
LiTL

Lightweight Trace Library 0.1.6

User Manual

Roman Iakymchuk and François Trahay

June 25, 2014

Contents

1 License of LiTL 2

2 Overview of LiTL 3

3 Installation 4
3.1 Requirements . 4
3.2 Getting LiTL . 4
3.3 Building EZTrace . 4

4 How to Use LiTL? 5
4.1 Reading Events . 5
4.2 Merging Traces . 5
4.3 Splitting Traces . 5
4.4 Environment Variables . 6

5 LiTL in Details 8
5.1 Event Types and The Storage Usage 8
5.2 Scalability vs. the Number of Threads 10

5.2.1 Recording Events . 10
5.2.2 Post-Mortem Analysis 12

5.3 Scalability vs. the Number of Traces 12

6 LiTL in FxT Applications 14
6.1 Recording Events . 14

7 Troubleshooting 16

Bibliography 17

1

Chapter 1

License of LiTL

Copyright (c) 2013, Télécom SudParis
All rights reserved.

Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2

Chapter 2

Overview of LiTL

LiTL [2] is a lightweight binary trace library that aims at providing perfor-
mance analysis tools with a scalable event recording mechanism that utilizes
minimum resources of the CPU and memory. In order to efficiently analyze
modern HPC applications that combine OpenMP (or Pthreads) threads and
MPI processes, we design and implement various mechanisms to ensure the
scalability of LiTL for a large number of both threads and processes.

LiTL is designed in order to resolve the following performance tracing
issues:

• Scalability and the number of threads;

• Scalability and the number of recorded traces;

• Optimization in the storage capacity usage.

As a result, LiTL provides similar functionality to standard event recording
libraries and records events only from user-space. LiTL minimizes the usage
of the CPU time and memory space in order to avoid disturbing the appli-
cation that is being analyzed. Also, LiTL is fully thread-safe that allows to
record events from multi-threaded applications. Finally, LiTL is a generic li-
brary that can be used in conjunction with many performance analysis tools
and frameworks.

3

Chapter 3

Installation

3.1 Requirements

In order to use LiTL, the following software is required:

1. autoconf of version 2.63;

3.2 Getting LiTL

Current development version of LiTL is available via Git
git clone git+ssh://fusionforge.int-evry.fr//var/lib/
gforge/chroot/scmrepos/git/litl/litl.git

After getting the latest development version from Git, the following com-
mand should be run

./bootstrap
And, only afterwards the tool can be built.

3.3 Building EZTrace

At first, to configure LiTL the following configure script should be invoked
./configure - -prefix=<LITL_INSTALL_DIR>

The configuration script contains many different options that can be set.
However, during the first try we recommend to use the default settings.

Once LiTL is configured, the next two commands should be executed to
complete the building

make
make install

In order to check whether LiTL was installed correctly, a set of tests can
be run as

make check

4

Chapter 4

How to Use LiTL?

4.1 Reading Events

After the application was traced and events were recorded into binary trace
files, those traces can be analyzed using litl_read as

litl_read -f trace.file
This utility shows the recorded events in the following format:

• Time since last probe record on the same CPU;

• ID of the current thread on this CPU;

• Event type;

• Code of the probe;

• Number of parameters of the probe;

• List of parameters of the probe, if any.

4.2 Merging Traces

Once the traces were recorded, they can be merged into an archive of traces
for further processing by the following command

litl_read -o archive.trace trace.0 trace.1 ... trace.n

4.3 Splitting Traces

In case of a need for a detailed analysis of a particular trace files, an archive
of traces can be split back into separate traces by

litl_read -f archive.trace -d output.dir

5

4.4 Environment Variables

For a more flexible and comfortable usage of LiTL, we provide the following
environment variables:

• LITL_BUFFER_SIZE provides users with the alternative possibility to
set a buffer size. If the variable is not specified, then the provided
value inside the application is used;

• LITL_BUFFER_FLUSH specifies the behavior of LiTL when the event
buffer is full. If it is set to “0”, LiTL stop recording events. The trace is,
thus, truncated and there is no impact on the application performance.
If it is set to “1” the buffer is written to disk and additional events can
be recorded. This permits to record traces that are larger than the
buffer size. Please note that the Flush policy may have a significant
impact on the application performance since it requires to write a large
amount of data to disk during the execution of the application. The
default value is 0.

• LITL_TID_RECORDING provides users with an alternative possibility to
enable or disable tid recording. If it is set to “1”, the tid recording is
enabled. Otherwise, when it is set to “0”, the tid recording is disable;
The default value is 1.

• LITL_THREAD_SAFETY specifies the behavior of LiTL while tracing multi-
threaded applications. If it is set to “1”, the thread safety is enabled.
Otherwise, when it is set to “0”, the event recording is not thread safe;
The default value is 1.

• LITL_TIMING_METHOD specifies the timing method that will be used
during the recording phase. The LiTL timing methods can be divided
into two groups: those that measure time in clock ticks and those that
rely on the clock_gettime() function. The first group has only one
method:

– ticks that uses the CPU specific register, e.g. rdtsc on X86 and
X86_64 architectures.

The second group comprises of the other five different methods:

– monotonic that corresponds to CLOCK_MONOTONIC;

– monotonic_raw – CLOCK_MONOTONIC_RAW;

– realtime – CLOCK_REALTIME;

– thread_cputime – CLOCK_THREAD_CPUTIME_ID;

– process_cputime – CLOCK_PROCESS_CPUTIME_ID.

6

User can also define its own timing method and set the environment
variable accordingly.

7

Chapter 5

LiTL in Details

5.1 Event Types and The Storage Usage

Each event in the LiTL library consists of two parts: the event core (the
event code, the time when the event occurred, the thread identifier, and
the number of parameters) and event parameters. The number of event
parameters recorded by LiTL varies from zero to ten.

The parameters passed to each event have different data type. In order
to handle the variety of possible cases, event’s parameters in LiTL can be
represented by the largest data type, which is uint64_t on x86_64 architec-
tures. Hence, any parameter – no matter whether it is a char, an int or a
long int – can be recorded without being truncated. However, the reserved
slot for each parameter is often bigger than its actual size. Thus, this leads
to the non-optimal usage of resources. Our goal is to keep trace files as small
as possible without losing any of the recorded data. Therefore, we propose
to use the compacted event storage that aims at utilizing every byte from
the allocated space.

In our approach, we introduce three different types of events: regular,
raw, and packed. The regular event is without any major optimization being
involved. The raw event stores parameters in the string format. Its purpose is
to gather either the regular parameters in a string format or the information
about the abnormal behavior of applications like thrown exceptions. The
packed event represents the optimized versions of storing events, where each
parameter can be saved as a group of bytes. Accordingly, by using the event
type packed for recording and storing events, we theoretically are capable to
save up to 65% of the disk space compare to the regular LiTL.

Fig. 5.1(a) shows, on an example of three regular events with different
number of parameters, the occupied space of events within the trace file
recorded by EZTrace with LiTL. We symbolically partitioned the trace file
into bytes and also chunks of bytes, which store event’s components. The
space occupied by each event is highlighted with parentheses.

8

event5

time tid cpu code np par0 par1 par2 par3 par4

event2

time tid cpu code np par0 par1

event3

time tid cpu code np par0 par1 par2

(a) Regular Events

event5

time cd tp np par

event2

time cd tp np
par

event3

time cd tp np
par

saved space

(b) Packed Events

Figure 5.1: Storage of different kinds of events in the trace file. In the figure, time is the time when the event occurred; cd means the
event code; tp is the event type; np stands for the number of event’s parameters; par – an array of parameters.

H E A D E R
LiTL_v OS #threads buf_size tid0 offset0 tid1 offset1 tid2 offset2

chunk00
events offset01

chunk20
events offset21

chunk01
events offset02

chunk10
events offset11

chunk02
events offset03

Figure 5.2: Storage of events recorded by LiTL on multi-threaded applications. In the figure, LiTL_v contains information about
LiTL; OS – about OS and architecture; #threads stands for the number of threads; buf_size – the buffer size.

9

Fig. 5.1(b) shows the storage of the recorded packed events in the trace
file while using EZTrace with LiTL. We consider one particular scenario
when each event’s parameter can be represented by uint8_t; this requires
only one byte for the storage. To store larger event’s parameters we use
arrays of uint8_t. This scenario corresponds to the optimal performance
in terms of the memory and disk space usage. Under this approach, not
only the size of the core event’s components is shrunk, but also the size of
event’s parameters is reduced significantly. The gained performance, e.i. the
reduced space, can be characterized by the gray area that corresponds to
the difference in storage between the regular and packed events. The size of
three packed events is smaller than the size of one regular event with five
parameters. This figure confirms our assumption regarding the possibility of
reducing the size of both the recorded events and trace files.

5.2 Scalability vs. the Number of Threads

The advent of multi-core processor have led to the increase in the number of
processing units per machine. It becomes usual to equip a typical high perfor-
mance computing platform with 8, 16, or even more cores per node. In order
to exploit efficiently such facilities, developers can use hybrid programming
models that mix OpenMP (or Pthreads) threads and MPI processes within
one application. Hence, the number of threads per node, which executes the
same application, can be quite large – 8, 16, or even more threads. The num-
ber of threads per node is the scalability issue for the conventional binary
tracing libraries such as FxT [1], because in its implementation all threads
within one process record events into a single buffer, see Fig. 5.3(a). This
recording mechanism causes a contention problem – when multiple threads
record events simultaneously, the pointer to the next available slot in the
buffer is changed concurrently. The modifications of the pointer can be done
atomically in order to preserve the data consistency. However, the atomic
operation does not scale quite well when it is performed by a large number
of threads at the same time. Thus, analyzing OpenMP applications that run
lots of threads using such tracing libraries may result in the high overhead.

5.2.1 Recording Events

While designing LiTL, we aim at resolving the above-mentioned limitation
of FxT. Thus, we propose to record events into separate buffers, meaning to
have one buffer per thread instead of one buffer per process. This approach
is illustrated on Fig. 5.3(b).

To keep multiple buffers in order within the trace file, we add a header
into the trace file with the information regarding the number of threads and
pairs <tid, offset>; tid stands for the thread identifier; offset corresponds to
the position of the first chunk of events for a given thread within the trace

10

Process T
hreads

B U F F E R

Trace File

(a) FxT

Process T
hreads

. . .

B
U
F
F
E
R
S

Trace File

(b) LiTL

Figure 5.3: Event recording mechanism on multi-threaded applications.

starting from its beginning. The last event of each chunk contains either an
offset to the next chunk of events or a symbol specifying the end of recording
for a given thread. While flushing the current buffer to the trace file, the
following two actions are performed:

1. Setting the offset of the current chunk to specify the end of the record-
ing;

2. Update the offset from the previous chunk to point to the current one.

Fig. 5.2 demonstrates the storage mechanism on an example of three threads,
including the positioning of chunks of events as well as the way of linking
those chunks into one chain of the corresponding thread using offsets.

During the application execution, it may occur that some threads start
recording events later than others. This scenario requires appropriate modi-
fications and adjustments to the above approach. According to the previous
approach, the header is the first block of data that is added to the trace
file; it is written before flushing the first chunk of events. Thus, the header
contains the information only regarding the started threads. In order to
add pairs <tid, offset> of the late threads, we reserve a space for 64 pairs
(chunk of pairs) between chunks of events within the trace file. So, when one
among those late threads wants to flush its buffer to the trace file, we add its
pair <tid, offset> directly to the next free spot in the chunk of pairs. The
chunks of pairs are binded with offset in the same way as chunks of events.
Therefore, EZTrace does not have limitations on the number of threads per
process and also processes.

11

5.2.2 Post-Mortem Analysis

We develop the functionality for analyzing the generated traces by captur-
ing the procedure of the event recording mechanism. At first, LiTL reads
the trace header with the information regarding the buffer size, threads (the
number of threads, tids, and offsets), and also pairs <tid, offset> that cor-
respond to the late threads. Using this preliminary information, LiTL allo-
cates memory buffers for reading; the number of buffers equals the number
of threads used during the recording phase, meaning one buffer per thread.
Then, LiTL loads chunks of events from the trace file into these buffers using
pairs <tid, offset>. After processing the first chunks of events, LiTL loads
the buffers with the next ones using the information concerning their posi-
tions in the trace, which is given by the offsets. This procedure is recursive
and stops when the symbol specifying the end of recording is reached.

5.3 Scalability vs. the Number of Traces

Usually binary tracing libraries generate one trace file per process. This
means that for parallel applications with hundreds of MPI processes the
equal amount of trace files is created. This is one side of the problem. The
other side appears while analyzing the applications execution due to the
limitation on the number of trace files that can be opened and processed at
the same time. Therefore, often those tracing libraries do not perform well
and even crashes when the number of traces exceeds the Linux OS limit on
the number of simultaneously opened files.

In order to overcome the opened files limitation imposed by the Linux
OS, one may increase the limit to the maximum possible value. However,
this would temporarily solve the problem. Instead, we propose to create
archives of traces during the post-mortem phase. More precisely, we suggest
to merge multiple traces into a trace archive using the litl_merge util-
ity from LiTL. Fig. 5.4 illustrates the structure of the new combined trace
created by litl_merge. The archives of traces preserve all information con-
cerning each trace: headers, pairs <tid, offset>, and positioning of events
chunks. They also contain new global headers that store the information
regarding the amount of trace files in the archive and triples <fid, size, off-
set>; fid stands for a file identifier; size is a size of a particular trace file;
offset holds the position of a trace file within the archive of traces. Therefore,
archives of traces not only solve the performance analysis problem, but also
make the further analysis of the applications performance more convenient.

One more useful feature provided by LiTL, which is the opposite of
litl_merge, is a possibility to extract trace files from archives with the
litl_split utility. This utility can be applied when there is a need to
analyze a particular trace or a set of traces among the merged ones.

12

H E A D E R
#traces fid0 size0 offset0 fid1 size1 offset1 fid2 size2 offset2

Trace0
header0 events

Trace1
header1 events

Trace2
header2 events

Figure 5.4: The structure of an archive composed of multiple trace files. In the figure, fid stands for the trace file name; size is the size
of a merged trace file.

13

Chapter 6

LiTL in FxT Applications

In this chapter, we present an approach of integrating LiTL (as a possible re-
placement of FxT and enable its usage in parallel with FxT) into applications
that already reply on FxT. To simplify the process of integrating LiTL into
such applications, we map the functionality of LiTL into the corresponding
functionality from FxT in fxt.h and fut.h headers; those files are part of
LiTL. As a result, developers of those applications can easier switch between
two binary trace libraries and use LiTL in conjunction with these two header
files. Therefore, only minor changes are applied to the applications code.

Even though LiTL and FxT target the same issue of gathering the infor-
mation of the application execution, they have differences in the organization
of the event recording as well as the event reading processes. In order to deal
with those differences, we suggest to modify FxT-related applications by fol-
lowing our suggestions.

6.1 Recording Events

The main difference between two trace libraries is in the organization of
the initialization phase of the event recording process. So, in FxT it is
implemented as

1 fut_set_filename(filename);
2

3 if (allow_flush && ...) {
4 enable_fut_flush ();
5 }
6

7 fut_enable_tid_logging ();
8

9 // IMPORTANT! fut_setup is AFTER all auxiliary functions
10 if (fut_setup(buffer_size , FUT_KEYMASKALL , thread_id) < 0) {
11 perror("fut_setup");
12 }

While in LiTL the procedure is the following

14

1 litl_trace = litl_write_init_trace(buffer_size);
2 // the recording should be paused , because some further functions ,
3 // e.g. *_set_filename () can be intercepted
4 litl_write_pause_recording(litl_trace);
5

6 if (allow_flush && ...) {
7 litl_write_buffer_flush_on(litl_trace);
8 }
9

10 litl_write_tid_recording_on(litl_trace);
11

12 litl_write_set_filename(litl_trace , filename);
13

14 // Do not forget to resume recording
15 litl_write_resume_recording(litl_trace);

The mapping between the LiTL and FxT functions, which is implemented
in fut.h and fxt.h, is organized as follow

fut_setup() → litl_write_init_trace()
litl_write_pause_recording()

enable_fut_flush() → litl_write_buffer_flush_on()
fut_enable_tid_logging() → litl_write_tid_recording_on()
fut_set_filename() → litl_write_set_filename()

litl_write_resume_recording()

As a result, LiTL can be used within the FxT-related applications by
simply replacing the FxT code as follow

1 // IMPORTANT! fut_setup is BEFORE all auxiliary functions
2 if (fut_setup(buffer_size , FUT_KEYMASKALL , thread_id) < 0) {
3 perror("fut_setup");
4 }
5

6 fut_set_filename(filename);
7

8 if (allow_flush && ...) {
9 enable_fut_flush ();

10 }
11

12 fut_enable_tid_logging ();

Finally, the mapping between the LiTL and FxT event recording func-
tions is organized as

FUT_DO_PROBEx() → litl_write_probe_pack_x()
FUT_DO_PROBE() → litl_write_probe_pack_0()
FUT_DO_PROBESTR() → litl_write_probe_raw()

For the successful and easy porting of LiTL into your FxT-related appli-
cations the above-mentioned suggestions needs to be incorporated.

15

Chapter 7

Troubleshooting

If you encounter a bug or want some explanation about LiTL, please contact
and ask our development team on the development mailing list

• litl-devel@fusionforge.int-evry.fr.

16

litl-devel@fusionforge.int-evry.fr

Bibliography

[1] Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier. An efficient
multi-level trace toolkit for multi-threaded applications. In Proceedings of the
11th international Euro-Par conference on Parallel Processing, Euro-Par’05,
pages 166–175, 2005.

[2] Roman Iakymchuk and François Trahay. LiTL: Lightweight trace library. In
Proceedings of the 25th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’2013), Porto de Galinhas, Pernam-
buco, Brazil, October 23-26, 2013.

17

	1 License of LiTL
	2 Overview of LiTL
	3 Installation
	3.1 Requirements
	3.2 Getting LiTL
	3.3 Building EZTrace

	4 How to Use LiTL?
	4.1 Reading Events
	4.2 Merging Traces
	4.3 Splitting Traces
	4.4 Environment Variables

	5 LiTL in Details
	5.1 Event Types and The Storage Usage
	5.2 Scalability vs. the Number of Threads
	5.2.1 Recording Events
	5.2.2 Post-Mortem Analysis

	5.3 Scalability vs. the Number of Traces

	6 LiTL in FxT Applications
	6.1 Recording Events

	7 Troubleshooting
	Bibliography

