Arduino Toolkit 0.2.0

a somewhat MATLAB compatable Arduino toolkit for GNU Octave.

John Donoghue




Copyright (©) 2018 John Donoghue

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.



Distribution

The GNU Octave arduino package is free software. Free software is a matter of the users’ freedom
to run, copy, distribute, study, change and improve the software. This means that everyone
is free to use it and free to redistribute it on certain conditions. The GNU Octave arduino
package is not, however, in the public domain. It is copyrighted and there are restrictions on its
distribution, but the restrictions are designed to ensure that others will have the same freedom
to use and redistribute Octave that you have. The precise conditions can be found in the GNU
General Public License that comes with the GNU Octave arduino package and that also appears
in Appendix A [Copying], page 25.

To download a copy of the GNU Octave arduino package, please visit http: // octave .
sourceforge.net/arduino/.


http://octave.sourceforge.net/arduino/
http://octave.sourceforge.net/arduino/

Table of Contents

1

Installing and loading .......... ... i, 1
1.1 Online Direct install .. ... ... .. 1
1.2 Off-line dnstall .. ... 1
1.3 Loading . . ..ot e 1

Hardware setup .............. 2
2.1 Programming the Arduino ...........uiiiiii i e e 2

Connecting to an arduino ..................... .. 3
3.1 Connecting to a single arduino .......... ... 3
3.2 Connecting to a specific arduino. .. ...t e 3
3.3 Querying available arduinos. . ....... ... i e 3

Basic Input and Output Overview............................ 4
4.1 Performing Digital I/O. ... ... 4
4.2 Performing Analog Input. . ... ..ot 4

Protocol based I/O Overview .........................o..... 5
5.1 SPI communication . .........oou i e 5
5.2 T2C COMMUIECATION « . oottt ettt et e et e e et e e e 5
5.3 Servo COMIMUILCATION . . ..ttt et ettt e e et et e e et e ettt e e 5
5.4 Shift Registers . ..o 5

Examples......... 6
6.1 Blinking an LED . ... e 6
6.2 Using 12C to communicate with an EEPROM ......... ... . ... .. il 7
6.3 Using SPI to communicate with a mcp3002 10 bit ADC ........... ... ... ... ... 8

Function Reference ......... ... ... ... ... ... ... .. 10
7.1 General FUNCHIONS . . ..o o 10

711 ardUinoSEtUD . .« o oottt ettt 10
7.1.2 listArduinoldbraries. ... ... 10
7.1.3  scanForArduinos . . ... ..ot 10
7.2 Arduino Functions. . .......... . i 11
7.2.1 @arduino/arduino. . ... ... 11
7.2.2 @arduino/configurePin......... ... . 11
7.2.3 @arduino/configurePinResource.......... ... ..o i 12
7.2.4 @arduino/decrementResourceCount ... 12
7.2.5  @Qarduino/diSplay . ... ...t 12
7.2.6 @arduino/getI2CTerminals. .. ... ... . . i i 13
7.2.7 @arduino/getLEDTerminals. ....... ... 13
7.2.8 @arduino/getMCU. ... ... 13
7.2.9 @arduino/getPWMTerminals ...... ... 13
7.2.10 @arduino/getPinsFromTerminals......... ... ... oo i i 13

7.2.11 @arduino/getResourceCount . ............ouuuiuuuiuiiiiiiiiia e 13



7.2.12 @arduino/getResourceOWNer. .. ... .....uuiuieii i 14
7.2.13 @arduino/getSPITerminals. ..... ... ... i 14
7.2.14 @arduino/getServoTerminals. ... ... ... 14
7.2.15 @arduino/getTerminalMode. ... .. ... ... ... i 14
7.2.16 @arduino/getTerminalsFromPins....... ... ... ... ... . i 14
7.2.17 @arduino/incrementResourceCount . ... 15
7.2.18 @arduino/isTerminalAnalog. ........... ... 15
7.2.19 @arduino/isTerminalDigital........... ... i 15
7.2.20 @Qarduino/playTone . ... .. ... 15
7.2.21 @arduino/readAnalogPin ......... ... ... 15
7.2.22  @arduino/readDigitalPin. ... ... ... 16
7.2.23 @arduino/readVoltage ...... ... ..o 16
7.2.24  @Qarduino/TESet ... ...ttt 16
7.2.25 @arduino/sendCommand ............ ... 16
7.2.26 @arduino/validatePin. ... .. ... ... . 17
7.2.27 @arduino/writeDigitalPin......... .. .. . 17
7.2.28 @arduino/writePWMDutyCycle...... ... 17
7.2.29 @arduino/writePWMVoltage. ...... ..o 18
7.3 Arduino I2C Functions......... ... i 18
7.3.1 @i2cdev/display . ... ...t 18
7.3.2 @i2cdev/i2cdev ... ... . 18
7.3.3 @i2cdev/read . ... ...t 19
7.3.4 @i2cdev/readRegiSter . .. ... 19
7.3.5 @i2cdev/subsref. ... .. .. 19
7.3.6 @I2cdev/WITte .. ... e 19
7.3.7 @i2cdev/writeRegiSter .. ... ... 19
7.3.8 scanl2Cbus . ... 20
7.4 Arduino Servo Functions. .......... ... 20
741 @Servo/diSplay . .. ... 20
7.4.2  @servo/readPosition ....... .. ... i 20
743 @SEIVO/SEIVO. ..ottt ittt e e e e e 21
744 @Servo/subsref. ... ... 21
7.4.5  @servo/writePosition. ....... ... . 21
7.5 Arduino Shiftregister Functions ........ ... .. i 21
7.5.1 @shiftRegister/display . ... ... 21
7.5.2 @shiftRegister/read ... ... ... .. 22
7.5.3 @shiftRegister/reset. ... .. ... 22
7.5.4  @shiftRegister/shiftRegister......... ... i 22
7.5.5 @shiftRegister/write ......... ... 23
7.6 Arduino SPI Functions.......... ... . . 23
7.6.1  @spidev/display ... .....ouini i 23
7.6.2  @SpIdev/SPIAeV . . ..ot 23
7.6.3 @spidev/subsref .. ... ... 23
7.6.4 @spidev/writeRead ... ... ... 23
7.7 Arduino Addons . ... ... 24
T.7.1 0 addom ..o 24
7.7.2 arduinoioaddons.ExampleAddon.Echo......... ... ... ... L 24
7.8 Arduino I/O package . .......ouieit i 24
7.8.1 arduinoio.FilePath..... ... .. .. .. . 24
7.8.2 arduinoio.LibFiles. . ... ... . 24
7.8.3 arduinoio.LibraryBase....... ... 24

7.8.4 arduinoio.getBoardConfig ....... ... 24






1 Installing and loading

The Arduino toolkit must be installed and then loaded to be used.

It can be installed in GNU Octave directly from octave-forge, or can be installed in an off-line
mode via a downloaded tarball.

The toolkit must be then be loaded once per each GNU Octave session in order to use its
functionalty.

1.1 Online Direct install
With an internet connection available, the Arduino package can be installed from octave-forge
using the following command within GNU Octave:

pkg install -forge arduino

The latest released version of the toolkit will be downloaded and installed.

1.2 Off-line install

With the arduino toolkit package already downloaded, and in the current directory when running

GNU Octave, the package can be installed using the following command within GNU Octave:
pkg install arduino-0.2.0.tar.gz

1.3 Loading

Regardless of the method of installing the Arduino toolkit, in order to use its functions, the
toolkit must be loaded using the pkg load command:

pkg load arduino
The toolkit must be loaded on each GNU Octave session.



2 Hardware setup

In order to use the arduino hardware with the toolkit, it must be programmed with special
firmware.

2.1 Programming the Arduino

To program the hardware, using a default configuration, run the arduinosetup command:
arduinosetup

A temporary Arduino project will be created, with the Arduino toolkit files copied to it and the
Arduino IDE will open.

Set the board type and port correctly for the connected Arduino and press the upload button
on the IDE.

The sources will be compiled and then uploaded to the connected arduino board.
After successful upload the Arduino IDE should be closed.



3 Connecting to an arduino

To control an arduino device, a connection must be made to it by creating an arduino object.

3.1 Connecting to a single arduino
Assuming a single arduino device is connected to the computer, creating an arduno object with
no arguments will find the connected arduino and connect to it:

ar = arduino()

3.2 Connecting to a specific arduino
Where multiple arduinos may be connected to the computer, a specific board can be connected
by specifying the name of the port it is connected to:

ar = arduino("/dev/ttyACMO")

The port name will be operating system dependant.

3.3 Querying available arduinos
To list the ports of all programmed available arduinos, the scanForArduinos function can be
used:

scanForArduinos

It will provide a list of all available boards it can find with the port they are connected to.



4 Basic Input and Output Overview

Basic input and output can be performed on a connected arduino device using by calling the
read and write functions for a specific named pin on the arduino.

A list of available pins can get found from the pins property of the connected arduio object and
are also displayed as part of the default shown properties:

ar = arduino();
% get the pin names
pins = ar.availablepins

Pin generally follow a naming scheme of D<number> for digital pins and A<number> for analog
pins.

Digital pins can be used to read and write digital data, but can not read analog voltages. Analog
pins can perform digital I/O as well as reading voltages.

4.1 Performing Digital I/0

A pin’s digital logic value can be true (1) or false (0) and can be set using the writeDigialPin
function.

The following example attempts to set the D2 pin of the connected arduini object "ar" to true,
waits 5 seconds and then sets it to false:

writeDigitalPin (ar, "d2", true);
pause 5
writeDigitalPin (ar, "d2", false);

Using the readDigitalPin will read the current logic state of the pin.

value = readDigitalPin (ar, "d2");

4.2 Performing Analog Input
For analog pins, the voltage level can be read using a analog to digital conversion and will return
a voltage level between 0 and the boards voltage (nominally 5V):

value = readVoltage (ar, "a0");

The raw digital value of the pin can also be read instead of a volatge, giving a value between 0
and 2°x where x is the number of bits used by the analog to digtial converter.

value = readAnalogPin (ar, "aO");



5 Protocol based I/O Overview

The arduino toolkit supports more complex I/O for SPI, I12C, Servo control and more.

5.1 SPI communication
SPI communication can be performed by creating a SPI dev object and then calling the
writeRead function:

spi = spidev (ar, "d2");
The function call expects a connected arduino object as the first argument, followed by the chip
slelect pin of the SPI device.

After a device is created, a write to device followed by read can can be made using the writeRead
function:

spi = spidev (ar, "d2");
data = writeRead (spi, 100);

5.2 12C communication

12C communication can be performed by creating an I12C dev object for a specific I2C address.

The following example creates an i2c device that will communicate with a 12C device at address
100"

i2c = i2cdev (ar, 100);

After creating an 12C device, data can be read and writen using read, write, readRegister and
writeRegister. The data to send and recieve will be device dependent.

5.3 Servo communication
Servo communication can be performed after creating a servo device object to operate on a
PWM pin:
servoobj = servo(ar, "d9", "minpulseduration", 1.0e-3,
"maxpulseduration", 2e-3);

The servo function expects the connected arduino object and the PWM pin that the servo is
connnected to. Optional properties can be specified to control the setup of device.

In the example, the min and max pulse width values are set.

Using the servo object the current position and be read or set with values ranging between 0 to
1, with 0 being the minimum pulse width and 1 being the maximum.

The following example sets the servo to its middle position.

servoobj = servo(ar, "d9", "minpulseduration", 1.0e-3,
"maxpulseduration", 2e-3);

writePosition (servoobj, 0.5);

5.4 Shift Registers

A shift register can be controlled by creating a shiftRegister object:
registerobj = shiftRegister(ar, ’74hc164’, "d42", "d3");
The parameters required are dependant on the type of shift register created.

Once a register object has been created, it can be read and written to using the read and write
functions.



6 Examples

6.1 Blinking an LED

This example shows blinking the inbuilt LED on the Arduino board. Code is available by
running:

edit examples/example_blink

Hardware setup

This example uses in the builtin LEDS, so requires only a connection of the Arduino board to
computer for communication.

Create an Arduino object
ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Query Device for pins connected to builtin LEDS
The pin connected to the Arduino UNO built in led if D13.
led_pin = "d13";
The connected pins can be queried programatically if desired.
pins = getLEDTerminals (ar);
Connected to a Arduino UNO would return a list pins containing only one item ’13’.
The terminal number can be converted to a pin using getPinsFromTerminals:

led_pin = getPinsFromTerminals (ar, pins{1});

Turn the LED off

Write a 0 value to the pin to turn it off.
writeDigitalPin (ar, led_pin, 0);

Turn the LED on

Write a 1 value to the pin to turn it on

writeDigitalPin (ar, led_pin, 1);

Making the LED blink
Add a while loop with a pause between the changes in the pin state to blink.

while true
writeDigitalPin (ar, led_pin, 0);
pause (0.5)
writeDigitalPin (ar, led_pin, 1);
pause (0.5)

endwhile



Chapter 6: Examples 7

6.2 Using I2C to communicate with an EEPROM

This example shows using [2C to communicate with a EEPROM chip. Code is available by
running:

edit examples/example_i2c_eeprom

Hardware setup

Using an Arduino UNO, the board should be configured with the following connections between
the board and a 24XX256 EEPROM chip:

A4 Connected to pin 5 of EEPROM
A5 Connected to pin 6 of EEPROM
5V Connected to pin 8 of EEPROM
GND Connected to pin 1,2,3,4 of EEPROM

Create an Arduino object
ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Query I12C pins
Display the I12C terminals of the board:
getI2CTerminals(ar)

Scan the arduino for the connected device

scanI2Cbus (ar)
The devices listed should contain 0x50, the address of the EEPROM chip.

Create an I2C object to communicate to the EEPROM

eeprom = i2cdev(ar, 0x50)

Write data to the EEPROM

The EEPROM expects the first byte to be the page number, the second the offset, followed by
data, so to write 1 2 3 4, starting address 0 (page 0, offset 0):

write(eeprom, [0 0 1 2 3 4])

Reading from the EEPROM

Reading from the EEPROM requires first writing the address to read from, in this case, if we
want to read the 3, 4, this would be page 0, offset 2:

write(eeprom, [0 2])
Next read the 2 bytes:

data = read(eeprom, 2)



Chapter 6: Examples 8

6.3 Using SPI to communicate with a mcp3002 10 bit ADC

This example shows using SPI to communicate with an mcp3002 10 bit ADC. Code is available
by running:

edit examples/example_spi_mcp3002

Hardware setup

Using an Arduino UNO, the board should be configured with the following connections between
the board and a mcp3002 chip:

D10 Connected to pin 1 (CS) of MCP3002
D11 Connected to pin 5 (DI) of MCP3002
D12 Connected to pin 6 (DO) of MCP3002
D13 Connected to pin 7 (CLK) MCP3002
VCC Connected to pin 8 (VDD) MCP3002
GND Connected to pin 4 (VSS) MCP3002

Analog input
Connected from pin 2 of the MCP3002 to a LOW (< 5V) voltage to measure

Create an Arduino object

ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Create an SPI object to communicate to the MCP3002

adc = spidev(ar, "d10")
The d10 is the chip select pin connected from the Arduino to the MCP3002.

Read the ADC

The MCP3002 expects specific commands in order to read a channel.
For isslustration for the command to read chan 0 in single ended mode:

command (bits) in MSB mode to device:
[START SGL ODN MSBF X X X X] [ X X XX X X X X ]
1 1 0 1 1111 11111111
[chan O ] MSB
data back:
X X X X X0DD DDDDDDDD

D is a output data bit
X is a dont care what value is input/output

The first byte contains the command and start of the data read back, the second bytes is written
to clock out the rest of the ADC data.

In hex, this corresponds to 0xDF O0xFF,
data = writeRead(adc, [hex2dec("DF") hex2dec("FF")])

Of the data returned, the last 10 bits is the actual data, so convert data to a 16 bit value:
val = uintl6(data(1l))*256 + uinti6(data(2))



Then bitand it to remove the non value parts, to get the ADC value:
val = bitand (val, hex2dec(’3FF’))

To make the vaue correspond to a voltage it needs to be scaled as 0 will be OVolts, 1023 will be
5Volts.

volts = double(val) * 5.0 / 1023.0;



10

7 Function Reference
The functions currently available in the Arduino toolkit are described below;

7.1 General Functions

7.1.1 arduinosetup

retval = arduinosetup ()

retval = arduinosetup (propertyname, propertyvalue)
Open the arduino config / programming tool to program the arduino hardware for usage with
the Octave arduino functions.

A sequence of property name/value pairs can be given to the function to set defaults while
programming.

Currently the following properties can be set:

libraries The value should be the name of a library, or string array of libraries to program
on the arduino board.

arduinobinary
The value should be the name/path of the arduino ide binary for programming.
If not specified, the function will attempt to find the binary itself.

arduinosetup will create a temporary project using the arduino IDE and allow compiling
aand programning of the code to an arduino.

See also: arduino, __arduino_binary__.
7.1.2 listArduinoLibraries

retval = listArduinoLlibraries ()
Retrieve list of all known arduino library modules that are available.

retval is an cell array of string library names that are available for programming to the
arduino.

See also: arduino, arduinosetup.
7.1.3 scanForArduinos

retval = scanForArduinos (maxCount)
retval = scanForArduinos (maxCount, type)
Scan system for programmed arduino boards.

scanForArduinos will scan the system for programmed arduino boards and return at most
maxCount of them as a cell array in retval.

Each cell value of the cell array will contain a structure with values of:
port the serial port the arduino is connected to
board the board type of the arduino

if maxCount is not specified, or is a less than 1, the function will return as many arduino
boards as it can detect.

If type is specified, the board type must match for the arduino to be added to the return list.

See also: arduino.



Chapter 7: Function Reference 11

7.2 Arduino Functions

7.2.1 @arduino/arduino

retval = arduino ()

retval = arduino (port)

retval = arduino (port, board)

retval = arduino (port, board|, [propname, propvalue]*)

Create a arduino object with a connection to an arduino board.

port - full patth of serial port to connect to. For linux, usually /dev/ttySXXX, for windows
COMXX.

board - name of board to connect (default is 'uno’).

propname, propvalue - property name and value pair for additional properties to pass to the
creation of the arduino object. Currently properties are ignored.

if the arduino function is called without parameters, it will scan for the first available arduino
it can find and connect to it.

Function returns a arduino object is successfully connected.

See also: scanForArduinos.
7.2.2 @arduino/configurePin

mode = configurePin (ar, pin)
configurePin (ar, pin, mode)
Set /Get pin mode for a specified pin on arduino connection.

configurePin (ar, pin) will get the current mode of the specified pin.

configurePin (ar, pin, mode) will attempt set the pin to the specified mode if the mode is
unset.

ar - the ardiuno object of the connection to an arduino board.
pin - string name of the pin to set/get the mode of.
mode - string mode to set the pin to or is currently set to.
Modes can be:

e Analoglnput - Acquire analog signals from pin

e Digitallnput - Acquire digital signals from pin

e DigitalOutput - Generate digital signals from pin

e [2C - Specify a pin to use with 12C protocol

e Pullup - Apecify pin to use a pullup switch

e PWM - Specify pin to use a pulse width modulator

e Servo - Specify pin to use a servo

e SPI - Specify a pin to use with SPI protocol

e Unset - Clears pin designation. The pin is no longer reserved and can be automatically
set at the next operation.

See also: arduino.



Chapter 7: Function Reference 12

7.2.3 @arduino/configurePinResource

mode = configurePinResource (ar, pin)

configurePinResource (ar, pin, owner, mode)

configurePinResource (ar, pin, owner, mode, force)
Set /Get pin mode for a specified pin on arduino connection.

configurePinResource (ar, pin) will get the current mode of the specified pin.

configurePinResource (ar, pin, owner, mode) will attempt set the pin to the specified mode
and owner.

If the pin is already owned by another owner, the configure will fail unless the force option
is used. If the mode is Iready set, configure will fail unless force is used.

ar - the ardiuno object of the connection to an arduino board.
pin - string name of the pin to set/get the mode of.
mode - string mode tto set the pin to or is currently set to.
owner - string name to use as the pin owner.
force - boolean to force mode change. If not set, it will be false.
Modes can be:

e Analoglnput - Acquire analog signals from pin

e Digitallnput - Acquire digital signals from pin

e DigitalOutput - Generate digital signals from pin

e [2C - Specify a pin to use with 12C protocol

e Pullup - Specify pin to use a pullup switch

e PWM - Specify pin to use a pulse width modulator

e Servo - Specify pin to use a servo

e SPI - Specify a pin to use with SPI protocol

e Unset - Clears pin designation. The pin is no longer reserved and can be automatically
set at the next operation.

See also: arduino, configurePin.
7.2.4 @arduino/decrementResourceCount

count = decrementResourceCount (ar, resource)
Decrement the count of a named resource by 1 and return the new count.

ar - connected arduino object
resource - name of resource to decrement count.

count = count of uses registered to resource.

See also: getResourceCount. incrementResourceCount.
7.2.5 @arduino/display

display (ar)
Display the arduino object in a verbose way, showing the board and available pins.

ar - the arduino object.

If the arduino object has debug mode set, additional information will be displayed.

See also: arduino.



Chapter 7: Function Reference 13

7.2.6 @Qarduino/getI2CTerminals

pinlist = getI2CTerminals (ar)
Get a cell list of pin Ids available are used for 12C mode.

ar - the arduino object.

pinlist - cell list of pin numbers available for I12C use.

See also: arduino.
7.2.7 @arduino/getLEDTerminals

pinlist = getLEDTerminals (ar)
Get a cell list of pin Ids available are connected natively to LEDs.

ar - the arduino object.

pinlist - cell list of pin numbers available for LED use.

See also: arduino.
7.2.8 @arduino/getMCU

mcu = getMCU (ar)
Get the MCU used by the connected arduino.

ar - arduino object connected to a arduino board.

mcu - string representing the mcu used by the arduino board.

See also: arduino.
7.2.9 @arduino/getPWMTerminals

pinlist = getPWMTerminals (ar)
Get a cell list of pin Ids available for PWM use.

ar - the arduino object.

pinlist - cell list of pin numbers available for PWM use.

See also: arduino.
7.2.10 @arduino/getPinsFromTerminals

pinnames = getPinsFromTerminals (ar, terminals)
Get the pin names from the input terminal values.

ar - the connected arduino object.

terminals - the numeric pin number, or array of pin numbers to get pin names.

pinnames - the string names of each input pin. If terminals was a single value, the return
will be a single string, otherwise it will return a cell array of each pin name.

See also: arduino, getTerminalsFromPins.
7.2.11 @arduino/getResourceCount

count = getResourceCount (ar, resource)
Get the count of uses of a given resource.

ar - connected arduino object
resource - name of resource to get count for.

count = count of uses registered to resource.

See also: incrementResourceCount. decrementResourceCount.



Chapter 7: Function Reference 14

7.2.12 @arduino/getResourceOwner

owner = getResourceOwner (ar, terminal)
Get the owner of pin allocated previously by configurePinResource.

ar - connected arduino object
terminal - terminal number to get owner of.

owner = owner of the terminal pin, or "" if not owned.

See also: configurePinResource.
7.2.13 @arduino/getSPITerminals

pinlist = getSPITerminals (ar)
Get a cell list of pin Ids available for SPI mode.

ar - the arduino object.

pinlist - cell list of pin numbers available for SPI use.

See also: arduino.
7.2.14 @arduino/getServoTerminals

pinlist = getServoTerminals (ar)
Get a cell list of pin Ids available for servo use.

ar - the arduino object.

pinlist - cell list of pin numbers available for servo use.

See also: arduino, getPWMTerminals.
7.2.15 @arduino/getTerminalMode

mode = getTerminalMode (ar, terminal)
Get the mode of a pin allocated previously by configurePinResource.

ar - connected arduino object
terminal - terminal number to get owner of.

mode - mode of the terminal pin, or "not_set" if not owned.

See also: configurePinResource, getResourceOwner.
7.2.16 @arduino/getTerminalsFromPins

pinnums = getTerminalsFromPins (ar, pins)
Get the terminal number for each pin.

ar - connected arduino object
pins - single pin name orcell or vector array of pin names.

pinnums - pin number of each named pin. If the input was a single string, returns a number.
if the input pins was a vector or cell araay, return a cell array of npin numbers corresponding
to each input pin name.

See also: arduino, getPinsFromTerminals.



Chapter 7: Function Reference

7.2.17 @arduino/incrementResourceCount

count = incrementResourceCount (ar, resource)
Increment the count value of a named resource by 1 and return the new count

ar - connected arduino object
resource - name of resource to increment count.

count = count of uses registered to resource.

See also: getResourceCount. decrementResourceCount.
7.2.18 @arduino/isTerminalAnalog

ret = isTerminalAnalog (obj, terminal)
Return true if pin is capable of analog input

ar - the connected arduino object
terminal is a terminal number ot check

ret return 1 of is a analog pin, 0 otherwise
7.2.19 @arduino/isTerminalDigital

ret = isTerminalDigital(obj, terminal)
Return true if pin is capable of digital functions

ar - the connected arduino object
terminal is a terminal number ot check

ret return 1 of is a digital pin, 0 otherwise
7.2.20 @arduino/playTone

playTone (obj, pin, freq, duration)
Play a tone of a given frequency on a specified pin.

Currently function does nothing.
7.2.21 @arduino/read AnalogPin

value = readAnalogPin (ar, pin)
Read analog voltage of pin.

ar - connected arduino object.
pin - string name of the pin to read.
value - analog value of the pin

Example usage:

ar = arduino ();
readAnalogPin(ar, "A4");
ans =

87

See also: arduino, readVoltage.

15



Chapter 7: Function Reference 16

7.2.22 @arduino/readDigitalPin

value = readDigitalPin (obj, pin)
Read digital value from a digital I/O pin.
ar - connected arduino object.
pin - string name of the pin to read.
value - the logical value (0, 1, true false) of the current pin state.

Example usage

a = arduino ();
pinvalue = readDigitalPin (a, ’D5’);

See also: arduino, writeDigitalPin.
7.2.23 @arduino/readVoltage

voltage = readVoltage (ar, pin)
Read analog voltage of a pin.

ar - connected arduino.
pin - pin name or number to query for voltage
voltage - scaled pin value as a voltage

Example usage:

ar = arduino ();
readVoltage (ar, "A4");
ans =

1.401

See also: arduino, readAnalogPin.
7.2.24 @arduino/reset

reset (ar)
Send reset command to arduino hardware to force a hardware reset.

ar - connected arduino object.

See also: arduino.
7.2.25 @arduino/sendCommand

outdata, outsize = sendCommand (ar, 1ibname, commandid)

outdata, outsize = sendCommand (ar, 1ibname, commandid, data)

outdata, outsize = sendCommand (ar, libname, commandid, data, timeout)
Send a command with option data to the connected arduino, waiting up to a specified number
of seconds for a response.

ar - connected arduino object.

libname - library sending the command. The name should match a programmed library of
the arduino, or an error will be displayed.



Chapter 7: Function Reference

commandid - integer value for the command being sent to the arduino.
data - optional data sent with the command.

timeout - optional timeout to wait for data

outdata - data returned back from the arduino in response to command
outsize - size of data recieved out

If the arduino fails to respond with a valid reply, sendCommand will error.

See also: arduino.
7.2.26 @arduino/validatePin

validatePin (ar, pin, type)
Validate that the mode is allowed for specified pin
ar - connected arduino object
pin - name of pin to query mode validity of
mode - mode to query

Known modes are:

o 'I2C
e 'SPT
e 'PWM’
e ’Servo’
e ’analog’
o ’digital’

See also: arduino, configurePin.
7.2.27 @arduino/writeDigitalPin

writeDigitalPin (ar, pin, value)
Write digital value to a digital I/O pin.
ar - connected arduino object.
pin - string name of the pin to write to.
value - the logical value (0, 1, true false) to write to the pin.
If pin was unconfigured beore using, pin is set into digital mode.

Example usage:

a = arduino();
writeDigitalPin(a,’D5’,1);

See also: arduino, readDigitalPin.
7.2.28 @arduino/writePWMDutyCycle

writePWMDutyCyle (ar, pin, value)
Set pin to output a square wave with a specified duty cycle.

ar - connected arduino object

pin - pin to write to.



Chapter 7: Function Reference 18

value - duty cycle value where 0 = off, 0.5 = 50% on, 1 = always on.

Example usage:

a = arduino();
writePWMDutyCycle(a,’D5’,0.5);

See also: arduino, writePWM Voltage.
7.2.29 @arduino/writePWM Voltage

writePWMVoltage (ar, pin, voltage)
Emulate an approximate voltage out of a pin using PWM.

ar - connected arduino object
pin - pin to write to.
voltage - voltage to emulate with PWM, between 0 - 5.0

Example usage:

a = arduino();
writePWMVoltage(a,’D5’,1.0);

See also: arduino, writePWMDutyCycle.

7.3 Arduino I2C Functions
7.3.1 @i2cdev/display

display (dev)
Display i2cdev object.

See also: i2cdev.
7.3.2 @i2cdev/i2cdev

dev = i2cdev (ar, address)
dev = i2cdev (ar, address, propname, propvalue)
Create an i2cdev object to communicate to the i2¢ port on a connected arduino.

ar - connected arduino object
address - address to use for device on i2¢ bus.
propname, propvalue - property name/value pair for values to pass to devices.

Currently known properties:

bus bus number (when arduino board supports multiple i2c buses) with value of 0 or
1.

See also: arduino.



Chapter 7: Function Reference 19

7.3.3 @i2cdev/read

dev = read (dev, numbytes)
dev = read (dev, numbytes, precision)
Read a specified number of bytes from a i2cdev object using optional precision for bytesize.

dev - connected i2c device opened using i2cdev

numbytes - number of bytes to read.

precision - Optional precision for the output data read data. Currently known precision
values are uint8 (default), int8, uint16, int16

See also: arduino, i2cdev.
7.3.4 @i2cdev/readRegister

dev = readRegister (dev, reg, numbytes)

dev = readRegister (dev, reg, numbytes, precision)
Read a specified numer of bytes from a register of an i2cdev object using optional precision
for bytesize.

dev - connected i2c device opened using i2cdev

reg - registry value number

numbytes - number of bytes to read.

precision - Optional precision for the output data read data. Currently known precision
values are uint8 (defualt), int8, uint16, int16

See also: arduino, i2cdev.
7.3.5 @i2cdev/subsref

val = subsref (dev, sub)
subref for i2cdev

See also: i2cdev.
7.3.6 @i2cdev/write

dev = write (dev, datain)
dev = write (dev, datain, precision)
Write data to a i2cdev object using optional precision for the data byte used for the data.

dev - connected i2c device opened using i2cdev

datain - data to write to device. Datasize should not exceed the contraints of the data type
specified for the precison.

precision - Optional precision for the input write data. Currently known precision values are
uint8 (defualt), int8, uint16, int16

See also: arduino, i2cdev, read.
7.3.7 @i2cdev/writeRegister

dev = writeRegister (dev, reg, datain)

dev = writeRegister (dev, dev, datain, precision)
Write data to i2cdev object at a given registry position using optional precision for the data
byte used for the data.

dev - connected i2c device opened using i2cdev

reg - registry position to write to.



Chapter 7: Function Reference 20

datain - data to write to device. Datasize should not exceed the contraints of the data type
specified for the precison.

precision - Optional precision for the input write data. Currently known precision values are
uint8 (defualt), int8, uint16, int16

See also: arduino, i2cdev, read.
7.3.8 scanl2Cbus

retval = scanI2Cbus (ar)
retval = scanI2Cbus (ar, bus)
Scan arduino for devices on the 12C bus.

ar - arduino object connected to a arduino board.

bus - bus number to scan 12C devices, when multiple buses are available. If the bus is not
specified, it will default to 0.

retval - cell array of addresses as strings in format of "0xXX".

Example usage:

# create arduino connection.

ar = arduino();

# get the pins that will be used for I2C
scanI2Cbus (ar)

% output

ans =

{
[1,1] = 0x50
}

See also: arduino, i2cdev.

7.4 Arduino Servo Functions
7.4.1 @servo/display
display (dev)
Display servo object.
See also: servo.
7.4.2 @servo/readPosition
position = readPosition (servo)
Read the position of a servo

servo - servo object created from arduino.servo.

position - value between 0 .. 1 for the current servo position, where 0 is the servo min position,
1 is the servo maximum position.

See also: servo, writePosition.



Chapter 7: Function Reference 21

7.4.3 @servo/servo

obj = servo (arduinoobj, pin)
obj servo (arduinoobj, pin, propertyname, propertyvalue)
Create a servo object using a specified oin on a arduino board.

obj - servo object
arduinoobj - connected arduino object

propertyname, propertyvalue - name value pairs for properties to pass to the created servo
object.

Current properties are:

minpulseduration
min PWM pulse value in seconds.

maxpulseduration
max PWM pulse value in seconds.
Example:

# create arduino connection

ar = ardiuino();

# create hobby servo (1 - 2 ms puse range)

servo = servo(ar, "d9", "minpulseduration", 1.0e-3, "maxpulseduration", 2e-
3);

# center the servo

writePosition(servo, 0.5);

See also: arduino, readPosition, writePosition.
7.4.4 Q@servo/subsref
val = subsref (dev, sub)

subref for servo

See also: servo.
7.4.5 @servo/writePosition

writePosition (servo, position)
Write the position to a servo.

servo - servo object created from arduino.servo.

position - value between 0 .. 1 for the current servo position, where 0 is the servo min position,
1 is the servo maximum position.

See also: servo, readPosition.

7.5 Arduino Shiftregister Functions

7.5.1 @shiftRegister/display

retval = display (register)
Display the register object in a verbose way,

register - the arduino regsiter object created with shiftRegister.

See also: shiftRegister.



Chapter 7: Function Reference 22

7.5.2 @shiftRegister/read

retval = read (register)
retval = read (register, precision)
read a value from the shift register.

register - shift register created from shiftRegister call.

precision - optional precision of the data, where precision can be a number in a multipe of
8 (ie: 8,16,32) or can be a named integer type: 8 of "uint8’, 'uint16’, 'uint32’. The default
precision is 8.

retval - returned data read from the register.

See also: shiftRegister, write.
7.5.3 @shiftRegister/reset

reset (register)
clear the shift register value.

register - shift register created from shiftRegister call.

See also: shiftRegister, read, write.
7.5.4 @shiftRegister/shiftRegister

register = shiftRegister (ar, shifttype, dataPin, clockPin ...)

register = shiftRegister (ar,’74hcl64’, dataPin, clockPin, resetPin)

register = shiftRegister (ar,’74hcl65’, dataPin, clockPin, loadPin,
clockEnablePin)

register = shiftRegister(ar,’74hcb595’, dataPin, clockPin, latchPin ,
resetPin)

Create shift register of a given type, controlled by the input pins.
Common function parameter definition:

ar - connected arduino object.

shifttype - string name of the shift register type.

dataPin - pin used for data in/out of the device.

clockPin - pin used for clocking data on the shiftRegister.
register - register object

Other variables are dependant on the shift register type:

"T4hc164’  Additional inputs:

resetPin - optional pin for resetting the shift register.

"74hc165’  Additional inputs:
loadPin - load pin to the shift register. clockEnablePin - clock enable pin.

"74hc595’  Additional inputs:

latchPin - latching data to the shift register. resetPin - optional pin for resetting
the shift register.

See also: arduino.



Chapter 7: Function Reference 23

7.5.5 @shiftRegister/write

write (register, dataln)
write (register, dataln, precision)
Write a value to the shift register.

register - shift register created from shiftRegister call.
dataln - data to clock into the shiftRegister.

precision - optional precision of the data, where precision can be a number in a multiple
of 8 (ie: 8,16,32) or can be a named integer type of 'uint8’, 'uint16’, 'uint32’. The default
precision is 8.

See also: shiftRegister, read.

7.6 Arduino SPI Functions

7.6.1 @spidev/display
display (dev)
Display spidev object.

See also: spidev.
7.6.2 @spidev/spidev

dev = spidev (ar, cspin)
dev = spidev (ar, cspin, propname, propvalue)
Create an spidev object to communicate to the spi port on a connected arduino.

ar - connected arduino object
cspin - chip select pin of selected spi port.
propname, propvalue - property name/value pair for values to pass to devices.

Currently known properties:
bitrate bit rate speed in Mbs
bitorder 'msbfirst’ or ’lsbfirst’
mode SPI mode 0 - 3.

See also: arduino, read Write.
7.6.3 @spidev/subsref

val = subsref (dev, sub)
subref for spidev

See also: i2cdev.

7.6.4 @spidev/writeRead

dataOut = readWrite (spi, dataln)
Write uint8 data to spi device and return back clocked out response data of same size.

spi - connected spi device on arduino
dataln - uint8 sized data to send to spi device framed between SS frame.

dataOut - uint8 data clocked out during send to dataln.

See also: arduino, spidev.



Chapter 7: Function Reference 24

7.7 Arduino Addons

7.7.1 addon

retval = addon (ar, addonname)
retval = addon (ar, addonname, varargs)
Create an addon object using the addon named class.

retval is an cell array of string library names.

addonname is the name of the addon to create. The addon name can be a user addon or
an inbuilt addon, however must appear in the listArduinoLibraries output and have been
programmed onto the arduino.

varargs are optional values that will be provided verbatim to the the addon class constructor.

See also: arduino, arduinosetup, listArduinoLibraries.
7.7.2 arduinoioaddons.ExampleAddon.Echo

1b = arduinoioaddons.ExampleAddon.Echo ()
Basic Example matlab/octave code to ilustrate creating a user addon.

See also: addon.

7.8 Arduino I/0 package

7.8.1 arduinoio.FilePath

retval = arduinoio.FilePath (fullpathname)
Get the directory component of a pathname.

fullpathname filepath to get directory component of.

retval the directory part of the filename.
7.8.2 arduinoio.LibFiles

filelist = arduinoio.LibFiles ()
Get the list of files used for the buildin arduino library

7.8.3 arduinoio.LibraryBase

1b = arduinoio.LibraryBase ()
Base class used for arduino library plugins

The return value Ib is an object of the arduinio.LibraryBase class.

See also: arduino, listArduinoLibraries, addon.
7.8.4 arduinoio.getBoardConfig

retval = arduinoio.GetBoardConfig (boardname)
Return the configuration for a known arduino board type

Function is used to get the expected pin/board configuration for a named board type which
is used to verify and identify the functionaly of the board.

boardname - name of board to get configuration of ie: "uno"

retval configuration struct.



25

Appendix A GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.


http://fsf.org/

Appendix A: GNU General Public License 26

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.



Appendix A: GNU General Public License 27

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable



Appendix A: GNU General Public License 28

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything



Appendix A: GNU General Public License 29

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or



Appendix A: GNU General Public License 30

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.



Appendix A: GNU General Public License 31

10. Automatic Licensing of Downstream Recipients.

11.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.



Appendix A: GNU General Public License 32

12.

13.

14.

15.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and /or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-



Appendix A: GNU General Public License 33

16.

17.

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

program Copyright (C) year name of author


http://www.gnu.org/licenses/

Appendix A: GNU General Public License 34

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read http://www.gnu.
org/philosophy/why-not-1gpl.html.


http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

addom . ... 24
arduino .. ... 11
Arduino Addons............ . ... ... 24
Arduino Functions................................ 11
Arduino I/O package ...t 24
Arduino I2C Functions ...........c.coeuuuuunnnnnn. 18
Arduino Servo Functions ......................... 20
Arduino Shiftregister Functions................... 21
Arduino SPI Functions ........................... 23
ArduinoSetup . ...t i it 10

B

Basic Input and Output Overview ................. 4

C

configurePin.......... ... 11
configurePinResource.............. ... ... ... .. 12
Connecting to a single arduino..................... 3
Connecting to a specific arduino ................... 3
Connecting to an arduino. ......................... 3
copyright . ... ... 25

D

decrementResourceCount ......................... 12
display........coooiiii 12, 18, 20, 21, 23

F

FilePath ........ . ... .. ... 24
Function Reference............................... 10

G

General Functions. ..., 10
getBoardConfig. ... 24
getl2CTerminals. ... 13
getLEDTerminals. ............o ol 13
getMCU. ..o 13
getPinsFromTerminals...................... ..., 13
getPWMTerminals ................oo.o oo 13
getResourceCount . ...t 13
getResourceOwner. ..., 14
getServoTerminals. ..., 14
getSPITerminals. ........ ... ... o i 14
getTerminalMode. ...t 14
getTerminalsFromPins............................ 14

H

Hardware setup........... ... .. .. o i il 2

35

12CdeV. oo 18
I12C communication.............. ... 5
incrementResourceCount ......................... 15
Installing and loading.......... ... i 1
isTerminalAnalog...........cooviin i, 15
isTerminalDigital .............. ... ... ... ... ... 15

L

LibFiles . ....cooi i 24
LibraryBase . ... ... 24
Linkingan LED ........ . oo oo 6
listArduinoLibraries . ..., 10
Loading ..o 1

@)

Off-line install . ... e 1
Onlineinstall...... ... ... ... ... ... . . ... 1

P

Performing Analog Input .......................... 4
Performing Digital I/O ....... ... .. 4
playTone. ... ... ..o 15
Programming the Arduino......................... 2
Protocol based I/O Overview ...................... 5

Q

TeAd . ot et 19, 22
readAnalogPin ........ ... ... ..ol 15
readDigitalPin....... ... ... . oo 16
readPosition.......... ... ... 20
readRegister.......... ... ... . il 19
readVoltage ... 16
TESEb . oottt e 16, 22

scanForArduinos ............. ... .. ... ... ..., 10
scanl2Cbus. ... o 20
sendCommand ................................... 16
BT VO v ettt ettt et e e e e e 21
Servo communication ................ i, 5
Shift Registers. ...t 5
shiftRegister......... ... . i 22
SPI communication................................ 5
SPIdEV . oo 23
subsref. ... 19, 21, 23



Index 36

U \\Y%

Using 12C to communicate with an EEPROM. .. ... 7 WAITANEY « vttt 25
Using SPI to communicate with a Write ... 19, 23
mcp3002 10 bit ADC ... 8 writeDigitalPin........ ... ... ..o 17
writePosition........ ... ..o oo 21

writePWMDutyCycle.......... ... ... ... 17

VvV writePWMVoltage.............. ... ... ... ..., 18
writeRead ......... ... .. 23

validatePin. ...... ... 17 writeRegister...... ... 19



	Installing and loading
	Online Direct install
	Off-line install
	Loading

	Hardware setup
	Programming the Arduino

	Connecting to an arduino
	Connecting to a single arduino
	Connecting to a specific arduino
	Querying available arduinos

	Basic Input and Output Overview
	Performing Digital I/O
	Performing Analog Input

	Protocol based I/O Overview
	SPI communication
	I2C communication
	Servo communication
	Shift Registers

	Examples
	Blinking an LED
	Using I2C to communicate with an EEPROM
	Using SPI to communicate with a mcp3002 10 bit ADC

	Function Reference
	General Functions
	arduinosetup
	listArduinoLibraries
	scanForArduinos

	Arduino Functions
	@arduino/arduino
	@arduino/configurePin
	@arduino/configurePinResource
	@arduino/decrementResourceCount
	@arduino/display
	@arduino/getI2CTerminals
	@arduino/getLEDTerminals
	@arduino/getMCU
	@arduino/getPWMTerminals
	@arduino/getPinsFromTerminals
	@arduino/getResourceCount
	@arduino/getResourceOwner
	@arduino/getSPITerminals
	@arduino/getServoTerminals
	@arduino/getTerminalMode
	@arduino/getTerminalsFromPins
	@arduino/incrementResourceCount
	@arduino/isTerminalAnalog
	@arduino/isTerminalDigital
	@arduino/playTone
	@arduino/readAnalogPin
	@arduino/readDigitalPin
	@arduino/readVoltage
	@arduino/reset
	@arduino/sendCommand
	@arduino/validatePin
	@arduino/writeDigitalPin
	@arduino/writePWMDutyCycle
	@arduino/writePWMVoltage

	Arduino I2C Functions
	@i2cdev/display
	@i2cdev/i2cdev
	@i2cdev/read
	@i2cdev/readRegister
	@i2cdev/subsref
	@i2cdev/write
	@i2cdev/writeRegister
	scanI2Cbus

	Arduino Servo Functions
	@servo/display
	@servo/readPosition
	@servo/servo
	@servo/subsref
	@servo/writePosition

	Arduino Shiftregister Functions
	@shiftRegister/display
	@shiftRegister/read
	@shiftRegister/reset
	@shiftRegister/shiftRegister
	@shiftRegister/write

	Arduino SPI Functions
	@spidev/display
	@spidev/spidev
	@spidev/subsref
	@spidev/writeRead

	Arduino Addons
	addon
	arduinoioaddons.ExampleAddon.Echo

	Arduino I/O package
	arduinoio.FilePath
	arduinoio.LibFiles
	arduinoio.LibraryBase
	arduinoio.getBoardConfig


	GNU General Public License
	Index

