], page (undefined), , (undefined) [restart-case|, page (undefined), , (unde-
fined) [return], page (undefined), , (undefined) [return-from]|, page (undefined), , (undefined)
[throw], page (undefined), , (undefined) [Evaluation|, page (undefined),

5.3.30 nil [Constant Variable]

Constant Value::

nil.

Description::

nil represents both boolean (and generalized boolean) false and the empty list.

Examples::
nil = NIL

See Also::
(undefined) [t], page (undefined),
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5.3.31 not [Function]

not = boolean

Arguments and Values::

x—a generalized boolean (i.e., any object).

boolean—a, boolean.

Description::

Returns t if z is false; otherwise, returns nil.

Examples::

(not nil) = T

(mot >0) = T

(not (integerp ’sss)) = T
(not (integerp 1)) = NIL
(not 3.7) = NIL

(not ’apple) = NIL

See Also::
(undefined) [null], page (undefined),

Notes::

not is intended to be used to invert the ‘truth value’ of a boolean (or generalized boolean)
whereas null is intended to be used to test for the empty list. Operationally, not and null
compute the same result; which to use is a matter of style.

5.3.32 t [Constant Variable]

Constant Value::
t.

Description::

The boolean representing true, and the canonical generalized boolean representing true.
Although any object other than nil is considered true, t is generally used when there is no
special reason to prefer one such object over another.

The symbol t is also sometimes used for other purposes as well. For example, as the
name of a class, as a designator (e.g., a stream designator) or as a special symbol for some
syntactic reason (e.g., in case and typecase to label the otherwise-clause).

Examples::

t = T

(eq t ’t) = true

(find-class ’t) = #<CLASS T 610703333>
(case ’a (a 1) (t 2)) = 1

(case b (a 1) (t 2)) = 2
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(prinl ’hello t)
[> HELLO
= HELLO

See Also::
(undefined) [NIL], page (undefined),

5.3.33 eq [Function)]

eq z y = generalized-boolean

Arguments and Values::
r—an object.
y—an object.

generalized-boolean—a generalized boolean.

Description::

Returns true if its arguments are the same, identical object; otherwise, returns false.

Examples::

(eq ’a ’b) = false

(eq ’a ’a) = true

(eq 3 3)

= true

OR= false

(eq 3 3.0) = false

(eq 3.0 3.0)

= true

OR= false

(eq #c(3 -4) #c(3 -4))

= true

OR= false

(eq #c(3 -4.0) #c(3 -4)) = false

(eq (cons ’a ’b) (cons ’a ’c)) = false
(eq (cons ’a ’b) (cons ’a ’b)) = false
(eq ’(a . ) ’(a . b))

= true

OR= false

(progn (setq x (cons ’a ’b)) (eq x x)) = true
(progn (setq x ’(a . b)) (eq x x)) = true
(eq #\A #\A)

= true

OR= false

(let ((x "Foo")) (eq x x)) = true

(eq "Foo" "Foo")

= true

OR= false



Chapter 5: Data and Control Flow 251

(eq "Foo" (copy-seq "Foo")) = false

(eq "FOO" "foo") = false

(eq "string-seq" (copy-seq "string-seq")) = false
(let ((x 5)) (eq x x))

= true

OR= false

See Also::

(undefined) [eql], page (undefined), , (undefined) [equal], page (undefined), , (undefined)
[equalp], page (undefined), , (undefined) [=], page (undefined), , (undefined) [Compilation],
page (undefined),

Notes::

Objects that appear the same when printed are not necessarily eq to each other. Symbols
that print the same usually are eq to each other because of the use of the intern function.
However, numbers with the same value need not be eq, and two similar lists are usually not
identical.

An implementation is permitted to make “copies” of characters and numbers at any
time. The effect is that Common Lisp makes no guarantee that eq is true even when both
its arguments are “the same thing” if that thing is a character or number.

Most Common Lisp operators use eql rather than eq to compare objects, or else they
default to eql and only use eq if specifically requested to do so. However, the following
operators are defined to use eq rather than eql in a way that cannot be overridden by the
code which employs them:

catch getf  throw
get remf
get-properties remprop

Figure 5-11: Operators that always prefer EQ over EQL

5.3.34 eql [Function]

eql x y = generalized-boolean

Arguments and Values::
r—an object.
y—an object.

generalized-boolean—a generalized boolean.

Description::

The value of eql is true of two objects, z and ¥, in the folowing cases:

1. If £ and y are eq.
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2. If £ and y are both numbers of the same type and the same value.
3. If they are both characters that represent the same character.

Otherwise the value of eql is false.

If an implementation supports positive and negative zeros as distinct values, then (eql
0.0 -0.0) returns false. Otherwise, when the syntax -0.0 is read it is interpreted as the
value 0.0, and so (eql 0.0 -0.0) returns true.

Examples::

(eql ’a ’b) = false

(eql ’a ’a) = true

(eql 3 3) = true

(eql 3 3.0) = false

(eql 3.0 3.0) = true

(eql #c(3 -4) #c(3 -4)) = true

(eql #c(3 -4.0) #c(3 -4)) = false

(eql (cons ’a ’b) (cons ’a ’c)) = false
(eql (cons ’a ’b) (cons ’a ’b)) = false
(eql ’(a . b) ’(a . b))

= true

OR= false

(progn (setq x (cons ’a ’b)) (eql x x)) = true
(progn (setq x ’(a . b)) (eql x x)) = true
(eql #\A #\A) = true

(eql "Foo" "Foo")

= true

OR= false

(eql "Foo" (copy-seq "Foo")) = false

(eql "FOO" "foo") = false

Normally (eql 1.0s0 1.0d0) is false, under the assumption that 1.0s0 and 1.0d0 are
of distinct data types. However, implementations that do not provide four distinct floating-
point formats are permitted to “collapse” the four formats into some smaller number of
them; in such an implementation (eql 1.0s0 1.0d0) might be true.

See Also::

(undefined) [eq], page (undefined), , (undefined) [equal], page (undefined), , (undefined)
[equalp], page (undefined), , (undefined) [=], page (undefined), , (undefined) [char=],
page (undefined),

Notes::

eql is the same as eq, except that if the arguments are characters or numbers of the same
type then their values are compared. Thus eql tells whether two objects are conceptually
the same, whereas eq tells whether two objects are implementationally identical. It is for
this reason that eql, not eq, is the default comparison predicate for operators that take
sequences as arguments.



Chapter 5: Data and Control Flow 253

eql may not be true of two floats even when they represent the same value. = is used
to compare mathematical values.

Two complexr numbers are considered to be eql if their real parts are eql and their
imaginary parts are eql. For example, (eql #C(4 5) #C(4 5)) is true and (eql #C(4
5) #C(4.0 5.0)) is false. Note that while (eql #C(5.0 0.0) 5.0) is false, (eql #C(5
0) 5) is true. In the case of (eql #C(5.0 0.0) 5.0) the two arguments are of different
types, and so cannot satisfy eql. In the case of (eql #C(5 0) 5), #C(5 0) is not a complex
number, but is automatically reduced to the integer 5.

5.3.35 equal [Function]

equal z y = generalized-boolean

Arguments and Values::

z—an object.
y—an object.

generalized-boolean—a generalized boolean.

Description::

Returns true if z and y are structurally similar (isomorphic) objects. Objects are treated as
follows by equal.

Symbols, Numbers, and Characters
equal is true of two objects if they are symbols that are eq, if they are numbers
that are eql, or if they are characters that are eql.

Conses For conses, equal is defined recursively as the two cars being equal and the two
cdrs being equal.

Arrays Two arrays are equal only if they are eq, with one exception: strings and bit
vectors are compared element-by-element (using eql). If either z or y has a fill
pointer, the fill pointer limits the number of elements examined by equal. Up-
percase and lowercase letters in strings are considered by equal to be different.

Pathnames
Two pathnames are equal if and only if all the corresponding components
(host, device, and so on) are equivalent. Whether or not uppercase and low-
ercase letters are considered equivalent in strings appearing in components is
implementation-dependent. pathnames that are equal should be functionally
equivalent.

Other (Structures, hash-tables, instances, ...)
Two other objects are equal only if they are eq.

equal does not descend any objects other than the ones explicitly specified above. Figure
5-12 summarizes the information given in the previous list. In addition, the figure specifies
the priority of the behavior of equal, with upper entries taking priority over lower ones.
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Type Behavior
number uses eql
character  uses eql
cons descends
bit vector  descends
string descends
pathname “functionally equivalent”

structure uses eq

Other array
hash table
Other object

Figure 5-12:

uses eq

uses eq

uses eq

Summary and priorities of behavior of equal

Any two objects that are eql are also equal.

equal may fail to terminate if z or y is circular.

Examples::

(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal
(equal

See Also::

’a ’b) = false

’a ’a) = true

3 3) = true

3 3.0) = false

3.0 3.0) = true

#c(3 -4) #c(3 -4)) = true

#c(3 -4.0) #c(3 -4)) = false

(cons ’a ’b) (coms ’a ’c)) = false
(cons ’a ’b) (coms ’a ’b)) = true
#\A #\A) = true

#\A #\a) = false

"Foo" "Foo") = true

"Foo" (copy-seq "Foo")) = true
"FOO" "foo") = false

"This-string" "This-string") = true
"This-string" "this-string") = false

(undefined) [eq], page (undefined), , (undefined) [eql], page (undefined), , (undefined)

[equalp], page

(undefined), , (undefined) [=|, page (undefined), , (undefined) [string=],

page (undefined), , string-equal, (undefined) [char=|, page (undefined), , char-equal, (un-
defined) [tree-equal], page (undefined),

Notes::

Object equality is not a concept for which there is a uniquely determined correct algorithm.
The appropriateness of an equality predicate can be judged only in the context of the needs
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of some particular program. Although these functions take any type of argument and their
names sound very generic, equal and equalp are not appropriate for every application.

A rough rule of thumb is that two objects are equal if and only if their printed represen-
tations are the same.

5.3.36 equalp [Function]

equalp z y = generalized-boolean

Arguments and Values::

r—an object.
y—an object.

generalized-boolean—a generalized boolean.

Description::

Returns true if £ and y are equal, or if they have components that are of the same type
as each other and if those components are equalp; specifically, equalp returns true in the
following cases:

Characters
If two characters are char-equal.

Numbers If two numbers are the same under =.

Conses If the two cars in the conses are equalp and the two cdrs in the conses are
equalp.
Arrays If two arrays have the same number of dimensions, the dimensions match, and

the corresponding active elements are equalp. The types for which the arrays
are specialized need not match; for example, a string and a general array that
happens to contain the same characters are equalp. Because equalp performs
element-by-element comparisons of strings and ignores the case of characters,
case distinctions are ignored when equalp compares strings.

Structures If two structures S_1 and S_2 have the same class and the value of each slot in
S_1 is the same under equalp as the value of the corresponding slot in S_2.

Hash Tables
equalp descends hash-tables by first comparing the count of entries and the
:test function; if those are the same, it compares the keys of the tables using
the :test function and then the values of the matching keys using equalp
recursively.

equalp does not descend any objects other than the ones explicitly specified above. Figure
5-13 summarizes the information given in the previous list. In addition, the figure specifies
the priority of the behavior of equalp, with upper entries taking priority over lower ones.
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Type Behavior
number uses =
character  uses char-equal
cons descends

bit vector  descends

string descends
pathname same as equal

structure  descends, as described above
Other array descends

hash table  descends, as described above
Other object uses eq

Figure 5-13: Summary and priorities of behavior of equalp

Examples::

(equalp ’a ’b) = false

(equalp ’a ’a) = true

(equalp 3 3) = true

(equalp 3 3.0) = true

(equalp 3.0 3.0) = true

(equalp #c(3 -4) #c(3 -4)) = true

(equalp #c(3 -4.0) #c(3 -4)) = true
(equalp (cons ’a ’b) (comns ’a ’c)) = false
(equalp (cons ’a ’b) (cons ’a ’b)) = true
(equalp #\A #\A) = true

(equalp #\A #\a) = true

(equalp "Foo" "Foo") = true

(equalp "Foo" (copy-seq "Foo")) = true
(equalp "FOO" "foo") = true

(setq arrayl (make-array 6 :element-type ’integer
:initial-contents (1 1 1 3 5 7)))
= #(1 11357
(setq array2 (make-array 8 :element-type ’integer
:initial-contents (1 1 1 357 2 6)
:fill-pointer 6))
= #(1 11357
(equalp arrayl array2) = true
(setq vectorl (vector 11 1357)) = #(1 11357)
(equalp arrayl vectorl) = true
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See Also::

(undefined) [eq], page (undefined), , (undefined) [eql], page (undefined), , (undefined)
[equal], page (undefined), , (undefined) [=], page (undefined), , (undefined) [string=],
page (undefined), , string-equal, (undefined) [char=], page (undefined), , char-equal
Notes::

Object equality is not a concept for which there is a uniquely determined correct algorithm.
The appropriateness of an equality predicate can be judged only in the context of the needs
of some particular program. Although these functions take any type of argument and their
names sound very generic, equal and equalp are not appropriate for every application.

5.3.37 identity [Function]
identity object = object

Arguments and Values::

object—an object.

Description::

Returns its argument object.

Examples::

(identity 101) = 101
(mapcan #’identity (list (list 1 2 3) ’(456))) = (12345 6)

Notes::

identity is intended for use with functions that require a function as an argument.

(eql x (identity x)) returns true for all possible values of z, but (eq x (identity
x)) might return false when z is a number or character.

identity could be defined by
(defun identity (x) x)

5.3.38 complement [Function]

complement function = complement-function

Arguments and Values::

function—a function.

complement-function—a function.

Description::

Returns a function that takes the same arguments as function, and has the same side-
effect behavior as function, but returns only a single value: a generalized boolean with the
opposite truth value of that which would be returned as the primary value of function.
That is, when the function would have returned true as its primary value the complement-
function returns false, and when the function would have returned false as its primary value
the complement-function returns true.
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Examples::

(funcall (complement #’zerop) 1) = true

(funcall (complement #’characterp) #\A) = false
(funcall (complement #’member) ’a ’(a b c)) = false
(funcall (complement #’member) ’d ’(a b c)) = true

See Also::
(undefined) [not], page (undefined),
Notes::
(complement x) = #’(lambda (&rest arguments) (not (apply x arguments)))fj

In Common Lisp, functions with names like “xxx-if-not” are related to functions with
names like “xxx-if” in that

(xxx-if-not f . arguments) = (xxx-if (complement f) . arguments)
For example,

(find-if-not #’zerop ’(0 0 3)) =
(find-if (complement #’zerop) (0 0 3)) = 3

Note that since the “xxx-if-not” functions and the :test-not arguments have been
deprecated, uses of “xxx-if” functions or :test arguments with complement are preferred.

5.3.39 constantly [Function]

constantly value = function

Arguments and Values::

value—an object.

function—a function.

Description::

constantly returns a function that accepts any number of arguments, that has no side-effects,
and that always returns value.

Examples::

(mapcar (constantly 3) ’(a b cd) = (333 3)
(defmacro with-vars (vars &body forms)
‘((lambda ,vars ,@forms) ,@(mapcar (constantly nil) vars)))
= WITH-VARS
(macroexpand ’(with-vars (a b) (setq a 3 b (x a a)) (list a b)))
= ((LAMBDA (A B) (SETQ A 3 B (* A A)) (LIST A B)) NIL NIL), true

See Also::
(undefined) [not], page (undefined),
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Notes::

constantly could be defined by:

(defun constantly (object)
#’(lambda (&rest arguments) object))

5.3.40 every, some, notevery, notany [Function]

every predicate &rest sequences™+ = generalized-boolean
some predicate &rest sequences™+ = result
notevery predicate &rest sequences™+ = generalized-boolean

notany predicate &rest sequences™+ = generalized-boolean

Arguments and Values::

predicate—a designator for a function of as many arguments as there are sequences.
sequence—a sequence.
result—an object.

generalized-boolean—a generalized boolean.

Description::

every, some, notevery, and notany test elements of sequences for satisfaction of a given
predicate. The first argument to predicate is an element of the first sequence; each succeeding
argument is an element of a succeeding sequence.

Predicate is first applied to the elements with index 0 in each of the sequences, and
possibly then to the elements with index 1, and so on, until a termination criterion is met
or the end of the shortest of the sequences is reached.

every returns false as soon as any invocation of predicate returns false. If the end of
a sequence is reached, every returns true. Thus, every returns true if and only if every
invocation of predicate returns true.

some returns the first non-nil value which is returned by an invocation of predicate. If
the end of a sequence is reached without any invocation of the predicate returning true,
some returns false. Thus, some returns true if and only if some invocation of predicate
returns true.

notany returns false as soon as any invocation of predicate returns true. If the end of a
sequence is reached, notany returns true. Thus, notany returns ¢rue if and only if it is not
the case that any invocation of predicate returns true.

notevery returns true as soon as any invocation of predicate returns false. If the end of
a sequence is reached, notevery returns false. Thus, notevery returns true if and only if it
is not the case that every invocation of predicate returns true.

Examples::

(every #’characterp "abc") = true

(some #’= ’(1 23 45) °(564321)) = true

(notevery #°< (1 23 4) (6 6 7 8) ’(9 10 11 12)) = false
(notany #°> ’(1 2 3 4) (567 8) (9 10 11 12)) = true
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Exceptional Situations::

Should signal type-error if its first argument is neither a symbol nor a function or if any
subsequent argument is not a proper sequence.

Other exceptional situations are possible, depending on the nature of the predicate.

See Also::

(undefined) [and], page (undefined), , (undefined) [or]|, page (undefined), ,
(undefined) [Traversal Rules and Side Effects], page (undefined),

Notes::
(notany predicate {sequence}*) = (not (some predicate {sequence}*))
(notevery predicate {sequence}*) = (not (every predicate {sequence}*))

5.3.41 and [Macro]
and {form}* = {result}*

Arguments and Values::

form—a form.

results—the values resulting from the evaluation of the last form, or the symbols nil or
t.

Description::

The macro and evaluates each form one at a time from left to right. As soon as any form
evaluates to nil, and returns nil without evaluating the remaining forms. If all forms but
the last evaluate to true values, and returns the results produced by evaluating the last
form.

If no forms are supplied, (and) returns t.

and passes back multiple values from the last subform but not from subforms other than
the last.

Examples::

(if (and (>=n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo))
(princ "Foo!"))
The above expression prints Foo! if element n of a-simple-vector is the symbol foo,
provided also that n is indeed a valid index for a-simple-vector. Because and guarantees
left-to-right testing of its parts, elt is not called if n is out of range.

(setq templ 1 temp2 1 temp3 1) = 1

(and (incf templ) (incf temp2) (incf temp3)) = 2

(and (eql 2 templ) (eql 2 temp2) (eql 2 temp3)) = true

(decf temp3) = 1

(and (decf templ) (decf temp2) (eq temp3 ’nil) (decf temp3)) = NIL
(and (eql templ temp2) (eql temp2 temp3)) = true

(and) = T
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See Also::

(undefined) [cond], page (undefined), , (undefined) [every], page (undefined), , (undefined)
[if], page (undefined), , (undefined) [or], page (undefined), , (undefined) [when]|, page (un-
defined),

Notes::

(and form) = (let () form)
(and forml form2 ...) = (when forml (and form2 ...))

5.3.42 cond [Macro]
cond {/clause}* = {result}*

clause ::=(test-form {form}*)

Arguments and Values::

test-form—a form.

forms—an implicit progn.

results—the wvalues of the forms in the first clause whose test-form yields true, or the
primary value of the test-form if there are no forms in that clause, or else nil if no test-form
yields true.

Description::
cond allows the execution of forms to be dependent on test-form.

Test-forms are evaluated one at a time in the order in which they are given in the
argument list until a test-form is found that evaluates to true.

If there are no forms in that clause, the primary value of the test-form is returned by
the cond form. Otherwise, the forms associated with this test-form are evaluated in order,
left to right, as an implicit progn, and the values returned by the last form are returned by
the cond form.

Once one test-form has yielded true, no additional test-forms are evaluated. If no test-
form yields true, nil is returned.

Examples::

(defun select-options ()
(cond ((= a 1) (setq a 2))
((= a 2) (setq a 3))
((and (= a 3) (floor a 2)))
(t (floor a 3)))) = SELECT-0PTIONS
(setqa 1) = 1
(select-options) = 2

a = 2
(select-options) = 3
a= 3

(select-options) = 1
(setq a 5) = 5
(select-options) = 1, 2
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See Also::
(undefined) [if], page (undefined), , (undefined) [case], page (undefined), .

5.3.43 if [Special Operator]

if test-form then-form [else-form] = {result}*

Arguments and Values::
Test-form—a form.

Then-form—a form.

Else-form—a form. The default is nil.

results—if the test-form yielded true, the values returned by the then-form; otherwise,
the values returned by the else-form.

Description::
if allows the execution of a form to be dependent on a single test-form.

First test-form is evaluated. If the result is true, then then-form is selected; otherwise
else-form is selected. Whichever form is selected is then evaluated.

Examples::

Af t 1) = 1
(if nil 1 2) = 2
(defun test ()
(dolist (truth-value ’(t nil 1 (a b c)))
(if truth-value (print ’true) (print ’false))
(prinl truth-value))) = TEST

(test)

|> TRUE T

|> FALSE NIL

|> TRUE 1

|> TRUE (A B C)
= NIL

See Also::
(undefined) [cond], page (undefined), , unless, (undefined) [when], page (undefined),

Notes::

(if test-form then-form else-form)
= (cond (test-form then-form) (t else-form))

5.3.44 or [Macro]
or {form}* = {results}*

Arguments and Values::

form—a form.
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results—the values or primary value (see below) resulting from the evaluation of the last
form executed or nil.

Description::

or evaluates each form, one at a time, from left to right. The evaluation of all forms
terminates when a form evaluates to true (i.e., something other than nil).

If the evaluation of any form other than the last returns a primary value that is true, or
immediately returns that value (but no additional values) without evaluating the remaining
forms. 1If every form but the last returns false as its primary value, or returns all values
returned by the last form. If no forms are supplied, or returns nil.

Examples::

(or) = NIL

(setq tempO nil templ 10 temp2 20 temp3 30) = 30
(or tempO templ (setq temp2 37)) = 10

temp2 = 20

(or (incf templ) (incf temp2) (incf temp3)) = 11
templ = 11

temp2 = 20

temp3 = 30

(or (values) templ) = 11

(or (values templ temp2) temp3) = 11

(or tempO (values templ temp2)) = 11, 20

(or (values tempO templ) (values temp2 temp3)) = 20, 30

See Also::

(undefined) [and], page (undefined), , some, unless

5.3.45 when, unless [Macro]
when test-form {form}* = {result}*

unless test-form {form}* = {result}*

Arguments and Values::

test-form—a form.

forms—an implicit progn.

results—the values of the forms in a when form if the test-form yields true or in an
unless form if the test-form yields false; otherwise nil.

Description::

when and unless allow the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated in order from left
to right and the values returned by the forms are returned from the when form. Otherwise,
if the test-form yields false, the forms are not evaluated, and the when form returns nil.

In an unless form, if the test-form yields false, the forms are evaluated in order from left
to right and the values returned by the forms are returned from the unless form. Otherwise,
if the test-form yields false, the forms are not evaluated, and the unless form returns nil.
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Examples::

(when t ’hello) = HELLO
(unless t ’hello) = NIL
(when nil ’hello) = NIL
(unless nil ’hello) = HELLO
(when t) = NIL
(unless nil) = NIL
(when t (prinl 1) (prinl 2) (prinl 3))
> 123
= 3
(unless t (prinl 1) (prinl 2) (prinil 3)) = NIL
(when nil (prinl 1) (prinl 2) (prinl 3)) = NIL
(unless nil (prinil 1) (prinil 2) (prini 3))
> 123
= 3
(et ((x 3))
(1ist (when (oddp x) (incf x) (1list x))
(when (oddp x) (incf x) (list x))
(unless (oddp x) (incf x) (list x))
(unless (oddp x) (incf x) (1list x))
(if (oddp x) (incf x) (list x))
(if (oddp x) (incf x) (list x))
(if (not (oddp x)) (incf x) (list x))
(if (not (oddp x)) (incf x) (list x))))
= ((4) NIL (5) NIL 6 (6) 7 (7))

See Also::

(undefined) [and], page (undefined), , (undefined) [cond], page (undefined), , (undefined)
[if], page (undefined), , (undefined) [or], page (undefined),

Notes::

(when test {form}~+)
(when test {form}"+)
(when test {form}~+)
(when test {form}~+)
(unless test {form}~+)
(unless test {form}~+)
(unless test {form}~+)

(and test (progn {form}~+))
(cond (test {form}~+))

(if test (progn {form}~+) nil)
(unless (not test) {form}"+)
(cond ((not test) {form}~+))
(if test nil (progn {form}~+))
(when (not test) {form}~+)

5.3.46 case, ccase, ecase [Macro]

case keyform {!normal-clause} * [lotherwise-clause] = {result}*
ccase keyplace {/normal-clause}* = {result}*
ecase keyform {/normal-clause}* = {result}*
normal-clause ::=(keys {form}*)

otherwise-clause ::=({otherwise | t} {form}*)
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clause ::=normal-clause | otherwise-clause

Arguments and Values::
keyform—a form; evaluated to produce a test-key.

keyplace—a form; evaluated initially to produce a test-key. Possibly also used later as a
place if no keys match.

test-key—an object produced by evaluating keyform or keyplace.

keys—a designator for a list of objects. In the case of case, the symbols t and otherwise
may not be used as the keys designator. To refer to these symbols by themselves as keys,
the designators (t) and (otherwise), respectively, must be used instead.

forms—an implicit progn.

results—the values returned by the forms in the matching clause.

Description::

These macros allow the conditional execution of a body of forms in a clause that is selected
by matching the test-key on the basis of its identity.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is the same as any
key for that clause, the forms in that clause are evaluated as an implicit progn, and the
values it returns are returned as the value of the case, ccase, or ecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

case If no normal-clause matches, and there is an otherwise-clause, then that
otherwise-clause automatically matches; the forms in that clause are evaluated
as an implicit progn, and the values it returns are returned as the value of the
case.

If there is no otherwise-clause, case returns nil.

ccase If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member keyl key2 ...). The store-value restart can be used to correct the
error.

If the store-value restart is invoked, its argument becomes the new test-key, and
is stored in keyplace as if by (setf keyplace test-key). Then ccase starts
over, considering each clause anew.

[Reviewer Note by Barmar: Will it prompt for multiple values if keyplace is a
VALUES general ref?]

The subforms of keyplace might be evaluated again if none of the cases holds.
ecase If no normal-clause matches, a non-correctable error of type type-error is sig-

naled. The offending datum is the test-key and the expected type is type equiv-
alent to (member keyl key2 ...).

Note that in contrast with ccase, the caller of ecase may rely on the fact that
ecase does not return if a normal-clause does not match.
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Examples::

(dolist (k °(1 2 3 :four #\v () t ’other))
(format t ""S "
(case k ((1 2) ’clausel)

(3 ’clause2)
(nil ’no-keys-so-never-seen)
((nil) ’nilslot)
((:four #\v) ’claused)
((£) ’tslot)
(otherwise ’others))))

|> CLAUSE1 CLAUSE1 CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS

= NIL
(defun add-em (x) (apply #’+ (mapcar #’decode x)))
= ADD-EM
(defun decode (x)
(ccase x
((1i uno) 1)

((ii dos) 2)
((iii tres) 3)
((iv cuatro) 4)))
= DECODE
(add-em ’(uno iii)) = 4
(add-em ’(uno iiii))
|> Error: The value of X, IIII, is not I, UNO, II, DOS, III,
| > TRES, IV, or CUATRO.
[> 1: Supply a value to use instead.
|> 2: Return to Lisp Toplevel.
|> Debug> |>>:CONTINUE 1<<|
> Value to evaluate and use for X: |[>>’IV<K<|
= b

Side Effects::

The debugger might be entered. If the store-value restart is invoked, the value of keyplace
might be changed.

Affected By::

ccase and ecase, since they might signal an error, are potentially affected by existing handlers
and *debug-io*.

Exceptional Situations::

ccase and ecase signal an error of type type-error if no normal-clause matches.

See Also::

(undefined) [cond], page (undefined), , (undefined) [typecase]|, page (undefined), , (unde-
fined) [setf], page (undefined), , (undefined) [Generalized Reference|, page (undefined),
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Notes::

(case test-key
{(({key}*) {form}*)l}x*)

(let ((#1=#:g0001 test-key))
(cond {((member #1# ’({key}*)) {form}*)}*))

The specific error message used by ecase and ccase can vary between implementations. In
situations where control of the specific wording of the error message is important, it is better
to use case with an otherwise-clause that explicitly signals an error with an appropriate
message.

5.3.47 typecase, ctypecase, etypecase [Macro]
typecase keyform {/normal-clause}* [lotherwise-clause] = {result}*
ctypecase keyplace {!normal-clause}* = {result}*
etypecase keyform {/normal-clause}* = {result}*
normal-clause ::=(type {form}*)
otherwise-clause ::=({otherwise | t} {form}*)

clause ::=normal-clause | otherwise-clause

Arguments and Values::
keyform—a form; evaluated to produce a test-key.

keyplace—a form; evaluated initially to produce a test-key. Possibly also used later as a
place if no types match.

test-key—an object produced by evaluating keyform or keyplace.
type—a type specifier.
forms—an implicit progn.

results—the values returned by the forms in the matching clause.

Description::

These macros allow the conditional execution of a body of forms in a clause that is selected
by matching the test-key on the basis of its type.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is of the type given
by the clauses’s type, the forms in that clause are evaluated as an implicit progn, and the
values it returns are returned as the value of the typecase, ctypecase, or etypecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:
typecase If no mormal-clause matches, and there is an otherwise-clause, then that
otherwise-clause automatically matches; the forms in that clause are evaluated

as an implicit progn, and the values it returns are returned as the value of the
typecase.

If there is no otherwise-clause, typecase returns nil.



268

ctypecase

etypecase

ANSI and GNU Common Lisp Document

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent
to (or typel type2 ...). The store-value restart can be used to correct the
error.

If the store-value restart is invoked, its argument becomes the new test-key,
and is stored in keyplace as if by (setf keyplace test-key). Then ctypecase
starts over, considering each clause anew.

If the store-value restart is invoked interactively, the user is prompted for a new
test-key to use.

The subforms of keyplace might be evaluated again if none of the cases holds.
If no normal-clause matches, a non-correctable error of type type-error is sig-

naled. The offending datum is the test-key and the expected type is type equiv-
alent to (or typel type2 ...).

Note that in contrast with ctypecase, the caller of etypecase may rely on the
fact that etypecase does not return if a normal-clause does not match.

In all three cases, is permissible for more than one clause to specify a matching type,
particularly if one is a subtype of another; the earliest applicable clause is chosen.

Examples::

39

39

(Note that the parts of this example which use TYPE-OF
are implementation-dependent.)

(defun what-is-it (%)

(format t "“&~S is ~A.~

x (typecase x
(float "a float")
(null "a symbol, boolean false, or the empty list")
(list "a list")
(t (format nil "a(n) ~“(TA™)" (type-of x))))))

= WHAT-IS-IT
(map ’nil #’what-is-it ’(nil (a b) 7.0 7 box))

[> NIL is a symbol, boolean false, or the empty list.
[> (A B) is a list.
> 7.0 is a float.
> 7 is a(n) integer.
> BOX is a(n) symbol.
= NIL

(setq x 1/3)

=

1/3

(ctypecase x

| >
| >
| >
| >

(integer (* x 4))
(symbol (symbol-value x)))
Error: The value of X, 1/3, is neither an integer nor a symbol.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.
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|> Debug> |>>:CONTINUE 1<<|

> Use value: [>>3.7<<|

|> Error: The value of X, 3.7, is neither an integer nor a symbol.
|> To continue, type :CONTINUE followed by an option number:

[> 1: Specify a value to use instead.

|> 2: Return to Lisp Toplevel.

|> Debug> |>>:CONTINUE 1<<|

|> Use value: |>>12<<|
= 48

x = 12

Affected By::
ctypecase and etypecase, since they might signal an error, are potentially affected by existing
handlers and *debug-io*.

Exceptional Situations::

ctypecase and etypecase signal an error of type type-error if no normal-clause matches.

The compiler may choose to issue a warning of type style-warning if a clause will never
be selected because it is completely shadowed by earlier clauses.

See Also::

(undefined) [case], page (undefined), , (undefined) [cond], page (undefined), , (undefined)
[setf], page (undefined), , (undefined) [Generalized Reference], page (undefined),

Notes::

(typecase test-key
{(type {form}*)}*)

(let ((#1=#:g0001 test-key))
(cond {((typep #1# ’type) {form}x)}*))

The specific error message used by etypecase and ctypecase can vary between implemen-
tations. In situations where control of the specific wording of the error message is important,
it is better to use typecase with an otherwise-clause that explicitly signals an error with an
appropriate message.

5.3.48 multiple-value-bind [Macro]

multiple-value-bind ({wvar}*) values-form {declaration}* {form}*
= {result}*

Arguments and Values::

var—a symbol naming a variable; not evaluated.
values-form—a form; evaluated.
declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.
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Description::

Creates new variable bindings for the vars and executes a series of forms that use these
bindings.

The variable bindings created are lexical unless special declarations are specified.

Values-form is evaluated, and each of the vars is bound to the respective value returned
by that form. If there are more vars than values returned, extra values of nil are given to
the remaining vars. If there are more values than vars, the excess values are discarded. The
vars are bound to the values over the execution of the forms, which make up an implicit
progn. The consequences are unspecified if a type declaration is specified for a var, but the
value to which that var is bound is not consistent with the type declaration.

The scopes of the name binding and declarations do not include the values-form.

Examples::

(multiple-value-bind (f r)
(floor 130 11)
(1ist £ r)) = (11 9)

See Also::
(undefined) [let], page (undefined), , (undefined) [multiple-value-call], page (undefined),

Notes::

(multiple-value-bind ({var}*) values-form {form}*)
= (multiple-value-call #°’(lambda (&optional {var}* &rest #1=#:ignore)
(declare (ignore #1#))
{form}*)
values-form)

5.3.49 multiple-value-call [Special Operator]

multiple-value-call function-form form* = {result}*

Arguments and Values::

unction-form—a form; evaluated to produce function.
p
function—a function designator resulting from the evaluation of function-form.
form—a form.

results—the values returned by the function.

Description::
Applies function to a list of the objects collected from groups of multiple values_2.

multiple-value-call first evaluates the function-form to obtain function, and then evalu-
ates each form. All the values of each form are gathered together (not just one value from
each) and given as arguments to the function.
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Examples::

(multiple-value-call #’list 1 ’/ (values 2 3) ’/ (values) ’/ (floor 2.5))]
= (1/23//20.5)
(+ (floor 5 3) (floor 19 4)) = (+ 1 4)

= b5
(multiple-value-call #’+ (floor 5 3) (floor 19 4)) = (+ 12 4 3)
= 10

See Also::

(undefined) [multiple-value-list], page (undefined), , (undefined) [multiple-value-bind],
page (undefined),

5.3.50 multiple-value-list [Macro]

multiple-value-list form = list

Arguments and Values::

form—a form; evaluated as described below.

list—a list of the values returned by form.

Description::

multiple-value-list evaluates form and creates a list of the multiple values_2 it returns.

Examples::
(multiple-value-list (floor -3 4)) = (-1 1)

See Also::

(undefined) [values-list], page (undefined), , (undefined) [multiple-value-call], page (unde-
fined),

Notes::

multiple-value-list and values-list are inverses of each other.
(multiple-value-list form) = (multiple-value-call #’list form)

5.3.51 multiple-value-progl [Special Operator]

multiple-value-prog I = first-form {form}*
first-form-results

Arguments and Values::

first-form—a form; evaluated as described below.
form—a form; evaluated as described below.

first-form-results—the values resulting from the evaluation of first-form.

Description::

multiple-value-progl evaluates first-form and saves all the values produced by that form.
It then evaluates each form from left to right, discarding their values.
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Examples::

(setq temp (1 2 3)) = (1 2 3)
(multiple-value-progl

(values-list temp)

(setq temp nil)

(values-list temp)) = 1, 2, 3

See Also::
(undefined) [progl], page (undefined),

5.3.52 multiple-value-setq [Macro]

multiple-value-setq vars form = result

Arguments and Values::

vars—a list of symbols that are either variable names or names of symbol macros.
form—a form.
result—The primary value returned by the form.

Description::
multiple-value-setq assigns values to vars.

The form is evaluated, and each var is assigned to the corresponding value returned by
that form. If there are more vars than values returned, nil is assigned to the extra vars. If
there are more values than vars, the extra values are discarded.

If any wvar is the name of a symbol macro, then it is assigned as if by setf. Specifically,
(multiple-value-setq (symbol_1 ... symbol_n) value-producing-form)

is defined to always behave in the same way as
(values (setf (values symbol_1 ... symbol_n) value-producing-form))

in order that the rules for order of evaluation and side-effects be consistent with those
used by setf.

See (undefined) [VALUES Forms as Places|, page (undefined).

Examples::

(multiple-value-setq (quotient remainder) (truncate 3.2 2)) = 1
quotient = 1

remainder = 1.2

(multiple-value-setq (a b c) (values 1 2)) = 1

a = 1

b= 2

c = NIL

(multiple-value-setq (a b) (values 4 5 6)) = 4
a = 4

b= 5

See Also::
(undefined) [setq], page (undefined), , (undefined) [symbol-macrolet], page (undefined),
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5.3.53 values [Accessor]
values &rest object = {object}*

(setf ( values &rest place) new-values)

Arguments and Values::
object—an object.
place—a place.

new-value—an object.

Description::
values returns the objects as multiple values_2.

setf of values is used to store the multiple values_2 new-values into the places. See

(undefined) [VALUES Forms as Places|, page (undefined).

Examples::

(values) = <no values>
(values 1) = 1
(values 1 2) = 1, 2
(values 1 2 3) = 1, 2, 3
(values (values 1 2 3) 45) = 1, 4, 5
(defun polar (x y)
(values (sqrt (+ (*x x x) (x y y))) (atan y x))) = POLAR
(multiple-value-bind (r theta) (polar 3.0 4.0)
(vector r theta))
= #(5.0 0.927295)

Sometimes it is desirable to indicate explicitly that a function returns exactly one value.
For example, the function

(defun foo (x y)
(floor (+ x y) y)) = FOO

returns two values because floor returns two values. It may be that the second value
makes no sense, or that for efficiency reasons it is desired not to compute the second value.
values is the standard idiom for indicating that only one value is to be returned:

(defun foo (x y)
(values (floor (+ x y) y))) = FOO

This works because values returns exactly one value for each of args; as for any function
call, if any of args produces more than one value, all but the first are discarded.

See Also::

(undefined) [values-list], page (undefined), , (undefined) [multiple-value-bind], page (unde-
fined), , (undefined) [multiple-values-limit], page (undefined), , (undefined) [Evaluation],
page (undefined),
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Notes::

Since values is a function, not a macro or special form, it receives as arguments only the
primary values of its argument forms.

5.3.54 values-list [Function]

values-list list = {element}*

Arguments and Values::
list—a list.

elements—the elements of the list.
Description::

Returns the elements of the list as multiple values_2.

Examples::

(values-1list nil) = <no values>
(values-1list (1)) = 1
(values-list (1 2)) = 1, 2
(values-list ’(1 2 3)) = 1, 2, 3
Exceptional Situations::

Should signal type-error if its argument is not a proper list.

See Also::

(undefined) [multiple-value-bind], page (undefined), , (undefined) [multiple-value-list],
page (undefined), , (undefined) |[multiple-values-limit], page (undefined), , (undefined)
[values], page (undefined),

Notes::
(values-list list) = (apply #’values list)

(equal x (multiple-value-list (values-list x))) returns true for all lists x.

5.3.55 multiple-values-limit [Constant Variable]

Constant Value::

An integer not smaller than 20, the exact magnitude of which is implementation-dependent.

Description::
The upper exclusive bound on the number of values that may be returned from a function,

bound or assigned by multiple-value-bind or multiple-value-setq, or passed as a first
argument to nth-value. (If these individual limits might differ, the minimum value is used.)

See Also::

(undefined) [lambda-parameters-limit], page (undefined), , (undefined) [call-arguments-
limit], page (undefined),
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Notes::

Implementors are encouraged to make this limit as large as possible.

5.3.56 nth-value [Macro]

nth-value n form = object

Arguments and Values::
n—a non-negative integer; evaluated.
form—a form; evaluated as described below.

object—an object.

Description::

Evaluates n and then form, returning as its only value the nth value yielded by form, or nil
if n is greater than or equal to the number of values returned by form. (The first returned
value is numbered 0.)

Examples::

(nth-value 0 (values ’a ’b)) = A

(nth-value 1 (values ’a ’b)) = B

(nth-value 2 (values ’a ’b)) = NIL

(let*x ((x 83927472397238947423879243432432432)
(y 32423489732)
(a (nth-value 1 (floor x y)))
(b (mod x y)))

(values a b (= a b)))
= 3332987528, 3332987528, true

See Also::
(undefined) [multiple-value-list], page (undefined), , (undefined) [nth], page (undefined),

Notes::

Operationally, the following relationship is true, although nth-value might be more efficient
in some implementations because, for example, some consing might be avoided.

(nth-value n form) = (nth n (multiple-value-list form))

5.3.57 prog, prog* [Macro]

prog ({war | (var [init-form|)}*) {declaration}* {tag | statement}*
= {result}*

progx ({var | (var [init-form])}*) {declaration}* {tag | statement}*
= {result}*
Arguments and Values::

var—variable name.

init-form—a form.
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declaration—a declare expression; not evaluated.
tag—a go tag; not evaluated.
statement—a compound form; evaluated as described below.

results—mil if a normal return occurs, or else, if an explicit return occurs, the values
that were transferred.

Description::

Three distinct operations are performed by prog and prog*: they bind local variables, they
permit use of the return statement, and they permit use of the go statement. A typical
prog looks like this:

(prog (varl var2 (var3 init-form-3) var4 (var5 init-form-5))
{declaration}*
statementl
tagl
statement?2
statement3
statement4
tag2
statementb

)

For prog, init-forms are evaluated first, in the order in which they are supplied. The
vars are then bound to the corresponding values in parallel. If no init-form is supplied for
a given var, that var is bound to nil.

The body of prog is executed as if it were a tagbody form; the go statement can be used
to transfer control to a tag. Tags label statements.

prog implicitly establishes a block named nil around the entire prog form, so that return
can be used at any time to exit from the prog form.

The difference between prog* and prog is that in prog* the binding and initialization
of the wvars is done sequentially, so that the init-form for each one can use the values of
previous ones.

Examples::

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

(setqal) = 1

(prog ((a 2) (b a)) (return (if (= a b) ’= ’/=))) = /=
(prog*x ((a 2) (b a)) (return (if (= a b) ’= ’/=))) = =
(prog () ’no-return-value) = NIL

(defun king-of-confusion (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(prog (x y 2) ;Initialize x, y, z to NIL
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(setq y (car w) z (cdr w))

loop
(cond ((null y) (return x))

((null z) (go err)))

rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))
(go loop)

err
(cerror "Will self-pair extraneous items"

"Mismatch - gleep! ~S" y)
(setq z y)
(go rejoin))) = KING-OF-CONFUSION
This can be accomplished more perspicuously as follows:

(defun prince-of-clarity (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))
(x () (cons (cons (car y) (car z)) x)))
((null y) x)
(when (null z)
(cerror "Will self-pair extraneous items"
"Mismatch - gleep! ~S" y)
(setq z y)))) = PRINCE-OF-CLARITY

See Also::

(undefined) [block|, page (undefined), , (undefined) [let], page (undefined), , (undefined)
[tagbody], page (undefined), , (undefined) [go|, page (undefined), , (undefined) [return],
page (undefined), , (undefined) [Evaluation], page (undefined),

Notes::

prog can be explained in terms of block, let, and tagbody as follows:

(prog variable-list declaration . body)
= (block nil (let variable-list declaration (tagbody . body)))

5.3.58 progl, prog2 [Macro]
prog 1 = first-form {form}* result-1 prog 2 = first-form second-form {form}* result-2

Arguments and Values::
first-form—a form; evaluated as described below.
second-form—a form; evaluated as described below.
forms—an implicit progn; evaluated as described below.
result-1—the primary value resulting from the evaluation of first-form.

result-2—the primary value resulting from the evaluation of second-form.
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Description::

progl cvaluates first-form and then forms, yielding as its only wvalue the primary value
yielded by first-form.

prog2 evaluates first-form, then second-form, and then forms, yielding as its only value
the primary value yielded by first-form.

Examples::

(setq temp 1) = 1
(progl temp (print temp) (incf temp) (print temp))
[> 1
[> 2
= 1
(progl temp (setq temp nil)) = 2
temp = NIL
(progl (values 1 2 3) 4) = 1
(setq temp (list ’a ’b ’c))
(progl (car temp) (setf (car temp) ’alpha)) = A
temp = (ALPHA B C)
(flet ((swap-symbol-values (x y)
(setf (symbol-value x)
(progl (symbol-value y)
(setf (symbol-value y) (symbol-value x))))))
(let ((xfoo* 1) (xbarx 2))
(declare (special *foo* *barx*))
(swap-symbol-values ’*foo* ’*barx)
(values *foo* *barx)))
= 2,1
(setq temp 1) = 1
(prog2 (incf temp) (incf temp) (incf temp)) = 3
temp = 4
(prog2 1 (values 2 3 4) 5) = 2

See Also::

(undefined) [multiple-value-progl], page (undefined), , (undefined) [progn|, page (unde-
fined),

Notes::

progl and prog2 are typically used to evaluate one or more forms with side effects and
return a value that must be computed before some or all of the side effects happen.

(progl {form}*) = (values (multiple-value-progl {form}*))
(prog2 formi {form}*) = (let () forml (progl {form}x))

5.3.59 progn [Special Operator]
progn {form}* = {result}*
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Arguments and Values::
forms—an implicit progn.

results—the values of the forms.

Description::
progn evaluates forms, in the order in which they are given.
The values of each form but the last are discarded.

If progn appears as a top level form, then all forms within that progn are considered by
the compiler to be top level forms.

Examples::

(progn) = NIL
(progn 1 2 3) = 3
(progn (values 1 2 3)) = 1, 2, 3
(setqal) = 1
(if a

(progn (setq a nil) ’here)

(progn (setq a t) ’there)) = HERE
a = NIL

See Also::
(undefined) [progl], page (undefined), , prog2, (undefined) [Evaluation], page (undefined),

Notes::

Many places in Common Lisp involve syntax that uses implicit progns. That is, part of their
syntax allows many forms to be written that are to be evaluated sequentially, discarding
the results of all forms but the last and returning the results of the last form. Such places
include, but are not limited to, the following: the body of a lambda expression; the bodies
of various control and conditional forms (e.g., case, catch, progn, and when).

5.3.60 define-modify-macro [Macro]

define-modify-macro name lambda-list function [documentation] = name

Arguments and Values::

name—a symbol.
lambda-list—a define-modify-macro lambda list
function—a symbol.

documentation—a string; not evaluated.

Description::
define-modify-macro defines a macro named name to read and write a place.

The arguments to the new macro are a place, followed by the arguments that are supplied
in lambda-list.

Macros defined with define-modify-macro correctly pass the environment parameter to
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get-setf-expansion.

When the macro is invoked, function is applied to the old contents of the place and the
lambda-list arguments to obtain the new value, and the place is updated to contain the
result.

Except for the issue of avoiding multiple evaluation (see below), the expansion of a
define-modify-macro is equivalent to the following:

(defmacro name (reference . lambda-list)

documentation
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))
where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate provision

is made for a rest parameter.

The subforms of the macro calls defined by define-modify-macro are evaluated as speci-
fied in (undefined) [Evaluation of Subforms to Places], page (undefined).

Documentation is attached as a documentation string to name (as kind function) and
to the macro function.

If a define-modify-macro form appears as a top level form, the compiler must store the
macro definition at compile time, so that occurrences of the macro later on in the file can
be expanded correctly.

Examples::

(define-modify-macro appendf (&rest args)
append "Append onto list") = APPENDF
(setqx ’(abc) yx) = (ABOC
(appendf x ’(d e f) (1 23)) = (ABCDEF123)
x= (ABCDEF123)
y = (ABOC
(define-modify-macro new-incf (&optional (delta 1)) +)
(define-modify-macro unionf (other-set &rest keywords) union)

Side Effects::

A macro definition is assigned to name.

See Also::
(undefined) [defsetf], page (undefined), ,
(undefined) [define-setf-expander|, page (undefined), ,

(undefined) [documentation]|, page (undefined), , (undefined) [Syntactic Interaction of
Documentation Strings and Declarations], page (undefined),

5.3.61 defsetf [Macro]

The “short form”:

defsetf access-fn update-fn [documentation)
= access-fn

The “long form”:
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defsetf access-fn lambda-list ({store-variable}*) [[{declaration}* | documentation])

{form}*

= access-fn

Arguments and Values::

access-fn—a symbol which names a function or a macro.
update-fn—a symbol naming a function or macro.
lambda-list—a defsetf lambda list.
store-variable—a symbol (a variable name).
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description::

defsetf defines how to setf a place of the form (access-fn ...) for relatively simple cases.
(See define-setf-expander for more general access to this facility.)

It must be the case that the function or macro named by access-fn evaluates all of its
arguments.

defsetf may take one of two forms, called the “short form” and the “long form,” which
are distinguished by the type of the second argument.

When the short form is used, update-fn must name a function (or macro) that takes one
more argument than access-fn takes. When setf is given a place that is a call on access-fn,
it expands into a call on update-fn that is given all the arguments to access-fn and also, as
its last argument, the new value (which must be returned by update-fn as its value).

The long form defsetf resembles defmacro. The lambda-list describes the arguments of
access-fn. The store-variables describe the value

or values

to be stored into the place. The body must compute the expansion of a setf of a call on
access-fn.

The expansion function is defined in the same lexical environment in which the defsetf
form appears.

During the evaluation of the forms, the variables in the lambda-list and the store-variables
are bound to names of temporary variables, generated as if by gensym or gentemp, that will
be bound by the expansion of setf to the values of those subforms. This binding permits the
forms to be written without regard for order-of-evaluation issues. defsetf arranges for the
temporary variables to be optimized out of the final result in cases where that is possible.

The body code in defsetf is implicitly enclosed in a block whose name is access-fn

defsetf ensures that subforms of the place are evaluated exactly once.

Documentation is attached to access-fn as a documentation string of kind setf.

If a defsetf form appears as a top level form, the compiler must make the setf expander
available so that it may be used to expand calls to setf later on in the file. Users must

ensure that the forms, if any, can be evaluated at compile time if the access-fn is used in
a place later in the same file. The compiler must make these setf expanders available to



282 ANSI and GNU Common Lisp Document

compile-time calls to get-setf-expansion when its environment argument is a value received
as the environment parameter of a macro.

Examples::
The effect of
(defsetf symbol-value set)

is built into the Common Lisp system. This causes the form (setf (symbol-value
foo) fu) to expand into (set foo fu).

Note that
(defsetf car rplaca)
would be incorrect because rplaca does not return its last argument.

(defun middleguy (x) (nth (truncate (1- (list-length x)) 2) x)) = MIDDLEGUYJ
(defun set-middleguy (x v)
(unless (null x)
(rplaca (nthcdr (truncate (1- (list-length x)) 2) x) v))
v) = SET-MIDDLEGUY
(defsetf middleguy set-middleguy) => MIDDLEGUY
(setq a (list ’a ’b ’c ’d)
b (list ’x)
c (1ist 1 2 3 (1ist 4 56) 78 9)) = (123 (456)7389)
(setf (middleguy a) 3) = 3
(setf (middleguy b) 7) = 7
(setf (middleguy (middleguy c)) ’middleguy-symbol) = MIDDLEGUY-SYMBOL
a= (A3cCD
b = (7)
¢ == (1 2 3 (4 MIDDLEGUY-SYMBOL 6) 7 8 9)
An example of the use of the long form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)
,new-sequence)) = SUBSEQ
(defvar *xy* (make-array ’(10 10)))
(defun xy (&key ((x x) 0) ((y y) 0)) (aref *xy* x y)) = XY
(defun set-xy (new-value &key ((x x) 0) ((y y) 0))
(setf (aref *xy* x y) new-value)) = SET-XY
(defsetf xy (&key ((x x) 0) ((y y) 0)) (store)
‘(set-xy ,store ’x ,x ’y ,y)) = XY
(get-setf-expansion ’(xy a b))
=  (#:t0 #:t1),
(a b),
(#:store),
((lambda (&key ((x #:x)) ((y #:y)))
(set-xy #:store ’x #:x ’y #:y))
#:t0 #:t1),
(xy #:t0 #:t1)
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(xy ’x 1) = NIL
(setf (xy ’x 1) 1) = 1
(xy ’x 1) = 1
(let ((a ’x) (b ’y))
(setf (xy a1 b 2) 3)
(setf (xy b 5 a 9) 14))
= 14
(xy ’y 0 ’x 1) = 1
(xy ’x 1’y 2) = 3
See Also::
(undefined) [documentation], page (undefined), , (undefined) [setf], page (undefined), ,

(undefined) [define-setf-expander], page (undefined), , (undefined) [get-setf-expansion],
page (undefined), ,

(undefined) [Generalized Reference], page (undefined), (undefined) [Syntactic Interaction

of Documentation Strings and Declarations], page (undefined),

Notes::
forms must include provision for returning the correct value (the value
or values

of store-variable). This is handled by forms rather than by defsetf because in many
cases this value can be returned at no extra cost, by calling a function that simultaneously
stores into the place and returns the correct value.

A setf of a call on access-fn also evaluates all of access-fn’s arguments; it cannot treat
any of them specially. This means that defsetf cannot be used to describe how to store into
a generalized reference to a byte, such as (1db field reference).

define-setf-expander
is used to handle situations that do not fit the restrictions imposed by defsetf and gives

the user additional control.

5.3.62 define-setf-expander [Macro]

define-setf-expander access-fn lambda-list [[{declaration}* | documentation]] {form}*
= access-fn

Arguments and Values::

access-fn—a symbol that names a function or macro.
lambda-list — macro lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

forms—an implicit progn.
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Description::

define-setf-expander specifies the means by which setf updates a place that is referenced by
access-fn.

When setf is given a place that is specified in terms of access-fn and a new value for the
place, it is expanded into a form that performs the appropriate update.

The lambda-list supports destructuring. See (undefined) [Macro Lambda Lists],
page (undefined).

Documentation is attached to access-fn as a documentation string of kind setf.
Forms constitute the body of the
setf expander

definition and must compute the setf expansion for a call on setf that references the
place by means of the given access-fn.

The setf expander function is defined in the same lexical environment in which the
define-setf-expander form appears.

While forms are being executed, the variables in lambda-list are bound to parts of the
place form.

The body forms (but not the lambda-list)
in a define-setf-expander form are implicitly enclosed in a block whose name is access-fn.

The evaluation of forms must result in the five values described in (undefined) [Setf
Expansions], page (undefined).

If a define-setf-expander form appears as a top level form, the compiler must make the
setf expander available so that it may be used to expand calls to setf later on in the file.
Programmers must ensure that the forms can be evaluated at compile time if the access-fn
is used in a place later in the same file. The compiler must make these setf expanders
available to compile-time calls to get-setf-expansion when its environment argument is a
value received as the environment parameter of a macro.

Examples::

(defun lastguy (x) (car (last x))) = LASTGUY
(define-setf-expander lastguy (x &environment env)
"Set the last element in a list to the given value."
(multiple-value-bind (dummies vals newval setter getter)
(get-setf-expansion x env)
(let ((store (gensym)))
(values dummies
vals
‘(,store)
‘(progn (rplaca (last ,getter) ,store) ,store)
‘(lastguy ,getter))))) = LASTGUY
(setq a (list ’a ’b ’c ’d)
b (list ’x)
c (list 1 2 3 (list 45 6))) = (1 23 (4 5 6))
(setf (lastguy a) 3) = 3
(setf (lastguy b) 7) = 7
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(setf (lastguy (lastguy c)) ’lastguy-symbol) = LASTGUY-SYMBOL

a= (ABC23)
b= (7)
c = (1 2 3 (4 5 LASTGUY-SYMBOL))

;33 Setf expander for the form (LDB bytespec int).

;33 Recall that the int form must itself be suitable for SETF.

(define-setf-expander 1ldb (bytespec int &environment env)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-expansion int env);Get setf expansion for int.
(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.

(stemp (first stores))) ;Temp var for int to store.

(if (cdr stores) (error "Can’t expand this."))
;35 Return the setf expansion for LDB as five values.

(values (cons btemp temps) ; Temporary variables.
(cons bytespec vals) ;Value forms.
(list store) ;Store variables.

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form
,store) ;Storing form.
‘(ldb ,btemp ,access-form) ;Accessing form.

D))
See Also::

285

(undefined) [setf], page (undefined), , (undefined) [defsetf], page (undefined), , (undefined)
[documentation], page (undefined), , (undefined) [get-setf-expansion], page (undefined), ,
(undefined) [Syntactic Interaction of Documentation Strings and Declarations|, page (un-

defined),

Notes::

define-setf-expander differs from the long form of defsetf in that while the body is being
executed the variables in lambda-list are bound to parts of the place form, not to temporary
variables that will be bound to the values of such parts. In addition, define-setf-expander
does not have defsetf’s restriction that access-fn must be a function or a function-like macro;

an arbitrary defmacro destructuring pattern is permitted in lambda-list.

5.3.63 get-setf-expansion [Function]

get-setf-expansion place &optional environment
= wars, vals, store-vars, writer-form, reader-form

Arguments and Values::
place—a place.
environment—an environment object.

vars, vals, store-vars, writer-form, reader-form—a setf expansion.
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Description::

Determines five values constituting the setf expansion for place in environment; see (unde-
fined) [Setf Expansions|, page (undefined).

If environment is not supplied or nil, the environment is the null lexical environment.

Examples::
(get-setf-expansion ’x)
= NIL, NIL, (#:G0001), (SETQ X #:G0001), X

;33 This macro is like POP

(defmacro xpop (place &environment env)
(multiple-value-bind (dummies vals new setter getter)
(get-setf-expansion place env)
‘(let* (,@(mapcar #’list dummies vals) (,(car new) ,getter))

(if (cdr new) (error "Can’t expand this."))

(progl (car ,(car new))
(setq ,(car new) (cdr ,(car new)))
,setter))))

(defsetf frob (x) (value)
‘(setf (car ,x) ,value)) = FROB
;35 The following is an error; an error might be signaled at macro expansion timel}
(flet ((frob (x) (cdr x))) ;Invalid
(xpop (frob z)))

See Also::

(undefined) [defsetf], page (undefined), , (undefined) [define-setf-expander|, page (unde-
fined), , (undefined) [setf], page (undefined),

Notes::

Any compound form is a valid place, since any compound form whose operator f has no setf
expander are expanded into a call to (setf f).

5.3.64 setf, psetf [Macro]
setf {/pair}* = {result}*
psetf {/pair}* = nil

pair :=place newvalue

Arguments and Values::
place—a place.
newvalue—a form.

results—the multiple values_2 returned by the storing form for the last place, or nil if
there are no pairs.
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Description::
setf changes the value of place to be newvalue.

(setf place newvalue) expands into an update form that stores the result of evalu-
ating newwvalue into the location referred to by place. Some place forms involve uses of
accessors that take optional arguments. Whether those optional arguments are permitted
by setf, or what their use is, is up to the setf expander function and is not under the con-
trol of setf. The documentation for any function that accepts &optional, &rest, or &key
arguments and that claims to be usable with setf must specify how those arguments are
treated.

If more than one pair is supplied, the pairs are processed sequentially; that is,

(setf place-1 newvalue-1
place-2 newvalue-2

place-N newvalue-N)
is precisely equivalent to

(progn (setf place-1 newvalue-1)
(setf place-2 newvalue-2)

(setf place-N newvalue-N))

For psetf, if more than one pair is supplied then the assignments of new values to places
are done in parallel. More precisely, all subforms (in both the place and newvalue forms)
that are to be evaluated are evaluated from left to right; after all evaluations have been
performed, all of the assignments are performed in an unpredictable order.

For detailed treatment of the expansion of setf and psetf, see (undefined) [Kinds of
Places], page (undefined).

Examples::

(setq x (cons ’a ’b) y (list 1 2 3)) = (1 2 3)

(setf (car x) ’x (cadr y) (car x) (cdr x) y) = (1 X 3)
x=> X1X3)

y = (1X3)

(setq x (cons ’a ’b) y (list 1 2 3)) = (1 2 3)

(psetf (car x) ’x (cadr y) (car x) (cdr x) y) = NIL

x = (X143

y = ((143)

Affected By::

define-setf-expander, defsetf, *macroexpand-hook*

See Also::

(undefined) [define-setf-expander|, page (undefined), , (undefined) [defsetf], page (unde-
fined), , macroexpand-1, (undefined) [rotatef], page (undefined), , (undefined) [shiftf],
page (undefined), , (undefined) [Generalized Reference|, page (undefined),
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5.3.65 shiftf [Macro]
shiftf {place}~+ newvalue = old-value-1

Arguments and Values::
place—a place.
newvalue—a form; evaluated.

old-value-1—an object (the old value of the first place).

Description::

shiftf modifies the values of each place by storing newvalue into the last place, and shifting
the values of the second through the last place into the remaining places.

If newvalue produces more values than there are store variables, the extra values are
ignored. If newwvalue produces fewer values than there are store variables, the missing
values are set to mnil.

In the form (shiftf placel place2 ... placen newvalue), the values in placel
through placen are read and saved, and newvalue is evaluated, for a total of n+1 values in
all. Values 2 through n+1 are then stored into placel through placen, respectively. It is as
if all the places form a shift register; the newvalue is shifted in from the right, all values
shift over to the left one place, and the value shifted out of placel is returned.

For information about the evaluation of subforms of places, see (undefined) [Evaluation
of Subforms to Places], page (undefined).

Examples::

(setq x (list 1 2 3) y ’trash) = TRASH
(shiftf y x (cdr x) ’(hi there)) = TRASH
x = (23)

y = (1 HI THERE)

(setq x (list ’a ’b ’c)) = (A B C)
(shiftf (cadr x) ’z) = B

x = (AZCOC

(shiftf (cadr x) (cddr x) ’q) = Z

x= (A @© .Q

(setqn 0) = O

(setq x (list ’a ’b ’c ’d)) = (A B CD)
(shiftf (nth (setqn (+ n 1)) x) ’z) = B
x = (AZCD)

Affected By::

define-setf-expander, defsetf, *macroexpand-hook*

See Also::

(undefined) [setf], page (undefined), , (undefined) [rotatef], page (undefined), , (undefined)
[Generalized Reference], page (undefined),
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Notes::
The effect of (shiftf placel place2 ... placen newvalue) is roughly equivalent to

(let ((varl placel)
(var2 place2)

(varn placen)

(varO newvalue))
(setf placel var?2)
(setf place2 var3)

(setf placen var0)
varl)
except that the latter would evaluate any subforms of each place twice, whereas shiftf
evaluates them once. For example,
(setqn 0) = O
(setq x (list ’a ’b ’c ’d)) = (A B C D)
(progl (nth (setqn (+ n 1)) x)
(setf (nth (setqn (+ n 1)) x) ’z)) = B
x = (ABZD

5.3.66 rotatef [Macro]
rotatef {place}* = nil

Arguments and Values::

place—a place.

Description::
rotatef modifies the values of each place by rotating values from one place into another.

If a place produces more values than there are store variables, the extra values are
ignored. If a place produces fewer values than there are store variables, the missing values
are set to nil.

In the form (rotatef placel place2 ... placen), the values in placel through pla-
cen are read and written. Values 2 through n and value 1 are then stored into placel
through placen. It is as if all the places form an end-around shift register that is rotated
one place to the left, with the value of place! being shifted around the end to placen.

For information about the evaluation of subforms of places, see (undefined) [Evaluation
of Subforms to Places], page (undefined).

Examples::

(let ((n 0)
(x (1ist ’a ’b ’c ’d ’e ’f ’g)))
(rotatef (nth (incf n) x)
(nth (incf n) x)
(nth (incf n) x))
x) > (ACDBETFG)



290 ANSI and GNU Common Lisp Document

See Also::

(undefined) [define-setf-expander|, page (undefined), , (undefined) [defsetf], page (unde-
fined), , (undefined) [setf], page (undefined), , (undefined) [shiftf], page (undefined), ,
*macroexpand-hook*, (undefined) [Generalized Reference], page (undefined),

Notes::

The effect of (rotatef placel place2 ... placen) is roughly equivalent to

(psetf placel place2
place2 place3

placen placel)
except that the latter would evaluate any subforms of each place twice, whereas rotatef
evaluates them once.

5.3.67 control-error [Condition Type]

Class Precedence List::

control-error, error, serious-condition, condition, t

Description::

The type control-error consists of error conditions that result from invalid dynamic transfers
of control in a program. The errors that result from giving throw a tag that is not active
or from giving go or return-from a tag that is no longer dynamically available are of type
control-error.

5.3.68 program-error [Condition Type]

Class Precedence List::

program-error, error, serious-condition, condition, t

Description::

The type program-error consists of error conditions related to incorrect program syntax.
The errors that result from naming a go tag or a block tag that is not lexically apparent are
of type program-error.

5.3.69 undefined-function [Condition Type]

Class Precedence List::

undefined-function, cell-error, error, serious-condition, condition, t

Description::

The type undefined-function consists of error conditions that represent attempts to read
the definition of an undefined function.

The name of the cell (see cell-error) is the function name which was funbound.
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See Also::

(undefined) [cell-error-name], page (undefined),
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6 Iteration

6.1 The LOOP Facility

6.1.1 Overview of the Loop Facility

The loop macro performs iteration.

6.1.1.1 Simple vs Extended Loop

loop forms are partitioned into two categories: simple loop forms and extended loop forms.

6.1.1.2 Simple Loop

A simple loop form is one that has a body containing only compound forms. Each form is
evaluated in turn from left to right. When the last form has been evaluated, then the first
form is evaluated again, and so on, in a never-ending cycle. A simple loop form establishes
an ¢mplicit block named nil. The execution of a simple loop can be terminated by explicitly
transfering control to the implicit block (using return or return-from) or to some ezit point
outside of the block (e.g., using throw, go, or return-from).

6.1.1.3 Extended Loop

An extended loop form is one that has a body containing atomic expressions. When the
loop macro processes such a form, it invokes a facility that is commonly called “the Loop
Facility.”

The Loop Facility provides standardized access to mechanisms commonly used in itera-
tions through Loop schemas, which are introduced by loop keywords.

The body of an extended loop form is divided into loop clauses, each which is in turn
made up of loop keywords and forms.

6.1.1.4 Loop Keywords

Loop keywords are not true keywords_1; they are special symbols, recognized by name rather
than object identity, that are meaningful only to the loop facility. A loop keyword is a symbol
but is recognized by its name (not its identity), regardless of the packages in which it is
accessible.

In general, loop keywords are not external symbols of the COMMON-LISP package, except
in the coincidental situation that a symbol with the same name as a loop keyword was
needed for some other purpose in Common Lisp. For example, there is a symbol in the
COMMON-LISP package whose name is "UNLESS" but not one whose name is "UNTIL".

If no loop keywords are supplied in a loop form, the Loop Facility executes the loop body
repeatedly; see (undefined) [Simple Loop], page (undefined).

6.1.1.5 Parsing Loop Clauses

The syntactic parts of an extended loop form are called clauses; the rules for parsing are
determined by that clause’s keyword. The following example shows a loop form with six
clauses:

(loop for i from 1 to (compute-top-value) ; first clause
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while (not (unacceptable 1)) ; second clause

collect (square i) ; third clause

do (format t "Working on ~D now" i) ; fourth clause

when (evenp i) ; fifth clause
do (format t "°D is a non-odd number" i)

finally (format t "About to exit!")) ; sixth clause

Each loop keyword introduces either a compound loop clause or a simple loop clause that
can consist of a loop keyword followed by a single form. The number of forms in a clause
is determined by the loop keyword that begins the clause and by the auxiliary keywords in
the clause. The keywords do,

doing,

initially, and finally are the only loop keywords that can take any number of forms
and group them as an implicit progn.

Loop clauses can contain auxiliary keywords, which are sometimes called prepositions.
For example, the first clause in the code above includes the prepositions from and to, which
mark the value from which stepping begins and the value at which stepping ends.

For detailed information about loop syntax, see the macro loop.

6.1.1.6 Expanding Loop Forms

A loop macro form expands into a form containing one or more binding forms (that establish
bindings of loop variables) and a block and a tagbody (that express a looping control
structure). The variables established in loop are bound as if by let or lambda.

Implementations can interleave the setting of initial values with the bindings. However,
the assignment of the initial values is always calculated in the order specified by the user.
A variable is thus sometimes bound to a meaningless value of the correct type, and then
later in the prologue it is set to the true initial value by using setq.

One implication of this interleaving is that it is implementation-dependent whether the
lexical environment in which the initial value forms (variously called the formI, form2,
form3, step-fun, vector, hash-table, and package) in any for-as-subclause, except for-as-
equals-then, are evaluated includes only the loop variables preceding that form or includes
more or all of the loop variables; the form1 and form2 in a for-as-equals-then form includes
the lexical environment of all the loop variables.

After the form is expanded, it consists of three basic parts in the tagbody: the loop
prologue, the loop body, and the loop epilogue.

Loop prologue
The loop prologue contains forms that are executed before iteration begins,
such as any automatic variable initializations prescribed by the variable clauses,
along with any initially clauses in the order they appear in the source.

Loop body
The loop body contains those forms that are executed during iteration, includ-
ing application-specific calculations, termination tests, and variable stepping_1.
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Loop epilogue
The loop epilogue contains forms that are executed after iteration terminates,
such as finally clauses, if any, along with any implicit return value from an
accumulation clause or an termination-test clause.

Some clauses from the source form contribute code only to the loop prologue; these
clauses must come before other clauses that are in the main body of the loop form. Others
contribute code only to the loop epilogue. All other clauses contribute to the final translated
form in the same order given in the original source form of the loop.

Expansion of the loop macro produces an implicit block named nil
unless named is supplied.

Thus, return-from (and sometimes return) can be used to return values from loop or to
exit loop.

6.1.1.7 Summary of Loop Clauses

Loop clauses fall into one of the following categories:

6.1.1.8 Summary of Variable Initialization and Stepping Clauses

The for and as constructs provide iteration control clauses that establish a variable to be
initialized. for and as clauses can be combined with the loop keyword and to get parallel
initialization and stepping_1. Otherwise, the initialization and stepping_1 are sequential.

The with construct is similar to a single let clause. with clauses can be combined using
the loop keyword and to get parallel initialization.

For more information, see (undefined) [Variable Initialization and Stepping Clauses],
page (undefined).

6.1.1.9 Summary of Value Accumulation Clauses

The collect (or collecting) construct takes one form in its clause and adds the value of
that form to the end of a list of values. By default, the list of values is returned when the
loop finishes.

The append (or appending) construct takes one form in its clause and appends the value
of that form to the end of a list of values. By default, the list of values is returned when
the loop finishes.

The nconc (or nconcing) construct is similar to the append construct, but its list values
are concatenated as if by the function nconc. By default, the list of values is returned when
the loop finishes.

The sum (or summing) construct takes one form in its clause that must evaluate to a
number and accumulates the sum of all these numbers. By default, the cumulative sum is
returned when the loop finishes.

The count (or counting) construct takes one form in its clause and counts the number
of times that the form evaluates to true. By default, the count is returned when the loop
finishes.

The minimize (or minimizing) construct takes one form in its clause and determines
the minimum value obtained by evaluating that form. By default, the minimum value is
returned when the loop finishes.
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The maximize (or maximizing) construct takes one form in its clause and determines
the maximum value obtained by evaluating that form. By default, the maximum value is
returned when the loop finishes.

For more information, see (undefined) [Value Accumulation Clauses], page (undefined).

6.1.1.10 Summary of Termination Test Clauses

The for and as constructs provide a termination test that is determined by the iteration
control clause.

The repeat construct causes termination after a specified number of iterations. (It uses
an internal variable to keep track of the number of iterations.)

The while construct takes one form, a test, and terminates the iteration if the test
evaluates to false. A while clause is equivalent to the expression (if (not test)
(loop-finish)).

The until construct is the inverse of while; it terminates the iteration if the test eval-
uates to any non-nil value. An until clause is equivalent to the expression (if test
(loop-finish)).

The always construct takes one form and terminates the loop if the form ever evaluates
to false; in this case, the loop form returns nil. Otherwise, it provides a default return value
of t.

The never construct takes one form and terminates the loop if the form ever evaluates
to true; in this case, the loop form returns nil. Otherwise, it provides a default return value
of t.

The thereis construct takes one form and terminates the loop if the form ever evaluates
to a non-nil object; in this case, the loop form returns that object.

Otherwise, it provides a default return value of nil.

If multiple termination test clauses are specified, the loop form terminates if any are
satisfied.

For more information, see (undefined) [Termination Test Clauses], page (undefined).

6.1.1.11 Summary of Unconditional Execution Clauses
The do (or doing) construct evaluates all forms in its clause.
The return construct takes one

form. Any wvalues returned by the form are immediately returned by the loop form. It is
equivalent to the clause do (return-from block-name value), where block-name is the
name specified in a named clause, or nil if there is no named clause.

For more information, see (undefined) [Unconditional Execution Clauses|, page (unde-
fined).

6.1.1.12 Summary of Conditional Execution Clauses

The if and when constructs take one form as a test and a clause that is executed when
the test yields true. The clause can be a value accumulation, unconditional, or another
conditional clause; it can also be any combination of such clauses connected by the loop
and keyword.
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The loop unless construct is similar to the loop when construct except that it comple-
ments the test result.

The loop else construct provides an optional component of if, when, and unless clauses
that is executed when an if or when test yields false or when an unless test yields true.
The component is one of the clauses described under if.

The loop end construct provides an optional component to mark the end of a conditional
clause.

For more information, see (undefined) [Conditional Execution Clauses], page (undefined).

6.1.1.13 Summary of Miscellaneous Clauses
The loop named construct gives a name for the block of the loop.

The loop initially construct causes its forms to be evaluated in the loop prologue,
which precedes all loop code except for initial settings supplied by the constructs with, for,
or as.

The loop finally construct causes its forms to be evaluated in the loop epilogue after
normal iteration terminates.

For more information, see (undefined) [Miscellaneous Clauses|, page (undefined).

6.1.1.14 Order of Execution

With the exceptions listed below, clauses are executed in the loop body in the order in
which they appear in the source. Execution is repeated until a clause terminates the loop
or until a return, go, or throw form is encountered which transfers control to a point outside
of the loop. The following actions are exceptions to the linear order of execution:

* All variables are initialized first, regardless of where the establishing clauses
appear in the source. The order of initialization follows the order of these
clauses.

* The code for any initially clauses is collected into one progn in the order in

which the clauses appear in the source. The collected code is executed once in
the loop prologue after any implicit variable initializations.

* The code for any finally clauses is collected into one progn in the order in
which the clauses appear in the source. The collected code is executed once in
the loop epilogue before any implicit values from the accumulation clauses are
returned. Explicit returns anywhere in the source, however, will exit the loop
without executing the epilogue code.

* A with clause introduces a variable binding and an optional initial value. The
initial values are calculated in the order in which the with clauses occur.

* Iteration control clauses implicitly perform the following actions:
— initialize variables;
- step variables, generally between each execution of the loop body;

- perform termination tests, generally just before the execution of
the loop body.
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6.1.1.15 Destructuring

The d-type-spec argument is used for destructuring. If the d-type-spec argument consists
solely of the type fixnum, float, t, or nil, the of-type keyword is optional. The of-type
construct is optional in these cases to provide backwards compatibility; thus, the following
two expressions are the same:

;35 This expression uses the old syntax for type specifiers.
(loop for i fixnum upfrom 3 ...)

;55 This expression uses the new syntax for type specifiers.
(loop for i of-type fixnum upfrom 3 ...)

;3 Declare X and Y to be of type VECTOR and FIXNUM respectively.
(loop for (x y) of-type (vector fixnum)
in 1 do ...)

A type specifier for a destructuring pattern is a tree of type specifiers with the same
shape as the tree of variable names, with the following exceptions:

* When aligning the trees, an atom in the tree of type specifiers that matches a
cons in the variable tree declares the same type for each variable in the subtree
rooted at the cons.

* A cons in the tree of type specifiers that matches an atom in the tree of variable
names is a compound type specifer.

Destructuring allows binding of a set of variables to a corresponding set of values any-
where that a value can normally be bound to a single variable. During loop expansion, each
variable in the variable list is matched with the values in the values list. If there are more
variables in the variable list than there are values in the values list, the remaining variables

are given a value of nil. If there are more values than variables listed, the extra values are
discarded.

To assign values from a list to the variables a, b, and ¢, the for clause could be used
to bind the variable numlist to the car of the supplied form, and then another for clause
could be used to bind the variables a, b, and c sequentially.

;; Collect values by using FOR constructs.
(loop for numlist in ’((1 2 4.0) (6 6 8.3) (8 9 10.4))
for a of-type integer = (first numlist)
and b of-type integer = (second numlist)
and ¢ of-type float = (third numlist)
collect (list ¢ b a))
= ((4.021) (8.3 65) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be bound in each
loop iteration. Types can be declared by using a list of type-spec arguments. If all the
types are the same, a shorthand destructuring syntax can be used, as the second example
illustrates.

;3 Destructuring simplifies the process.
(loop for (a b c) of-type (integer integer float) in
>((1 2 4.0) (668.3) (89 10.4))
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collect (list c b a))
= ((4.021) (8.3 65) (10.4 9 8))

;3 If all the types are the same, this way is even simpler.
(loop for (a b c) of-type float in
’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
collect (list c b a))
= ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If destructuring is used to declare or initialize a number of groups of variables into types,
the loop keyword and can be used to simplify the process further.

;; Initialize and declare variables in parallel by using the AND construct.\kern-7pt]]
(loop with (a b) of-type float = ’(1.0 2.0)
and (c d) of-type integer = ’(3 4)
and (e f)
return (list a b c d e £))
= (1.0 2.0 3 4 NIL NIL)

If nil is used in a destructuring list, no variable is provided for its place.

(Loop for (a nil b) = (1 2 3)
do (return (list a b)))
= (1 3)

Note that dotted lists can specify destructuring.

(loop for (x . y) = (1 . 2)
do (return y))
= 2
(loop for ((a . b) (c . d)) of-type ((float . float) (integer . integer)) infi
2(((1.2 . 2.4) (3. 4)) (3.4 . 4.6) (5. 6)))
collect (list a b c d))
= ((1.22.434) (3.44.656))

An error of type program-error is signaled (at macro expansion time) if the same variable
is bound twice in any variable-binding clause of a single loop expression. Such variables
include local variables, iteration control variables, and variables found by destructuring.

6.1.1.16 Restrictions on Side-Effects
See (undefined) [Traversal Rules and Side Effects|, page (undefined).

6.1.2 Variable Initialization and Stepping Clauses

6.1.2.1 Iteration Control

Iteration control clauses allow direction of loop iteration. The loop keywords for and
as designate iteration control clauses. Iteration control clauses differ with respect to the
specification of termination tests and to the initialization and stepping_1 of loop variables.
Iteration clauses by themselves do not cause the Loop Facility to return values, but they
can be used in conjunction with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. A wariable binding has lexical scope
unless it is proclaimed special; thus, by default, the variable can be accessed only by forms
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that lie textually within the loop. Stepping assignments are made in the loop body before
any other forms are evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A destruc-
turing list is a tree whose non-nil atoms are variable names. See (undefined) [Destructuring],
page (undefined).

The iteration control clauses for, as, and repeat must precede any other loop clauses,
except initially, with, and named, since they establish variable bindings. When iteration
control clauses are used in a loop, the corresponding termination tests in the loop body are
evaluated before any other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and
stepping_1 occur sequentially by default. The and construct can be used to connect two
or more iteration clauses when sequential binding and stepping_1 are not necessary. The
iteration behavior of clauses joined by and is analogous to the behavior of the macro do
with respect to do*.

The for and as clauses iterate by using one or more local loop variables that are ini-
tialized to some value and that can be modified or stepped_1 after each iteration. For these
clauses, iteration terminates when a local variable reaches some supplied value or when
some other loop clause terminates iteration. At each iteration, variables can be stepped_1
by an increment or a decrement or can be assigned a new value by the evaluation of a form).
Destructuring can be used to assign values to variables during iteration.

The for and as keywords are synonyms; they can be used interchangeably. There are
seven syntactic formats for these constructs. In each syntactic format, the type of var can
be supplied by the optional type-spec argument. If var is a destructuring list, the type
supplied by the type-spec argument must appropriately match the elements of the list. By
convention, for introduces new iterations and as introduces iterations that depend on a
previous iteration specification.

6.1.2.2 The for-as-arithmetic subclause

In the for-as-arithmetic subclause, the for or as construct iterates from the value supplied
by form1 to the value supplied by form2 in increments or decrements denoted by forms.
Each expression is evaluated only once and must evaluate to a number. The variable var
is bound to the value of form1 in the first iteration and is stepped_1 by the value of form3
in each succeeding iteration, or by 1 if form8 is not provided. The following loop keywords
serve as valid prepositions within this syntax. At least one of the prepositions must be used;
and at most one from each line may be used in a single subclause.

from | downfrom | upfrom
to | downto | upto | below | above
by

The prepositional phrases in each subclause may appear in any order. For example,
either “from x by y” or “by y from x” is permitted. However, because left-to-right order
of evaluation is preserved, the effects will be different in the case of side effects.

Consider:

(let ((x 1)) (loop for i from x by (incf x) to 10 collect 1))
= (13579
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(let ((x 1)) (loop for i by (incf x) from x to 10 collect i))
= (246 8 10)

The descriptions of the prepositions follow:

from The loop keyword from specifies the value from which stepping_1 begins, as
supplied by formi1. Stepping_1 is incremental by default. If decremental step-
ping_1 is desired, the preposition downto or above must be used with form2.
For incremental stepping_1, the default from value is 0.

downfrom, upfrom
The loop keyword downfrom indicates that the variable war is decreased in
decrements supplied by form3; the loop keyword upfrom indicates that wvar is
increased in increments supplied by forms3.

to The loop keyword to marks the end value for stepping_1 supplied in form?2.
Stepping_1 is incremental by default. If decremental stepping_1 is desired, the
preposition downfrom must be used with formi, or else the preposition downto
or above should be used instead of to with formZ2.

downto, upto
The loop keyword downto specifies decremental stepping; the loop keyword upto
specifies incremental stepping. In both cases, the amount of change on each step
is specified by form3, and the loop terminates when the variable var passes the
value of form2. Since there is no default for form! in decremental stepping_1,
a form1 value must be supplied (using from or downfrom) when downto is
supplied.

below, above
The loop keywords below and above are analogous to upto and downto respec-
tively. These keywords stop iteration just before the value of the variable var
reaches the value supplied by form2; the end value of form2 is not included.
Since there is no default for form1 in decremental stepping_1, a forml1 value
must be supplied (using from or downfrom) when above is supplied.

by The loop keyword by marks the increment or decrement supplied by form3. The
value of form3 can be any positive number. The default value is 1.

In an iteration control clause, the for or as construct causes termination when the
supplied limit is reached. That is, iteration continues until the value var is stepped to the
exclusive or inclusive limit supplied by form2. The range is exclusive if form3 increases or
decreases var to the value of form?2 without reaching that value; the loop keywords below
and above provide exclusive limits. An inclusive limit allows wvar to attain the value of
form2; to, downto, and upto provide inclusive limits.

6.1.2.3 Examples of for-as-arithmetic subclause

;; Print some numbers.
(loop for i from 1 to 3
do (print i))
> 1
[> 2
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|> 3
= NIL

;3 Print every third number.
(loop for i from 10 downto 1 by 3
do (print i))

|> 10
[> 7
|> 4
[> 1
= NIL

;; Step incrementally from the default starting value.
(loop for i below 3
do (print i))

|> 0
[> 1
[> 2
= NIL

6.1.2.4 The for-as-in-list subclause

In the for-as-in-list subclause, the for or as construct iterates over the contents of a list.
It checks for the end of the list as if by using endp. The variable var is bound to the
successive elements of the list in form1 before each iteration. At the end of each iteration,
the function step-fun is applied to the list; the default value for step-fun is ecdr. The loop
keywords in and by serve as valid prepositions in this syntax. The for or as construct
causes termination when the end of the list is reached.

6.1.2.5 Examples of for-as-in-list subclause

;3 Print every item in a list.
(loop for item in ’(1 2 3) do (print item))

[> 1
|> 2
|> 3
= NIL

;3 Print every other item in a list.
(loop for item in ’(1 2 3 4 5) by #’cddr
do (print item))

[> 1
[> 3
|> 5
= NIL

;3 Destructure a list, and sum the x values using fixnum arithmetic.
(loop for (item . x) of-type (t . fixnum) in °((A . 1) (B . 2) (C . 3))



Chapter 6: Iteration 303

unless (eq item ’B) sum x)
= 4

6.1.2.6 The for-as-on-list subclause

In the for-as-on-list subclause, the for or as construct iterates over a list. It checks for the
end of the list as if by using atom.

The variable var is bound to the successive tails of the list in formi1. At the end of
each iteration, the function step-fun is applied to the list; the default value for step-fun is
cdr. The loop keywords on and by serve as valid prepositions in this syntax. The for or as
construct causes termination when the end of the list is reached.

6.1.2.7 Examples of for-as-on-list subclause

;; Collect successive tails of a list.
(loop for sublist on ’(a b c d)
collect sublist)
= ((ABCD) (BCD) (CD) (D)

;3 Print a list by using destructuring with the loop keyword ON.
(loop for (item) on ’(1 2 3)
do (print item))

> 1

[> 2

|> 3
= NIL

6.1.2.8 The for-as-equals-then subclause

In the for-as-equals-then subclause the for or as construct initializes the variable var by
setting it to the result of evaluating formI on the first iteration, then setting it to the
result of evaluating form2 on the second and subsequent iterations. If form?2 is omitted,
the construct uses formI on the second and subsequent iterations. The loop keywords =
and then serve as valid prepositions in this syntax. This construct does not provide any
termination tests.

6.1.2.9 Examples of for-as-equals-then subclause

;; Collect some numbers.

(loop for item = 1 then (+ item 10)
for iteration from 1 to 5
collect item)

= (1 11 21 31 41)

6.1.2.10 The for-as-across subclause

In the for-as-across subclause the for or as construct binds the variable var to the value of
each element in the array wvector. The loop keyword across marks the array vector; across
is used as a preposition in this syntax. Iteration stops when there are no more elements
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in the supplied array that can be referenced. Some implementations might recognize a the
special form in the vector form to produce more efficient code.

6.1.2.11 Examples of for-as-across subclause

(loop for char across (the simple-string (find-message channel))
do (write-char char stream))

6.1.2.12 The for-as-hash subclause

In the for-as-hash subclause the for or as construct iterates over the elements, keys, and
values of a hash-table. In this syntax, a compound preposition is used to designate access
to a hash table. The variable var takes on the value of each hash key or hash value in
the supplied hash-table. The following loop keywords serve as valid prepositions within this
syntax:

being The keyword being introduces either the Loop schema hash-key or
hash-value.

each, the The loop keyword each follows the loop keyword being when hash-key or
hash-value is used. The loop keyword the is used with hash-keys and
hash-values only for ease of reading. This agreement isn’t required.

hash-key, hash-keys
These loop keywords access each key entry of the hash table. If the name
hash-value is supplied in a using construct with one of these Loop schemas,
the iteration can optionally access the keyed value. The order in which the keys
are accessed is undefined; empty slots in the hash table are ignored.

hash-value, hash-values
These loop keywords access each value entry of a hash table. If the name
hash-key is supplied in a using construct with one of these Loop schemas,
the iteration can optionally access the key that corresponds to the value. The
order in which the keys are accessed is undefined; empty slots in the hash table
are ignored.

using The loop keyword using introduces the optional key or the keyed value to be
accessed. It allows access to the hash key if iteration is over the hash values,
and the hash value if iteration is over the hash keys.

in, of These loop prepositions introduce hash-table.
In effect
being {each | the} {hash-value | hash-values | hash-key | hash-keys} {in | of}

is a compound preposition.

Iteration stops when there are no more hash keys or hash values to be referenced in the
supplied hash-table.
6.1.2.13 The for-as-package subclause

In the for-as-package subclause the for or as construct iterates over the symbols in a
package. In this syntax, a compound preposition is used to designate access to a package.
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The variable var takes on the value of each symbol in the supplied package. The following
loop keywords serve as valid prepositions within this syntax:

being The keyword being introduces either the Loop schema symbol,
present-symbol, or external-symbol.

each, the The loop keyword each follows the loop keyword being when symbol,
present-symbol, or external-symbol is used. The loop keyword the is used
with symbols, present-symbols, and external-symbols only for ease of
reading. This agreement isn’t required.

present-symbol, present-symbols
These Loop schemas iterate over the symbols

that are present in a package.

The package to be iterated over is supplied in the same way that package ar-
guments to find-package are supplied. If the package for the iteration is not
supplied, the current package is used. If a package that does not exist is sup-
plied, an error of type package-error is signaled.

symbol, symbols
These Loop schemas iterate over symbols that are accessible in a given pack-
age. The package to be iterated over is supplied in the same way that package
arguments to find-package are supplied. If the package for the iteration is not
supplied, the current package is used. If a package that does not exist is sup-
plied, an error of type package-error is signaled.

external-symbol, external-symbols
These Loop schemas iterate over the external symbols of a package. The package
to be iterated over is supplied in the same way that package arguments to find-
package are supplied. If the package for the iteration is not supplied, the current
package is used. If a package that does not exist is supplied, an error of type
package-error is signaled.

in, of These loop prepositions introduce package.

In effect

being {each | the} {symbol | symbols | present-symbol | present-symbols |
external-symbol | external-symbols} {in | of}

is a compound preposition.

Iteration stops when there are no more symbols to be referenced in the supplied package.

6.1.2.14 Examples of for-as-package subclause

(let ((xpackage* (make-package "TEST-PACKAGE-1")))
;3 For effect, intern some symbols
(read-from-string "(THIS IS A TEST)")

(export (intern "THIS"))
(loop for x being each present-symbol of *packagex*
do (print x)))
[> A
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|> TEST

|> THIS

|> IS
= NIL

6.1.2.15 Local Variable Initializations

When a loop form is executed, the local variables are bound and are initialized to some
value. These local variables exist until loop iteration terminates, at which point they cease
to exist. Implicit variables are also established by iteration control clauses and the into
preposition of accumulation clauses.

The with construct initializes variables that are local to a loop. The variables are
initialized one time only. If the optional type-spec argument is supplied for the variable
var, but there is no related expression to be evaluated, var is initialized to an appropriate
default value for its type. For example, for the types t, number, and float, the default values
are nil, 0, and 0.0 respectively. The consequences are undefined if a type-spec argument is
supplied for var if the related expression returns a value that is not of the supplied type. By
default, the with construct initializes variables sequentially; that is, one variable is assigned
a value before the next expression is evaluated. However, by using the loop keyword and
to join several with clauses, initializations can be forced to occur in parallel; that is, all
of the supplied forms are evaluated, and the results are bound to the respective variables
simultaneously.

Sequential binding is used when it is desireable for the initialization of some variables to
depend on the values of previously bound variables. For example, suppose the variables a,
b, and c are to be bound in sequence:

(loop with a = 1
with b = (+ a 2)
with ¢ = (+ b 3)
return (list a b c))
= (13 6)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let*x ((a 1)
b (+ a 2))
(c (+ b 3)))
(tagbody

(next-loop (return (list a b c))
(go next-loop)
end-loop))))

If the values of previously bound variables are not needed for the initialization of other

local variables, an and clause can be used to specify that the bindings are to occur in
parallel:

(loop with a =1
and b = 2
and ¢ = 3
return (list a b c))
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= (1 23)
The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let ((a 1)
(b 2)
(c 3))
(tagbody

(next-loop (return (list a b c))
(go next-loop)
end-loop))))

6.1.2.16 Examples of WITH clause

;; These bindings occur in sequence.
(loop with a = 1
with b (+ a 2)
with ¢ = (+ b 3)
return (list a b ¢))
= (1.36)

;3 These bindings occur in parallel.
(setq a 5 b 10)
= 10
(loop with a =1
and b = (+ a 2)
and ¢ = (+ b 3)
return (list a b c))
= (17 13)

;; This example shows a shorthand way to declare local variables
;; that are of different types.
(loop with (a b c) of-type (float integer float)
return (format nil ""A A "A" a b ¢))
= "0.0 0 0.0"

;3 This example shows a shorthand way to declare local variables
;; that are the same type.
(loop with (a b c) of-type float
return (format nil ""A A "A" a b c))
= "0.0 0.0 0.0"

6.1.3 Value Accumulation Clauses

The constructs collect, collecting, append, appending, nconc, nconcing, count,
counting, maximize, maximizing, minimize, minimizing, sum, and summing, allow values
to be accumulated in a loop.

The constructs collect, collecting, append, appending, nconc, and nconcing, des-
ignate clauses that accumulate values in lists and return them. The constructs count,
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counting, maximize, maximizing, minimize, minimizing, sum, and summing designate
clauses that accumulate and return numerical values.

During each iteration, the constructs collect and collecting collect the value of the
supplied form into a list. When iteration terminates, the list is returned. The argument
var is set to the list of collected values; if var is supplied, the loop does not return the final
list automatically. If var is not supplied, it is equivalent to supplying an internal name for
var and returning its value in a finally clause. The var argument is bound as if by the
construct with. No mechanism is provided for declaring the type of var; it must be of type
list.

The constructs append, appending, nconc, and nconcing are similar to collect except
that the values of the supplied form must be lists.

* The append keyword causes its list values to be concatenated into a single list,
as if they were arguments to the function append.

* The nconc keyword causes its list values to be concatenated into a single list,
as if they were arguments to the function nconc.

The argument var is set to the list of concatenated values; if var is supplied, loop does
not return the final list automatically. The var argument is bound as if by the construct
with. A type cannot be supplied for var; it must be of type list. The construct nconc
destructively modifies its argument lists.

The count construct counts the number of times that the supplied form returns true.
The argument var accumulates the number of occurrences; if var is supplied, loop does not
return the final count automatically. The var argument is bound as if by the construct with
to a zero of the appropriate type. Subsequent values (including any necessary coercions) are
computed as if by the function 1+. If into wvar is used, a type can be supplied for var with
the type-spec argument; the consequences are unspecified if a nonnumeric type is supplied.
If there is no into variable, the optional type-spec argument applies to the internal variable
that is keeping the count. The default type is implementation-dependent; but it must be a
supertype of type fixnum.

The maximize and minimize constructs compare the value of the supplied form obtained
during the first iteration with values obtained in successive iterations. The maximum (for
maximize) or minimum (for minimize) value encountered is determined (as if by the func-
tion max for maximize and as if by the function min for minimize) and returned. If the
maximize or minimize clause is never executed, the accumulated value is unspecified. The
argument var accumulates the maximum or minimum value; if var is supplied, loop does
not return the maximum or minimum automatically. The var argument is bound as if by
the construct with. If into var is used, a type can be supplied for var with the type-spec
argument; the consequences are unspecified if a nonnumeric type is supplied. If there is
no into variable, the optional type-spec argument applies to the internal variable that is
keeping the maximum or minimum value. The default type is implementation-dependent;
but it must be a supertype of type real.

The sum construct forms a cumulative sum of the successive primary values of the sup-
plied form at each iteration. The argument var is used to accumulate the sum; if var is
supplied, loop does not return the final sum automatically. The var argument is bound as
if by the construct with to a zero of the appropriate type. Subsequent values (including
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any necessary coercions) are computed as if by the function +. If into var is used, a type
can be supplied for var with the type-spec argument; the consequences are unspecified if a
nonnumeric type is supplied. If there is no into variable, the optional type-spec argument
applies to the internal variable that is keeping the sum. The default type is implementation-
dependent; but it must be a supertype of type number.

If into is used, the construct does not provide a default return value; however, the
variable is available for use in any finally clause.

Certain kinds of accumulation clauses can be combined in a loop if their destination is
the same (the result of loop or an into war) because they are considered to accumulate
conceptually compatible quantities. In particular, any elements of following sets of accu-
mulation clauses can be mixed with other elements of the same set for the same destination
in a loop form:

* collect, append, nconc
* sum, count
* maximize, minimize

;; Collect every name and the kids in one list by using
;3 COLLECT and APPEND.
(loop for name in ’(fred sue alice joe june)
for kids in ’((bob ken) () () (kris sunshine) ())
collect name
append kids)
= (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

Any two clauses that do not accumulate the same type of object can coexist in a loop
only if each clause accumulates its values into a different variable.

6.1.3.1 Examples of COLLECT clause

;; Collect all the symbols in a list.
(loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)
when (symbolp i) collect i)
= (BIRD TURTLE HORSE CAT)

;; Collect and return odd numbers.
(loop for i from 1 to 10
if (oddp i) collect i)
= (13579

;; Collect items into local variable, but don’t return them.
(loop for i in ’(a b ¢ d) by #’cddr
collect i into my-list
finally (print my-list))
> (A C)
= NIL

6.1.3.2 Examples of APPEND and NCONC clauses

;; Use APPEND to concatenate some sublists.
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(loop for x in ’((a) (b) ((c)))
append x)
= (A B (C))

;3 NCONC some sublists together. Note that only lists made by the
;; call to LIST are modified.
(loop for i upfrom 0
as x in ’(a b (c))
nconc (if (evenp i) (list x) nil))
= (A (C))

6.1.3.3 Examples of COUNT clause

(loop for i in ’(a b nil ¢ nil d e)
count i)
= 5

6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses

(loop for i in (2 1 5 3 4)
maximize 1)
= b
(loop for i in ’(2 1 5 3 4)
minimize i)
= 1

;3 In this example, FIXNUM applies to the internal variable that holds
;3 the maximum value.
(setq series (1.2 4.3 5.7))
= (1.2 4.35.7)
(loop for v in series
maximize (round v) of-type fixnum)
= 6

;3 In this example, FIXNUM applies to the variable RESULT.
(loop for v of-type float in series
minimize (round v) into result of-type fixnum
finally (return result))
= 1

6.1.3.5 Examples of SUM clause

(loop for i of-type fixnum in ’(1 2 3 4 5)
sum i)
= 15
(setq series (1.2 4.3 5.7))
= (1.2 4.35.7)
(loop for v in series
sum (x 2.0 v))
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= 22.4

6.1.4 Termination Test Clauses

The repeat construct causes iteration to terminate after a specified number of times. The
loop body executes n times, where n is the value of the expression form. The form argument
is evaluated one time in the loop prologue. If the expression evaluates to 0 or to a negative
number, the loop body is not evaluated.

The constructs always, never, thereis, while, until, and the macro loop-finish allow
conditional termination of iteration within a loop.

The constructs always, never, and thereis provide specific values to be returned when
a loop terminates. Using always, never, or thereis in a loop with value accumulation
clauses that are not into causes an error of type program-error to be signaled (at macro
expansion time). Since always, never, and thereis use

the return-from special operator

to terminate iteration, any finally clause that is supplied is not evaluated when exit
occurs due to any of these constructs. In all other respects these constructs behave like the
while and until constructs.

The always construct takes one form and terminates the loop if the form ever evaluates
to nil; in this case, it returns nil. Otherwise, it provides a default return value of t. If the
value of the supplied form is never nil, some other construct can terminate the iteration.

The never construct terminates iteration the first time that the value of the supplied
form is mon-nil; the loop returns nil. If the value of the supplied form is always nil, some
other construct can terminate the iteration. Unless some other clause contributes a return
value, the default value returned is t.

The thereis construct terminates iteration the first time that the value of the supplied
form is mon-nil; the loop returns the value of the supplied form. If the value of the supplied
form is always nil, some other construct can terminate the iteration. Unless some other
clause contributes a return value, the default value returned is nil.

There are two differences between the thereis and until constructs:
* The until construct does not return a value or nil based on the value of the
supplied form.
* The until construct executes any finally clause. Since thereis uses
the return-from special operator
to terminate iteration, any finally clause that is supplied is not evaluated
when exit occurs due to thereis.
The while construct allows iteration to continue until the supplied form evaluates to
false. The supplied form is reevaluated at the location of the while clause.

The until construct is equivalent to while (not form)\dots. If the value of the sup-
plied form is non-nil, iteration terminates.

Termination-test control constructs can be used anywhere within the loop body. The
termination tests are used in the order in which they appear. If an until or while clause
causes termination, any clauses that precede it in the source are still evaluated. If the until
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and while constructs cause termination, control is passed to the loop epilogue, where any
finally clauses will be executed.

There are two differences between the never and until constructs:

* The until construct does not return t or nil based on the value of the supplied
form.
* The until construct does not bypass any finally clauses. Since never uses

the return-from special operator

to terminate iteration, any finally clause that is supplied is not evaluated
when exit occurs due to never.

In most cases it is not necessary to use loop-finish because other loop control clauses
terminate the loop. The macro loop-finish is used to provide a normal exit from a nested
conditional inside a loop. Since loop-finish transfers control to the loop epilogue, using
loop-finish within a finally expression can cause infinite looping.

6.1.4.1 Examples of REPEAT clause

(loop repeat 3
do (format t "“&What I say three times is true.”
|> What I say three times is true.
|> What I say three times is true.
|> What I say three times is true.
= NIL
(loop repeat -15
do (format t "What you see is what you expect”
= NIL

6.1.4.2 Examples of ALWAYS, NEVER, and THEREIS clauses

;; Make sure I is always less than 11 (two ways).
;3 The FOR construct terminates these loops.
(loop for i from O to 10
always (< i 11))
= T
(loop for i from 0 to 10
never (> i 11))
= T

;3 If I exceeds 10 return I; otherwise, return NIL.
;5 The THEREIS construct terminates this loop.
(loop for i from 0
thereis (when (> i 10) i) )
= 11

;33 The FINALLY clause is not evaluated in these examples.
(loop for i from O to 10

always (< i 9)

finally (print "you won’t see this"))
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= NIL
(loop never t
finally (print "you won’t see this"))
= NIL
(loop thereis "Here is my value"
finally (print "you won’t see this"))
= "Here is my value"

;3 The FOR construct terminates this loop, so the FINALLY clause
;; 1s evaluated.
(loop for i from 1 to 10
thereis (> i 11)
finally (prinl ’got-here))
|> GOT-HERE
= NIL

;3 1If this code could be used to find a counterexample to Fermat’s
;3 last theorem, it would still not return the value of the

;3 counterexample because all of the THEREIS clauses in this example
;3 only return T. But if Fermat is right, that won’t matter

;; because this won’t terminate.

(loop for z upfrom 2
thereis

(loop for n upfrom 3 below (log z 2)

thereis
(loop for x below z
thereis
(loop for y below z
thereis (= (+ (expt x n) (expt y n))
(expt z n))))))

6.1.4.3 Examples of WHILE and UNTIL clauses
(loop while (hungry-p) do (eat))

;5 UNTIL NOT is equivalent to WHILE.
(loop until (not (hungry-p)) do (eat))

;; Collect the length and the items of STACK.
(let ((stack ’(abcde £)))
(loop for item = (length stack) then (pop stack)
collect item
while stack))
= (6 ABCDETF)

;3 Use WHILE to terminate a loop that otherwise wouldn’t terminate.
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;; Note that WHILE occurs after the WHEN.
(loop for i fixnum from 3
when (oddp i) collect i
while (< i 5))
= (3 5)

6.1.5 Unconditional Execution Clauses

The do and doing constructs evaluate the supplied forms wherever they occur in the ex-
panded form of loop. The form argument can be any compound form. Each form is
evaluated in every iteration. Because every loop clause must begin with a loop keyword, the
keyword do is used when no control action other than execution is required.

The return construct takes one form. Any values returned by the form are immediately
returned by the loop form. It is equivalent to the clause do (return-from block-name
value), where block-name is the name specified in a named clause, or nil if there is no
named clause.

6.1.5.1 Examples of unconditional execution

;3 Print numbers and their squares.
;; The DO construct applies to multiple forms.
(loop for i from 1 to 3
do (print i)
(print (* i 1)))

[> 1
[> 1
> 2
|> 4
[> 3
> 9
= NIL

6.1.6 Conditional Execution Clauses

The if, when, and unless constructs establish conditional control in a loop. If the test
passes, the succeeding loop clause is executed. If the test does not pass, the succeeding
clause is skipped, and program control moves to the clause that follows the loop keyword
else. If the test does not pass and no else clause is supplied, control is transferred to the
clause or construct following the entire conditional clause.

If conditional clauses are nested, each else is paired with the closest preceding condi-
tional clause that has no associated else or end.

In the if and when clauses, which are synonymous, the test passes if the value of form
is true.

In the unless clause, the test passes if the value of form is false.

Clauses that follow the test expression can be grouped by using the loop keyword and to
produce a conditional block consisting of a compound clause.

The loop keyword it can be used to refer to the result of the test expression in a clause.
Use the loop keyword it in place of the form in a return clause or an accumulation clause
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that is inside a conditional execution clause. If multiple clauses are connected with and,
the it construct must be in the first clause in the block.

The optional loop keyword end marks the end of the clause. If this keyword is not
supplied, the next loop keyword marks the end. The construct end can be used to distinguish
the scoping of compound clauses.

6.1.6.1 Examples of WHEN clause

;; Signal an exceptional condition.
(loop for item in ’(1 2 3 a 4 5)
when (not (numberp item))
return (cerror "enter new value" "non-numeric value: ~“s" item))
Error: non-numeric value: A

;; The previous example is equivalent to the following one.
(loop for item in ’(1 2 3 a 4 b5)
when (not (numberp item))
do (return
(cerror "Enter new value" "non-numeric value: “s" item)))
Error: non-numeric value: A

;; This example parses a simple printed string representation from
;; BUFFER (which is itself a string) and returns the index of the
;3 closing double-quote character.
(let ((buffer "\"a\ll \"b\ll ||))
(loop initially (unless (char= (char buffer 0) #\")
(loop-finish))
for i of-type fixnum from 1 below (length (the string buffer))
when (char= (char buffer i) #\")
return i))
= 2

;; The collected value is returned.
(loop for i from 1 to 10
when (> i 5)
collect i
finally (prinl ’got-here))
|> GOT-HERE
= (67 89 10)

;; Return both the count of collected numbers and the numbers.
(loop for i from 1 to 10
when (> i B)
collect i into number-list
and count i into number-count
finally (return (values number-count number-list)))
= 5, (6789 10)
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6.1.7 Miscellaneous Clauses

6.1.7.1 Control Transfer Clauses

The named construct establishes a name for an implicit block surrounding the

entire

loop so that the return-from special operator can be used to return values from or to
exit loop. Only one name per loop form can be assigned. If used, the named construct must
be the first clause in the loop expression.

The return construct takes one form. Any wvalues returned by the form are immediately
returned by the loop form.

This construct is similar to the return-from special operator and the return macro. The
return construct

does not execute any finally clause that
the loop form

is given.
6.1.7.2 Examples of NAMED clause

;; Just name and return.
(loop named max
for i from 1 to 10
do (print i)
do (return-from max ’done))
[> 1
= DONE

6.1.7.3 Initial and Final Execution

The initially and finally constructs evaluate forms that occur before and after the loop
body.

The initially construct causes the supplied compound-forms to be evaluated in the
loop prologue, which precedes all loop code except for initial settings supplied by constructs
with, for, or as. The code for any initially clauses is executed in the order in which the
clauses appeared in the loop.

The finally construct causes the supplied compound-forms to be evaluated in the loop
epilogue after normal iteration terminates. The code for any finally clauses is executed
in the order in which the clauses appeared in the loop. The collected code is executed once
in the loop epilogue before any implicit values are returned from the accumulation clauses.
An explicit transfer of control (e.g., by return, go, or throw) from the loop body, however,
will exit the loop without executing the epilogue code.

Clauses such as return, always, never, and thereis can bypass the finally clause.

return (or return-from, if the named option was supplied)

can be used after finally to return values from a loop.

Such an explicit return

inside the finally clause takes precedence over returning the accumulation from
clauses supplied by such keywords as collect, nconc, append, sum, count, maximize, and
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minimize; the accumulation values for these preempted clauses are not returned by loop if
return or return-from is used.

6.1.8 Examples of Miscellaneous Loop Features

(let ((i 0)) ; no loop keywords are used
(loop (incf i) (if (= i 3) (return i)))) = 3
(let ((L 0)(G 0))
(tagbody
(loop (incf j 3) (incf i) (if (= i 3) (go exit)))
exit)
j) = 9
In the following example, the variable x is stepped before y is stepped; thus, the value
of y reflects the updated value of x:

(loop for x from 1 to 10
for y = nil then x
collect (list x y))

= ((1 NIL) (2 2) (33) (44) (65) (66) (77) (88) (99 (10 10))

In this example, x and y are stepped in parallel:

(loop for x from 1 to 10
and y = nil then x
collect (list x y))

= ((1 NIL) (2 1) (32) (43) (64) (65) (716) (87) (98) (10 9))

6.1.8.1 Examples of clause grouping

;3 Group conditional clauses.
(loop for i in ’(1 324 2345 323 2 4 235 252)
when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)
else ; I is even.
collect i into even—numbers
finally
(return (values odd-numbers even-numbers)))

> 1

| >

|> 2345
| >

|> 323
| >

|> 235

= (1 2345 323 235), (324 2 4 252)

;; Collect numbers larger than 3.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
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collect it) ; IT refers to (and (> i 3) 1i).
= (45 6)

;; Find a number in a list.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
return it)
= 4

;3 The above example is similar to the following one.
(loop for i in (1 2 3 4 5 6)
thereis (and (> i 3) 1))
= 4

;; Nest conditional clauses.
(let ((list ’(0 3.0 apple 4 5 9.8 orange banana)))
(loop for i in list
when (numberp i)
when (floatp i)
collect i into float-numbers
else ; Not (floatp i)
collect i into other—numbers
else ; Not (numberp i)
when (symbolp i)
collect i into symbol-list
else ; Not (symbolp i)
do (error "found a funny value in list ~S, value ~S~
finally (return (values float-numbers other-numbers symbol-list))))]]
= (3.0 9.8), (0 4 5), (APPLE ORANGE BANANA)

;3 Without the END preposition, the last AND would apply to the
;; inner IF rather than the outer one.
(loop for x from O to 3

do (print x)

if (zerop (mod x 2))

do (princ " a")
and if (zerop (floor x 2))
do (princ " b")

end
and do (princ " c"))
[> 0 abec
[> 1
[> 2 ac
[> 3
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6.1.9 Notes about Loop

Types can be supplied for loop variables. It is not necessary to supply a type for any variable,
but supplying the type can ensure that the variable has a correctly typed initial value, and
it can also enable compiler optimizations (depending on the implementation).

The clause repeat n ... is roughly equivalent to a clause such as
(loop for internal-variable downfrom (- n 1) to O ...)
but in some implementations, the repeat construct might be more efficient.

Within the executable parts of the loop clauses and around the entire loop form, variables
can be bound by using let.

Use caution when using a variable named IT (in any package) in connection with loop,
since it is a loop keyword that can be used in place of a form in certain contexts.

There is
no

standardized mechanism for users to add extensions to loop.

6.2 Iteration Dictionary

6.2.1 do, do* [Macro]

do ({var | (var [init-form [step-form|])}*) (end-test-form {result-form}*) {declaration}*
{tag | statement}*
= {result}*

dox ({war | (wvar [init-form [step-form|])}*) (end-test-form {result-form}*)
{declaration}* {tag | statement}*
= {result}*

Arguments and Values::

var—a symbol.
init-form—a form.
step-form—a, form.
end-test-form—a form.
result-forms—an implicit progn.
declaration—a declare expression; not evaluated.
tag—a go tag; not evaluated.
statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form;
otherwise, the values returned by the result-forms.

Description::

do iterates over a group of statements while a test condition holds. do accepts an arbitrary
number of iteration vars which are bound within the iteration and stepped in parallel. An
initial value may be supplied for each iteration variable by use of an init-form. Step-forms
may be used to specify how the vars should be updated on succeeding iterations through
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the loop. Step-forms may be used both to generate successive values or to accumulate
results. If the end-test-form condition is met prior to an execution of the body, the iteration
terminates. Tags label statements.

do* is exactly like do except that the bindings and steppings of the vars are performed
sequentially rather than in parallel.

Before the first iteration, all the init-forms are evaluated, and each var is bound to the
value of its respective init-form, if supplied. This is a binding, not an assignment; when
the loop terminates, the old values of those variables will be restored. For do, all of the
init-forms are evaluated before any wvar is bound. The init-forms can refer to the bindings
of the vars visible before beginning execution of do. For do*, the first init-form is evaluated,
then the first var is bound to that value, then the second init-form is evaluated, then the
second war is bound, and so on; in general, the kth init-form can refer to the new binding
of the jth var if j < k, and otherwise to the old binding of the jth var.

At the beginning of each iteration, after processing the variables, the end-test-form is
evaluated. If the result is false, execution proceeds with the body of the do (or do*) form.
If the result is true, the result-forms are evaluated in order as an implicit progn, and then
do or do* returns.

At the beginning of each iteration other than the first, vars are updated as follows. All
the step-forms, if supplied, are evaluated, from left to right, and the resulting values are
assigned to the respective vars. Any var that has no associated step-form is not assigned
to. For do, all the step-forms are evaluated before any var is updated; the assignment of
values to vars is done in parallel, as if by psetq. Because all of the step-forms are evaluated
before any of the vars are altered, a step-form when evaluated always has access to the old
values of all the vars, even if other step-forms precede it. For do*, the first step-form is
evaluated, then the value is assigned to the first var, then the second step-form is evaluated,
then the value is assigned to the second var, and so on; the assignment of values to variables
is done sequentially, as if by setq. For either do or do*, after the vars have been updated,
the end-test-form is evaluated as described above, and the iteration continues.

The remainder of the do (or do*) form constitutes an implicit tagbody. Tags may appear
within the body of a do loop for use by go statements appearing in the body (but such
go statements may not appear in the variable specifiers, the end-test-form, or the result-
forms). When the end of a do body is reached, the next iteration cycle (beginning with the
evaluation of step-forms) occurs.

An implicit block named nil surrounds the entire do (or do*) form. A return statement
may be used at any point to exit the loop immediately.

Init-form is an initial value for the var with which it is associated. If init-form is
omitted, the initial value of var is nil. If a declaration is supplied for a var, init-form must
be consistent with the declaration.

Declarations can appear at the beginning of a do (or do*) body. They apply to code
in the do (or do*) body, to the bindings of the do (or do*) vars, to the step-forms, to the
end-test-form, and to the result-forms.

Examples::

(do ((temp-one 1 (1+ temp-one))
(temp-two O (1- temp-two)))
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((> (- temp-one temp-two) 5) temp-one)) = 4

(do ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) = 3

(do* ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) = 2

(do ((j O (+ 3 1))

(nil) ;Do forever.
(format t "~
(let ((item (read)))
(if (null item) (return) ;Process items until NIL seen.

(format t "“&0Output “D: ~S" j item))))
[> Input O: [>>banana<<|
> Output 0: BANANA
[> Input 1: [>>(57 boxes)<<]|
|> Output 1: (57 BOXES)
[> Input 2: [>>NIL<<|
= NIL

(setq a-vector (vector 1 nil 3 nil))

(do ((i 0 (+ i 1)) ;Sets every null element of a-vector to zero.
(n (array-dimension a-vector 0)))
((=1imn))

(when (null (aref a-vector 1i))
(setf (aref a-vector i) 0))) = NIL
a-vector = #(1 0 3 0)

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

is an example of parallel assignment to index variables. On the first iteration, the value
of oldx is whatever value x had before the do was entered. On succeeding iterations, oldx
contains the value that x had on the previous iteration.
(do ((x foo (cdr x))
(y bar (cdr y))
(z > (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))
does the same thing as (mapcar #’f foo bar). The step computation for z is an
example of the fact that variables are stepped in parallel. Also, the body of the loop is
empty.

(defun list-reverse (list)
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(do ((x 1list (cdr x))
(y O (cons (car x) y)))
((endp x) y)))

As an example of nested iterations, consider a data structure that is a list of conses.
The car of each cons is a list of symbols, and the cdr of each cons is a list of equal length
containing corresponding values. Such a data structure is similar to an association list, but
is divided into “frames”; the overall structure resembles a rib-cage. A lookup function on
such a data structure might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((null r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v)))))) = RIBCAGE-LOOKUPJ

See Also::

other iteration functions ( (undefined) [dolist], page (undefined), , (undefined) [dotimes],
page (undefined), , and (undefined) [loop], page (undefined), ) and more primitive func-
tionality ( (undefined) [tagbody], page (undefined), , (undefined) [go], page (undefined), ,
(undefined) [block], page (undefined), , (undefined) [return], page (undefined), ,

(undefined) [let], page (undefined), , and (undefined) [setq], page (undefined), )

Notes::

If end-test-form is nil, the test will never succeed. This provides an idiom for “do forever”:
the body of the do or do* is executed repeatedly. The infinite loop can be terminated by
the use of return, return-from, go to an outer level, or throw.

A do form may be explained in terms of the more primitive forms block, return, let,
loop, tagbody, and psetq as follows:

(block nil
(let ((varl init1l)
(var2 init?2)

(varn initn))
declarations
(loop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

\.féén stepn))))

do* is similar, except that let* and setq replace the let and psetq, respectively.
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6.2.2 dotimes [Macro]

dotimes (var count-form [result-form]) {declaration}* {tag | statement}*
= {result}*

Arguments and Values::

var—a, symbol.
count-form—a form.
result-form—a form.
declaration—a declare expression; not evaluated.
tag—a go tag; not evaluated.
statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form;
otherwise, the values returned by the result-form or nil if there is no result-form.

Description::
dotimes iterates over a series of integers.

dotimes evaluates count-form, which should produce an integer. If count-form is zero or
negative, the body is not executed. dotimes then executes the body once for each integer
from O up to but not including the value of count-form, in the order in which the tags and
statements occur, with var bound to each integer. Then result-form is evaluated. At the
time result-form is processed, var is bound to the number of times the body was executed.
Tags label statements.

An implicit block named nil surrounds dotimes. return may be used to terminate the
loop immediately without performing any further iterations, returning zero or more values.

The body of the loop is an implicit tagbody; it may contain tags to serve as the targets
of go statements. Declarations may appear before the body of the loop.

The scope of the binding of var does not include the count-form, but the result-form is
included.

It is implementation-dependent whether dotimes establishes a new binding of var on
each iteration or whether it establishes a binding for var once at the beginning and then
assigns it on any subsequent iterations.

Examples::

(dotimes (temp-one 10 temp-one)) = 10

(setq temp-two 0) = O

(dotimes (temp-one 10 t) (incf temp-two)) = T
temp-two = 10

Here is an example of the use of dotimes in processing strings:

;55 True if the specified subsequence of the string is a
;55 palindrome (reads the same forwards and backwards).
(defun palindromep (string &optional

(start 0)

(end (length string)))
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(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))
(char string (- end k 1)))
(return nil))))
(palindromep "Able was I ere I saw Elba") = T
(palindromep "A man, a plan, a canal--Panama!") = NIL
(remove-if-not #’alpha-char-p ;Remove punctuation.
"A man, a plan, a canal--Panama!")
= "AmanaplanacanalPanama"
(palindromep
(remove-if-not #’alpha-char-p
"A man, a plan, a canal--Panama!")) = T
(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) = T
(palindromep
(remove-if-not
#’alpha-char-p
"A man, a plan, a cat, a ham, a yak,
a yam, a hat, a canal--Panama!")) = T

See Also::

(undefined) [do], page (undefined), , (undefined) [dolist], page (undefined), , (undefined)
[tagbody], page (undefined),

Notes::

go may be used within the body of dotimes to transfer control to a statement labeled by a
tag.
6.2.3 dolist [Macro]

dolist (var list-form [result-form]) {declaration}* {tag | statement}*
= {result}*

Arguments and Values::
var—a symbol.
list-form—a form.
result-form—a form.
declaration—a declare expression; not evaluated.
tag—a go tag; not evaluated.
statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form;
otherwise, the values returned by the result-form or mil if there is no result-form.
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Description::
dolist iterates over the elements of a list. The body of dolist is like a tagbody. It consists
of a series of tags and statements.

dolist evaluates list-form, which should produce a list. It then executes the body once
for each element in the list, in the order in which the tags and statements occur, with var
bound to the element. Then result-form is evaluated. tags label statements.

At the time result-form is processed, var is bound to nil.

An implicit block named nil surrounds dolist. return may be used to terminate the loop
immediately without performing any further iterations, returning zero or more values.

The scope of the binding of var does not include the list-form, but the result-form is
included.

It is implementation-dependent whether dolist establishes a new binding of var on each
iteration or whether it establishes a binding for var once at the beginning and then assigns
it on any subsequent iterations.

Examples::

(setq temp-two ’()) = NIL
(dolist (temp-one ’(1 2 3 4) temp-two) (push temp-one temp-two)) = (4 3 2 1)}

(setq temp-two 0) = O
(dolist (temp-one ’(1 2 3 4)) (incf temp-two)) = NIL
temp-two = 4

(dOliSt (X ’(a b ¢ d)) (prlnl x) (princ " ll))
[> ABCD
= NIL

See Also::

(undefined) [do], page (undefined), , (undefined) [dotimes], page (undefined), , (undefined)
[tagbody], page (undefined), ,

(undefined) [Traversal Rules and Side Effects], page (undefined),

Notes::

go may be used within the body of dolist to transfer control to a statement labeled by a
tag.

6.2.4 loop [Macro]

The “simple” loop form:
loop {compound-form}* = {result}*
The “extended” loop form:
loop [/name-clause] {lvariable-clause}* {!main-clause}* = {result}*
name-clause ::=named name

variable-clause ::=!with-clause | linitial-final | !for-as-clause
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with-clause ::=with varl [type-spec| [= form1] {and var2 [type-spec] [= form2]}*

main-clause ::=lunconditional | laccumulation | !conditional | termination-test | linitial-finall}

initial-final ::=initially {compound-form}~+ | £inally {compound-form} +

unconditional ::={do | doing} {compound-form}~+ | return {form | it}

accumulation ::=!list-accumulation | !numeric-accumulation

list-accumulation ::={collect | collecting | append | appending | nconc | nconcing} {form | it} |}
[into simple-var]

numeric-accumulation ::={count | counting | sum | summing | } maximize | maximizing | minimize
[into simple-var] [type-spec]

conditional ::={if | when | unless} form !selectable-clause {and !selectable-clause}*
[else !selectable-clause {and !selectable-clause}*] [end]

selectable-clause ::=!unconditional | 'accumulation | !conditional

termination-test ::=while form | until form | repeat form | always form | never form | thereis for

for-as-clause ::={for | as} !for-as-subclause {and !for-as-subclause}*

for-as-subclause ::=!for-as-arithmetic | !for-as-in-list | for-as-on-list | |for-as-equals-then ||}
for-as-across | for-as-hash | !for-as-package

for-as-arithmetic ::=var [type-spec] | for-as-arithmetic-subclause

for-as-arithmetic-subclause ::=!arithmetic-up | 'arithmetic-downto | !arithmetic-downfrom]j

arithmetic-up ::=[[{from | upfrom} form1 | {to | upto | below} form2 | by form3]]"+}

arithmetic-downto ::=[[{from form1}~1 | {{downto | above} form2}~1 | by form3]]

arithmetic-downfrom ::=[[{downfrom form1}~1 | {to | downto | above} form2 | by form3]j

for-as-in-list ::=var [type-spec] in form1 [by step-fun]

for-as-on-list ::=var [type-spec] on form1 [by step-fun]

for-as-equals-then ::=var [type-spec] = form1 [then form2]

for-as-across ::=var [type-spec] across vector

for-as-hash ::=var [type-spec| being {each | the} {{hash-key | hash-keys} {in | of} hash-table |j
[using (hash-value other-var)] |  {hash-value | hash-values} {in | of} hash-table
[using (hash-key other-var)|}

for-as-package ::=var [type-spec| being {each | the} {symbol | symbols |
present-symbol | present-symbols | external-symbol | external-symbols}
[{in | of} package]

type-spec ::=lsimple-type-spec | !destructured-type-spec
simple-type-spec ::=fixnum | float | t | nil
destructured-type-spec ::=of-type d-type-spec

d-type-spec :=type-specifier | (d-type-spec . d-type-spec)

var ::=!d-var-spec

varl ::=!d-var-spec
var2 :=!d-var-spec
other-var ::=!d-var-spec

d-var-spec ::=simple-var | nil | (!d-var-spec . !d-var-spec)
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Arguments and Values::
compound-form—a compound form.
name—a symbol.
simple-var—a symbol (a variable name).
form, forml1, form2, form38—a form.
step-fun—a form that evaluates to a function of one argument.
vector—a form that evaluates to a vector
hash-table—a form that evaluates to a hash table.
package—a form that evaluates to a package designator.

type-specifier—a type specifier. This might be either an atomic type specifier or a com-
pound type specifier, which introduces some additional complications to proper parsing in
the face of destructuring; for further information, see (undefined) [Destructuring], page (un-
defined).

result—an object.

Description::
For details, see (undefined) [The LOOP Facility], page (undefined).

Examples::

;3 An example of the simple form of LOOP.
(defun sqrt-advisor ()
(loop (format t "“&Number: ")
(let ((n (parse-integer (read-line) :junk-allowed t)))
(when (not n) (return))
(format t ""&The square root of "D is “D."%" n (sqrt n)))))
= SQRT-ADVISOR
(sqrt-advisor)
[> Number: [>>5 [<--"]1<K<]
|> The square root of 5 is 2.236068.
|> Number: [>>4 [<--"]<<|
|> The square root of 4 is 2.
> Number: |>>done [<--"]<<]|
= NIL

;; An example of the extended form of LOOP.
(defun square-advisor ()
(loop as n = (progn (format t "“&Number: ")
(parse-integer (read-line) :junk-allowed t))
while n
do (format t ""&The square of "D is "D.
= SQUARE-ADVISOR
(square-advisor)
[> Number: [>>4 [<--"]<<]
|> The square of 4 is 16.
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[> Number: [>>23 [<--"]<<|

|> The square of 23 is 529.

[> Number: |>>done [<--"]1<<|
= NIL

;3 Another example of the extended form of LOOP.
(loop for n from 1 to 10
when (oddp n)
collect n)
= (13579

See Also::

(undefined) [do], page (undefined), , (undefined) [dolist], page (undefined), , (undefined)
[dotimes], page (undefined), , (undefined) [return], page (undefined), , (undefined) [go],
page (undefined), , (undefined) [throw]|, page (undefined), , (undefined) [Destructuring],
page (undefined),

Notes::
Except that loop-finish cannot be used within a simple loop form, a simple loop form is
related to an extended loop form in the following way:

(loop {compound-form}*) = (loop do {compound-form}*)
6.2.5 loop-finish [Local Macro]

Syntax::

loop-finish <no arguments> = #<NoValue>

Description::

The loop-finish macro can be used lexically within an extended loop form to terminate that
form “normally.” That is, it transfers control to the loop epilogue of the lexically innermost
extended loop form. This permits execution of any finally clause (for effect) and the return
of any accumulated result.

Examples::

;; Terminate the loop, but return the accumulated count.
(loop for i in ’(1 2 3 stop-here 4 5 6)
when (symbolp i) do (loop-finish)
count i)
= 3

;3 The preceding loop is equivalent to:
(loop for i in ’(1 2 3 stop-here 4 5 6)
until (symbolp i)
count i)
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;3 While LOOP-FINISH can be used can be used in a variety of
;; Situations it is really most needed in a situation where a need
;; to exit is detected at other than the loop’s ‘top level’
;; (where UNTIL or WHEN often work just as well), or where some
;; computation must occur between the point where a need to exit is
;; detected and the point where the exit actually occurs. For example:
(defun tokenize-sentence (string)
(macrolet ((add-word (wvar svar)
‘(when ,wvar
(push (coerce (nreverse ,wvar) ’string) ,svar)
(setq ,wvar nil))))
(loop with word = ’() and sentence = ’() and endpos = nil
for i below (length string)
do (let ((char (aref string i)))
(case char
(#\Space (add-word word sentence))
(#\. (setq endpos (1+ i)) (loop-finish))
(otherwise (push char word))))
finally (add-word word sentence)

(return (values (nreverse sentence) endpos)))))
= TOKENIZE-SENTENCE

(tokenize-sentence "this is a sentence. this is another sentence.")
= ("this" "is" "a" "sentence"), 19

(tokenize-sentence "this is a sentence")
= ("this" "is" "a" "sentence"), NIL

Side Effects::

Transfers control.

Exceptional Situations::

Whether or not loop-finish is fbound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of loop-finish are the same as for
symbols in the COMMON-LISP package which are fbound in the global environment. The
consequences of attempting to use loop-finish outside of loop are undefined.

See Also::
(undefined) [loop], page (undefined), , (undefined) [The LOOP Facility], page (undefined),

Notes::






331

7 Objects

7.1 Object Creation and Initialization

The generic function make-instance creates and returns a new instance of a class. The
first argument is a class or the mame of a class, and the remaining arguments form an
iatialization argument list .

The initialization of a new instance consists of several distinct steps, including the follow-
ing: combining the explicitly supplied initialization arguments with default values for the
unsupplied initialization arguments, checking the validity of the initialization arguments,
allocating storage for the instance, filling slots with values, and executing user-supplied
methods that perform additional initialization. Each step of make-instance is implemented
by a generic function to provide a mechanism for customizing that step. In addition,
make-instance is itself a generic function and thus also can be customized.

The object system specifies system-supplied primary methods for each step and thus
specifies a well-defined standard behavior for the entire initialization process. The standard
behavior provides four simple mechanisms for controlling initialization:

* Declaring a symbol to be an initialization argument for a slot. An initializa-
tion argument is declared by using the :initarg slot option to defclass. This
provides a mechanism for supplying a value for a slot in a call to make-instance.

* Supplying a default value form for an initialization argument. Default value
forms for initialization arguments are defined by using the :default-initargs
class option to defclass. If an initialization argument is not explicitly provided
as an argument to make-instance, the default value form is evaluated in the
lexical environment of the defclass form that defined it, and the resulting value
is used as the value of the initialization argument.

* Supplying a default initial value form for a slot. A default initial value form
for a slot is defined by using the :initform slot option to defclass. If no
initialization argument associated with that slot is given as an argument to
make-instance or is defaulted by :default-initargs, this default initial value
form is evaluated in the lexical environment of the defclass form that defined it,
and the resulting value is stored in the slot. The :initform form for a local slot
may be used when creating an instance, when updating an instance to conform
to a redefined class, or when updating an instance to conform to the definition
of a different class. The :initform form for a shared slot may be used when
defining or re-defining the class.

* Defining methods for initialize-instance and shared-initialize. The slot-filling be-
havior described above is implemented by a system-supplied primary method for
initialize-instance which invokes shared-initialize. The generic function shared-
initialize implements the parts of initialization shared by these four situations:
when making an instance, when re-initializing an instance, when updating an
instance to conform to a redefined class, and when updating an instance to
conform to the definition of a different class. The system-supplied primary
method for shared-initialize directly implements the slot-filling behavior de-
scribed above, and initialize-instance simply invokes shared-initialize.
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7.1.1 Initialization Arguments

An initialization argument controls object creation and initialization. It is often convenient
to use keyword symbols to name initialization arguments, but the name of an initialization
argument can be any symbol, including nil. An initialization argument can be used in two
ways: to fill a slot with a value or to provide an argument for an initialization method. A
single initialization argument can be used for both purposes.

An initialization argument list is a property list of initialization argument names and
values. Its structure is identical to a property list and also to the portion of an argument list
processed for &key parameters. As in those lists, if an initialization argument name appears
more than once in an initialization argument list, the leftmost occurrence supplies the value
and the remaining occurrences are ignored. The arguments to make-instance (after the first
argument) form an initialization argument list.

An initialization argument can be associated with a slot. If the initialization argument
has a value in the initialization argument list, the value is stored into the slot of the newly
created object, overriding any :initform form associated with the slot. A single initializa-
tion argument can initialize more than one slot. An initialization argument that initializes
a shared slot stores its value into the shared slot, replacing any previous value.

An initialization argument can be associated with a method. When an object is created
and a particular initialization argument is supplied, the generic functions initialize-instance,
shared-initialize, and allocate-instance are called with that initialization argument’s name
and value as a keyword argument pair. If a value for the initialization argument is not
supplied in the initialization argument list, the method’s lambda list supplies a default
value.

Initialization arguments are used in four situations: when making an instance, when
re-initializing an instance, when updating an instance to conform to a redefined class, and
when updating an instance to conform to the definition of a different class.

Because initialization arguments are used to control the creation and initialization of an
instance of some particular class, we say that an initialization argument is “an initialization
argument for” that class.

7.1.2 Declaring the Validity of Initialization Arguments

Initialization arguments are checked for validity in each of the four situations that use them.
An initialization argument may be valid in one situation and not another. For example,
the system-supplied primary method for make-instance defined for the class standard-class
checks the validity of its initialization arguments and signals an error if an initialization
argument is supplied that is not declared as valid in that situation.

There are two means for declaring initialization arguments valid.

* Initialization arguments that fill slots are declared as valid by the :initarg
slot option to defclass. The :initarg slot option is inherited from superclasses.
Thus the set of valid initialization arguments that fill slots for a class is the
union of the initialization arguments that fill slots declared as valid by that
class and its superclasses. Initialization arguments that fill slots are valid in all
four contexts.

* Initialization arguments that supply arguments to methods are declared as valid
by defining those methods. The keyword name of each keyword parameter
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specified in the method’s lambda list becomes an initialization argument for all
classes for which the method is applicable.

The presence of &allow-other-keys in the lambda list of an applicable method
disables validity checking of initialization arguments.

Thus method inheritance controls the set of valid initialization arguments that
supply arguments to methods. The generic functions for which method defini-
tions serve to declare initialization arguments valid are as follows:

— Making an instance of a class: allocate-instance, initialize-instance,
and shared-initialize. Initialization arguments declared as valid by
these methods are valid when making an instance of a class.

— Re-initializing an instance: reinitialize-instance and shared-
initialize. Initialization arguments declared as valid by these
methods are valid when re-initializing an instance.

- Updating an instance to conform to a redefined class: update-
instance-for-redefined-class and shared-initialize. Initialization ar-
guments declared as valid by these methods are valid when updating
an instance to conform to a redefined class.

- Updating an instance to conform to the definition of a different
class: update-instance-for-different-class and shared-initialize. Ini-
tialization arguments declared as valid by these methods are valid
when updating an instance to conform to the definition of a differ-
ent class.

The set of valid initialization arguments for a class is the set of valid initialization
arguments that either fill slots or supply arguments to methods, along with the predefined
initialization argument :allow-other-keys. The default value for :allow-other-keys is
nil.

Validity checking of initialization arguments is disabled if the value of the initialization
argument :allow-other-keys is true.

7.1.3 Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by using the
:default-initargs class option. If an initialization argument is declared valid by some
particular class, its default value form might be specified by a different class. In this
case :default-initargs is used to supply a default value for an inherited initialization
argument.

The :default-initargs option is used only to provide default values for initialization
arguments; it does not declare a symbol as a valid initialization argument name. Further-
more, the :default-initargs option is used only to provide default values for initialization
arguments when making an instance.

The argument to the :default-initargs class option is a list of alternating initialization
argument names and forms. Each form is the default value form for the corresponding
initialization argument. The default value form of an initialization argument is used and
evaluated only if that initialization argument does not appear in the arguments to make-
instance and is not defaulted by a more specific class. The default value form is evaluated
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in the lexical environment of the defclass form that supplied it; the resulting value is used
as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with defaulted
initialization arguments to produce a defaulted initialization argument list. A defaulted
wniatialization argument list is a list of alternating initialization argument names and values in
which unsupplied initialization arguments are defaulted and in which the explicitly supplied
initialization arguments appear earlier in the list than the defaulted initialization arguments.
Defaulted initialization arguments are ordered according to the order in the class precedence
list of the classes that supplied the default values.

There is a distinction between the purposes of the :default-initargs and the
:initform options with respect to the initialization of slots. The :default-initargs
class option provides a mechanism for the user to give a default value form for an
initialization argument without knowing whether the initialization argument initializes a
slot or is passed to a method. If that initialization argument is not explicitly supplied in
a call to make-instance, the default value form is used, just as if it had been supplied
in the call. In contrast, the :initform slot option provides a mechanism for the user to
give a default initial value form for a slot. An :initform form is used to initialize a slot
only if no initialization argument associated with that slot is given as an argument to
make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments and the order
of evaluation of :initform forms are undefined. If the order of evaluation is important,
initialize-instance or shared-initialize methods should be used instead.

7.1.4 Rules for Initialization Arguments

The :initarg slot option may be specified more than once for a given slot.

The following rules specify when initialization arguments may be multiply defined:

* A given initialization argument can be used to initialize more than one slot if
the same initialization argument name appears in more than one :initarg slot
option.

* A given initialization argument name can appear in the lambda list of more

than one initialization method.

* A given initialization argument name can appear both in an :initarg slot
option and in the lambda list of an initialization method.

[Reviewer Note by The next three paragraphs could be replaced by “If two or more
initialization arguments that initialize the same slot appear in the defaulted initialization
argument list, the leftmost of these supplies the value, even if they have different names.”
And the rest would follow from the rules above.]

If two or more initialization arguments that initialize the same slot are given in the argu-
ments to make-instance, the leftmost of these initialization arguments in the initialization
argument list supplies the value, even if the initialization arguments have different names.

If two or more different initialization arguments that initialize the same slot have default
values and none is given explicitly in the arguments to make-instance, the initialization
argument that appears in a :default-initargs class option in the most specific of the
classes supplies the value. If a single :default-initargs class option specifies two or
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more initialization arguments that initialize the same slot and none is given explicitly in the
arguments to make-instance, the leftmost in the :default-initargs class option supplies
the value, and the values of the remaining default value forms are ignored.

Initialization arguments given explicitly in the arguments to make-instance appear to the
left of defaulted initialization arguments. Suppose that the classes C_1 and C_2 supply the
values of defaulted initialization arguments for different slots, and suppose that C_1 is more
specific than C_2; then the defaulted initialization argument whose value is supplied by C_1
is to the left of the defaulted initialization argument whose value is supplied by C_2 in the
defaulted initialization argument list. If a single :default-initargs class option supplies
the values of initialization arguments for two different slots, the initialization argument
whose value is specified farther to the left in the :default-initargs class option appears
farther to the left in the defaulted initialization argument list.

[Reviewer Note by Barmar: End of claim made three paragraphs back.]

If a slot has both an :initform form and an :initarg slot option, and the initializa-
tion argument is defaulted using :default-initargs or is supplied to make-instance, the
captured :initform form is neither used nor evaluated.

The following is an example of the above rules:

(defclass q O ((x :initarg a)))
(defclass r (q) ((x :initarg b))
(:default-initargs a 1 b 2))

Defaulted
Form Initialization Argument List Contents of Slot X |j
(make-instance ’r) (al1b?2) 1 [ |
(make-instance ’r ’a 3) (a3b2) 3 |
(make-instance ’r ’b 4) (b 4 a1l) 4 [ |
(make-instance ’r a1 ’a 2) (a1l a2b2) 1 [ |

7.1.5 Shared-Initialize

The generic function shared-initialize is used to fill the slots of an instance using initial-
ization arguments and :initform forms when an instance is created, when an instance is
re-initialized, when an instance is updated to conform to a redefined class, and when an
instance is updated to conform to a different class. It uses standard method combination.
It takes the following arguments: the instance to be initialized, a specification of a set of
names of slots accessible in that instance, and any number of initialization arguments. The
arguments after the first two must form an initialization argument list.

The second argument to shared-initialize may be one of the following:

* It can be a (possibly empty) list of slot names, which specifies the set of those
slot names.
* It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose first parame-
ter specializer is the class standard-object. This method behaves as follows on each slot,
whether shared or local:
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* If an initialization argument in the initialization argument list specifies a value
for that slot, that value is stored into the slot, even if a value has already been
stored in the slot before the method is run. The affected slots are independent
of which slots are indicated by the second argument to shared-initialize.

* Any slots indicated by the second argument that are still unbound at this point
are initialized according to their :initform forms. For any such slot that has
an :initform form, that form is evaluated in the lexical environment of its
defining defclass form and the result is stored into the slot. For example, if
a before method stores a value in the slot, the :initform form will not be
used to supply a value for the slot. If the second argument specifies a name
that does not correspond to any slots accesstble in the instance, the results are
unspecified.

* The rules mentioned in (undefined) [Rules for Initialization Arguments],
page (undefined), are obeyed.

The generic function shared-initialize is called by the system-supplied primary methods
for reinitialize-instance, update-instance-for-different-class, update-instance-for-redefined-
class, and initialize-instance. Thus, methods can be written for shared-initialize to specify
actions that should be taken in all of these contexts.

7.1.6 Initialize-Instance

The generic function initialize-instance is called by make-instance to initialize a newly
created instance. It uses standard method combination. Methods for initialize-instance can
be defined in order to perform any initialization that cannot be achieved simply by supplying
initial values for slots.

During initialization, initialize-instance is invoked after the following actions have been
taken:

* The defaulted initialization argument list has been computed by combining the
supplied initialization argument list with any default initialization arguments
for the class.

* The validity of the defaulted initialization argument list has been checked. If
any of the initialization arguments has not been declared as valid, an error is
signaled.

* A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance and the defaulted
initialization arguments. There is a system-supplied primary method for initialize-instance
whose parameter specializer is the class standard-object. This method calls the generic
function shared-initialize to fill in the slots according to the initialization arguments and
the :initform forms for the slots; the generic function shared-initialize is called with the
following arguments: the instance, t, and the defaulted initialization arguments.

Note that initialize-instance provides the defaulted initialization argument list in its call
to shared-initialize, so the first step performed by the system-supplied primary method for
shared-initialize takes into account both the initialization arguments provided in the call to
make-instance and the defaulted initialization argument list.
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Methods for initialize-instance can be defined to specify actions to be taken when an
instance is initialized. If only after methods for initialize-instance are defined, they will
be run after the system-supplied primary method for initialization and therefore will not
interfere with the default behavior of initialize-instance.

The object system provides two functions that are useful in the bodies of initialize-
instance methods. The function slot-boundp returns a generic boolean value that indicates
whether a specified slot has a value; this provides a mechanism for writing after methods
for initialize-instance that initialize slots only if they have not already been initialized. The
function slot-makunbound causes the slot to have no value.

7.1.7 Definitions of Make-Instance and Initialize-Instance

The generic function make-instance behaves as if it were defined as follows, except that
certain optimizations are permitted:

(defmethod make-instance ((class standard-class) &rest initargs)

(let ((instance (apply #’allocate-instance class initargs)))
(apply #’initialize-instance instance initargs)
instance))

(defmethod make-instance ((class-name symbol) &rest initargs)
(apply #’make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance augments the initargs with any de-
faulted initialization arguments and checks the resulting initialization arguments to deter-
mine whether an initialization argument was supplied that neither filled a slot nor supplied
an argument to an applicable method.

The generic function initialize-instance behaves as if it were defined as follows, except
that certain optimizations are permitted:

(defmethod initialize-instance ((instance standard-object) &rest initargs)fi
(apply #’shared-initialize instance t initargs)))

These procedures can be customized.

Customizing at the Programmer Interface level includes using the :initform,
:initarg, and :default-initargs options to defclass, as well as defining methods for
make-instance, allocate-instance, and initialize-instance. It is also possible to define
methods for shared-initialize, which would be invoked by the generic functions reinitialize-
instance, update-instance-for-redefined-class, update-instance-for-different-class, and
initialize-instance. The meta-object level supports additional customization.

Implementations are permitted to make certain optimizations to initialize-instance and
shared-initialize. The description of shared-initialize in Chapter~7 mentions the possible
optimizations.

7.2 Changing the Class of an Instance

The function change-class can be used to change the class of an instance from its current
class, C_{from}, to a different class, C_{to}; it changes the structure of the instance to
conform to the definition of the class C_{to}.
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Note that changing the class of an instance may cause slots to be added or deleted.
Changing the class of an instance does not change its identity as defined by the eq function.

When change-class is invoked on an instance, a two-step updating process takes place.
The first step modifies the structure of the instance by adding new local slots and discarding
local slots that are not specified in the new version of the instance. The second step initializes
the newly added local slots and performs any other user-defined actions. These two steps
are further described in the two following sections.

7.2.1 Modifying the Structure of the Instance

In order to make the instance conform to the class C_{to}, local slots specified by the class
C_{to} that are not specified by the class C_{from} are added, and local slots not specified
by the class C_{to} that are specified by the class C_{from} are discarded.

The values of local slots specified by both the class C_{to} and the class C_{from} are
retained. If such a local slot was unbound, it remains unbound.

The values of slots specified as shared in the class C_{from} and as local in the class
C_{to} are retained.

This first step of the update does not affect the values of any shared slots.

7.2.2 Initializing Newly Added Local Slots

The second step of the update initializes the newly added slots and performs any other
user-defined actions. This step is implemented by the generic function update-instance-
for-different-class. The generic function update-instance-for-different-class is invoked by
change-class after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on arguments com-
puted by change-class. The first argument passed is a copy of the instance being updated
and is an instance of the class C_{from}; this copy has dynamic extent within the generic
function change-class. The second argument is the instance as updated so far by change-
class and is an instance of the class C_{to}. The remaining arguments are an initialization
argument list.

There is a system-supplied primary method for update-instance-for-different-class that
has two parameter specializers, each of which is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an initialization ar-
gument is supplied that is not declared as valid. (For more information, see (undefined)
[Declaring the Validity of Initialization Arguments], page (undefined).) Then it calls the
generic function shared-initialize with the following arguments: the new instance, a list of
names of the newly added slots, and the initialization arguments it received.

7.2.3 Customizing the Change of Class of an Instance

Methods for update-instance-for-different-class may be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-different-class
are defined, they will be run after the system-supplied primary method for initialization and
will not interfere with the default behavior of update-instance-for-different-class.

Methods for shared-initialize may be defined to customize class redefinition. For more
information, see (undefined) [Shared-Initialize], page (undefined).
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7.3 Reinitializing an Instance

The generic function reinitialize-instance may be used to change the values of slots according
to initialization arguments.

The process of reinitialization changes the values of some slots and performs any user-
defined actions. It does not modify the structure of an instance to add or delete slots, and
it does not use any :initform forms to initialize slots.

The generic function reinitialize-instance may be called directly. It takes one required
argument, the instance. It also takes any number of initialization arguments to be used by
methods for reinitialize-instance or for shared-initialize. The arguments after the required
instance must form an initialization argument list.

There is a system-supplied primary method for reinitialize-instance whose parameter
specializer is the class standard-object. First this method checks the validity of initialization
arguments and signals an error if an initialization argument is supplied that is not declared
as valid. (For more information, see (undefined) [Declaring the Validity of Initialization
Arguments|, page (undefined).) Then it calls the generic function shared-initialize with the
following arguments: the instance, nil, and the initialization arguments it received.

7.3.1 Customizing Reinitialization

Methods for reinitialize-instance may be defined to specify actions to be taken when an
instance is updated. If only after methods for reinitialize-instance are defined, they will
be run after the system-supplied primary method for initialization and therefore will not
interfere with the default behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefinition. For more
information, see (undefined) [Shared-Initialize|, page (undefined).

7.4 Meta-Objects

The implementation of the object system manipulates classes, methods, and generic func-
tions. The object system contains a set of generic functions defined by methods on classes;
the behavior of those generic functions defines the behavior of the object system. The
instances of the classes on which those methods are defined are called meta-objects.

7.4.1 Standard Meta-objects

The object system supplies a set of meta-objects, called standard meta-objects. These
include the class standard-object and instances of the classes standard-method, standard-
generic-function, and method-combination.

[Editorial Note by KMP: This is said redundantly in the definition of
STANDARD-METHOD.]

* The class standard-method is the default class of methods defined by the
defmethod and defgeneric forms.

* The class standard-generic-function is the default class of generic functions
defined by the forms defmethod, defgeneric,

and defclass.
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* The class named standard-object is an instance of the class standard-class and
is a superclass of every class that is an instance of standard-class except itself
and structure-class.

* Every method combination object is an instance of a subclass of class method-
combination.
7.5 Slots

7.5.1 Introduction to Slots

An object of metaclass standard-class has zero or more named slots. The slots of an object
are determined by the class of the object. Each slot can hold one value.

[Reviewer Note by Barmar: All symbols are valid variable names. Perhaps this means
to preclude the use of named constants? We have a terminology problem to solve.] The
name of a slot is a symbol that is syntactically valid for use as a variable name.

When a slot does not have a value, the slot is said to be unbound. When an unbound
slot is read,

[Reviewer Note by Barmar: from an object whose metaclass is standard-class?] the
generic function slot-unbound is invoked. The system-supplied primary method for slot-
unbound on class t signals an error.

If slot-unbound returns, its primary value is used that time as the value of the slot.

The default initial value form for a slot is defined by the :initform slot option. When
the :initform form is used to supply a value, it is evaluated in the lexical environment in
which the defclass form was evaluated. The :initform along with the lexical environment
in which the defclass form was evaluated is called a captured initialization form. For more
details, see (undefined) [Object Creation and Initialization], page (undefined).

A local slot is defined to be a slot that is accessible to exactly one instance, namely the
one in which the slot is allocated. A shared slot is defined to be a slot that is visible to
more than one instance of a given class and its subclasses.

A class is said to define a slot with a given name when the defclass form for that class
contains a slot specifier with that name. Defining a local slot does not immediately create
a slot; it causes a slot to be created each time an instance of the class is created. Defining
a shared slot immediately creates a slot.

The :allocation slot option to defclass controls the kind of slot that is defined. If the
value of the :allocation slot option is :instance, a local slot is created. If the value of
:allocation is :class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined by the class
of the instance or is inherited from a superclass of that class. At most one slot of a given
name can be accessible in an instance. A shared slot defined by a class is accessible in
all instances of that class. A detailed explanation of the inheritance of slots is given in
(undefined) [Inheritance of Slots and Slot Options|, page (undefined).

7.5.2 Accessing Slots

Slots can be accessed in two ways: by use of the primitive function slot-value and by use of
generic functions generated by the defclass form.
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The function slot-value can be used with any of the slot names specified in the defclass
form to access a specific slot accessible in an instance of the given class.

The macro defclass provides syntax for generating methods to read and write slots. If a
reader method is requested, a method is automatically generated for reading the value of the
slot, but no method for storing a value into it is generated. If a writer method is requested,
a method is automatically generated for storing a value into the slot, but no method for
reading its value is generated. If an accessor method is requested, a method for reading the
value of the slot and a method for storing a value into the slot are automatically generated.
Reader and writer methods are implemented using slot-value.

When a reader or writer method is specified for a slot, the name of the generic function
to which the generated method belongs is directly specified. If the name specified for the
writer method is the symbol name, the name of the generic function for writing the slot is
the symbol name, and the generic function takes two arguments: the new value and the
instance, in that order. If the name specified for the accessor method is the symbol name,
the name of the generic function for reading the slot is the symbol name, and the name of
the generic function for writing the slot is the list (setf name).

A generic function created or modified by supplying :reader, :writer, or :accessor
slot options can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot whether or not
reader or writer methods exist for that slot. When slot-value is used, no reader or writer
methods are invoked.

The macro with-slots can be used to establish a lexical environment in which specified
slots are lexically available as if they were variables. The macro with-slots invokes the
function slot-value to access the specified slots.

The macro with-accessors can be used to establish a lexical environment in which speci-
fied slots are lexically available through their accessors as if they were variables. The macro
with-accessors invokes the appropriate accessors to access the specified slots.

7.5.3 Inheritance of Slots and Slot Options

The set of the names of all slots accessible in an instance of a class C is the union of the
sets of names of slots defined by C and its superclasses. The structure of an instance is the
set of names of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines a slot with a
given slot name. If a slot is defined by a superclass of C, the slot is said to be inherited. The
characteristics of the slot are determined by the slot specifier of the defining class. Consider
the defining class for a slot S. If the value of the :allocation slot option is :instance,
then S is a local slot and each instance of C has its own slot named S that stores its own
value. If the value of the :allocation slot option is :class, then S is a shared slot, the
class that defined S stores the value, and all instances of C can access that single slot. If
the :allocation slot option is omitted, :instance is used.

In general, more than one class among C and its superclasses can define a slot with a
given name. In such cases, only one slot with the given name is accessible in an instance
of C, and the characteristics of that slot are a combination of the several slot specifiers,
computed as follows:
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* All the slot specifiers for a given slot name are ordered from most specific to
least specific, according to the order in C’s class precedence list of the classes
that define them. All references to the specificity of slot specifiers immediately
below refers to this ordering.

* The allocation of a slot is controlled by the most specific slot specifier. If
the most specific slot specifier does not contain an :allocation slot option,
:instance is used. Less specific slot specifiers do not affect the allocation.

* The default initial value form for a slot is the value of the :initform slot option
in the most specific slot specifier that contains one. If no slot specifier contains
an :initform slot option, the slot has no default initial value form.

* The contents of a slot will always be of type (and T_1 ... T_n) where T_1
T_n are the values of the :type slot options contained in all of the slot
specifiers. If no slot specifier contains the :type slot option, the contents of the
slot will always be of type t. The consequences of attempting to store in a slot
a value that does not satisfy the type of the slot are undefined.

* The set of initialization arguments that initialize a given slot is the union of
the initialization arguments declared in the :initarg slot options in all the slot
specifiers.

* The documentation string for a slot is the value of the :documentation slot

option in the most specific slot specifier that contains one. If no slot specifier
contains a :documentation slot option, the slot has no documentation string.

A consequence of the allocation rule is that a shared slot can be shadowed. For example, if
a class C_1 defines a slot named S whose value for the :allocation slot option is :class,
that slot is accessible in instances of C_1 and all of its subclasses. However, if C_2 is a
subclass of C_1 and also defines a slot named S, C_1’s slot is not shared by instances of
C_2 and its subclasses. When a class C_1 defines a shared slot, any subclass C_2 of C_1
will share this single slot unless the defclass form for C_2 specifies a slot of the same name
or there is a superclass of C_2 that precedes C_1 in the class precedence list of C_2 that
defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type constraint of
each slot specifier that contributes to that slot. Because the result of attempting to store in
a slot a value that does not satisfy the type constraint for the slot is undefined, the value
in a slot might fail to satisfy its type constraint.

The :reader, :writer, and :accessor slot options create methods rather than define
the characteristics of a slot. Reader and writer methods are inherited in the sense described
in (undefined) [Inheritance of Methods|, page (undefined).

Methods that access slots use only the name of the slot and the type of the slot’s value.
Suppose a superclass provides a method that expects to access a shared slot of a given
name, and a subclass defines a local slot with the same name. If the method provided by
the superclass is used on an instance of the subclass, the method accesses the local slot.

7.6 Generic Functions and Methods
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7.6.1 Introduction to Generic Functions

A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object is associated with a set of methods, a
lambda list, a method combination_2, and other information.

Like an ordinary function, a generic function takes arguments, performs a series of
operations, and perhaps returns useful values. An ordinary function has a single body of
code that is always executed when the function is called. A generic function has a set of
bodies of code of which a subset is selected for ezecution. The selected bodies of code and
the manner of their combination are determined by the classes or identities of one or more
of the arguments to the generic function and by its method combination.

Ordinary functions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and used as the
first argument to funcall and apply.

A binding of a function name to a generic function can be established in one of several
ways. It can be established in the global environment by ensure-generic-function, defmethod
(implicitly, due to ensure-generic-function) or defgeneric (also implicitly, due to ensure-
generic-function).

No standardized mechanism is provided for establishing a binding of a function name to
a generic function in the lexical environment.

When a defgeneric form is evaluated, one of three actions is taken (due to ensure-generic-
function):

* If a generic function of the given name already exists, the existing generic
function object is modified. Methods specified by the current defgeneric form
are added, and any methods in the existing generic function that were defined
by a previous defgeneric form are removed. Methods added by the current
defgeneric form might replace methods defined by defmethod, defclass, define-
condition, or defstruct. No other methods in the generic function are affected
or replaced.

* If the given name names an ordinary function, a macro, or a special operator,
an error is signaled.

* Otherwise a generic function is created with the methods specified by the
method definitions in the defgeneric form.

Some operators permit specification of the options of a generic function, such as the type
of method combination it uses or its argument precedence order. These operators will be
referred to as “operators that specify generic function options.”

The only standardized operator in this category is defgeneric.

Some operators define methods for a generic function. These operators will be referred
to as method-defining operators ; their associated forms are called method-defining forms.
The standardized method-defining operators are listed in Figure 7-2.
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defgeneric defmethod defclass
define-condition defstruct

Figure 7-2: Standardized Method-Defining Operators

Note that of the standardized method-defining operators only defgeneric can specify
generic function options. defgeneric and any implementation-defined operators that can
specify generic function options are also referred to as “operators that specify generic func-
tion options.”

7.6.2 Introduction to Methods

Methods define the class-specific or identity-specific behavior and operations of a generic
function.

A method object is associated with code that implements the method’s behavior, a
sequence of parameter specializers that specify when the given method is applicable, a
lambda list, and a sequence of qualifiers that are used by the method combination facility
to distinguish among methods.

A method object is not a function and cannot be invoked as a function. Various mech-
anisms in the object system take a method object and invoke its method function, as is
the case when a generic function is invoked. When this occurs it is said that the method is
invoked or called.

A method-defining form contains the code that is to be run when the arguments to the
generic function cause the method that it defines to be invoked. When a method-defining
form is evaluated, a method object is created and one of four actions is taken:

* If a generic function of the given name already exists and if a method object
already exists that agrees with the new one on parameter specializers and quali-
fiers, the new method object replaces the old one. For a definition of one method
agreeing with another on parameter specializers and qualifiers, see (undefined)
[Agreement on Parameter Specializers and Qualifiers|, page (undefined).

* If a generic function of the given name already exists and if there is no method
object that agrees with the new one on parameter specializers and qualifiers, the
existing generic function object is modified to contain the new method object.

* If the given name names an ordinary function, a macro, or a special operator,
an error is signaled.

* Otherwise a generic function is created with the method specified by the
method-defining form.

If the lambda list of a new method is not congruent with the lambda list of the generic
function, an error is signaled. If a method-defining operator that cannot specify generic
function options creates a new generic function, a lambda list for that generic function
is derived from the lambda list of the method in the method-defining form in such a way
as to be congruent with it. For a discussion of congruence , see (undefined) [Congruent
Lambda-lists for all Methods of a Generic Function|, page (undefined).
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Each method has a specialized lambda list, which determines when that method can be
applied. A specialized lambda list is like an ordinary lambda list except that a specialized pa-
rameter may occur instead of the name of a required parameter. A specialized parameter is
a list (variable-name parameter-specializer-name), where parameter-specializer-name
is one of the following;:

a symbol  denotes a parameter specializer which is the class named by that symbol.
a class denotes a parameter specializer which is the class itself.

(eql form)
denotes a parameter specializer which satisfies the type specifier (eql object),
where object is the result of evaluating form. The form form is evaluated in the
lexical environment in which the method-defining form is evaluated. Note that
form is evaluated only once, at the time the method is defined, not each time
the generic function is called.

Parameter specializer names are used in macros intended as the user-level interface
(defmethod), while parameter specializers are used in the functional interface.

Only required parameters may be specialized, and there must be a parameter specializer
for each required parameter. For notational simplicity, if some required parameter in a
specialized lambda list in a method-defining form is simply a variable name, its parameter
specializer defaults to the class t.

Given a generic function and a set of arguments, an applicable method is a method
for that generic function whose parameter specializers are satisfied by their corresponding
arguments. The following definition specifies what it means for a method to be applicable
and for an argument to satisfy a parameter specializer.

Let < A_1, ..., A_n> be the required arguments to a generic function in order. Let <
P_1, ..., P_n> be the parameter specializers corresponding to the required parameters of the
method M in order. The method M is applicable when each A_i is of the type specified by
the type specifier P_i. Because every valid parameter specializer is also a valid type specifier,
the function typep can be used during method selection to determine whether an argument
satisfies a parameter specializer.

A method all of whose parameter specializers are the class t is called a default method ;
it is always applicable but may be shadowed by a more specific method.

Methods can have qualifiers, which give the method combination procedure a way to
distinguish among methods. A method that has one or more qualifiers is called a qualified
method. A method with no qualifiers is called an unqualified method. A qualifier is any
non-list. The qualifiers defined by the standardized method combination types are symbols.

In this specification, the terms “primary method” and “auziliary method” are used to par-
tition methods within a method combination type according to their intended use. In stan-
dard method combination, primary methods are unqualified methods and auziliary methods
are methods with a single qualifier that is one of :around, :before, or :after. Meth-
ods with these qualifiers are called around methods, before methods, and after methods,
respectively. When a method combination type is defined using the short form of define-
method-combination, primary methods are methods qualified with the name of the type of
method combination, and auxiliary methods have the qualifier :around. Thus the terms
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“primary method” and “auxiliary method” have only a relative definition within a given
method combination type.
7.6.3 Agreement on Parameter Specializers and Qualifiers

Two methods are said to agree with each other on parameter specializers and qualifiers if
the following conditions hold:

1. Both methods have the same number of required parameters. Suppose the
parameter specializers of the two methods are P_{1,1}... P_{1,n} and P_{2,1}...
P_{2n}.

2. For each 1<= i<= n, P_{1,i} agrees with P_{2,i}. The parameter special-

izer P_{1,i} agrees with P_{2,i} if P_{1,i} and P_{2,i} are the same class
or if P_{1,i}=(eql object_1), P_{2,i}=(eql object_2), and (eql object_1
object_2). Otherwise P_{1,i} and P_{2,i} do not agree.

3. The two lists of qualifiers are the same under equal.
7.6.4 Congruent Lambda-lists for all Methods of a Generic
Function

These rules define the congruence of a set of lambda lists, including the lambda list of each
method for a given generic function and the lambda list specified for the generic function
itself, if given.

1. Each lambda list must have the same number of required parameters.

2. Each lambda list must have the same number of optional parameters. Each
method can supply its own default for an optional parameter.

3. If any lambda list mentions &rest or &key, each lambda list must mention one
or both of them.

4. If the generic function lambda list mentions &key, each method must accept all
of the keyword names mentioned after &key, either by accepting them explicitly,
by specifying &allow-other-keys, or by specifying &rest but not &key. Each
method can accept additional keyword arguments of its own. The checking
of the validity of keyword names is done in the generic function, not in each
method. A method is invoked as if the keyword argument pair whose name
is :allow-other-keys and whose value is true were supplied, though no such
argument pair will be passed.

9. The use of &allow-other-keys need not be consistent across lambda lists. If
&allow-other-keys is mentioned in the lambda list of any applicable method or
of the generic function, any keyword arguments may be mentioned in the call
to the generic function.

6. The use of &aux need not be consistent across methods.

If a method-defining operator that cannot specify generic function options cre-
ates a generic function, and if the lambda list for the method mentions keyword
arguments, the lambda list of the generic function will mention &key (but no
keyword arguments).
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7.6.5 Keyword Arguments in Generic Functions and Methods

When a generic function or any of its methods mentions &key in a lambda list, the specific
set of keyword arguments accepted by the generic function varies according to the applicable
methods. The set of keyword arguments accepted by the generic function for a particular call
is the union of the keyword arguments accepted by all applicable methods and the keyword
arguments mentioned after &key in the generic function definition, if any. A method that
has &rest but not &key does not affect the set of acceptable keyword arguments. If the
lambda list of any applicable method or of the generic function definition contains &allow-
other-keys, all keyword arguments are accepted by the generic function.

The lambda list congruence rules require that each method accept all of the keyword
arguments mentioned after &key in the generic function definition, by accepting them ex-
plicitly, by specifying &allow-other-keys, or by specifying &rest but not &key. Each method
can accept additional keyword arguments of its own, in addition to the keyword arguments
mentioned in the generic function definition.

If a generic function is passed a keyword argument that no applicable method accepts,

an error should be signaled; see (undefined) [Error Checking in Function Calls], page (un-
defined).

7.6.5.1 Examples of Keyword Arguments in Generic Functions
and Methods
For example, suppose there are two methods defined for width as follows:
(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition for width.
The evaluation of the following form should signal an error because the keyword argument
:pixel-size is not accepted by the applicable method.

(width (make-instance ‘character-class :char #\Q)
:font ’baskerville :pixel-size 10)

The evaluation of the following form should signal an error.
(width (make-instance ‘picture-class :glyph (glyph #\Q))
:font ’baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class named
character-picture-class is a subclass of both picture-class and character-class.

(width (make-instance ‘character-picture-class :char #\Q)
:font ’baskerville :pixel-size 10)

7.6.6 Method Selection and Combination

When a generic function is called with particular arguments, it must determine the code to
execute. This code is called the effective method for those arguments. The effective method
is a combination of the applicable methods in the generic function that calls some or all of
the methods.

If a generic function is called and no methods are applicable, the generic function no-
applicable-method is invoked, with the results from that call being used as the results of
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the call to the original generic function. Calling no-applicable-method takes precedence
over checking for acceptable keyword arguments; see (undefined) [Keyword Arguments in
Generic Functions and Methods], page (undefined).

When the effective method has been determined, it is invoked with the same arguments
as were passed to the generic function. Whatever values it returns are returned as the
values of the generic function.

7.6.6.1 Determining the Effective Method
The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific
method first.

3. Apply method combination to the sorted list of applicable methods, producing
the effective method.

7.6.6.2 Selecting the Applicable Methods
This step is described in (undefined) [Introduction to Methods], page (undefined).

7.6.6.3 Sorting the Applicable Methods by Precedence Order

To compare the precedence of two methods, their parameter specializers are examined in
order. The default examination order is from left to right, but an alternative order may be
specified by the :argument-precedence-order option to defgeneric or to any of the other
operators that specify generic function options.

The corresponding parameter specializers from each method are compared. When a
pair of parameter specializers agree, the next pair are compared for agreement. If all
corresponding parameter specializers agree, the two methods must have different qualifiers;
in this case, either method can be selected to precede the other. For information about
agreement, see (undefined) [Agreement on Parameter Specializers and Qualifiers], page (un-
defined).

If some corresponding parameter specializers do not agree, the first pair of parameter
specializers that do not agree determines the precedence. If both parameter specializers are
classes, the more specific of the two methods is the method whose parameter specializer
appears earlier in the class precedence list of the corresponding argument. Because of
the way in which the set of applicable methods is chosen, the parameter specializers are
guaranteed to be present in the class precedence list of the class of the argument.

If just one of a pair of corresponding parameter specializers is (eql object), the method
with that parameter specializer precedes the other method. If both parameter specializers
are eql expressions, the specializers must agree (otherwise the two methods would not both
have been applicable to this argument).

The resulting list of applicable methods has the most specific method first and the least
specific method last.



Chapter 7: Objects 349

7.6.6.4 Applying method combination to the sorted list of
applicable methods

In the simple case—if standard method combination is used and all applicable methods are
primary methods—the effective method is the most specific method. That method can call
the next most specific method by using the function call-next-method. The method that
call-next-method will call is referred to as the next method . The predicate next-method-p
tests whether a next method exists. If call-next-method is called and there is no next most
specific method, the generic function no-next-method is invoked.

In general, the effective method is some combination of the applicable methods. It is
described by a form that contains calls to some or all of the applicable methods, returns
the value or values that will be returned as the value or values of the generic function, and
optionally makes some of the methods accessible by means of call-next-method.

The role of each method in the effective method is determined by its qualifiers and the
specificity of the method. A qualifier serves to mark a method, and the meaning of a
qualifier is determined by the way that these marks are used by this step of the procedure.
If an applicable method has an unrecognized qualifier, this step signals an error and does
not include that method in the effective method.

When standard method combination is used together with qualified methods, the ef-
fective method is produced as described in (undefined) [Standard Method Combination],
page (undefined).

Another type of method combination can be specified by wusing the
:method-combination option of defgeneric or of any of the other operators that
specify generic function options. In this way this step of the procedure can be customized.

New types of method combination can be defined by using the define-method-
combination macro.

7.6.6.5 Standard Method Combination

Standard method combination is supported by the class standard-generic-function. It is
used if no other type of method combination is specified or if the built-in method combina-
tion type standard is specified.

Primary methods define the main action of the effective method, while auxiliary methods
modify that action in one of three ways. A primary method has no method qualifiers.

An auxiliary method is a method whose qualifier is :before, :after, or :around. Stan-
dard method combination allows no more than one qualifier per method; if a method
definition specifies more than one qualifier per method, an error is signaled.

* A before method has the keyword :before as its only qualifier. A before method
specifies code that is to be run before any primary methods.

* An after method has the keyword :after as its only qualifier. An after method
specifies code that is to be run after primary methods.

* An around method has the keyword :around as its only qualifier. An around
method specifies code that is to be run instead of other applicable methods, but
which might contain explicit code which calls some of those shadowed methods
(via call-next-method).
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The semantics of standard method combination is as follows:

* If there are any around methods, the most specific around method is called. It
supplies the value or values of the generic function.

* Inside the body of an around method, call-next-method can be used to call the
next method. When the next method returns, the around method can execute
more code, perhaps based on the returned value or values. The generic function
no-next-method is invoked if call-next-method is used and there is no applicable
method to call. The function next-method-p may be used to determine whether
a next method exists.

* If an around method invokes call-next-method, the next most specific around
method is called, if one is applicable. If there are no around methods or if call-
next-method is called by the least specific around method, the other methods
are called as follows:

- All the before methods are called, in most-specific-first order. Their
values are ignored. An error is signaled if call-next-method is used
in a before method.

- The most specific primary method is called. Inside the body of a
primary method, call-next-method may be used to call the next
most specific primary method. When that method returns, the
previous primary method can execute more code, perhaps based
on the returned value or values. The generic function no-next-
method is invoked if call-next-method is used and there are no
more applicable primary methods. The function next-method-p
may be used to determine whether a next method exists. If call-
next-method is not used, only the most specific primary method is
called.

- All the after methods are called in most-specific-last order. Their
values are ignored. An error is signaled if call-next-method is used
in an after method.

* If no around methods were invoked, the most specific primary method supplies
the value or values returned by the generic function. The value or values re-
turned by the invocation of call-next-method in the least specific around method
are those returned by the most specific primary method.

In standard method combination, if there is an applicable method but no applicable
primary method, an error is signaled.

The before methods are run in most-specific-first order while the after methods are run in
least-specific-first order. The design rationale for this difference can be illustrated with an
example. Suppose class C_1 modifies the behavior of its superclass, C_2, by adding before
methods and after methods. Whether the behavior of the class C_2 is defined directly by
methods on C_2 or is inherited from its superclasses does not affect the relative order of
invocation of methods on instances of the class C_1. Class C_1’s before method runs before
all of class C_2’s methods. Class C_1’s after method runs after all of class C_2’s methods.
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By contrast, all around methods run before any other methods run. Thus a less specific
around method runs before a more specific primary method.

If only primary methods are used and if call-next-method is not used, only the most
specific method is invoked; that is, more specific methods shadow more general ones.

7.6.6.6 Declarative Method Combination

The macro define-method-combination defines new forms of method combination. It pro-
vides a mechanism for customizing the production of the effective method. The default
procedure for producing an effective method is described in (undefined) [Determining the
Effective Method], page (undefined). There are two forms of define-method-combination.
The short form is a simple facility while the long form is more powerful and more verbose.
The long form resembles defmacro in that the body is an expression that computes a Lisp
form; it provides mechanisms for implementing arbitrary control structures within method
combination and for arbitrary processing of method qualifiers.

7.6.6.7 Built-in Method Combination Types

The object system provides a set of built-in method combination types. To specify that a
generic function is to use one of these method combination types, the name of the method
combination type is given as the argument to the :method-combination option to def-
generic or to the :method-combination option to any of the other operators that specify
generic function options.

The names of the built-in method combination types are listed in Figure 7-3.

+ append max nconc progn
and list min or standard

Figure 7-3: Built-in Method Combination Types

The semantics of the standard built-in method combination type is described in (un-
defined) [Standard Method Combination|, page (undefined). The other built-in method
combination types are called simple built-in method combination types.

The simple built-in method combination types act as though they were defined by the
short form of define-method-combination. They recognize two roles for methods:

* An around method has the keyword symbol :around as its sole qualifier. The
meaning of :around methods is the same as in standard method combina-
tion. Use of the functions call-next-method and next-method-p is supported in
around methods.

* A primary method has the name of the method combination type as its sole
qualifier. For example, the built-in method combination type and recognizes
methods whose sole qualifier is and; these are primary methods. Use of the func-
tions call-next-method and next-method-p is not supported in primary methods.

The semantics of the simple built-in method combination types is as follows:

* If there are any around methods, the most specific around method is called. It
supplies the value or values of the generic function.
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Inside the body of an around method, the function call-next-method can be used
to call the next method. The generic function no-next-method is invoked if call-
next-method is used and there is no applicable method to call. The function
next-method-p may be used to determine whether a next method exists. When
the next method returns, the around method can execute more code, perhaps
based on the returned value or values.

If an around method invokes call-next-method, the next most specific around
method is called, if one is applicable. If there are no around methods or if call-
next-method is called by the least specific around method, a Lisp form derived
from the name of the built-in method combination type and from the list of
applicable primary methods is evaluated to produce the value of the generic
function. Suppose the name of the method combination type is operator and
the call to the generic function is of the form
(generic-function a_1... a_n)

Let M_1,....M_k be the applicable primary methods in order; then the derived
Lisp form is

(operator < M_1
a_l..an>.<Mka_l.. an>)

If the expression < M_i a_1... a_n> is evaluated, the method M_i will be applied
to the arguments a_1... a_n. For example, if operator is or, the expression <
M_i a_l... a_n> is evaluated only if < M_j a_1... a_n>, 1<= j<i, returned nil.

The default order for the primary methods is :most-specific-first. How-
ever, the order can be reversed by supplying :most-specific-last as the
second argument to the :method-combination option.

The simple built-in method combination types require exactly one qualifier per method.
An error is signaled if there are applicable methods with no qualifiers or with qualifiers
that are not supported by the method combination type. An error is signaled if there are
applicable around methods and no applicable primary methods.

7.6.7 Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to all instances of a
class is also applicable to all instances of any subclass of that class.

The inheritance of methods acts the same way regardless of which of the method-defining
operators created the methods.

The inheritance of methods is described in detail in (undefined) [Method Selection and
Combination], page (undefined).

7.7 Objects Dictionary

7.7.1 function-keywords [Standard Generic Function]

Syntax::

function-keywords method = keys, allow-other-keys-p
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Method Signatures::

function-keywords (method standard-method)

Arguments and Values::

method—a method.
keys—a list.

allow-other-keys-p—a generalized boolean.

Description::
Returns the keyword parameter specifiers for a method.

Two values are returned: a [list of the explicitly named keywords and a generalized
boolean that states whether &allow-other-keys had been specified in the method definition.

Examples::

(defmethod gfl ((a integer) &optional (b 2)
&key (c 3) ((:dee d) 4) e ((eff £)))
(list a b cd e £))
= #<STANDARD-METHOD GF1 (INTEGER) 36324653>
(find-method #’gfl > () (list (find-class ’integer)))
= #<STANDARD-METHOD GF1 (INTEGER) 36324653>
(function-keywords *)
= (:C :DEE :E EFF), false
(defmethod gf2 ((a integer))
(list a b cd e £))
=  #<STANDARD-METHOD GF2 (INTEGER) 42701775>
(function-keywords (find-method #’gfl ’() (list (find-class ’integer))))]
= (), false
(defmethod gf3 ((a integer) &key b c d &allow-other-keys)
(list a b cd e £))
(function-keywords *)
= (:B :C :D), true

Affected By::
defmethod

See Also::
(undefined) [defmethod], page (undefined),

7.7.2 ensure-generic-function [Function]

ensure-generic-function function-name &key argument-precedence-order declare docu-
mentation environment generic-function-class lambda-list method-class method-combination
= generic-function

Arguments and Values::

function-name—a function name.
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The keyword arguments correspond to the option arguments of defgeneric, except that
the :method-class and :generic-function-class arguments can be class objects as well
as names.

Method-combination — method combination object.

Environment — the same as the &environment argument to macro expansion functions
and is used to distinguish between compile-time and run-time environments.

[Editorial Note by KMP: What about documentation. Missing from this arguments
enumeration, and confusing in description below.]

generic-function—a generic function object.

Description::

The function ensure-generic-function is used to define a globally named generic function
with no methods or to specify or modify options and declarations that pertain to a globally
named generic function as a whole.

If function-name is not fbound in the global environment, a new generic function is
created. If

(fdefinition function-name)
is an ordinary function, a macro, or a special operator, an error is signaled.

If function-name is a list, it must be of the form (setf symbol). If function-name
specifies a generic function that has a different value for any of the following arguments,
the generic function is modified to have the new value: :argument-precedence-order,
:declare, :documentation, :method-combination.

If function-name specifies a generic function that has a different value for the
:lambda-list argument, and the new value is congruent with the lambda lists of all
existing methods or there are no methods, the value is changed; otherwise an error is
signaled.

If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class is compatible
with the old, change-class is called to change the class of the generic function; otherwise
an error is signaled.

If function-name specifies a generic function that has a different value for the
:method-class argument, the value is changed, but any existing methods are not changed.

Affected By::

Existing function binding of function-name.

Exceptional Situations::
If
(fdefinition function-name)
is an ordinary function, a macro, or a special operator, an error of type error is signaled.

If function-name specifies a generic function that has a different value for the
:lambda-list argument, and the new value is not congruent with the lambda list of any
existing method, an error of type error is signaled.
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If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class not is
compatible with the old, an error of type error is signaled.

See Also::
(undefined) [defgeneric], page (undefined),

7.7.3 allocate-instance [Standard Generic Function]

Syntax::

allocate-instance class &rest initargs &key &allow-other-keys = new-instance

Method Signatures::

allocate-instance (class standard-class) &rest initargs
allocate-instance (class structure-class) &rest initargs

Arguments and Values::

class—a class.
initargs—a list of keyword/value pairs (initialization argument names and values).
new-instance—an object whose class is class.

Description::

The generic function allocate-instance creates and returns a new instance of the class,
without initializing it. When the class is a standard class, this means that the slots are
unbound; when the class is a structure class, this means the slots’ values are unspecified.

The caller of allocate-instance is expected to have already checked the initialization
arguments.

The generic function allocate-instance is called by make-instance, as described in (un-
defined) [Object Creation and Initialization], page (undefined).

See Also::

(undefined) [defclass], page (undefined), , (undefined) [make-instance], page (undefined), ,
(undefined) [class-of], page (undefined), , (undefined) [Object Creation and Initialization],
page (undefined),

Notes::

The consequences of adding methods to allocate-instance is unspecified. This capability
might be added by the Metaobject Protocol.

7.7.4 reinitialize-instance [Standard Generic Function)]

Syntax::

reinitialize-instance instance &rest initargs &key &allow-other-keys = instance

Method Signatures::

reinitialize-instance (instance standard-object) &rest initargs
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Arguments and Values::

instance—an object.

itargs—an initialization argument list.

Description::

The generic function reinitialize-instance can be used to change the values of local slots of
an instance according to initargs. This generic function can be called by users.

The system-supplied primary method for reinitialize-instance checks the validity of ini-
targs and signals an error if an initarg is supplied that is not declared as valid. The method
then calls the generic function shared-initialize with the following arguments: the instance,
nil (which means no slots should be initialized according to their initforms), and the initargs
it received.

Side Effects::

The generic function reinitialize-instance changes the values of local slots.

Exceptional Situations::

The system-supplied primary method for reinitialize-instance signals an error if an initarg
is supplied that is not declared as valid.

See Also::

(undefined) [Initialize-Instance], page (undefined), , (undefined) [Shared-Initialize],
page (undefined), , (undefined) [update-instance-for-redefined-class], page (undefined),
, (undefined) [update-instance-for-different-class], page (undefined), , (undefined)

[slot-boundp], page (undefined), , (undefined) [slot-makunbound], page (undefined),
, (undefined) [Reinitializing an Instance|, page (undefined), (undefined) [Rules for
Initialization Arguments|, page (undefined), (undefined) [Declaring the Validity of
Initialization Arguments|, page (undefined),

Notes::

Initargs are declared as valid by using the :initarg option to defclass, or by defining
methods for reinitialize-instance or shared-initialize. The keyword name of each keyword
parameter specifier in the lambda list of any method defined on reinitialize-instance or
shared-initialize is declared as a valid initialization argument name for all classes for which
that method is applicable.

7.7.5 shared-initialize [Standard Generic Function]

Syntax::

shared-initialize instance slot-names &rest initargs &key &allow-other-keys = instance

Method Signatures::

shared-initialize (instance standard-object) slot-names &rest initargs
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Arguments and Values::
instance—an object.
slot-names—a list or t.

initargs—a list of keyword/value pairs (of initialization argument names and values).

Description::

The generic function shared-initialize is used to fill the slots of an instance using initargs
and :initform forms. It is called when an instance is created, when an instance is re-
initialized, when an instance is updated to conform to a redefined class, and when an
instance is updated to conform to a different class. The generic function shared-initialize is
called by the system-supplied primary method for initialize-instance, reinitialize-instance,
update-instance-for-redefined-class, and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments: the instance to be
initialized, a specification of a set of slot-names accessible in that instance, and any number
of initargs. The arguments after the first two must form an initialization argument list.
The system-supplied primary method on shared-initialize initializes the slots with values
according to the initargs and supplied :initform forms. Slot-names indicates which slots
should be initialized according to their :initform forms if no initargs are provided for those
slots.

The system-supplied primary method behaves as follows, regardless of whether the slots
are local or shared:

* If an initarg in the initialization argument list specifies a value for that slot,
that value is stored into the slot, even if a value has already been stored in the
slot before the method is run.

* Any slots indicated by slot-names that are still unbound at this point are ini-
tialized according to their :initform forms. For any such slot that has an
:initform form, that form is evaluated in the lexical environment of its defin-
ing defclass form and the result is stored into the slot. For example, if a before
method stores a value in the slot, the :initform form will not be used to supply
a value for the slot.

* The rules mentioned in (undefined) [Rules for Initialization Arguments],
page (undefined), are obeyed.

The slots-names argument specifies the slots that are to be initialized according to their
:initform forms if no initialization arguments apply. It can be a list of slot names, which
specifies the set of those slot names; or it can be the symbol t, which specifies the set of all
of the slots.

See Also::

(undefined) [Initialize-Instance|, page (undefined), , (undefined) [reinitialize-instance],
page (undefined), , (undefined) [update-instance-for-redefined-class], page (undefined),
, {(undefined) [update-instance-for-different-class], page (undefined), , (undefined)

[slot-boundp], page (undefined), , (undefined) [slot-makunbound], page (undefined), ,
(undefined) [Object Creation and Initialization]|, page (undefined), (undefined) [Rules
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for Initialization Arguments|, page (undefined), (undefined) [Declaring the Validity of
Initialization Arguments|, page (undefined),

Notes::

Initargs are declared as valid by using the :initarg option to defclass, or by defining
methods for shared-initialize. The keyword name of each keyword parameter specifier in
the lambda list of any method defined on shared-initialize is declared as a valid initarg name
for all classes for which that method is applicable.

Implementations are permitted to optimize :initform forms that neither produce nor
depend on side effects, by evaluating these forms and storing them into slots before running
any initialize-instance methods, rather than by handling them in the primary initialize-
instance method. (This optimization might be implemented by having the allocate-instance
method copy a prototype instance.)

Implementations are permitted to optimize default initial value forms for initargs asso-
ciated with slots by not actually creating the complete initialization argument list when the
only method that would receive the complete list is the method on standard-object. In this
case default initial value forms can be treated like : initform forms. This optimization has
no visible effects other than a performance improvement.

7.7.6 update-instance-for-different-class [Standard Generic
Function]

Syntax::

update-instance-for-different-class previous current &rest initargs &key &allow-
other-keys = implementation-dependent

Method Signatures::

update-instance-for-different-class (previous standard-object) (current standard-
object) &rest initargs

Arguments and Values::

previous—a copy of the original instance.
current—the original instance (altered).

titargs—an initialization argument list.

Description::

The generic function update-instance-for-different-class is not intended to be called by pro-
grammers. Programmers may write methods for it. The function update-instance-for-
different-class is called only by the function change-class.

The system-supplied primary method on update-instance-for-different-class checks the
validity of initargs and signals an error if an initarg is supplied that is not declared as valid.
This method then initializes slots with values according to the initargs, and initializes the
newly added slots with values according to their :initform forms. It does this by calling
the generic function shared-initialize with the following arguments: the instance (current),
a list of names of the newly added slots, and the initargs it received. Newly added slots are
those local slots for which no slot of the same name exists in the previous class.



Chapter 7: Objects 359

Methods for update-instance-for-different-class can be defined to specify actions to be
taken when an instance is updated. If only after methods for update-instance-for-different-
class are defined, they will be run after the system-supplied primary method for initialization
and therefore will not interfere with the default behavior of update-instance-for-different-
class.

Methods on update-instance-for-different-class can be defined to initialize slots differ-
ently from change-class. The default behavior of change-class is described in (undefined)
[Changing the Class of an Instance], page (undefined).

The arguments to update-instance-for-different-class are computed by change-class.
When change-class is invoked on an instance, a copy of that instance is made;
change-class then destructively alters the original instance. The first argument to
update-instance-for-different-class, previous, is that copy; it holds the old slot values
temporarily. This argument has dynamic extent within change-class; if it is referenced in
any way once update-instance-for-different-class returns, the results are undefined. The
second argument to update-instance-for-different-class, current, is the altered original
instance. The intended use of previous is to extract old slot values by using slot-value or
with-slots or by invoking a reader generic function, or to run other methods that were
applicable to instances of the original class.

Examples::

See the example for the function change-class.

Exceptional Situations::

The system-supplied primary method on update-instance-for-different-class signals an error
if an initialization argument is supplied that is not declared as valid.

See Also::

(undefined) [change-class], page (undefined), , (undefined) [Shared-Initialize], page (unde-
fined), , (undefined) [Changing the Class of an Instance], page (undefined), (undefined)
[Rules for Initialization Arguments], page (undefined), (undefined) [Declaring the Validity
of Initialization Arguments], page (undefined),

Notes::

Initargs are declared as valid by using the :initarg option to defclass, or by defining
methods for update-instance-for-different-class or shared-initialize. The keyword name of
each keyword parameter specifier in the lambda list of any method defined on update-
instance-for-different-class or shared-initialize is declared as a valid initarg name for all
classes for which that method is applicable.

The value returned by update-instance-for-different-class is ignored by change-class.

7.7.7 update-instance-for-redefined-class [Standard Generic
Function)]
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Syntax::
update-instance-for-redefined-class instance added-slots discarded-slots property-list

&rest initargs &key &allow-other-keys
= {result}*

Method Signatures::

update-instance-for-redefined-class (instance  standard-object) added-slots
discarded-slots property-list &rest initargs

Arguments and Values::
instance—an object.

added-slots—a list.

discarded-slots—a list.

property-list—a list.

mitargs—an initialization argument list.

result—an object.

Description::

The generic function update-instance-for-redefined-class is not intended to be called by pro-
grammers. Programmers may write methods for it. The generic function update-instance-
for-redefined-class is called by the mechanism activated by make-instances-obsolete.

The system-supplied primary method on update-instance-for-redefined-class checks the
validity of initargs and signals an error if an initarg is supplied that is not declared as valid.
This method then initializes slots with values according to the initargs, and initializes the
newly added-slots with values according to their :initform forms. It does this by calling
the generic function shared-initialize with the following arguments: the instance, a list of
names of the newly added-slots to instance, and the initargs it received. Newly added-slots
are those local slots for which no slot of the same name exists in the old version of the class.

When make-instances-obsolete is invoked or when a class has been redefined and an
instance is being updated, a property-list is created that captures the slot names and val-
ues of all the discarded-slots with values in the original instance. The structure of the
instance is transformed so that it conforms to the current class definition. The arguments
to update-instance-for-redefined-class are this transformed instance, a list of added-slots to
the instance, a list discarded-slots from the instance, and the property-list containing the
slot names and values for slots that were discarded and had values. Included in this list of
discarded slots are slots that were local in the old class and are shared in the new class.

The value returned by update-instance-for-redefined-class is ignored.

Examples::

(defclass position () ())

(defclass x-y-position (position)
((x :initform O :accessor position-x)
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(y :initform O :accessor position-y)))

;55 It turns out polar coordinates are used more than Cartesian
;55 coordinates, so the representation is altered and some new
;33 accessor methods are added.

(defmethod update-instance-for-redefined-class :before
((pos x-y-position) added deleted plist &key)
;; Transform the x-y coordinates to polar coordinates
;; and store into the new slots.
(let ((x (getf plist ’x))
(y (getf plist ’y)))
(setf (position-rho pos) (sqrt (+ (* x x) (x y y)))
(position-theta pos) (atan y x))))

(defclass x-y-position (position)
((rho :initform O :accessor position-rho)
(theta :initform O :accessor position-theta)))

;55 All instances of the old x-y-position class will be updated
;55 automatically.

;55 The new representation is given the look and feel of the old one.

(defmethod position-x ((pos x-y-position))
(with-slots (rho theta) pos (* rho (cos theta))))

(defmethod (setf position-x) (new-x (pos x-y-position))
(with-slots (rho theta) pos
(let ((y (position-y pos)))
(setq rho (sqrt (+ (* new-x new-x) (* y y)))
theta (atan y new-x))
new-x)))

(defmethod position-y ((pos x-y-position))
(with-slots (rho theta) pos (* rho (sin theta))))

(defmethod (setf position-y) (new-y (pos x-y-position))
(with-slots (rho theta) pos
(let ((x (position-x pos)))
(setq rho (sqrt (+ (* x x) (* new-y new-y)))
theta (atan new-y x))
new-y)))
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Exceptional Situations::

The system-supplied primary method on update-instance-for-redefined-class signals an error
if an initarg is supplied that is not declared as valid.

See Also::

(undefined) [make-instances-obsolete|, page (undefined), , (undefined) [Shared-Initialize],
page (undefined), , (undefined) [Redefining Classes], page (undefined), (undefined) [Rules
for Initialization Arguments|, page (undefined), (undefined) [Declaring the Validity of Ini-
tialization Arguments|, page (undefined),

Notes::

Initargs are declared as valid by using the :initarg option to defclass, or by defining
methods for update-instance-for-redefined-class or shared-initialize. The keyword name
of each keyword parameter specifier in the lambda list of any method defined on update-
instance-for-redefined-class or shared-initialize is declared as a valid initarg name for all
classes for which that method is applicable.

7.7.8 change-class [Standard Generic Function]

Syntax::

change-class instance new-class &key &allow-other-keys = instance

Method Signatures::

change-class (instance standard-object) (new-class standard-class) &rest initargs

change-class (instance t) (new-class symbol) &rest initargs

Arguments and Values::

instance—an object.
new-class—a class designator.

mitargs—an initialization argument list.

Description::

The generic function change-class changes the class of an instance to new-class. It destruc-
tively modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in the new-class, the
value of that slot is retained. This means that if the slot has a value, the value returned
by slot-value after change-class is invoked is eql to the value returned by slot-value before
change-class is invoked. Similarly, if the slot was unbound, it remains unbound. The
other slots are initialized as described in (undefined) [Changing the Class of an Instance],
page (undefined).

After completing all other actions, change-class invokes update-instance-for-different-
class. The generic function update-instance-for-different-class can be used to assign values
to slots in the transformed instance.

See (undefined) [Initializing Newly Added Local Slots (Changing the Class of an In-
stance)], page (undefined).
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If the second of the above methods is selected, that method invokes change-class on
instance, (find-class new-class), and the initargs.

Examples::

(defclass position (O ())

(defclass x-y-position (position)
((x :initform O :initarg :x)
(y :initform O :initarg :y)))

(defclass rho-theta-position (position)
((rho :initform 0)
(theta :initform 0)))

(defmethod update-instance-for-different-class :before ((old x-y-position)|j

(new rho-theta-position)fj
&key)

;; Copy the position information from old to new to make new

;; be a rho-theta-position at the same position as old.

(let ((x (slot-value old ’x))

(y (slot-value old ’y)))
(setf (slot-value new ’rho) (sqrt (+ (*x x x) (x y y)))
(slot-value new ’theta) (atan y x))))

;53 At this point an instance of the class x-y-position can be
;55 changed to be an instance of the class rho-theta-position using
;55 change-class:

(setq pl (make-instance ’x-y-position :x 2 :y 0))
(change-class pl ’rho-theta-position)

;53 The result is that the instance bound to pl is now an instance of

;53 the class rho-theta-position. The update-instance-for-different-class|
;55 method performed the initialization of the rho and theta slots based

;535 on the value of the x and y slots, which were maintained by

;;; the old instance.

See Also::

(undefined) [update-instance-for-different-class], page (undefined), , (undefined) [Changing
the Class of an Instance|, page (undefined),
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Notes::

The generic function change-class has several semantic difficulties. First, it performs a
destructive operation that can be invoked within a method on an instance that was used
to select that method. When multiple methods are involved because methods are being
combined, the methods currently executing or about to be executed may no longer be
applicable. Second, some implementations might use compiler optimizations of slot access,
and when the class of an instance is changed the assumptions the compiler made might be
violated. This implies that a programmer must not use change-class inside a method if any
methods for that generic function access any slots, or the results are undefined.

7.7.9 slot-boundp [Function]

slot-boundp instance slot-name = generalized-boolean

Arguments and Values::

instance—an object.
slot-name—a symbol naming a slot of instance.

generalized-boolean—a, generalized boolean.

Description::

Returns true if the slot named slot-name in instance is bound; otherwise, returns false.

Exceptional Situations::

If no slot of the name slot-name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-boundp)

(If slot-missing is invoked and returns a value, a boolean equivalent to its primary value
is returned by slot-boundp.)

The specific behavior depends on instance’s metaclass. An error is never signaled if
instance has metaclass standard-class. An error is always signaled if instance has metaclass
built-in-class. The consequences are undefined if instance has any other metaclass—an error
might or might not be signaled in this situation. Note in particular that the behavior for
conditions and structures is not specified.

See Also::

(undefined) [slot-makunbound], page (undefined), , (undefined) [slot-missing], page (unde-
fined),

Notes::

The function slot-boundp allows for writing after methods on initialize-instance in order to
initialize only those slots that have not already been bound.

Although no implementation is required to do so, implementors are strongly encouraged
to implement the function slot-boundp using the function slot-boundp-using-class de-
scribed in the Metaobject Protocol.
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7.7.10 slot-exists-p [Function]

slot-exists-p object slot-name = generalized-boolean

Arguments and Values::

object—an object.
slot-name—a symbol.
generalized-boolean—a, generalized boolean.

Description::

Returns true if the object has a slot named slot-name.

Affected By::

defclass, defstruct

See Also::
(undefined) [defclass|, page (undefined), , (undefined) [slot-missing], page (undefined),

Notes::

Although no implementation is required to do so, implementors are strongly encouraged
to implement the function slot-exists-p using the function slot-exists-p-using-class
described in the Metaobject Protocol.

7.7.11 slot-makunbound [Function]

slot-makunbound instance slot-name = instance

Arguments and Values::

instance — instance.

Slot-name—a symbol.

Description::

The function slot-makunbound restores a slot of the name slot-name in an instance to the
unbound state.

Exceptional Situations::

If no slot of the name slot-name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-makunbound)
(Any values returned by slot-missing in this case are ignored by slot-makunbound.)
The specific behavior depends on instance’s metaclass. An error is never signaled if
instance has metaclass standard-class. An error is always signaled if instance has metaclass
built-in-class. The consequences are undefined if instance has any other metaclass—an error
might or might not be signaled in this situation. Note in particular that the behavior for
conditions and structures is not specified.
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See Also::
(undefined) [slot-boundp], page (undefined), , (undefined) [slot-missing|, page (undefined),

Notes::

Although no implementation is required to do so, implementors are strongly
encouraged to implement the function slot-makunbound wusing the function
slot-makunbound-using-class described in the Metaobject Protocol.

7.7.12 slot-missing [Standard Generic Function)]

Syntax::

slot-missing class object slot-name operation &optional new-value = {result}*

Method Signatures::

slot-missing (class t) object slot-name operation &optional new-value

Arguments and Values::

class—the class of object.
object—an object.
slot-name—a symbol (the name of a would-be slot).
operation—one of the symbols setf, slot-boundp, slot-makunbound, or slot-value.
new-value—an object.

result—an object.

Description::

The generic function slot-missing is invoked when an attempt is made to access a slot in an
object whose metaclass is standard-class and the slot of the name slot-name is not a name
of a slot in that class. The default method signals an error.

The generic function slot-missing is not intended to be called by programmers. Pro-
grammers may write methods for it.

The generic function slot-missing may be called during evaluation of slot-value, (setf
slot-value), slot-boundp, and slot-makunbound. For each of these operations the cor-
responding symbol for the operation argument is slot-value, setf, slot-boundp, and slot-
makunbound respectively.

The optional new-value argument to slot-missing is used when the operation is attempt-
ing to set the value of the slot.

If slot-missing returns, its values will be treated as follows:

* If the operation is setf or slot-makunbound, any values will be ignored by the
caller.
* If the operation is slot-value, only the primary value will be used by the caller,

and all other values will be ignored.

* If the operation is slot-boundp, any boolean equivalent of the primary value of
the method might be is used, and all other values will be ignored.
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Exceptional Situations::

The default method on slot-missing signals an error of type error.

See Also::

(undefined) [defclass], page (undefined), , (undefined) [slot-exists-p], page (undefined), ,
(undefined) [slot-value], page (undefined),

Notes::

The set of arguments (including the class of the instance) facilitates defining methods on
the metaclass for slot-missing.

7.7.13 slot-unbound [Standard Generic Function]

Syntax::

slot-unbound class instance slot-name = {result}*

Method Signatures::

slot-unbound (class t) instance slot-name

Arguments and Values::

class—the class of the instance.
instance—the instance in which an attempt was made to read the unbound slot.
slot-name—the name of the unbound slot.

result—an object.

Description::

The generic function slot-unbound is called when an unbound slot is read in an instance
whose metaclass is standard-class. The default method signals an error

of type unbound-slot. The name slot of the unbound-slot condition is initialized to
the name of the offending variable, and the instance slot of the unbound-slot condition is
initialized to the offending instance.

The generic function slot-unbound is not intended to be called by programmers. Pro-
grammers may write methods for it. The function slot-unbound is called only indirectly by
slot-value.

If slot-unbound returns, only the primary value will be used by the caller, and all other
values will be ignored.

Exceptional Situations::

The default method on slot-unbound signals an error of type unbound-slot.

See Also::
(undefined) [slot-makunbound], page (undefined),
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Notes::

An unbound slot may occur if no :initform form was specified for the slot and the slot
value has not been set, or if slot-makunbound has been called on the slot.

7.7.14 slot-value [Function]

slot-value object slot-name = value

Arguments and Values::
object—an object.
name—a symbol.

value—an object.

Description::

The function slot-value returns the value of the slot named slot-name in the object. If there
is no slot named slot-name, slot-missing is called. If the slot is unbound, slot-unbound is
called.

The macro setf can be used with slot-value to change the value of a slot.

Examples::

(defclass foo ()
((a :accessor foo-a :initarg :a :initform 1)
(b :accessor foo-b :initarg :Db)
(c :accessor foo-c :initform 3)))
= #<STANDARD-CLASS F0OO0O 244020371>
(setq fool (make-instance ’foo :a ’one :b ’two))
= #<F00 36325624>
(slot-value fool ’a) = ONE
(slot-value fool ’b) = TWO
(slot-value fool ’c) = 3
(setf (slot-value fool ’a) ’uno) = UNO
(slot-value fool ’a) = UNO
(defmethod foo-method ((x foo))
(slot-value x ’a))
= #<STANDARD-METHOD FOO-METHOD (F00) 42720573>
(foo-method fool) = TUNO

Exceptional Situations::

If an attempt is made to read a slot and no slot of the name slot-name exists in the object,
slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot—-name
’slot-value)

(If slot-missing is invoked, its primary value is returned by slot-value.)
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If an attempt is made to write a slot and no slot of the name slot-name exists in the
object, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’setf
new-value)

(If slot-missing returns in this case, any values are ignored.)

The specific behavior depends on object’s metaclass. An error is never signaled if object
has metaclass standard-class. An error is always signaled if object has metaclass built-in-
class. The consequences are unspecified if object has any other metaclass—an error might or
might not be signaled in this situation. Note in particular that the behavior for conditions
and structures is not specified.

See Also::

(undefined) [slot-missing], page (undefined), , (undefined) [slot-unbound], page (undefined),
, (undefined) [with-slots|, page (undefined),

Notes::

Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-value using the function slot-value-using-class described
in the Metaobject Protocol.

Implementations may optimize slot-value by compiling it inline.

7.7.15 method-qualifiers [Standard Generic Function]

Syntax::
method-qualifiers method = qualifiers

Method Signatures::
method-qualifiers (method standard-method)

Arguments and Values::
method—a method.
qualifiers—a proper list.
Description::
Returns a list of the qualifiers of the method.

Examples::

(defmethod some-gf :before ((a integer)) a)
= #<STANDARD-METHOD SOME-GF (:BEFORE) (INTEGER) 42736540>
(method-qualifiers *) = (:BEFORE)

See Also::
(undefined) [define-method-combination|, page (undefined),
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7.7.16 no-applicable-method [Standard Generic Function]

Syntax::

no-applicable-method generic-function &rest function-arguments = {result}*

Method Signatures::

no-applicable-method (generic-function t) &rest function-arguments

Arguments and Values::

generic-function—a generic function on which no applicable method was found.
function-arguments—arguments to the generic-function.

result—an object.

Description::

The generic function no-applicable-method is called when a generic function is invoked and
no method on that generic function is applicable. The default method signals an error.

The generic function no-applicable-method is not intended to be called by programmers.
Programmers may write methods for it.
Exceptional Situations::

The default method signals an error of type error.

See Also::
7.7.17 no-next-method [Standard Generic Function]

Syntax::

no-next-method generic-function method &rest args = {result}*

Method Signatures::

no-next-method (generic-function standard-generic-function) (method standard-method)
&rest args

Arguments and Values::

generic-function — generic function to which method belongs.

method — method that contained the call to call-next-method for which there is no next
method.

args — arguments to call-next-method.
result—an object.

Description::

The generic function no-next-method is called by call-next-method when there is no next
method.

The generic function no-next-method is not intended to be called by programmers.
Programmers may write methods for it.
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Exceptional Situations::

The system-supplied method on no-next-method signals an error of type error. [Editorial
Note by KMP: perhaps control-error??]

See Also::
(undefined) [call-next-method], page (undefined),

7.7.18 remove-method [Standard Generic Function]

Syntax::

remove-method generic-function method = generic-function

Method Signatures::

remove-method (generic-function standard-generic-function) method

Arguments and Values::
generic-function—a generic function.

method—a method.

Description::

The generic function remove-method removes a method from generic-function by modifying
the generic-function (if necessary).

remove-method must not signal an error if the method is not one of the methods on the

generic-function.

See Also::
(undefined) [find-method], page (undefined),

7.7.19 make-instance [Standard Generic Function]

Syntax::

make-instance class &rest initargs &key &allow-other-keys = instance

Method Signatures::
make-instance (class standard-class) &rest initargs

make-instance (class symbol) &rest initargs

Arguments and Values::

class—a class, or a symbol that names a class.
mitargs—an initialization argument list.

instance—a fresh instance of class class.
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Description::
The generic function make-instance creates and returns a new instance of the given class.

If the second of the above methods is selected, that method invokes make-instance on
the arguments (find-class class) and initargs.

The initialization arguments are checked within make-instance.

The generic function make-instance may be used as described in (undefined) [Object
Creation and Initialization], page (undefined).
Exceptional Situations::

If any of the initialization arguments has not been declared as valid, an error of type error
is signaled.

See Also::

(undefined) [defclass], page (undefined), , (undefined) [class-of], page (undefined), , (unde-
fined) [allocate-instance|, page (undefined), , (undefined) [Initialize-Instance|, page (unde-
fined), , (undefined) [Object Creation and Initialization|, page (undefined),

7.7.20 make-instances-obsolete [Standard Generic Function]

Syntax::

make-instances-obsolete class = class

Method Signatures::

make-instances-obsolete (class standard-class)

make-instances-obsolete (class symbol)

Arguments and Values::

class—a class designator.

Description::

The function make-instances-obsolete has the effect of initiating the process of updating the
instances of the class. During updating, the generic function update-instance-for-redefined-
class will be invoked.

The generic function make-instances-obsolete is invoked automatically by the system
when defclass has been used to redefine an existing standard class and the set of local slots
accessible in an instance is changed or the order of slots in storage is changed. It can also
be explicitly invoked by the user.

If the second of the above methods is selected, that method invokes make-instances-
obsolete on (find-class class).

Examples::

See Also::

(undefined) [update-instance-for-redefined-class|, page (undefined), , (undefined) [Redefin-
ing Classes|, page (undefined),
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7.7.21 make-load-form [Standard Generic Function]

Syntax::

make-load-form object &optional environment = creation-form [, initialization-form |

Method Signatures::

make-load-form (object standard-object) &optional environment
make-load-form (object structure-object) &optional environment
make-load-form (object condition) &optional environment

make-load-form (object class) &optional environment

Arguments and Values::
object—an object.
environment—an environment object.
creation-form—a form.

itialization-form—a form.

Description::

The generic function make-load-form creates and returns one or two forms, a creation-form
and an initialization-form, that enable load to construct an object equivalent to object.
Environment is an environment object corresponding to the lexical environment in which
the forms will be processed.

The file compiler calls make-load-form to process certain classes of literal objects; see
(undefined) [Additional Constraints on Externalizable Objects], page (undefined).

Conforming programs may call make-load-form directly, providing object is a generalized
instance of standard-object, structure-object, or condition.

The creation form is a form that, when evaluated at load time, should return an object
that is equivalent to object. The exact meaning of equivalent depends on the type of object
and is up to the programmer who defines a method for make-load-form; see (undefined)
[Literal Objects in Compiled Files|, page (undefined).

The initialization form is a form that, when evaluated at load time, should perform
further initialization of the object. The value returned by the initialization form is ignored.
If make-load-form returns only one value, the initialization form is nil, which has no effect.
If object appears as a constant in the initialization form, at load time it will be replaced by
the equivalent object constructed by the creation form; this is how the further initialization
gains access to the object.

Both the creation-form and the initialization-form may contain references to any exter-
nalizable object. However, there must not be any circular dependencies in creation forms.
An example of a circular dependency is when the creation form for the object X contains
a reference to the object Y, and the creation form for the object Y contains a reference to
the object X. Initialization forms are not subject to any restriction against circular depen-
dencies, which is the reason that initialization forms exist; see the example of circular data
structures below.
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The creation form for an object is always evaluated before the initialization form for that
object. When either the creation form or the initialization form references other objects that
have not been referenced earlier in the file being compiled, the compiler ensures that all of
the referenced objects have been created before evaluating the referencing form. When the
referenced object is of a type which the file compiler processes using make-load-form, this
involves evaluating the creation form returned for it. (This is the reason for the prohibition
against circular references among creation forms).

Each initialization form is evaluated as soon as possible after its associated creation
form, as determined by data flow. If the initialization form for an object does not reference
any other objects not referenced earlier in the file and processed by the file compiler using
make-load-form, the initialization form is evaluated immediately after the creation form. If
a creation or initialization form F does contain references to such objects, the creation forms
for those other objects are evaluated before F, and the initialization forms for those other
objects are also evaluated before F whenever they do not depend on the object created
or initialized by F. Where these rules do not uniquely determine an order of evaluation
between two creation/initialization forms, the order of evaluation is unspecified.

While these creation and initialization forms are being evaluated, the objects are pos-
sibly in an uninitialized state, analogous to the state of an object between the time it has
been created by allocate-instance and it has been processed fully by initialize-instance. Pro-
grammers writing methods for make-load-form must take care in manipulating objects not
to depend on slots that have not yet been initialized.

It is implementation-dependent whether load calls eval on the forms or does some other
operation that has an equivalent effect. For example, the forms might be translated into
different but equivalent forms and then evaluated, they might be compiled and the resulting
functions called by load, or they might be interpreted by a special-purpose function different
from eval. All that is required is that the effect be equivalent to evaluating the forms.

The method specialized on class returns a creation form using the name of the class if
the class has a proper name in environment, signaling an error of type error if it does not
have a proper name. Evaluation of the creation form uses the name to find the class with
that name, as if by calling find-class. If a class with that name has not been defined, then a
class may be computed in an implementation-defined manner. If a class cannot be returned
as the result of evaluating the creation form, then an error of type error is signaled.

Both conforming implementations and conforming programs may further specialize
make-load-form.

Examples::

(defclass obj O
((x :initarg :x :reader obj-x)
(y :initarg :y :reader obj-y)
(dist :accessor obj-dist)))
=  #<STANDARD-CLASS 0BJ 250020030>
(defmethod shared-initialize :after ((self obj) slot-names &rest keys)
(declare (ignore slot-names keys))
(unless (slot-boundp self ’dist)
(setf (obj-dist self)
(sqrt (+ (expt (obj-x self) 2) (expt (obj-y self) 2))))))
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= #<STANDARD-METHOD SHARED-INITIALIZE (:AFTER) (0BJ T) 26266714>
(defmethod make-load-form ((self obj) &optional environment)
(declare (ignore environment))
;; Note that this definition only works because X and Y do not
;; contain information which refers back to the object itself.
;; For a more general solution to this problem, see revised example below.[|}
‘ (make-instance ’, (class-of self)
:x ’,(obj-x self) :y ’,(obj-y self)))
= #<STANDARD-METHOD MAKE-LOAD-FORM (0OBJ) 26267532>
(setq objl (make-instance ’obj :x 3.0 :y 4.0)) = #<0BJ 26274136>
(obj-dist objl) = 5.0
(make-load-form objl) = (MAKE-INSTANCE ’0BJ :X ’3.0 :Y ’4.0)

In the above example, an equivalent instance of obj is reconstructed by using the values
of two of its slots. The value of the third slot is derived from those two values.

Another way to write the make-load-form method in that example is to use make-load-
form-saving-slots. The code it generates might yield a slightly different result from the
make-load-form method shown above, but the operational effect will be the same. For
example:

;; Redefine method defined above.
(defmethod make-load-form ((self obj) &optional environment)
(make-load-form-saving-slots self
:slot-names ’(x y)
:environment environment))
= #<STANDARD-METHOD MAKE-LOAD-FORM (0BJ) 42755655>
;3 Try MAKE-LOAD-FORM on object created above.
(make-load-form objl)
= (ALLOCATE-INSTANCE ’#<STANDARD-CLASS 0BJ 250020030>),
(PROGN
(SETF (SLOT-VALUE ’#<0BJ 26274136> ’X) ’3.0)
(SETF (SLOT-VALUE °’#<0BJ 26274136> ’Y) ’4.0)
(INITIALIZE-INSTANCE °’#<0BJ 26274136>))

In the following example, instances of my-frob are “interned” in some way. An equivalent
instance is reconstructed by using the value of the name slot as a key for searching existing
objects. In this case the programmer has chosen to create a new object if no existing object
is found; alternatively an error could have been signaled in that case.

(defclass my-frob ()
((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob) &optional environment)
(declare (ignore environment))
“(find-my-frob ’, (my-name self) :if-does-not-exist :create))

In the following example, the data structure to be dumped is circular, because each
parent has a list of its children and each child has a reference back to its parent. If make-
load-form is called on one object in such a structure, the creation form creates an equivalent
object and fills in the children slot, which forces creation of equivalent objects for all of its
children, grandchildren, etc. At this point none of the parent slots have been filled in. The
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initialization form fills in the parent slot, which forces creation of an equivalent object for
the parent if it was not already created. Thus the entire tree is recreated at load time. At
compile time, make-load-form is called once for each object in the tree. All of the creation
forms are evaluated, in implementation-dependent order, and then all of the initialization
forms are evaluated, also in implementation-dependent order.

(defclass tree-with-parent () ((parent :accessor tree-parent)
(children :initarg :children)))
(defmethod make-load-form ((x tree-with-parent) &optional environment)
(declare (ignore environment))
(values
;3 creation form
‘ (make-instance ’,(class-of x) :children ’, (slot-value x ’children))li
;3 initialization form
‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))
In the following example, the data structure to be dumped has no special properties and
an equivalent structure can be reconstructed simply by reconstructing the slots’ contents.

(defstruct my-struct a b c)
(defmethod make-load-form ((s my-struct) &optional environment)
(make-load-form-saving-slots s :environment environment))

Exceptional Situations::

The methods specialized on standard-object, structure-object, and condition all signal an
error of type error.

It is tmplementation-dependent whether calling make-load-form on a generalized instance
of a system class signals an error or returns creation and initialization forms.

See Also::

(undefined) [compile-file], page (undefined), , (undefined) [make-load-form-saving-slots],
page (undefined), , (undefined) [Additional Constraints on Externalizable Objects],
page (undefined), (undefined) [Evaluation], page (undefined), (undefined) [Compilation],
page (undefined),

Notes::

The file compiler calls make-load-form in specific circumstances detailed in (undefined)
[Additional Constraints on Externalizable Objects], page (undefined).

Some implementations may provide facilities for defining new subclasses of classes which
are specified as system classes. (Some likely candidates include generic-function, method,
and stream). Such implementations should document how the file compiler processes in-
stances of such classes when encountered as literal objects, and should document any rele-
vant methods for make-load-form.

7.7.22 make-load-form-saving-slots [Function]

make-load-form-saving-slots object &key slot-names environment
= creation-form, initialization-form



Chapter 7: Objects 377

Arguments and Values::

object—an object.
slot-names—a list.
environment—an environment object.
creation-form—a form.

iatialization-form—a form.

Description::

Returns forms that, when evaluated, will construct an object equivalent to object, without
executing initialization forms. The slots in the new object that correspond to initialized
slots in object are initialized using the values from object. Uninitialized slots in object are
not initialized in the new object. make-load-form-saving-slots works for any instance of
standard-object or structure-object.

Slot-names is a list of the names of the slots to preserve. If slot-names is not supplied,
its value is all of the local slots.

make-load-form-saving-slots returns two values, thus it can deal with circular structures.
Whether the result is useful in an application depends on whether the object’s type and slot
contents fully capture the application’s idea of the object’s state.

Environment is the environment in which the forms will be processed.

See Also::

(undefined) [make-load-form|, page (undefined), , (undefined) [make-instance], page (unde-
fined), , (undefined) [setf], page (undefined), , (undefined) [slot-value|, page (undefined), ,
(undefined) [slot-makunbound], page (undefined),

Notes::

make-load-form-saving-slots can be useful in user-written make-load-form methods.

When the object is an instance of standard-object, make-load-form-saving-slots could
return a creation form that calls allocate-instance and an initialization form that contains
calls to setf of slot-value and slot-makunbound, though other functions of similar effect
might actually be used.

7.7.23 with-accessors [Macro]
with-accessors ({slot-entry}*) instance-form {declaration}* {form}*
= {result}*

slot-entry ::=(variable-name accessor-name )

Arguments and Values::

variable-name—a variable name; not evaluated.
accessor-name—a function name; not evaluated.
instance-form—a form; evaluated.
declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.
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Description::

Creates a lexical environment in which the slots specified by slot-entry are lexically available
through their accessors as if they were variables. The macro with-accessors invokes the
appropriate accessors to access the slots specified by slot-entry. Both setf and setq can be
used to set the value of the slot.

Examples::

(defclass thing ()
((x :initarg :x :accessor thing-x)
(y :initarg :y :accessor thing-y)))
=  #<STANDARD-CLASS THING 250020173>
(defmethod (setf thing-x) :before (new-x (thing thing))
(format t ""&Changing X from "D to "D in "S.~
(thing-x thing) new-x thing))
(setq thingl (make-instance ’thing :x 1 :y 2)) = #<THING 43135676>
(setq thing2 (make-instance ’thing :x 7 :y 8)) = #<THING 43147374>
(with-accessors ((x1 thing-x) (yl thing-y))
thingl
(with-accessors ((x2 thing-x) (y2 thing-y))
thing2
(1ist (list x1 (thing-x thingl) yl1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing2))
(setq x1 (+ y1 x2))
(list x1 (thing-x thingl) y1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing?2))
(setf (thing-x thing2) (list x1))
(1ist x1 (thing-x thingl) y1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing2)))))
|> Changing X from 1 to 9 in #<THING 43135676>.
> Changing X from 7 to (9) in #<THING 43147374>.
= ((11227788)
9
(9922778 8)
(9
(9922 (9 (9 88))

Affected By::

defclass

Exceptional Situations::

The consequences are undefined if any accessor-name is not the name of an accessor for the
mstance.

See Also::

(undefined) [with-slots], page (undefined), , (undefined) [symbol-macrolet], page (unde-
fined),
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Notes::

A with-accessors expression of the form:

(with-accessors (slot-entry_1 ...slot-entry_n) instance-form form_1 ...form_k)[

expands into the equivalent of

(let ((in instance-form))

(symbol-macrolet (Q_1... Q_n) form_1 ...form_k))

where Q_i is

(variable-name_i ()
(accessor-name_i in))

7.7.24 with-slots [Macro]

with-slots ({slot-entry}*) instance-form {declaration}* {form} *
= {result}*

slot-entry ::=slot-name | (variable-name slot-name)

Arguments and Values::

slot-name—a slot name; not evaluated.
variable-name—a variable name; not evaluated.
instance-form—a form; evaluted to produce instance.
instance—an object.
declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description::

The macro with-slots establishes a lexical environment for referring to the slots in the
instance named by the given slot-names as though they were wvariables. Within such a
context the value of the slot can be specified by using its slot name, as if it were a lexically
bound variable. Both setf and setq can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a wvariable into a call
to slot-value.

Examples::

(defclass thing ()
((x :initarg :x :accessor thing-x)
(y :initarg :y :accessor thing-y)))
=  #<STANDARD-CLASS THING 250020173>
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(defmethod (setf thing-x) :before (new-x (thing thing))
(format t "~“&Changing X from "D to "D in ~S.~
(thing-x thing) new-x thing))
(setq thing (make-instance ’thing :x 0 :y 1)) = #<THING 62310540>
(with-slots (x y) thing (incf x) (incf y)) = 2
(values (thing-x thing) (thing-y thing)) = 1, 2
(setq thingl (make-instance ’thing :x 1 :y 2)) = #<THING 43135676>
(setq thing2 (make-instance ’thing :x 7 :y 8)) = #<THING 43147374>
(with-slots ((x1 x) (y1l y))
thingl
(with-slots ((x2 x) (y2 y))
thing?2
(1ist (list x1 (thing-x thingl) yl1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing2))
(setq x1 (+ y1 x2))
(l1ist x1 (thing-x thingl) y1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing2))
(setf (thing-x thing2) (list x1))
(1ist x1 (thing-x thingl) yl1 (thing-y thingl)
x2 (thing-x thing2) y2 (thing-y thing2)))))
|> Changing X from 7 to (9) in #<THING 43147374>.
= ((112277838)
9
(9922778 8)
(9
(9922 (9 (9 88))

Affected By::

defclass

Exceptional Situations::

The consequences are undefined if any slot-name is not the name of a slot in the instance.

See Also::

(undefined) [with-accessors|, page (undefined), , (undefined) [slot-value], page (undefined),
, (undefined) [symbol-macrolet], page (undefined),

Notes::

A with-slots expression of the form:
(with-slots (slot-entry_1 ...slot-entry_n) instance-form form_1 ...form_k)
expands into the equivalent of

(let ((in instance-form))
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(symbol-macrolet (Q_1... Q_n) form_1 ...form_k))

where Q_i is

(slot-entry_i ()

(slot-value in ’slot-entry_i))
if slot-entry_i is a symbol and is

(variable-name_i ()
(slot-value in ’slot-name_i))

if slot-entry_i is of the form

(variable-name_i
slot-name_i)

7.7.25 defclass [Macro]

defclass class-name ({superclass-name}*) ({slot-specifier}*) [[lclass-option]]
= new-class

slot-specifier::=slot-name | (slot-name [[!slot-option]])
slot-name::= symbol

slot-option::={:reader reader-function-name}* |
:writer writer-function-name}* |
:accessor reader-function-name}* |
:allocation allocation-type} |
:initarg initarg-name}* |
:initform form} |
:type type-specifier} |
:documentation string}

N e Y e S Y

function-name::= {symbol | (setf symbol)}

class-option::=(:default-initargs . initarg-list) |
(:documentation string) |
(:metaclass class-name)

Arguments and Values::

Class-name—a non-nil symbol.

Superclass-name—a non-nil symbol.

Slot-name—a symbol. The slot-name argument is a symbol that is syntactically valid for
use as a variable name.

Reader-function-name—a non-nil symbol. :reader can be supplied more than once for
a given slot.

Writer-function-name—a generic function name. :writer can be supplied more than
once for a given slot.
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Reader-function-name—a mon-nil symbol. :accessor can be supplied more than once
for a given slot.

Allocation-type—(member :instance :class). :allocation can be supplied once at
most for a given slot.

Initarg-name—a symbol. :initarg can be supplied more than once for a given slot.
Form—a form. :init-form can be supplied once at most for a given slot.
Type-specifier—a type specifier. :type can be supplied once at most for a given slot.
Class-option— refers to the class as a whole or to all class slots.

Initarg-list—a list of alternating initialization argument names and default initial value
forms. :default-initargs can be supplied at most once.

Class-name—a non-nil symbol. :metaclass can be supplied once at most.
new-class—the new class object.

Description::
The macro defclass defines a new named class. It returns the new class object as its result.

The syntax of defclass provides options for specifying initialization arguments for slots,
for specifying default initialization values for slots, and for requesting that methods on
specified generic functions be automatically generated for reading and writing the values
of slots. No reader or writer functions are defined by default; their generation must be
explicitly requested. However, slots can always be accessed using slot-value.

Defining a new class also causes a type of the same name to be defined. The predicate
(typep object class-name) returns true if the class of the given object is the class named
by class-name itself or a subclass of the class class-name. A class object can be used as a
type specifier. Thus (typep object class) returns true if the class of the object is class
itself or a subclass of class.

The class-name argument specifies the proper name of the new class. If a class with the
same proper name already exists and that class is an instance of standard-class, and if the
defclass form for the definition of the new class specifies a class of class standard-class, the
existing class is redefined, and instances of it (and its subclasses) are updated to the new
definition at the time that they are next accessed. For details, see (undefined) [Redefining
Classes|, page (undefined).

Each superclass-name argument specifies a direct superclass of the new class. If the
superclass list is empty, then the superclass defaults depending on the metaclass, with
standard-object being the default for standard-class.

The new class will inherit slots and methods from each of its direct superclasses, from
their direct superclasses, and so on. For a discussion of how slots and methods are inherited,
see (undefined) [Inheritance], page (undefined).

The following slot options are available:

* The :reader slot option specifies that an unqualified method is to be defined
on the generic function named reader-function-name to read the value of the
given slot.

* The :writer slot option specifies that an unqualified method is to be defined

on the generic function named writer-function-name to write the value of the
slot.
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* The :accessor slot option specifies that an unqualified method is to be defined
on the generic function named reader-function-name to read the value of the
given slot and that an unqualified method is to be defined on the generic function
named (setf reader-function-name) to be used with setf to modify the value
of the slot.

* The :allocation slot option is used to specify where storage is to be allocated
for the given slot. Storage for a slot can be located in each instance or in the
class object itself. The value of the allocation-type argument can be either the
keyword :instance or the keyword :class. If the :allocation slot option is
not specified, the effect is the same as specifying :allocation :instance.

- If allocation-type is :instance, a local slot of the name slot-name
is allocated in each instance of the class.

- If allocation-type is :class, a shared slot of the given name is
allocated in the class object created by this defclass form. The
value of the slot is shared by all instances of the class. If a class
C_1 defines such a shared slot, any subclass C_2 of C_1 will share
this single slot unless the defclass form for C_2 specifies a slot of
the same name or there is a superclass of C_2 that precedes C_1 in
the class precedence list of C_2 and that defines a slot of the same
name.

* The :initform slot option is used to provide a default initial value form to be
used in the initialization of the slot. This form is evaluated every time it is used
to initialize the slot. The lexical environment in which this form is evaluated
is the lexical environment in which the defclass form was evaluated. Note that
the lexical environment refers both to variables and to functions. For local slots,
the dynamic environment is the dynamic environment in which make-instance
is called; for shared slots, the dynamic environment is the dynamic environment
in which the defclass form was evaluated. See (undefined) [Object Creation and
Initialization], page (undefined).

No implementation is permitted to extend the syntax of defclass to allow (slot-
name form) as an abbreviation for (slot-name :initform form).

[Reviewer Note by Barmar: Can you extend this to mean something else?]

* The :initarg slot option declares an initialization argument named initarg-
name and specifies that this initialization argument initializes the given slot.
If the initialization argument has a value in the call to initialize-instance, the
value will be stored into the given slot, and the slot’s :initform slot option,
if any, is not evaluated. If none of the initialization arguments specified for a
given slot has a value, the slot is initialized according to the :initform slot
option, if specified.

* The :type slot option specifies that the contents of the slot will always be of
the specified data type. It effectively declares the result type of the reader
generic function when applied to an object of this class. The consequences
of attempting to store in a slot a value that does not satisfy the type of the
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slot are undefined. The :type slot option is further discussed in (undefined)
[Inheritance of Slots and Slot Options|, page (undefined).

* The :documentation slot option provides a documentation string for the slot.
:documentation can be supplied once at most for a given slot. [Reviewer Note
by Barmar: How is this retrieved?]

Each class option is an option that refers to the class as a whole. The following class
options are available:

* The :default-initargs class option is followed by a list of alternating ini-
tialization argument names and default initial value forms. If any of these
initialization arguments does not appear in the initialization argument list sup-
plied to make-instance, the corresponding default initial value form is evaluated,
and the initialization argument name and the form’s value are added to the
end of the initialization argument list before the instance is created; see (un-
defined) [Object Creation and Initialization], page (undefined). The default
initial value form is evaluated each time it is used. The lexical environment in
which this form is evaluated is the lexical environment in which the defclass
form was evaluated. The dynamic environment is the dynamic environment in
which make-instance was called. If an initialization argument name appears
more than once in a :default-initargs class option, an error is signaled.

The :documentation class option causes a documentation string to be at-
tached with the class object, and attached with kind type to the class-name.
:documentation can be supplied once at most.

* The :metaclass class option is used to specify that instances of the class being
defined are to have a different metaclass than the default provided by the system
(the class standard-class).

Note the following rules of defclass for standard classes:

* It is not required that the superclasses of a class be defined before the defclass
form for that class is evaluated.

* All the superclasses of a class must be defined before an instance of the class
can be made.

* A class must be defined before it can be used as a parameter specializer in a
defmethod form.

The object system can be extended to cover situations where these rules are not obeyed.

Some slot options are inherited by a class from its superclasses, and some can be
shadowed or altered by providing a local slot description. No class options except
:default-initargs are inherited. For a detailed description of how slots and slot options
are inherited, see (undefined) [Inheritance of Slots and Slot Options]|, page (undefined).

The options to defclass can be extended. It is required that all implementations signal
an error if they observe a class option or a slot option that is not implemented locally.
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It is valid to specify more than one reader, writer, accessor, or initialization argument
for a slot. No other slot option can appear more than once in a single slot description, or
an error is signaled.

If no reader, writer, or accessor is specified for a slot, the slot can only be accessed by
the function slot-value.

If a defclass form appears as a top level form, the compiler must make the class name
be recognized as a valid type name in subsequent declarations (as for deftype) and be
recognized as a valid class name for defmethod parameter specializers and for use as the
:metaclass option of a subsequent defclass. The compiler must make the class definition
available to be returned by find-class when its environment argument is a value received as
the environment parameter of a macro.

Exceptional Situations::
If there are any duplicate slot names, an error of type program-error is signaled.

If an initialization argument name appears more than once in :default-initargs class
option, an error of type program-error is signaled.

If any of the following slot options appears more than once in a single slot description, an
error of type program-error is signaled: :allocation, :initform, :type, :documentation.

It is required that all implementations signal an error of type program-error if they
observe a class option or a slot option that is not implemented locally.

See Also::

(undefined) [documentation], page (undefined), , (undefined) [Initialize-Instance],
page (undefined), , (undefined) [make-instance], page (undefined), , (undefined)
[slot-value], page (undefined), , (undefined) [Classes|, page (undefined), (undefined)
[Inheritance], page (undefined), (undefined) [Redefining Classes|, page (undefined),
(undefined) [Determining the Class Precedence List], page (undefined), (undefined) [Object
Creation and Initialization|, page (undefined),

7.7.26 defgeneric [Macro]
defgeneric function-name gf-lambda-list [[loption | {!method-description}*/]
= new-generic

option ::=(:argument-precedence-order {parameter-name}~+) | (declare {gf-declaration}~+) ||}
(:documentation gf-documentation) | (:method-combination method-combination {method-combination-a
(:generic-function-class generic-function-class) | (:method-class method-class)

method-description ::=(:method {method-qualifier}* specialized-lambda-list [[{declaration}* | documentat

Arguments and Values::

function-name—a function name.
generic-function-class—a non-nil symbol naming a class.

gf-declaration—an optimize declaration specifier; other declaration specifiers are not
permitted.

gf-documentation—a string; not evaluated.

gf-lambda-list—a generic function lambda list.
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method-class—a non-nil symbol naming a class.
method-combination-argument—an object.
method-combination-name—a symbol naming a method combination type.

method-qualifiers, specialized-lambda-list, declarations, documentation, forms—as per
defmethod.

new-generic—the generic function object.

parameter-name—a symbol that names a required parameter in the lambda-list. (If the
:argument-precedence-order option is specified, each required parameter in the lambda-
list must be used exactly once as a parameter-name.)

Description::

The macro defgeneric is used to define a generic function or to specify options and decla-
rations that pertain to a generic function as a whole.

If function-name is a list it must be of the form (setf symbol). If (fboundp function-
name) is false, a new generic function is created.

If (fdefinition function-name) is a generic function, that

generic function is modified. If function-name names an ordinary function, a macro, or
a special operator, an error is signaled.

The effect of the defgeneric macro is as if the following three steps were performed: first,
methods defined by previous defgeneric forms are removed;

[Reviewer Note by Barmar: Shouldn’t this (second) be first?] second, ensure-generic-
function is called; and finally, methods specified by the current defgeneric form are added
to the generic function.

Each method-description defines a method on the generic function. The lambda list of
each method must be congruent with the lambda list specified by the gf-lambda-list option.
If no method descriptions are specified and a generic function of the same name does not
already exist, a generic function with no methods is created.

The gf-lambda-list argument of defgeneric specifies the shape of lambda lists for the
methods on this generic function. All methods on the resulting generic function must have
lambda lists that are congruent with this shape. If a defgeneric form is evaluated and some
methods for that generic function have lambda lists that are not congruent with that given
in the defgeneric form, an error is signaled. For further details on method congruence, see
(undefined) [Congruent Lambda-lists for all Methods of a Generic Function], page (unde-
fined).

The generic function passes to the method all the argument values passed to it, and
only those; default values are not supported. Note that optional and keyword arguments
in method definitions, however, can have default initial value forms and can use supplied-p
parameters.

The following options are provided.
Except as otherwise noted,
a given option may occur only once.

* The :argument-precedence-order option is used to specify the order in which
the required arguments in a call to the generic function are tested for specificity
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when selecting a particular method. Each required argument, as specified in the
gf-lambda-list argument, must be included exactly once as a parameter-name
so that the full and unambiguous precedence order is supplied. If this condition
is not met, an error is signaled.

[Reviewer Note by Barmar: What is the default order?]

* The declare option is used to specify declarations that pertain to the generic
function.

An optimize declaration specifier is allowed. It specifies whether method se-
lection should be optimized for speed or space, but it has no effect on meth-
ods. To control how a method is optimized, an optimize declaration must be
placed directly in the defmethod form or method description. The optimiza-
tion qualities speed and space are the only qualities this standard requires, but
an implementation can extend the object system to recognize other qualities.
A simple implementation that has only one method selection technique and
ignores optimize declaration specifiers is valid.

The special, ftype, function, inline, notinline, and declaration declarations are
not permitted. Individual implementations can extend the declare option to
support additional declarations.

[Editorial Note by KMP: Does “additional” mean including special, ftype, etc.?
Or only other things that are not mentioned here?] If an implementation notices
a declaration specifier that it does not support and that has not been proclaimed
as a non-standard declaration identifier name in a declaration proclamation, it
should issue a warning. [Editorial Note by KMP: The wording of this previous
sentence, particularly the word “and” suggests to me that you can ‘proclaim
declaration’ of an unsupported declaration (e.g., ftype) in order to suppress the
warning. That seems wrong. Perhaps it instead means to say “does not support
or is both undefined and not proclaimed declaration.”]

The declare option may be specified more than once. The effect is the same
as if the lists of declaration specifiers had been appended together into a single
list and specified as a single declare option.

* The :documentation argument is a documentation string to be attached to the
generic function object, and to be attached with kind function to the function-
name.

* The :generic-function-class option may be used to specify that the generic

function is to have a different class than the default provided by the sys-
tem (the class standard-generic-function). The class-name argument is the
name of a class that can be the class of a generic function. If function-
name specifies an existing generic function that has a different value for the
:generic-function-class argument and the new generic function class is
compatible with the old, change-class is called to change the class of the generic
function; otherwise an error is signaled.

* The :method-class option is used to specify that all methods on this generic
function are to have a different class from the default provided by the system
(the class standard-method). The class-name argument is the name of a class
that is capable of being the class of a method.
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[Reviewer Note by Barmar: Is change-class called on existing methods?]

* The :method-combination option is followed by a symbol that names a type of
method combination. The arguments (if any) that follow that symbol depend
on the type of method combination. Note that the standard method combi-
nation type does not support any arguments. However, all types of method
combination defined by the short form of define-method-combination accept an
optional argument named order, defaulting to :most-specific-first, where
a value of :most-specific-last reverses the order of the primary methods
without affecting the order of the auxiliary methods.

The method-description arguments define methods that will be associated with the
generic function. The method-qualifier and specialized-lambda-list arguments in a method
description are the same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed in an
implicit block. If function-name is a symbol, this block bears the same name as the generic
function. If function-name is a list of the form (setf symbol), the name of the block is
symbol.

Implementations can extend defgeneric to include other options. It is required that an
implementation signal an error if it observes an option that is not implemented locally.

defgeneric is not required to perform any compile-time side effects. In particular, the
methods are not installed for invocation during compilation. An implementation may choose
to store information about the generic function for the purposes of compile-time error-
checking (such as checking the number of arguments on calls, or noting that a definition for
the function name has been seen).

Examples::

Exceptional Situations::

If function-name names an ordinary function, a macro, or a special operator, an error of
type program-error is signaled.

Each required argument, as specified in the gf-lambda-list argument, must be included
exactly once as a parameter-name, or an error of type program-error is signaled.

The lambda list of each method specified by a method-description must be congruent with
the lambda list specified by the gf-lambda-list option, or an error of type error is signaled.

If a defgeneric form is evaluated and some methods for that generic function have lambda
lists that are not congruent with that given in the defgeneric form, an error of type error
is signaled.

A given option may occur only once, or an error of type program-error is signaled.

[Reviewer Note by Barmar: This says that an error is signaled if you specify the same
generic function class as it already has!] If function-name specifies an existing generic
function that has a different value for the :generic-function-class argument and the
new generic function class is compatible with the old, change-class is called to change the
class of the generic function; otherwise an error of type error is signaled.

Implementations can extend defgeneric to include other options. It is required that an
implementation signal an error of type program-error if it observes an option that is not
implemented locally.
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See Also::

(undefined) [defmethod], page (undefined), , (undefined) [documentation], page (undefined),
, (undefined) [ensure-generic-function|, page (undefined), ,

generic-function,

(undefined) [Congruent Lambda-lists for all Methods of a Generic Function], page (un-
defined),

7.7.27 defmethod [Macro]

defmethod function-name {method-qualifier}* specialized-lambda-list [[{declaration}™ |
documentation)] {form}*
= new-method

function-name::= {symbol | (setf symbol)}
method-qualifier::= non-list

specialized-lambda-list::= ({var | (var parameter-specializer-name) }*
[&optional {var | (var [initform [supplied-p-parameter] 1)}*]
[&rest var]
[&key{var | ({var | (keywordvar)} Linitform [supplied-p-parameter] 1)}*
[&allow-other-keys] ]
[&aux {wvar | (var [initform] )}*]1 )

parameter-specializer-name::= symbol | (eql eql-specializer-form)

Arguments and Values::

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.
var—a variable name.
eql-specializer-form—a form.
Form—a form.
Initform—a form.
Supplied-p-parameter—variable name.

new-method—the new method object.

Description::
The macro defmethod defines a method on a generic function.

If (fboundp function-name) is nil, a generic function is created with default values
for the argument precedence order (each argument is more specific than the arguments to
its right in the argument list), for the generic function class (the class standard-generic-
function), for the method class (the class standard-method), and for the method combina-
tion type (the standard method combination type). The lambda list of the generic function
is congruent with the lambda list of the method being defined; if the defmethod form men-
tions keyword arguments, the lambda list of the generic function will mention &key (but no
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keyword arguments). If function-name names an ordinary function, a macro, or a special
operator, an error is signaled.

If a generic function is currently named by function-name, the lambda list of the method
must be congruent with the lambda list of the generic function. If this condition does not
hold, an error is signaled. For a definition of congruence in this context, see (undefined)
[Congruent Lambda-lists for all Methods of a Generic Function], page (undefined).

Each method-qualifier argument is an object that is used by method combination to
identify the given method. The method combination type might further restrict what a
method qualifier can be. The standard method combination type allows for unqualified
methods and methods whose sole qualifier is one of the keywords :before, :after, or
:around.

The specialized-lambda-list argument is like an ordinary lambda list except that the
names of required parameters can be replaced by specialized parameters. A specialized
parameter is a list of the form (var parameter-specializer-name). Only required pa-
rameters can be specialized. If parameter-specializer-name is a symbol it names a class; if it
is a list, it is of the form (eql eql-specializer-form). The parameter specializer name
(eql eql-specializer-form) indicates that the corresponding argument must be eql to
the object that is the value of egl-specializer-form for the method to be applicable. The
eql-specializer-form is evaluated at the time that the expansion of the defmethod macro
is evaluated. If no parameter specializer name is specified for a given required parameter,
the parameter specializer defaults to the class t. For further discussion, see (undefined)
[Introduction to Methods|, page (undefined).

The form arguments specify the method body. The body of the method is enclosed in an
implicit block. If function-name is a symbol, this block bears the same name as the generic
function. If function-name is a list of the form (setf symbol), the name of the block is
symbol.

The class of the method object that is created is that given by the method class option
of the generic function on which the method is defined.

If the generic function already has a method that agrees with the method being defined
on parameter specializers and qualifiers, defmethod replaces the existing method with the
one now being defined. For a definition of agreement in this context. see (undefined)
[Agreement on Parameter Specializers and Qualifiers], page (undefined).

The parameter specializers are derived from the parameter specializer names as described
in (undefined) [Introduction to Methods|, page (undefined).

The expansion of the defmethod macro “refers to” each specialized parameter (see the
description of ignore within the description of declare). This includes parameters that have
an explicit parameter specializer name of t. This means that a compiler warning does not
occur if the body of the method does not refer to a specialized parameter, while a warning
might occur if the body of the method does not refer to an unspecialized parameter. For
this reason, a parameter that specializes on t is not quite synonymous with an unspecialized
parameter in this context.

Declarations at the head of the method body that apply to the method’s lambda variables
are treated as bound declarations whose scope is the same as the corresponding bindings.

Declarations at the head of the method body that apply to the functional bindings of
call-next-method or next-method-p apply to references to those functions within the method
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body forms. Any outer bindings of the function names call-next-method and next-method-
p, and declarations associated with such bindings are shadowed_2 within the method body
forms.

The scope of free declarations at the head of the method body is the entire method body,
which includes any implicit local function definitions but excludes initialization forms for
the lambda variables.

defmethod is not required to perform any compile-time side effects. In particular, the
methods are not installed for invocation during compilation. An implementation may choose
to store information about the generic function for the purposes of compile-time error-
checking (such as checking the number of arguments on calls, or noting that a definition for
the function name has been seen).

Documentation is attached as a documentation string to the method object.

Affected By::

The definition of the referenced generic function.

Exceptional Situations::

If function-name names an ordinary function, a macro, or a special operator, an error of
type error is signaled.

If a generic function is currently named by function-name, the lambda list of the method
must be congruent with the lambda list of the generic function, or an error of type error is
signaled.

See Also::

(undefined) [defgeneric], page (undefined), , (undefined) [documentation], page (undefined),
, (undefined) [Introduction to Methods|, page (undefined), (undefined) [Congruent Lambda-
lists for all Methods of a Generic Function], page (undefined), (undefined) [Agreement on
Parameter Specializers and Qualifiers], page (undefined), (undefined) [Syntactic Interaction
of Documentation Strings and Declarations], page (undefined),

7.7.28 find-class [Accessor]

find-class symbol &optional errorp environment = class

(setf ( find-class symbol &optional errorp environment) new-class)

Arguments and Values::
symbol—a, symbol.
errorp—a generalized boolean. The default is true.

environment — same as the &environment argument to macro expansion functions and
is used to distinguish between compile-time and run-time environments.

The &environment argument has dynamic extent; the consequences are undefined if the
&environment argument is referred to outside the dynamic extent of the macro expansion
function.

class—a class object, or nil.
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Description::

Returns the class object named by the symbol in the environment. If there is no such class,
nil is returned if errorp is false; otherwise, if errorp is true, an error is signaled.

The class associated with a particular symbol can be changed by using setf with find-
class;

or, if the new class given to setf is nil, the class association is removed (but the class
object itself is not affected).

The results are undefined if the user attempts to change
or remove

the class associated with a symbol that is defined as a type specifier in this standard.
See (undefined) [Integrating Types and Classes|, page (undefined).

When using setf of find-class, any errorp argument is evaluated for effect, but any values
it returns are ignored; the errorp parameter is permitted primarily so that the environment
parameter can be used.

The environment might be used to distinguish between a compile-time and a run-time
environment.

Exceptional Situations::

If there is no such class and errorp is true, find-class signals an error of type error.

See Also::

(undefined) [defmacro], page (undefined), , (undefined) [Integrating Types and Classes],
page (undefined),

7.7.29 next-method-p [Local Function]

Syntax::

next-method-p <no arguments> = generalized-boolean

Arguments and Values::

generalized-boolean—a generalized boolean.

Description::

The locally defined function next-method-p can be used
within the body forms (but not the lambda list)
defined by a method-defining form to determine whether a next method exists.
The function next-method-p has lexical scope and indefinite extent.

Whether or not next-method-p is fbound in the global environment is implementation-
dependent; however, the restrictions on redefinition and shadowing of next-method-p are the
same as for symbols in the COMMON-LISP package which are fbound in the global environment.
The consequences of attempting to use next-method-p outside of a method-defining form
are undefined.
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See Also::

(undefined) [call-next-method], page (undefined), , (undefined) [defmethod], page (unde-
fined), , (undefined) [call-method], page (undefined),

7.7.30 call-method, make-method [Local Macro]

Syntax::
call-method method &optional next-method-list = {result}*
make-method form = method-object

Arguments and Values::

method—a method object, or a list (see below); not evaluated.
method-object—a method object.
next-method-list—a list of method objects; not evaluated.

results—the values returned by the method invocation.

Description::

The macro call-method is used in method combination. It hides the implementation-
dependent details of how methods are called. The macro call-method has lexical scope
and can only be used within an effective method form.

[Editorial Note by KMP: This next paragraph still needs some work.]

Whether or not call-method is fbound in the global environment is implementation-
dependent; however, the restrictions on redefinition and shadowing of call-method are the
same as for symbols in the COMMON-LISP package which are fbound in the global environment.
The consequences of attempting to use call-method outside of an effective method form are
undefined.

The macro call-method invokes the specified method, supplying it with arguments and
with definitions for call-next-method and for next-method-p. If the invocation of call-
method is lexically inside of a make-method, the arguments are those that were supplied to
that method. Otherwise the arguments are those that were supplied to the generic function.
The definitions of call-next-method and next-method-p rely on the specified next-method-
list.

If method is a list, the first element of the list must be the symbol make-method and
the second element must be a form. Such a list specifies a method object whose method
function has a body that is the given form.

Next-method-list can contain method objects or lists, the first element of which must be
the symbol make-method and the second element of which must be a form.

Those are the only two places where make-method can be used. The form used with
make-method is evaluated in the null lexical environment augmented with a local macro
definition for call-method and with bindings named by symbols not accessible from the
COMMON-LISP-USER package.

The call-next-method function available to method will call the first method in next-
method-list. The call-next-method function available in that method, in turn, will call the
second method in next-method-list, and so on, until the list of next methods is exhausted.
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If next-method-list is not supplied, the call-next-method function available to method
signals an error of type control-error and the next-method-p function available to method
returns nil.

Examples::

See Also::

(undefined) [call-next-method], page (undefined), , (undefined) [define-method-
combination|, page (undefined), , (undefined) [next-method-p|, page (undefined),

7.7.31 call-next-method [Local Function]

Syntax::
call-next-method &rest args = {result}*

Arguments and Values::

arg—an object.

results—the values returned by the method it calls.

Description::

The function call-next-method can be used
within the body forms (but not the lambda list)
of a method defined by a method-defining form to call the next method.
If there is no next method, the generic function no-next-method is called.

The type of method combination used determines which methods can invoke call-next-
method. The standard method combination type allows call-next-method to be used within
primary methods and around methods. For generic functions using a type of method com-
bination defined by the short form of define-method-combination, call-next-method can be
used in around methods only.

When call-next-method is called with no arguments, it passes the current method’s
original arguments to the next method. Neither argument defaulting, nor using setq, nor
rebinding variables with the same names as parameters of the method affects the values
call-next-method passes to the method it calls.

When call-next-method is called with arguments, the next method is called with those
arguments.

If call-next-method is called with arguments but omits optional arguments, the next
method called defaults those arguments.

The function call-next-method returns any values that are returned by the next method.

The function call-next-method has lexical scope and indefinite extent and can only be
used within the body of a method defined by a method-defining form.

Whether or not call-next-method is fbound in the global environment is implementation-
dependent; however, the restrictions on redefinition and shadowing of call-next-method
are the same as for symbols in the COMMON-LISP package which are fbound in the global
environment. The consequences of attempting to use call-next-method outside of a method-
defining form are undefined.
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Affected By::

defmethod, call-method, define-method-combination.

Exceptional Situations::

When providing arguments to call-next-method, the following rule must be satisfied or an
error of type error should be signaled: the ordered set of applicable methods for a changed
set of arguments for call-next-method must be the same as the ordered set of applicable
methods for the original arguments to the generic function. Optimizations of the error
checking are possible, but they must not change the semantics of call-next-method.

See Also::

(undefined) [define-method-combination], page (undefined), , (undefined) [defmethod],
page (undefined), , (undefined) [next-method-p], page (undefined), , (undefined)
[no-next-method], page (undefined), , (undefined) [call-method]|, page (undefined), |,
(undefined) [Method Selection and Combination], page (undefined), (undefined) [Standard
Method Combination], page (undefined), (undefined) [Built-in Method Combination
Types], page (undefined),

7.7.32 compute-applicable-methods [Standard Generic Function)]
Syntax::

compute-applicable-methods generic-function function-arguments = methods

Method Signatures::

compute-applicable-methods (generic-function standard-generic-function)

Arguments and Values::

generic-function—a generic function.
function-arguments—a list of arguments for the generic-function.
methods—a list of method objects.

Description::

Given a generic-function and a set of function-arguments, the function compute-applicable-
methods returns the set of methods that are applicable for those arguments sorted according
to precedence order. See (undefined) [Method Selection and Combination]|, page (unde-
fined).

Affected By::
defmethod

See Also::
(undefined) [Method Selection and Combination], page (undefined),

7.7.33 define-method-combination [Macro]

define-method-combination name [[!short-form-option]]
= name
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define-method-combination name lambda-list  ({method-group-specifier} *)
[(:arguments . args-lambda-list)] [(:generic-function generic-function-symbol)]
[R declaration}* | documentation]] {form}*
= name
short-form-option ::=:documentation documentation | :identity-with-one-argument identity-with-or

:operator operator
method-group-specifier ::=(name {{qualifier-pattern}~+ | predicate} [[!long-form-option]])}

long-form-option ::=:description description | :order order | :required required-pj

Arguments and Values::

args-lambda-list— a define-method-combination arguments lambda list.
declaration—a declare expression; not evaluated.
description—a format control.
documentation—a string; not evaluated.

forms—an implicit progn that must compute and return the form that specifies how the
methods are combined, that is, the effective method.

generic-function-symbol—a symbol.
identity-with-one-argument—a generalized boolean.
lambda-list—ordinary lambda list.

name—a symbol. Non-keyword, non-nil symbols are usually used.

operator—an operator. Name and operator are often the same symbol. This is the
default, but it is not required.

order—:most-specific-first or :most-specific-last; evaluated.

predicate—a symbol that names a function of one argument that returns a generalized
boolean.

qualifier-pattern—a list, or the symbol *.

required-p—a generalized boolean.

Description::
The macro define-method-combination is used to define new types of method combination.

There are two forms of define-method-combination. The short form is a simple facility for
the cases that are expected to be most commonly needed. The long form is more powerful
but more verbose. It resembles defmacro in that the body is an expression, usually using
backquote, that computes a form. Thus arbitrary control structures can be implemented.
The long form also allows arbitrary processing of method qualifiers.

Short Form
The short form syntax of define-method-combination is recognized when the
second subform is a non-nil symbol or is not present. When the short form is
used, name is defined as a type of method combination that produces a Lisp
form (operator method-call method-call ...). The operator is a symbol that can
be the name of a function, macro, or special operator. The operator can be
supplied by a keyword option; it defaults to name.
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Long Form

Keyword options for the short form are the following:

* The :documentation option is wused to document the
method-combination type; see description of long form below.

* The :identity-with-one-argument option enables an optimiza-
tion when its value is true (the default is false). If there is exactly
one applicable method and it is a primary method, that method
serves as the effective method and operator is not called. This op-
timization avoids the need to create a new effective method and
avoids the overhead of a function call. This option is designed to
be used with operators such as progn, and, +, and max.

* The :operator option specifies the name of the operator. The
operator argument is a symbol that can be the name of a function,
macro, or special form.

These types of method combination require exactly one qualifier per method.
An error is signaled if there are applicable methods with no qualifiers or with
qualifiers that are not supported by the method combination type.

A method combination procedure defined in this way recognizes two roles for
methods. A method whose one qualifier is the symbol naming this type of
method combination is defined to be a primary method. At least one primary
method must be applicable or an error is signaled. A method with :around
as its one qualifier is an auxiliary method that behaves the same as an around
method in standard method combination. The function call-next-method can
only be used in around methods; it cannot be used in primary methods defined
by the short form of the define-method-combination macro.

A method combination procedure defined in this way accepts an optional ar-
gument named order, which defaults to :most-specific-first. A value of
:most-specific-last reverses the order of the primary methods without af-
fecting the order of the auxiliary methods.

The short form automatically includes error checking and support for around
methods.

For a discussion of built-in method combination types, see (undefined) [Built-in
Method Combination Types], page (undefined).

The long form syntax of define-method-combination is recognized when the
second subform is a list.

The lambda-list receives any arguments provided after the name of the method
combination type in the :method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset of the
applicable methods to play a particular role, either by matching their qualifiers
against some patterns or by testing their qualifiers with a predicate. These
method group specifiers define all method qualifiers that can be used with this
type of method combination.

The car of each method-group-specifier is a symbol which names a variable.
During the execution of the forms in the body of define-method-combination,
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this variable is bound to a list of the methods in the method group. The methods
in this list occur in the order specified by the :order option.

If qualifier-pattern is a symbol it must be *. A method matches a qualifier-
pattern if the method’s list of qualifiers is equal to the qualifier-pattern (except
that the symbol * in a qualifier-pattern matches anything). Thus a qualifier-
pattern can be one of the following: the empty list, which matches unqualified
methods; the symbol *, which matches all methods; a true list, which matches
methods with the same number of qualifiers as the length of the list when each
qualifier matches the corresponding list element; or a dotted list that ends in
the symbol * (the * matches any number of additional qualifiers).

Each applicable method is tested against the qualifier-patterns and predicates in
left-to-right order. As soon as a qualifier-pattern matches or a predicate returns
true, the method becomes a member of the corresponding method group and
no further tests are made. Thus if a method could be a member of more than
one method group, it joins only the first such group. If a method group has
more than one qualifier-pattern, a method need only satisfy one of the qualifier-
patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier-patterns in a
method group specifier. The predicate is called for each method that has not
been assigned to an earlier method group; it is called with one argument, the
method’s qualifier list. The predicate should return true if the method is to
be a member of the method group. A predicate can be distinguished from a
qualifier-pattern because it is a symbol other than nil or *.

If there is an applicable method that does not fall into any method group, the
function invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier pat-
terns or predicate. Keyword options can be distinguished from additional qual-
ifier patterns because they are neither lists nor the symbol *. The keyword
options are as follows:

* The :description option is used to provide a description of
the role of methods in the method group. Programming envi-
ronment tools use (apply #’format stream format-control
(method-qualifiers method)) to print this description, which
is expected to be concise. This keyword option allows the
description of a method qualifier to be defined in the same module
that defines the meaning of the method qualifier. In most cases,
format-control will not contain any format directives, but they
are available for generality. If :description is not supplied, a
default description is generated based on the variable name and
the qualifier patterns and on whether this method group includes
the unqualified methods.

* The :order option specifies the order of methods. The order
argument is a form that evaluates to :most-specific-first
or :most-specific-last. If it evaluates to any other value,
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an error is signaled. If :order is not supplied, it defaults to
:most-specific-first.

* The :required option specifies whether at least one method in
this method group is required. If its value is true and the method
group is empty (that is, no applicable methods match the qualifier
patterns or satisfy the predicate), an error is signaled. If :required
is not supplied, it defaults to nil.

The use of method group specifiers provides a convenient syntax to select meth-
ods, to divide them among the possible roles, and to perform the necessary error
checking. It is possible to perform further filtering of methods in the body forms
by using normal list-processing operations and the functions method-qualifiers
and invalid-method-error. It is permissible to use setq on the variables named
in the method group specifiers and to bind additional variables. It is also pos-
sible to bypass the method group specifier mechanism and do everything in the
body forms. This is accomplished by writing a single method group with *
as its only qualifier-pattern; the variable is then bound to a list of all of the
applicable methods, in most-specific-first order.

The body forms compute and return the form that specifies how the methods
are combined, that is, the effective method. The effective method is evalu-
ated in the null lexical environment augmented with a local macro definition
for call-method and with bindings named by symbols not accessible from the
COMMON-LISP-USER package. Given a method object in one of the lists produced
by the method group specifiers and a list of next methods, call-method will in-
voke the method such that call-next-method has available the next methods.

When an effective method has no effect other than to call a single method,
some implementations employ an optimization that uses the single method di-
rectly as the effective method, thus avoiding the need to create a new effective
method. This optimization is active when the effective method form consists
entirely of an invocation of the call-method macro whose first subform is a
method object and whose second subform is nil or unsupplied. Each define-
method-combination body is responsible for stripping off redundant invocations
of progn, and, multiple-value-progl, and the like, if this optimization is desired.

The list (:arguments . lambda-list) can appear before any declarations or
documentation string. This form is useful when the method combination type
performs some specific behavior as part of the combined method and that be-
havior needs access to the arguments to the generic function. Each parameter
variable defined by lambda-list is bound to a form that can be inserted into the
effective method. When this form is evaluated during execution of the effective
method, its value is the corresponding argument to the gemeric function; the
consequences of using such a form as the place in a setf form are undefined.

Argument correspondence is computed by dividing the :arguments lambda-list
and the generic function lambda-list into three sections: the required parame-
ters, the optional parameters, and the keyword and rest parameters. The ar-
guments supplied to the generic function for a particular call are also divided
into three sections; the required arguments section contains as many arguments
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as the generic function has required parameters, the optional arguments section
contains as many arguments as the gemeric function has optional parameters,
and the keyword/rest arguments section contains the remaining arguments.
Each parameter in the required and optional sections of the : arguments lambda-
list accesses the argument at the same position in the corresponding section of
the arguments. If the section of the :arguments lambda-list is shorter, extra
arguments are ignored. If the section of the :arguments lambda-list is longer,
excess required parameters are bound to forms that evaluate to nil and excess
optional parameters are bound to their initforms. The keyword parameters and
rest parameters in the :arguments lambda-list access the keyword/rest section
of the arguments. If the :arguments lambda-list contains &key, it behaves as
if it also contained &allow-other-keys.

In addition, &whole var can be placed first in the :arguments lambda-list. It
causes var to be bound to a form that evaluates to a list of all of the arguments
supplied to the generic function. This is different from &rest because it accesses
all of the arguments, not just the keyword/rest arguments.

Erroneous conditions detected by the body should be reported with method-
combination-error or invalid-method-error; these functions add any necessary
contextual information to the error message and will signal the appropriate
error.

The body forms are evaluated inside of the bindings created by the lambda list
and method group specifiers.

[Reviewer Note by Barmar: Are they inside or outside the :ARGUMENTS
bindings?] Declarations at the head of the body are positioned directly inside
of bindings created by the lambda list and outside of the bindings of the method
group variables. Thus method group variables cannot be declared in this way.
locally may be used around the body, however.

Within the body forms, generic-function-symbol is bound to the generic func-
tion object.

Documentation is attached as a documentation string to name (as kind method-
combination) and to the method combination object.

Note that two methods with identical specializers, but with different qualifiers,
are not ordered by the algorithm described in Step 2 of the method selection
and combination process described in (undefined) [Method Selection and Com-
bination|, page (undefined). Normally the two methods play different roles in
the effective method because they have different qualifiers, and no matter how
they are ordered in the result of Step 2, the effective method is the same. If
the two methods play the same role and their order matters,

[Reviewer Note by Barmar: How does the system know when the order mat-
ters?] an error is signaled. This happens as part of the qualifier pattern match-
ing in define-method-combination.

If a define-method-combination form appears as a top level form, the compiler must
make the method combination name be recognized as a valid method combination name in
subsequent defgeneric forms. However, the method combination is executed no earlier than
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when the define-method-combination form is executed, and possibly as late as the time
that generic functions that use the method combination are executed.

Examples::

Most examples of the long form of define-method-combination also illustrate the use of the
related functions that are provided as part of the declarative method combination facility.

;535 Examples of the short form of define-method-combination
(define-method-combination and :identity-with-one-argument t)
(defmethod func and ((x classl) y) ...)

;55 The equivalent of this example in the long form is:

(define-method-combination and
(&optional (order :most-specific-first))
((around (:around))
(primary (and) :order order :required t))
(let ((form (if (rest primary)
‘(and ,@(mapcar #’(lambda (method)
‘(call-method ,method))
primary))
“(call-method ,(first primary)))))
(if around
‘(call-method , (first around)
(,@(rest around)
(make-method ,form)))
form)))

;;; Examples of the long form of define-method-combination

;The default method-combination technique
(define-method-combination standard ()
((around (:around))
(before (:before))
(primary () :required t)
(after (:after)))
(flet ((call-methods (methods)
(mapcar #’(lambda (method)
‘(call-method ,method))
methods)))
(let ((form (if (or before after (rest primary))
‘ (multiple-value-progl
(progn ,@(call-methods before)
(call-method , (first primary)
, (rest primary)))
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,@(call-methods (reverse after)))
‘(call-method ,(first primary)))))
(if around
‘(call-method ,(first around)
(,0(rest around)
(make-method ,form)))
form))))

;A simple way to try several methods until one returns non-nil
(define-method-combination or ()
((methods (or)))
‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method))
methods)))

;A more complete version of the preceding
(define-method-combination or
(&optional (order ’:most-specific-first))
((around (:around))
(primary (or)))
;; Process the order argument
(case order
(:most-specific-first)
(:most-specific-last (setq primary (reverse primary)))
(otherwise (method-combination-error "~S is an invalid order.~@
:most-specific-first and :most-specific-last are the possible values."|
order)))
;3 Must have a primary method
(unless primary
(method-combination-error "A primary method is required."))
;; Construct the form that calls the primary methods
(let ((form (if (rest primary)
‘(or ,0@(mapcar #’(lambda (method)
‘(call-method ,method))
primary))
‘(call-method ,(first primary)))))
;3 Wrap the around methods around that form
(if around
‘(call-method , (first around)
(,0(rest around)
(make-method ,form)))
form)))

;The same thing, using the :order and :required keyword options
(define-method-combination or

(&optional (order ’:most-specific-first))

((around (:around))
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(primary (or) :order order :required t))
(let ((form (if (rest primary)
‘(or ,0@(mapcar #’(lambda (method)
‘(call-method ,method))
primary))
‘(call-method ,(first primary)))))
(if around

‘(call-method ,(first around)
(,@(rest around)

(make-method ,form)))
form)))

;This short-form call is behaviorally identical to the preceding

(define-method-combination or :identity-with-one-argument t)

;0rder methods by positive integer qualifiers
; raround methods are disallowed to keep the example small
(define-method-combination example-method-combination ()

((methods positive-integer-qualifier-p))
‘(progn ,@(mapcar #’(lambda (method)
‘(call-method ,method))
(stable-sort methods #’<
:key #’ (lambda (method)
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(first (method-qualifiers method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (length method-qualifiers) 1)

(typep (first method-qualifiers) °’(integer 0 *))))

;53 Example of the use of :arguments
(define-method-combination progn-with-lock ()
((methods ()))
(:arguments object)
¢ (unwind-protect
(progn (lock (object-lock ,object))
,@(mapcar #’(lambda (method)

‘(call-method ,method))
methods))
(unlock (object-lock ,object))))

Side Effects::

The compiler is not required to perform any compile-time side-effects.
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Exceptional Situations::

Method combination types defined with the short form require exactly one qualifier per
method. An error of type error is signaled if there are applicable methods with no qualifiers
or with qualifiers that are not supported by the method combination type. At least one
primary method must be applicable or an error of type error is signaled.

If an applicable method does not fall into any method group, the system signals an error
of type error indicating that the method is invalid for the kind of method combination in
use.

If the value of the :required option is ¢true and the method group is empty (that is, no
applicable methods match the qualifier patterns or satisfy the predicate), an error of type
error is signaled.

If the :order option evaluates to a value other than :most-specific-first or
:most-specific-last, an error of type error is signaled.

See Also::

(undefined) [call-method], page (undefined), , (undefined) [call-next-method], page (unde-
fined), , (undefined) [documentation|, page (undefined), , (undefined) [method-qualifiers],
page (undefined), , (undefined) [method-combination-error|, page (undefined), , (unde-
fined) [invalid-method-error], page (undefined), , (undefined) [defgeneric|, page (undefined),
, (undefined) [Method Selection and Combination|, page (undefined), (undefined) [Built-in
Method Combination Types|, page (undefined), (undefined) [Syntactic Interaction of Doc-
umentation Strings and Declarations|, page (undefined),

Notes::

The :method-combination option of defgeneric is used to specify that a generic
function should use a particular method combination type. The first argument to
the :method-combination option is the name of a method combination type and the
remaining arguments are options for that type.

7.7.34 find-method [St