
/Users/vigna/pub/doc/JavaBig.xml page 1 of 3

Author

 1

 2

Moving Java to Big Data
Sebastiano Vigna

Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Italia

The premise
fastutil, the DSI Utilities, Sux4J, MG4J, WebGraph and the LAW software constitute a family of software
component for the management of very large sets of data, in particular documents collections and web
graphs coming from web crawls.

However, "very large" is relative. Intrinsic limitations of the Java language (indices of arrays and lists must
be 32-bit ints; the size of a collection is returned as a 32-bit int) makes it very difficult to handle very
large graphs, inverted indices, or even static data structure. For this reason, we decided to improve all the
above software libraries so that a 64-bit long becomes the natural type indexing a collection. In particular,
the high-performance compressed represention implemented by the class BVGraph now has a version
supporting 64-bit nodes, and there is an MG4J version using 64 bits to index terms and pointers, and so
on. This change requires a number of new classes, and in particular a strategy for simulating large arrays.

This document describes the various pieces that make the transition of our Java software to 64 bits
possible. We believe that the strategies we opted for will be useful for other people in other projects.

General notes
The main idea is that a new namespace, it.unimi.dsi.big, will be used for incompatible
implementations. For instance, it.unimi.dsi.big.webgraph.BVGraph is a 64-bit version of
it.unimi.dsi.webgraph.BVGraph. The signatures of the two classes are radically different (e.g., because
numNodes() now returns a long). Implementations for which there is no difference in signature have been
simply internally modified to work with larger data.

This method makes it possible to keep backward compatibility, while allowing people to use the new
classes without too much difficulty. We realize that having classes with the same name and similar
packages but different signatures can lead to some confusion, but we expect code to use exclusively either
standard or big classes.

There are a few exceptions, which will require sometimes recompilation and sometimes minor, cosmetic
modification to code using our libraries:

it.unimi.dsi.util.LongBigList (and the associated abstract implementation
it.unimi.dsi.util.AbstractLongBigList) have been eliminated in favour of the (now standard)
versions provided by fastutil (it.unimi.dsi.fastutil.longs.LongBigList and
it.unimi.dsi.fastutil.longs.AbstractLongBigList, respectively). This will require, essentially,
to change your import for these classes wherever they appear. Moreover, the new interface for big
lists implements it.unimi.dsi.fastutil.Size64, and thus provides a size64() method to return
the size as a 64-bit integer (the old interface used length() instead). Note that implementations
(e.g., EliasFanoMonotoneBigList) provide a deprecated length() method to ease the transition,
but the new interfaces have no such method. Depending on how you declared your variables, you
might have to fix your calls to length().

The family of hashes based on Jenkins hash implemented in Hashes had a serious flaw (the results
had the same high bits on short strings). The problem has been fixed, but the fix changed the value
returned by the hash functions, which in turn forced to bump all serial-version identifiers of classes
using those hashes. You should also check that you're not relying on these functions to return the same
value as they did before (it is a quite rare evenience, but you never know).

/Users/vigna/pub/doc/JavaBig.xml page 2 of 3

 3

 4

 5

 6

 7

Note that all libraries have been released in parallel: they work correctly when they are updated at the
same time, but you will run into problems if you try to mix them. In particular, you need fastutil 6.3 or
newer, the DSI Utilities 2.0 or newer, Sux4J 3.0 or newer, MG4J 4.0 or newer, WebGraph 3.0 or newer
and LAW software 2.0 or newer.

fastutil

fastutil contains since version 6 (the jar, for the occasion, has been renamed fastutil.jar, so be sure
to delete old copies of fastutil5.jar) an interface Size64 that implements a deprecated size() method
returning an int (as it happens for Java's Collection) and a size64() method returning a long. Note that
by contract size() will return Integer.MAX_VALUE if the collection is larger than that, which is, of course, a
disaster. Classes that want to circumvent this behaviour are invited to implement Size64. We remark that it
is always a good idea to implement both size() and size64(), as the former might be implemented by a
superclass in an incompatible way. If you implement size64(), just implement size() as a deprecated
method returning Math.min(Integer.MAX_VALUE, size64()).

Users of very large collections can use an instanceof test to see whether a collection implements
size64(). Interfaces that are inherenently thought for very large collections (e.g., the new StrigMap or
BigList interfaces) implement Size64 directly.

fastutil provides facilities for handling big arrays, which are simply arrays of arrays subject to some
length condition. The class BigArrays and the corresponding type-specific versions (e.g., IntBigArrays)
provide a wealth of static methods that do things with big arrays, including big versions of binary search,
sorting, and so on. Correspondingly, the interface BigList provides list access using 64-bit indices;
unfortunately, it was impossible to make this interface compatible with List, but some adapters are
provided in the usual static container classes. Please read carefully the Javadoc documentation of
BigArrays and BigList to understand the rationale behind those classes. We will make other big
implementations available (e.g., big sets).

The DSI Utilities
The main improvement is the creation of big versions of all interfaces and implementations related to
StringMap. The interface it.unimi.dsi.big.util.StringMap now is able to represent very large
collections of strings, and its methods have been changed accordingly. PrefixMap will return
LongIntervals instead of Intervals.

Sux4J
The changes in Sux4J, excluding to the shift from it.unimi.dsi.util.LongBigList to
it.unimi.dsi.fastutil.longs.LongBigList, are all internals.

MG4J
Every class in MG4J has now a copy in the namespace it.unimi.dsi.big which uses 64-bit addressing
for terms and documents. We expect the big version to become the standard version in which new
developments are made. The internal format of indices has not changed, so this transition should be
relatively smooth. Of course, maps representing string will have to be rebuilt.

An important change in the new setting is that the integer returned to represent an "end of list" condition
can no longer be Integer.MAX_VALUE. A new constant DocumentIterator.END_OF_LIST has taken its
place (it is actually Long.MAX_VALUE), and should replaced manually whenever Integer.MAX_VALUE has
been used for that purpose.

WebGraph
Every class in Webgraph has now a copy in the namespace it.unimi.dsi.big which uses 64 bit for

/Users/vigna/pub/doc/JavaBig.xml page 3 of 3

indexing a node. The number of nodes of a graph is now a long, and correspondingly all methods have
been updated. Outdegrees are thus longs, as well as successors, and successor arrays are actually big
arrays. Please read the WebGraph overview for more information.

Note that the WebGraph format has not changed, but the shift from it.unimi.dsi.util.LongBigList to
it.unimi.dsi.fastutil.longs.LongBigList implies that the previously generated .obl files will be no
longer loadable (just regenerate them).

Since WebGraph was already using a big list, .obl files can be interchangeably used in the standard and in
the big version. The generic loading methods in ImmutableGraph will try to insert or replace the .big
substring to locate automatically the correct class for a graph, so graphs created with a version can be
used the the other; of course, graphs with more than Integer.MAX_VALUE nodes cannot be loaded with the
standard version.

In the case of WebGraph, we expect a longer coexistence. New developments will probably happen in the
standard version, and will be ported as soon as possible to the big version.

