Actual source code: dense.c

petsc-3.12.2 2019-11-22
Report Typos and Errors

  2: /*
  3:      Defines the basic matrix operations for sequential dense.
  4: */

  6:  #include <../src/mat/impls/dense/seq/dense.h>
  7:  #include <petscblaslapack.h>

  9:  #include <../src/mat/impls/aij/seq/aij.h>

 11: PetscErrorCode MatSeqDenseSymmetrize_Private(Mat A, PetscBool hermitian)
 12: {
 13:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
 14:   PetscInt       j, k, n = A->rmap->n;
 15:   PetscScalar    *v;

 19:   if (A->rmap->n != A->cmap->n) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Cannot symmetrize a rectangular matrix");
 20:   MatDenseGetArray(A,&v);
 21:   if (!hermitian) {
 22:     for (k=0;k<n;k++) {
 23:       for (j=k;j<n;j++) {
 24:         v[j*mat->lda + k] = v[k*mat->lda + j];
 25:       }
 26:     }
 27:   } else {
 28:     for (k=0;k<n;k++) {
 29:       for (j=k;j<n;j++) {
 30:         v[j*mat->lda + k] = PetscConj(v[k*mat->lda + j]);
 31:       }
 32:     }
 33:   }
 34:   MatDenseRestoreArray(A,&v);
 35:   return(0);
 36: }

 38: PETSC_EXTERN PetscErrorCode MatSeqDenseInvertFactors_Private(Mat A)
 39: {
 40: #if defined(PETSC_MISSING_LAPACK_POTRF)
 42:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable.");
 43: #else
 44:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
 46:   PetscBLASInt   info,n;

 49:   if (!A->rmap->n || !A->cmap->n) return(0);
 50:   PetscBLASIntCast(A->cmap->n,&n);
 51:   if (A->factortype == MAT_FACTOR_LU) {
 52:     if (!mat->pivots) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Pivots not present");
 53:     if (!mat->fwork) {
 54:       mat->lfwork = n;
 55:       PetscMalloc1(mat->lfwork,&mat->fwork);
 56:       PetscLogObjectMemory((PetscObject)A,mat->lfwork*sizeof(PetscBLASInt));
 57:     }
 58:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
 59:     PetscStackCallBLAS("LAPACKgetri",LAPACKgetri_(&n,mat->v,&mat->lda,mat->pivots,mat->fwork,&mat->lfwork,&info));
 60:     PetscFPTrapPop();
 61:     PetscLogFlops((1.0*A->cmap->n*A->cmap->n*A->cmap->n)/3.0);
 62:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
 63:     if (A->spd) {
 64:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
 65:       PetscStackCallBLAS("LAPACKpotri",LAPACKpotri_("L",&n,mat->v,&mat->lda,&info));
 66:       PetscFPTrapPop();
 67:       MatSeqDenseSymmetrize_Private(A,PETSC_TRUE);
 68: #if defined(PETSC_USE_COMPLEX)
 69:     } else if (A->hermitian) {
 70:       if (!mat->pivots) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Pivots not present");
 71:       if (!mat->fwork) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Fwork not present");
 72:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
 73:       PetscStackCallBLAS("LAPACKhetri",LAPACKhetri_("L",&n,mat->v,&mat->lda,mat->pivots,mat->fwork,&info));
 74:       PetscFPTrapPop();
 75:       MatSeqDenseSymmetrize_Private(A,PETSC_TRUE);
 76: #endif
 77:     } else { /* symmetric case */
 78:       if (!mat->pivots) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Pivots not present");
 79:       if (!mat->fwork) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Fwork not present");
 80:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
 81:       PetscStackCallBLAS("LAPACKsytri",LAPACKsytri_("L",&n,mat->v,&mat->lda,mat->pivots,mat->fwork,&info));
 82:       PetscFPTrapPop();
 83:       MatSeqDenseSymmetrize_Private(A,PETSC_FALSE);
 84:     }
 85:     if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_CH_ZRPVT,"Bad Inversion: zero pivot in row %D",(PetscInt)info-1);
 86:     PetscLogFlops((1.0*A->cmap->n*A->cmap->n*A->cmap->n)/3.0);
 87:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix must be factored to solve");
 88: #endif

 90:   A->ops->solve             = NULL;
 91:   A->ops->matsolve          = NULL;
 92:   A->ops->solvetranspose    = NULL;
 93:   A->ops->matsolvetranspose = NULL;
 94:   A->ops->solveadd          = NULL;
 95:   A->ops->solvetransposeadd = NULL;
 96:   A->factortype             = MAT_FACTOR_NONE;
 97:   PetscFree(A->solvertype);
 98:   return(0);
 99: }

101: PetscErrorCode MatZeroRowsColumns_SeqDense(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
102: {
103:   PetscErrorCode    ierr;
104:   Mat_SeqDense      *l = (Mat_SeqDense*)A->data;
105:   PetscInt          m  = l->lda, n = A->cmap->n,r = A->rmap->n, i,j;
106:   PetscScalar       *slot,*bb,*v;
107:   const PetscScalar *xx;

110: #if defined(PETSC_USE_DEBUG)
111:   for (i=0; i<N; i++) {
112:     if (rows[i] < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row requested to be zeroed");
113:     if (rows[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D requested to be zeroed greater than or equal number of rows %D",rows[i],A->rmap->n);
114:     if (rows[i] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Col %D requested to be zeroed greater than or equal number of cols %D",rows[i],A->cmap->n);
115:   }
116: #endif
117:   if (!N) return(0);

119:   /* fix right hand side if needed */
120:   if (x && b) {
121:     Vec xt;

123:     if (A->rmap->n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only coded for square matrices");
124:     VecDuplicate(x,&xt);
125:     VecCopy(x,xt);
126:     VecScale(xt,-1.0);
127:     MatMultAdd(A,xt,b,b);
128:     VecDestroy(&xt);
129:     VecGetArrayRead(x,&xx);
130:     VecGetArray(b,&bb);
131:     for (i=0; i<N; i++) bb[rows[i]] = diag*xx[rows[i]];
132:     VecRestoreArrayRead(x,&xx);
133:     VecRestoreArray(b,&bb);
134:   }

136:   MatDenseGetArray(A,&v);
137:   for (i=0; i<N; i++) {
138:     slot = v + rows[i]*m;
139:     PetscArrayzero(slot,r);
140:   }
141:   for (i=0; i<N; i++) {
142:     slot = v + rows[i];
143:     for (j=0; j<n; j++) { *slot = 0.0; slot += m;}
144:   }
145:   if (diag != 0.0) {
146:     if (A->rmap->n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only coded for square matrices");
147:     for (i=0; i<N; i++) {
148:       slot  = v + (m+1)*rows[i];
149:       *slot = diag;
150:     }
151:   }
152:   MatDenseRestoreArray(A,&v);
153:   return(0);
154: }

156: PetscErrorCode MatPtAPNumeric_SeqDense_SeqDense(Mat A,Mat P,Mat C)
157: {
158:   Mat_SeqDense   *c = (Mat_SeqDense*)(C->data);

162:   if (c->ptapwork) {
163:     (*C->ops->matmultnumeric)(A,P,c->ptapwork);
164:     (*C->ops->transposematmultnumeric)(P,c->ptapwork,C);
165:   } else { /* first time went trough the basic. Should we add better dispatching for subclasses? */
166:     MatPtAP_Basic(A,P,MAT_REUSE_MATRIX,PETSC_DEFAULT,&C);
167:   }
168:   return(0);
169: }

171: PetscErrorCode MatPtAPSymbolic_SeqDense_SeqDense(Mat A,Mat P,PetscReal fill,Mat *C)
172: {
173:   Mat_SeqDense   *c;
174:   PetscBool      flg;

178:   PetscObjectTypeCompare((PetscObject)P,((PetscObject)A)->type_name,&flg);
179:   MatCreate(PetscObjectComm((PetscObject)A),C);
180:   MatSetSizes(*C,P->cmap->n,P->cmap->n,P->cmap->N,P->cmap->N);
181:   MatSetType(*C,flg ? ((PetscObject)A)->type_name : MATDENSE);
182:   MatSeqDenseSetPreallocation(*C,NULL);
183:   c    = (Mat_SeqDense*)((*C)->data);
184:   MatCreate(PetscObjectComm((PetscObject)A),&c->ptapwork);
185:   MatSetSizes(c->ptapwork,A->rmap->n,P->cmap->n,A->rmap->N,P->cmap->N);
186:   MatSetType(c->ptapwork,flg ? ((PetscObject)A)->type_name : MATDENSE);
187:   MatSeqDenseSetPreallocation(c->ptapwork,NULL);
188:   return(0);
189: }

191: PETSC_INTERN PetscErrorCode MatPtAP_SeqDense_SeqDense(Mat A,Mat P,MatReuse reuse,PetscReal fill,Mat *C)
192: {

196:   if (reuse == MAT_INITIAL_MATRIX) {
197:     MatPtAPSymbolic_SeqDense_SeqDense(A,P,fill,C);
198:   }
199:   PetscLogEventBegin(MAT_PtAPNumeric,A,P,0,0);
200:   (*(*C)->ops->ptapnumeric)(A,P,*C);
201:   PetscLogEventEnd(MAT_PtAPNumeric,A,P,0,0);
202:   return(0);
203: }

205: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqDense(Mat A,MatType newtype,MatReuse reuse,Mat *newmat)
206: {
207:   Mat            B = NULL;
208:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
209:   Mat_SeqDense   *b;
211:   PetscInt       *ai=a->i,*aj=a->j,m=A->rmap->N,n=A->cmap->N,i;
212:   MatScalar      *av=a->a;
213:   PetscBool      isseqdense;

216:   if (reuse == MAT_REUSE_MATRIX) {
217:     PetscObjectTypeCompare((PetscObject)*newmat,MATSEQDENSE,&isseqdense);
218:     if (!isseqdense) SETERRQ1(PetscObjectComm((PetscObject)*newmat),PETSC_ERR_USER,"Cannot reuse matrix of type %s",((PetscObject)(*newmat))->type_name);
219:   }
220:   if (reuse != MAT_REUSE_MATRIX) {
221:     MatCreate(PetscObjectComm((PetscObject)A),&B);
222:     MatSetSizes(B,m,n,m,n);
223:     MatSetType(B,MATSEQDENSE);
224:     MatSeqDenseSetPreallocation(B,NULL);
225:     b    = (Mat_SeqDense*)(B->data);
226:   } else {
227:     b    = (Mat_SeqDense*)((*newmat)->data);
228:     PetscArrayzero(b->v,m*n);
229:   }
230:   for (i=0; i<m; i++) {
231:     PetscInt j;
232:     for (j=0;j<ai[1]-ai[0];j++) {
233:       b->v[*aj*m+i] = *av;
234:       aj++;
235:       av++;
236:     }
237:     ai++;
238:   }

240:   if (reuse == MAT_INPLACE_MATRIX) {
241:     MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
242:     MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
243:     MatHeaderReplace(A,&B);
244:   } else {
245:     if (B) *newmat = B;
246:     MatAssemblyBegin(*newmat,MAT_FINAL_ASSEMBLY);
247:     MatAssemblyEnd(*newmat,MAT_FINAL_ASSEMBLY);
248:   }
249:   return(0);
250: }

252: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_SeqAIJ(Mat A, MatType newtype,MatReuse reuse,Mat *newmat)
253: {
254:   Mat            B;
255:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;
257:   PetscInt       i, j;
258:   PetscInt       *rows, *nnz;
259:   MatScalar      *aa = a->v, *vals;

262:   MatCreate(PetscObjectComm((PetscObject)A),&B);
263:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
264:   MatSetType(B,MATSEQAIJ);
265:   PetscCalloc3(A->rmap->n,&rows,A->rmap->n,&nnz,A->rmap->n,&vals);
266:   for (j=0; j<A->cmap->n; j++) {
267:     for (i=0; i<A->rmap->n; i++) if (aa[i] != 0.0 || i == j) ++nnz[i];
268:     aa += a->lda;
269:   }
270:   MatSeqAIJSetPreallocation(B,PETSC_DETERMINE,nnz);
271:   aa = a->v;
272:   for (j=0; j<A->cmap->n; j++) {
273:     PetscInt numRows = 0;
274:     for (i=0; i<A->rmap->n; i++) if (aa[i] != 0.0 || i == j) {rows[numRows] = i; vals[numRows++] = aa[i];}
275:     MatSetValues(B,numRows,rows,1,&j,vals,INSERT_VALUES);
276:     aa  += a->lda;
277:   }
278:   PetscFree3(rows,nnz,vals);
279:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
280:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);

282:   if (reuse == MAT_INPLACE_MATRIX) {
283:     MatHeaderReplace(A,&B);
284:   } else {
285:     *newmat = B;
286:   }
287:   return(0);
288: }

290: PetscErrorCode MatAXPY_SeqDense(Mat Y,PetscScalar alpha,Mat X,MatStructure str)
291: {
292:   Mat_SeqDense      *x = (Mat_SeqDense*)X->data,*y = (Mat_SeqDense*)Y->data;
293:   const PetscScalar *xv;
294:   PetscScalar       *yv;
295:   PetscBLASInt      N,m,ldax,lday,one = 1;
296:   PetscErrorCode    ierr;

299:   MatDenseGetArrayRead(X,&xv);
300:   MatDenseGetArray(Y,&yv);
301:   PetscBLASIntCast(X->rmap->n*X->cmap->n,&N);
302:   PetscBLASIntCast(X->rmap->n,&m);
303:   PetscBLASIntCast(x->lda,&ldax);
304:   PetscBLASIntCast(y->lda,&lday);
305:   if (ldax>m || lday>m) {
306:     PetscInt j;

308:     for (j=0; j<X->cmap->n; j++) {
309:       PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&m,&alpha,xv+j*ldax,&one,yv+j*lday,&one));
310:     }
311:   } else {
312:     PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&N,&alpha,xv,&one,yv,&one));
313:   }
314:   MatDenseRestoreArrayRead(X,&xv);
315:   MatDenseRestoreArray(Y,&yv);
316:   PetscLogFlops(PetscMax(2*N-1,0));
317:   return(0);
318: }

320: static PetscErrorCode MatGetInfo_SeqDense(Mat A,MatInfoType flag,MatInfo *info)
321: {
322:   PetscLogDouble N = A->rmap->n*A->cmap->n;

325:   info->block_size        = 1.0;
326:   info->nz_allocated      = N;
327:   info->nz_used           = N;
328:   info->nz_unneeded       = 0;
329:   info->assemblies        = A->num_ass;
330:   info->mallocs           = 0;
331:   info->memory            = ((PetscObject)A)->mem;
332:   info->fill_ratio_given  = 0;
333:   info->fill_ratio_needed = 0;
334:   info->factor_mallocs    = 0;
335:   return(0);
336: }

338: static PetscErrorCode MatScale_SeqDense(Mat A,PetscScalar alpha)
339: {
340:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;
341:   PetscScalar    *v;
343:   PetscBLASInt   one = 1,j,nz,lda;

346:   MatDenseGetArray(A,&v);
347:   PetscBLASIntCast(a->lda,&lda);
348:   if (lda>A->rmap->n) {
349:     PetscBLASIntCast(A->rmap->n,&nz);
350:     for (j=0; j<A->cmap->n; j++) {
351:       PetscStackCallBLAS("BLASscal",BLASscal_(&nz,&alpha,v+j*lda,&one));
352:     }
353:   } else {
354:     PetscBLASIntCast(A->rmap->n*A->cmap->n,&nz);
355:     PetscStackCallBLAS("BLASscal",BLASscal_(&nz,&alpha,v,&one));
356:   }
357:   PetscLogFlops(nz);
358:   MatDenseRestoreArray(A,&v);
359:   return(0);
360: }

362: static PetscErrorCode MatIsHermitian_SeqDense(Mat A,PetscReal rtol,PetscBool  *fl)
363: {
364:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
365:   PetscInt          i,j,m = A->rmap->n,N = a->lda;
366:   const PetscScalar *v;
367:   PetscErrorCode    ierr;

370:   *fl = PETSC_FALSE;
371:   if (A->rmap->n != A->cmap->n) return(0);
372:   MatDenseGetArrayRead(A,&v);
373:   for (i=0; i<m; i++) {
374:     for (j=i; j<m; j++) {
375:       if (PetscAbsScalar(v[i+j*N] - PetscConj(v[j+i*N])) > rtol) return(0);
376:     }
377:   }
378:   MatDenseRestoreArrayRead(A,&v);
379:   *fl  = PETSC_TRUE;
380:   return(0);
381: }

383: PetscErrorCode MatDuplicateNoCreate_SeqDense(Mat newi,Mat A,MatDuplicateOption cpvalues)
384: {
385:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
387:   PetscInt       lda = (PetscInt)mat->lda,j,m;

390:   PetscLayoutReference(A->rmap,&newi->rmap);
391:   PetscLayoutReference(A->cmap,&newi->cmap);
392:   MatSeqDenseSetPreallocation(newi,NULL);
393:   if (cpvalues == MAT_COPY_VALUES) {
394:     const PetscScalar *av;
395:     PetscScalar       *v;

397:     MatDenseGetArrayRead(A,&av);
398:     MatDenseGetArray(newi,&v);
399:     if (lda>A->rmap->n) {
400:       m = A->rmap->n;
401:       for (j=0; j<A->cmap->n; j++) {
402:         PetscArraycpy(v+j*m,av+j*lda,m);
403:       }
404:     } else {
405:       PetscArraycpy(v,av,A->rmap->n*A->cmap->n);
406:     }
407:     MatDenseRestoreArray(newi,&v);
408:     MatDenseRestoreArrayRead(A,&av);
409:   }
410:   return(0);
411: }

413: PetscErrorCode MatDuplicate_SeqDense(Mat A,MatDuplicateOption cpvalues,Mat *newmat)
414: {

418:   MatCreate(PetscObjectComm((PetscObject)A),newmat);
419:   MatSetSizes(*newmat,A->rmap->n,A->cmap->n,A->rmap->n,A->cmap->n);
420:   MatSetType(*newmat,((PetscObject)A)->type_name);
421:   MatDuplicateNoCreate_SeqDense(*newmat,A,cpvalues);
422:   return(0);
423: }

425: static PetscErrorCode MatLUFactorNumeric_SeqDense(Mat fact,Mat A,const MatFactorInfo *info_dummy)
426: {
427:   MatFactorInfo  info;

431:   MatDuplicateNoCreate_SeqDense(fact,A,MAT_COPY_VALUES);
432:   (*fact->ops->lufactor)(fact,0,0,&info);
433:   return(0);
434: }

436: static PetscErrorCode MatSolve_SeqDense(Mat A,Vec xx,Vec yy)
437: {
438:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
439:   PetscErrorCode    ierr;
440:   const PetscScalar *x;
441:   PetscScalar       *y;
442:   PetscBLASInt      one = 1,info,m;

445:   PetscBLASIntCast(A->rmap->n,&m);
446:   VecGetArrayRead(xx,&x);
447:   VecGetArray(yy,&y);
448:   PetscArraycpy(y,x,A->rmap->n);
449:   if (A->factortype == MAT_FACTOR_LU) {
450: #if defined(PETSC_MISSING_LAPACK_GETRS)
451:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GETRS - Lapack routine is unavailable.");
452: #else
453:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
454:     PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
455:     PetscFPTrapPop();
456:     if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"GETRS - Bad solve");
457: #endif
458:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
459: #if defined(PETSC_MISSING_LAPACK_POTRS)
460:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRS - Lapack routine is unavailable.");
461: #else
462:     if (A->spd) {
463:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
464:       PetscStackCallBLAS("LAPACKpotrs",LAPACKpotrs_("L",&m,&one,mat->v,&mat->lda,y,&m,&info));
465:       PetscFPTrapPop();
466:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"POTRS Bad solve");
467: #if defined(PETSC_USE_COMPLEX)
468:     } else if (A->hermitian) {
469:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
470:       PetscStackCallBLAS("LAPACKhetrs",LAPACKhetrs_("L",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
471:       PetscFPTrapPop();
472:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"HETRS Bad solve");
473: #endif
474:     } else { /* symmetric case */
475:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
476:       PetscStackCallBLAS("LAPACKsytrs",LAPACKsytrs_("L",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
477:       PetscFPTrapPop();
478:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"SYTRS Bad solve");
479:     }
480: #endif
481:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix must be factored to solve");
482:   VecRestoreArrayRead(xx,&x);
483:   VecRestoreArray(yy,&y);
484:   PetscLogFlops(2.0*A->cmap->n*A->cmap->n - A->cmap->n);
485:   return(0);
486: }

488: static PetscErrorCode MatMatSolve_SeqDense(Mat A,Mat B,Mat X)
489: {
490:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
491:   PetscErrorCode    ierr;
492:   const PetscScalar *b;
493:   PetscScalar       *x;
494:   PetscInt          n;
495:   PetscBLASInt      nrhs,info,m;

498:   PetscBLASIntCast(A->rmap->n,&m);
499:   MatGetSize(B,NULL,&n);
500:   PetscBLASIntCast(n,&nrhs);
501:   MatDenseGetArrayRead(B,&b);
502:   MatDenseGetArray(X,&x);

504:   PetscArraycpy(x,b,m*nrhs);

506:   if (A->factortype == MAT_FACTOR_LU) {
507: #if defined(PETSC_MISSING_LAPACK_GETRS)
508:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GETRS - Lapack routine is unavailable.");
509: #else
510:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
511:     PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&m,&nrhs,mat->v,&mat->lda,mat->pivots,x,&m,&info));
512:     PetscFPTrapPop();
513:     if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"GETRS - Bad solve");
514: #endif
515:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
516: #if defined(PETSC_MISSING_LAPACK_POTRS)
517:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRS - Lapack routine is unavailable.");
518: #else
519:     if (A->spd) {
520:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
521:       PetscStackCallBLAS("LAPACKpotrs",LAPACKpotrs_("L",&m,&nrhs,mat->v,&mat->lda,x,&m,&info));
522:       PetscFPTrapPop();
523:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"POTRS Bad solve");
524: #if defined(PETSC_USE_COMPLEX)
525:     } else if (A->hermitian) {
526:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
527:       PetscStackCallBLAS("LAPACKhetrs",LAPACKhetrs_("L",&m,&nrhs,mat->v,&mat->lda,mat->pivots,x,&m,&info));
528:       PetscFPTrapPop();
529:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"HETRS Bad solve");
530: #endif
531:     } else { /* symmetric case */
532:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
533:       PetscStackCallBLAS("LAPACKsytrs",LAPACKsytrs_("L",&m,&nrhs,mat->v,&mat->lda,mat->pivots,x,&m,&info));
534:       PetscFPTrapPop();
535:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"SYTRS Bad solve");
536:     }
537: #endif
538:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix must be factored to solve");

540:   MatDenseRestoreArrayRead(B,&b);
541:   MatDenseRestoreArray(X,&x);
542:   PetscLogFlops(nrhs*(2.0*m*m - m));
543:   return(0);
544: }

546: static PetscErrorCode MatConjugate_SeqDense(Mat);

548: static PetscErrorCode MatSolveTranspose_SeqDense(Mat A,Vec xx,Vec yy)
549: {
550:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
551:   PetscErrorCode    ierr;
552:   const PetscScalar *x;
553:   PetscScalar       *y;
554:   PetscBLASInt      one = 1,info,m;

557:   PetscBLASIntCast(A->rmap->n,&m);
558:   VecGetArrayRead(xx,&x);
559:   VecGetArray(yy,&y);
560:   PetscArraycpy(y,x,A->rmap->n);
561:   if (A->factortype == MAT_FACTOR_LU) {
562: #if defined(PETSC_MISSING_LAPACK_GETRS)
563:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GETRS - Lapack routine is unavailable.");
564: #else
565:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
566:     PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_("T",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
567:     PetscFPTrapPop();
568:     if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"POTRS - Bad solve");
569: #endif
570:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
571: #if defined(PETSC_MISSING_LAPACK_POTRS)
572:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRS - Lapack routine is unavailable.");
573: #else
574:     if (A->spd) {
575: #if defined(PETSC_USE_COMPLEX)
576:       MatConjugate_SeqDense(A);
577: #endif
578:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
579:       PetscStackCallBLAS("LAPACKpotrs",LAPACKpotrs_("L",&m,&one,mat->v,&mat->lda,y,&m,&info));
580:       PetscFPTrapPop();
581: #if defined(PETSC_USE_COMPLEX)
582:       MatConjugate_SeqDense(A);
583: #endif
584:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"POTRS Bad solve");
585: #if defined(PETSC_USE_COMPLEX)
586:     } else if (A->hermitian) {
587:       MatConjugate_SeqDense(A);
588:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
589:       PetscStackCallBLAS("LAPACKhetrs",LAPACKhetrs_("L",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
590:       PetscFPTrapPop();
591:       MatConjugate_SeqDense(A);
592: #endif
593:     } else { /* symmetric case */
594:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
595:       PetscStackCallBLAS("LAPACKsytrs",LAPACKsytrs_("L",&m,&one,mat->v,&mat->lda,mat->pivots,y,&m,&info));
596:       PetscFPTrapPop();
597:       if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"SYTRS Bad solve");
598:     }
599: #endif
600:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix must be factored to solve");
601:   VecRestoreArrayRead(xx,&x);
602:   VecRestoreArray(yy,&y);
603:   PetscLogFlops(2.0*A->cmap->n*A->cmap->n - A->cmap->n);
604:   return(0);
605: }

607: /* ---------------------------------------------------------------*/
608: /* COMMENT: I have chosen to hide row permutation in the pivots,
609:    rather than put it in the Mat->row slot.*/
610: PetscErrorCode MatLUFactor_SeqDense(Mat A,IS row,IS col,const MatFactorInfo *minfo)
611: {
612: #if defined(PETSC_MISSING_LAPACK_GETRF)
614:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GETRF - Lapack routine is unavailable.");
615: #else
616:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
618:   PetscBLASInt   n,m,info;

621:   PetscBLASIntCast(A->cmap->n,&n);
622:   PetscBLASIntCast(A->rmap->n,&m);
623:   if (!mat->pivots) {
624:     PetscMalloc1(A->rmap->n,&mat->pivots);
625:     PetscLogObjectMemory((PetscObject)A,A->rmap->n*sizeof(PetscBLASInt));
626:   }
627:   if (!A->rmap->n || !A->cmap->n) return(0);
628:   PetscFPTrapPush(PETSC_FP_TRAP_OFF);
629:   PetscStackCallBLAS("LAPACKgetrf",LAPACKgetrf_(&m,&n,mat->v,&mat->lda,mat->pivots,&info));
630:   PetscFPTrapPop();

632:   if (info<0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to LU factorization");
633:   if (info>0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Bad LU factorization");

635:   A->ops->solve             = MatSolve_SeqDense;
636:   A->ops->matsolve          = MatMatSolve_SeqDense;
637:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense;
638:   A->factortype             = MAT_FACTOR_LU;

640:   PetscFree(A->solvertype);
641:   PetscStrallocpy(MATSOLVERPETSC,&A->solvertype);

643:   PetscLogFlops((2.0*A->cmap->n*A->cmap->n*A->cmap->n)/3);
644: #endif
645:   return(0);
646: }

648: /* Cholesky as L*L^T or L*D*L^T and the symmetric/hermitian complex variants */
649: PetscErrorCode MatCholeskyFactor_SeqDense(Mat A,IS perm,const MatFactorInfo *factinfo)
650: {
651: #if defined(PETSC_MISSING_LAPACK_POTRF)
653:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable.");
654: #else
655:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
657:   PetscBLASInt   info,n;

660:   PetscBLASIntCast(A->cmap->n,&n);
661:   if (!A->rmap->n || !A->cmap->n) return(0);
662:   if (A->spd) {
663:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
664:     PetscStackCallBLAS("LAPACKpotrf",LAPACKpotrf_("L",&n,mat->v,&mat->lda,&info));
665:     PetscFPTrapPop();
666: #if defined(PETSC_USE_COMPLEX)
667:   } else if (A->hermitian) {
668:     if (!mat->pivots) {
669:       PetscMalloc1(A->rmap->n,&mat->pivots);
670:       PetscLogObjectMemory((PetscObject)A,A->rmap->n*sizeof(PetscBLASInt));
671:     }
672:     if (!mat->fwork) {
673:       PetscScalar dummy;

675:       mat->lfwork = -1;
676:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
677:       PetscStackCallBLAS("LAPACKhetrf",LAPACKhetrf_("L",&n,mat->v,&mat->lda,mat->pivots,&dummy,&mat->lfwork,&info));
678:       PetscFPTrapPop();
679:       mat->lfwork = (PetscInt)PetscRealPart(dummy);
680:       PetscMalloc1(mat->lfwork,&mat->fwork);
681:       PetscLogObjectMemory((PetscObject)A,mat->lfwork*sizeof(PetscBLASInt));
682:     }
683:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
684:     PetscStackCallBLAS("LAPACKhetrf",LAPACKhetrf_("L",&n,mat->v,&mat->lda,mat->pivots,mat->fwork,&mat->lfwork,&info));
685:     PetscFPTrapPop();
686: #endif
687:   } else { /* symmetric case */
688:     if (!mat->pivots) {
689:       PetscMalloc1(A->rmap->n,&mat->pivots);
690:       PetscLogObjectMemory((PetscObject)A,A->rmap->n*sizeof(PetscBLASInt));
691:     }
692:     if (!mat->fwork) {
693:       PetscScalar dummy;

695:       mat->lfwork = -1;
696:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
697:       PetscStackCallBLAS("LAPACKsytrf",LAPACKsytrf_("L",&n,mat->v,&mat->lda,mat->pivots,&dummy,&mat->lfwork,&info));
698:       PetscFPTrapPop();
699:       mat->lfwork = (PetscInt)PetscRealPart(dummy);
700:       PetscMalloc1(mat->lfwork,&mat->fwork);
701:       PetscLogObjectMemory((PetscObject)A,mat->lfwork*sizeof(PetscBLASInt));
702:     }
703:     PetscFPTrapPush(PETSC_FP_TRAP_OFF);
704:     PetscStackCallBLAS("LAPACKsytrf",LAPACKsytrf_("L",&n,mat->v,&mat->lda,mat->pivots,mat->fwork,&mat->lfwork,&info));
705:     PetscFPTrapPop();
706:   }
707:   if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_CH_ZRPVT,"Bad factorization: zero pivot in row %D",(PetscInt)info-1);

709:   A->ops->solve             = MatSolve_SeqDense;
710:   A->ops->matsolve          = MatMatSolve_SeqDense;
711:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense;
712:   A->factortype             = MAT_FACTOR_CHOLESKY;

714:   PetscFree(A->solvertype);
715:   PetscStrallocpy(MATSOLVERPETSC,&A->solvertype);

717:   PetscLogFlops((1.0*A->cmap->n*A->cmap->n*A->cmap->n)/3.0);
718: #endif
719:   return(0);
720: }


723: PetscErrorCode MatCholeskyFactorNumeric_SeqDense(Mat fact,Mat A,const MatFactorInfo *info_dummy)
724: {
726:   MatFactorInfo  info;

729:   info.fill = 1.0;

731:   MatDuplicateNoCreate_SeqDense(fact,A,MAT_COPY_VALUES);
732:   (*fact->ops->choleskyfactor)(fact,0,&info);
733:   return(0);
734: }

736: PetscErrorCode MatCholeskyFactorSymbolic_SeqDense(Mat fact,Mat A,IS row,const MatFactorInfo *info)
737: {
739:   fact->assembled                  = PETSC_TRUE;
740:   fact->preallocated               = PETSC_TRUE;
741:   fact->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqDense;
742:   fact->ops->solve                 = MatSolve_SeqDense;
743:   fact->ops->matsolve              = MatMatSolve_SeqDense;
744:   fact->ops->solvetranspose        = MatSolveTranspose_SeqDense;
745:   return(0);
746: }

748: PetscErrorCode MatLUFactorSymbolic_SeqDense(Mat fact,Mat A,IS row,IS col,const MatFactorInfo *info)
749: {
751:   fact->preallocated           = PETSC_TRUE;
752:   fact->assembled              = PETSC_TRUE;
753:   fact->ops->lufactornumeric   = MatLUFactorNumeric_SeqDense;
754:   fact->ops->solve             = MatSolve_SeqDense;
755:   fact->ops->matsolve          = MatMatSolve_SeqDense;
756:   fact->ops->solvetranspose    = MatSolveTranspose_SeqDense;
757:   return(0);
758: }

760: /* uses LAPACK */
761: PETSC_INTERN PetscErrorCode MatGetFactor_seqdense_petsc(Mat A,MatFactorType ftype,Mat *fact)
762: {

766:   MatCreate(PetscObjectComm((PetscObject)A),fact);
767:   MatSetSizes(*fact,A->rmap->n,A->cmap->n,A->rmap->n,A->cmap->n);
768:   MatSetType(*fact,MATDENSE);
769:   if (ftype == MAT_FACTOR_LU) {
770:     (*fact)->ops->lufactorsymbolic = MatLUFactorSymbolic_SeqDense;
771:   } else {
772:     (*fact)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqDense;
773:   }
774:   (*fact)->factortype = ftype;

776:   PetscFree((*fact)->solvertype);
777:   PetscStrallocpy(MATSOLVERPETSC,&(*fact)->solvertype);
778:   return(0);
779: }

781: /* ------------------------------------------------------------------*/
782: static PetscErrorCode MatSOR_SeqDense(Mat A,Vec bb,PetscReal omega,MatSORType flag,PetscReal shift,PetscInt its,PetscInt lits,Vec xx)
783: {
784:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
785:   PetscScalar       *x,*v = mat->v,zero = 0.0,xt;
786:   const PetscScalar *b;
787:   PetscErrorCode    ierr;
788:   PetscInt          m = A->rmap->n,i;
789:   PetscBLASInt      o = 1,bm;

792: #if defined(PETSC_HAVE_CUDA)
793:   if (A->offloadmask == PETSC_OFFLOAD_GPU) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not implemented");
794: #endif
795:   if (shift == -1) shift = 0.0; /* negative shift indicates do not error on zero diagonal; this code never zeros on zero diagonal */
796:   PetscBLASIntCast(m,&bm);
797:   if (flag & SOR_ZERO_INITIAL_GUESS) {
798:     /* this is a hack fix, should have another version without the second BLASdotu */
799:     VecSet(xx,zero);
800:   }
801:   VecGetArray(xx,&x);
802:   VecGetArrayRead(bb,&b);
803:   its  = its*lits;
804:   if (its <= 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires global its %D and local its %D both positive",its,lits);
805:   while (its--) {
806:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
807:       for (i=0; i<m; i++) {
808:         PetscStackCallBLAS("BLASdotu",xt   = b[i] - BLASdotu_(&bm,v+i,&bm,x,&o));
809:         x[i] = (1. - omega)*x[i] + omega*(xt+v[i + i*m]*x[i])/(v[i + i*m]+shift);
810:       }
811:     }
812:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
813:       for (i=m-1; i>=0; i--) {
814:         PetscStackCallBLAS("BLASdotu",xt   = b[i] - BLASdotu_(&bm,v+i,&bm,x,&o));
815:         x[i] = (1. - omega)*x[i] + omega*(xt+v[i + i*m]*x[i])/(v[i + i*m]+shift);
816:       }
817:     }
818:   }
819:   VecRestoreArrayRead(bb,&b);
820:   VecRestoreArray(xx,&x);
821:   return(0);
822: }

824: /* -----------------------------------------------------------------*/
825: PetscErrorCode MatMultTranspose_SeqDense(Mat A,Vec xx,Vec yy)
826: {
827:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
828:   const PetscScalar *v   = mat->v,*x;
829:   PetscScalar       *y;
830:   PetscErrorCode    ierr;
831:   PetscBLASInt      m, n,_One=1;
832:   PetscScalar       _DOne=1.0,_DZero=0.0;

835:   PetscBLASIntCast(A->rmap->n,&m);
836:   PetscBLASIntCast(A->cmap->n,&n);
837:   VecGetArrayRead(xx,&x);
838:   VecGetArrayWrite(yy,&y);
839:   if (!A->rmap->n || !A->cmap->n) {
840:     PetscBLASInt i;
841:     for (i=0; i<n; i++) y[i] = 0.0;
842:   } else {
843:     PetscStackCallBLAS("BLASgemv",BLASgemv_("T",&m,&n,&_DOne,v,&mat->lda,x,&_One,&_DZero,y,&_One));
844:     PetscLogFlops(2.0*A->rmap->n*A->cmap->n - A->cmap->n);
845:   }
846:   VecRestoreArrayRead(xx,&x);
847:   VecRestoreArrayWrite(yy,&y);
848:   return(0);
849: }

851: PetscErrorCode MatMult_SeqDense(Mat A,Vec xx,Vec yy)
852: {
853:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
854:   PetscScalar       *y,_DOne=1.0,_DZero=0.0;
855:   PetscErrorCode    ierr;
856:   PetscBLASInt      m, n, _One=1;
857:   const PetscScalar *v = mat->v,*x;

860:   PetscBLASIntCast(A->rmap->n,&m);
861:   PetscBLASIntCast(A->cmap->n,&n);
862:   VecGetArrayRead(xx,&x);
863:   VecGetArrayWrite(yy,&y);
864:   if (!A->rmap->n || !A->cmap->n) {
865:     PetscBLASInt i;
866:     for (i=0; i<m; i++) y[i] = 0.0;
867:   } else {
868:     PetscStackCallBLAS("BLASgemv",BLASgemv_("N",&m,&n,&_DOne,v,&(mat->lda),x,&_One,&_DZero,y,&_One));
869:     PetscLogFlops(2.0*A->rmap->n*A->cmap->n - A->rmap->n);
870:   }
871:   VecRestoreArrayRead(xx,&x);
872:   VecRestoreArrayWrite(yy,&y);
873:   return(0);
874: }

876: PetscErrorCode MatMultAdd_SeqDense(Mat A,Vec xx,Vec zz,Vec yy)
877: {
878:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
879:   const PetscScalar *v = mat->v,*x;
880:   PetscScalar       *y,_DOne=1.0;
881:   PetscErrorCode    ierr;
882:   PetscBLASInt      m, n, _One=1;

885:   PetscBLASIntCast(A->rmap->n,&m);
886:   PetscBLASIntCast(A->cmap->n,&n);
887:   if (!A->rmap->n || !A->cmap->n) return(0);
888:   if (zz != yy) {VecCopy(zz,yy);}
889:   VecGetArrayRead(xx,&x);
890:   VecGetArray(yy,&y);
891:   PetscStackCallBLAS("BLASgemv",BLASgemv_("N",&m,&n,&_DOne,v,&(mat->lda),x,&_One,&_DOne,y,&_One));
892:   VecRestoreArrayRead(xx,&x);
893:   VecRestoreArray(yy,&y);
894:   PetscLogFlops(2.0*A->rmap->n*A->cmap->n);
895:   return(0);
896: }

898: PetscErrorCode MatMultTransposeAdd_SeqDense(Mat A,Vec xx,Vec zz,Vec yy)
899: {
900:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
901:   const PetscScalar *v = mat->v,*x;
902:   PetscScalar       *y;
903:   PetscErrorCode    ierr;
904:   PetscBLASInt      m, n, _One=1;
905:   PetscScalar       _DOne=1.0;

908:   PetscBLASIntCast(A->rmap->n,&m);
909:   PetscBLASIntCast(A->cmap->n,&n);
910:   if (!A->rmap->n || !A->cmap->n) return(0);
911:   if (zz != yy) {VecCopy(zz,yy);}
912:   VecGetArrayRead(xx,&x);
913:   VecGetArray(yy,&y);
914:   PetscStackCallBLAS("BLASgemv",BLASgemv_("T",&m,&n,&_DOne,v,&(mat->lda),x,&_One,&_DOne,y,&_One));
915:   VecRestoreArrayRead(xx,&x);
916:   VecRestoreArray(yy,&y);
917:   PetscLogFlops(2.0*A->rmap->n*A->cmap->n);
918:   return(0);
919: }

921: /* -----------------------------------------------------------------*/
922: static PetscErrorCode MatGetRow_SeqDense(Mat A,PetscInt row,PetscInt *ncols,PetscInt **cols,PetscScalar **vals)
923: {
924:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
926:   PetscInt       i;

929:   *ncols = A->cmap->n;
930:   if (cols) {
931:     PetscMalloc1(A->cmap->n+1,cols);
932:     for (i=0; i<A->cmap->n; i++) (*cols)[i] = i;
933:   }
934:   if (vals) {
935:     const PetscScalar *v;

937:     MatDenseGetArrayRead(A,&v);
938:     PetscMalloc1(A->cmap->n+1,vals);
939:     v   += row;
940:     for (i=0; i<A->cmap->n; i++) {(*vals)[i] = *v; v += mat->lda;}
941:     MatDenseRestoreArrayRead(A,&v);
942:   }
943:   return(0);
944: }

946: static PetscErrorCode MatRestoreRow_SeqDense(Mat A,PetscInt row,PetscInt *ncols,PetscInt **cols,PetscScalar **vals)
947: {

951:   if (cols) {PetscFree(*cols);}
952:   if (vals) {PetscFree(*vals); }
953:   return(0);
954: }
955: /* ----------------------------------------------------------------*/
956: static PetscErrorCode MatSetValues_SeqDense(Mat A,PetscInt m,const PetscInt indexm[],PetscInt n,const PetscInt indexn[],const PetscScalar v[],InsertMode addv)
957: {
958:   Mat_SeqDense     *mat = (Mat_SeqDense*)A->data;
959:   PetscScalar      *av;
960:   PetscInt         i,j,idx=0;
961: #if defined(PETSC_HAVE_CUDA)
962:   PetscOffloadMask oldf;
963: #endif
964:   PetscErrorCode   ierr;

967:   MatDenseGetArray(A,&av);
968:   if (!mat->roworiented) {
969:     if (addv == INSERT_VALUES) {
970:       for (j=0; j<n; j++) {
971:         if (indexn[j] < 0) {idx += m; continue;}
972: #if defined(PETSC_USE_DEBUG)
973:         if (indexn[j] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",indexn[j],A->cmap->n-1);
974: #endif
975:         for (i=0; i<m; i++) {
976:           if (indexm[i] < 0) {idx++; continue;}
977: #if defined(PETSC_USE_DEBUG)
978:           if (indexm[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",indexm[i],A->rmap->n-1);
979: #endif
980:           av[indexn[j]*mat->lda + indexm[i]] = v[idx++];
981:         }
982:       }
983:     } else {
984:       for (j=0; j<n; j++) {
985:         if (indexn[j] < 0) {idx += m; continue;}
986: #if defined(PETSC_USE_DEBUG)
987:         if (indexn[j] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",indexn[j],A->cmap->n-1);
988: #endif
989:         for (i=0; i<m; i++) {
990:           if (indexm[i] < 0) {idx++; continue;}
991: #if defined(PETSC_USE_DEBUG)
992:           if (indexm[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",indexm[i],A->rmap->n-1);
993: #endif
994:           av[indexn[j]*mat->lda + indexm[i]] += v[idx++];
995:         }
996:       }
997:     }
998:   } else {
999:     if (addv == INSERT_VALUES) {
1000:       for (i=0; i<m; i++) {
1001:         if (indexm[i] < 0) { idx += n; continue;}
1002: #if defined(PETSC_USE_DEBUG)
1003:         if (indexm[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",indexm[i],A->rmap->n-1);
1004: #endif
1005:         for (j=0; j<n; j++) {
1006:           if (indexn[j] < 0) { idx++; continue;}
1007: #if defined(PETSC_USE_DEBUG)
1008:           if (indexn[j] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",indexn[j],A->cmap->n-1);
1009: #endif
1010:           av[indexn[j]*mat->lda + indexm[i]] = v[idx++];
1011:         }
1012:       }
1013:     } else {
1014:       for (i=0; i<m; i++) {
1015:         if (indexm[i] < 0) { idx += n; continue;}
1016: #if defined(PETSC_USE_DEBUG)
1017:         if (indexm[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",indexm[i],A->rmap->n-1);
1018: #endif
1019:         for (j=0; j<n; j++) {
1020:           if (indexn[j] < 0) { idx++; continue;}
1021: #if defined(PETSC_USE_DEBUG)
1022:           if (indexn[j] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",indexn[j],A->cmap->n-1);
1023: #endif
1024:           av[indexn[j]*mat->lda + indexm[i]] += v[idx++];
1025:         }
1026:       }
1027:     }
1028:   }
1029:   /* hack to prevent unneeded copy to the GPU while returning the array */
1030: #if defined(PETSC_HAVE_CUDA)
1031:   oldf = A->offloadmask;
1032:   A->offloadmask = PETSC_OFFLOAD_GPU;
1033: #endif
1034:   MatDenseRestoreArray(A,&av);
1035: #if defined(PETSC_HAVE_CUDA)
1036:   A->offloadmask = (oldf == PETSC_OFFLOAD_UNALLOCATED ? PETSC_OFFLOAD_UNALLOCATED : PETSC_OFFLOAD_CPU);
1037: #endif
1038:   return(0);
1039: }

1041: static PetscErrorCode MatGetValues_SeqDense(Mat A,PetscInt m,const PetscInt indexm[],PetscInt n,const PetscInt indexn[],PetscScalar v[])
1042: {
1043:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
1044:   const PetscScalar *vv;
1045:   PetscInt          i,j;
1046:   PetscErrorCode    ierr;

1049:   MatDenseGetArrayRead(A,&vv);
1050:   /* row-oriented output */
1051:   for (i=0; i<m; i++) {
1052:     if (indexm[i] < 0) {v += n;continue;}
1053:     if (indexm[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D requested larger than number rows %D",indexm[i],A->rmap->n);
1054:     for (j=0; j<n; j++) {
1055:       if (indexn[j] < 0) {v++; continue;}
1056:       if (indexn[j] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column %D requested larger than number columns %D",indexn[j],A->cmap->n);
1057:       *v++ = vv[indexn[j]*mat->lda + indexm[i]];
1058:     }
1059:   }
1060:   MatDenseRestoreArrayRead(A,&vv);
1061:   return(0);
1062: }

1064: /* -----------------------------------------------------------------*/

1066: static PetscErrorCode MatLoad_SeqDense_Binary(Mat newmat,PetscViewer viewer)
1067: {
1068:   Mat_SeqDense   *a;
1070:   PetscInt       *scols,i,j,nz,header[4];
1071:   int            fd;
1072:   PetscMPIInt    size;
1073:   PetscInt       *rowlengths = 0,M,N,*cols,grows,gcols;
1074:   PetscScalar    *vals,*svals,*v,*w;
1075:   MPI_Comm       comm;

1078:   PetscObjectGetComm((PetscObject)viewer,&comm);
1079:   MPI_Comm_size(comm,&size);
1080:   if (size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"view must have one processor");
1081:   PetscViewerBinaryGetDescriptor(viewer,&fd);
1082:   PetscBinaryRead(fd,header,4,NULL,PETSC_INT);
1083:   if (header[0] != MAT_FILE_CLASSID) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"Not matrix object");
1084:   M = header[1]; N = header[2]; nz = header[3];

1086:   /* set global size if not set already*/
1087:   if (newmat->rmap->n < 0 && newmat->rmap->N < 0 && newmat->cmap->n < 0 && newmat->cmap->N < 0) {
1088:     MatSetSizes(newmat,M,N,M,N);
1089:   } else {
1090:     /* if sizes and type are already set, check if the vector global sizes are correct */
1091:     MatGetSize(newmat,&grows,&gcols);
1092:     if (M != grows ||  N != gcols) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%d, %d) than the input matrix (%d, %d)",M,N,grows,gcols);
1093:   }
1094:   a = (Mat_SeqDense*)newmat->data;
1095:   if (!a->user_alloc) {
1096:     MatSeqDenseSetPreallocation(newmat,NULL);
1097:   }

1099:   if (nz == MATRIX_BINARY_FORMAT_DENSE) { /* matrix in file is dense */
1100:     a = (Mat_SeqDense*)newmat->data;
1101:     v = a->v;
1102:     /* Allocate some temp space to read in the values and then flip them
1103:        from row major to column major */
1104:     PetscMalloc1(M*N > 0 ? M*N : 1,&w);
1105:     /* read in nonzero values */
1106:     PetscBinaryRead(fd,w,M*N,NULL,PETSC_SCALAR);
1107:     /* now flip the values and store them in the matrix*/
1108:     for (j=0; j<N; j++) {
1109:       for (i=0; i<M; i++) {
1110:         *v++ =w[i*N+j];
1111:       }
1112:     }
1113:     PetscFree(w);
1114:   } else {
1115:     /* read row lengths */
1116:     PetscMalloc1(M+1,&rowlengths);
1117:     PetscBinaryRead(fd,rowlengths,M,NULL,PETSC_INT);

1119:     a = (Mat_SeqDense*)newmat->data;
1120:     v = a->v;

1122:     /* read column indices and nonzeros */
1123:     PetscMalloc1(nz+1,&scols);
1124:     cols = scols;
1125:     PetscBinaryRead(fd,cols,nz,NULL,PETSC_INT);
1126:     PetscMalloc1(nz+1,&svals);
1127:     vals = svals;
1128:     PetscBinaryRead(fd,vals,nz,NULL,PETSC_SCALAR);

1130:     /* insert into matrix */
1131:     for (i=0; i<M; i++) {
1132:       for (j=0; j<rowlengths[i]; j++) v[i+M*scols[j]] = svals[j];
1133:       svals += rowlengths[i]; scols += rowlengths[i];
1134:     }
1135:     PetscFree(vals);
1136:     PetscFree(cols);
1137:     PetscFree(rowlengths);
1138:   }
1139:   MatAssemblyBegin(newmat,MAT_FINAL_ASSEMBLY);
1140:   MatAssemblyEnd(newmat,MAT_FINAL_ASSEMBLY);
1141:   return(0);
1142: }

1144: PetscErrorCode MatLoad_SeqDense(Mat newMat, PetscViewer viewer)
1145: {
1146:   PetscBool      isbinary, ishdf5;

1152:   /* force binary viewer to load .info file if it has not yet done so */
1153:   PetscViewerSetUp(viewer);
1154:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1155:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,  &ishdf5);
1156:   if (isbinary) {
1157:     MatLoad_SeqDense_Binary(newMat,viewer);
1158:   } else if (ishdf5) {
1159: #if defined(PETSC_HAVE_HDF5)
1160:     MatLoad_Dense_HDF5(newMat,viewer);
1161: #else
1162:     SETERRQ(PetscObjectComm((PetscObject)newMat),PETSC_ERR_SUP,"HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
1163: #endif
1164:   } else {
1165:     SETERRQ2(PetscObjectComm((PetscObject)newMat),PETSC_ERR_SUP,"Viewer type %s not yet supported for reading %s matrices",((PetscObject)viewer)->type_name,((PetscObject)newMat)->type_name);
1166:   }
1167:   return(0);
1168: }

1170: static PetscErrorCode MatView_SeqDense_ASCII(Mat A,PetscViewer viewer)
1171: {
1172:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
1173:   PetscErrorCode    ierr;
1174:   PetscInt          i,j;
1175:   const char        *name;
1176:   PetscScalar       *v,*av;
1177:   PetscViewerFormat format;
1178: #if defined(PETSC_USE_COMPLEX)
1179:   PetscBool         allreal = PETSC_TRUE;
1180: #endif

1183:   MatDenseGetArrayRead(A,(const PetscScalar**)&av);
1184:   PetscViewerGetFormat(viewer,&format);
1185:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1186:     return(0);  /* do nothing for now */
1187:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1188:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
1189:     for (i=0; i<A->rmap->n; i++) {
1190:       v    = av + i;
1191:       PetscViewerASCIIPrintf(viewer,"row %D:",i);
1192:       for (j=0; j<A->cmap->n; j++) {
1193: #if defined(PETSC_USE_COMPLEX)
1194:         if (PetscRealPart(*v) != 0.0 && PetscImaginaryPart(*v) != 0.0) {
1195:           PetscViewerASCIIPrintf(viewer," (%D, %g + %g i) ",j,(double)PetscRealPart(*v),(double)PetscImaginaryPart(*v));
1196:         } else if (PetscRealPart(*v)) {
1197:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",j,(double)PetscRealPart(*v));
1198:         }
1199: #else
1200:         if (*v) {
1201:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",j,(double)*v);
1202:         }
1203: #endif
1204:         v += a->lda;
1205:       }
1206:       PetscViewerASCIIPrintf(viewer,"\n");
1207:     }
1208:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
1209:   } else {
1210:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
1211: #if defined(PETSC_USE_COMPLEX)
1212:     /* determine if matrix has all real values */
1213:     v = av;
1214:     for (i=0; i<A->rmap->n*A->cmap->n; i++) {
1215:       if (PetscImaginaryPart(v[i])) { allreal = PETSC_FALSE; break;}
1216:     }
1217: #endif
1218:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
1219:       PetscObjectGetName((PetscObject)A,&name);
1220:       PetscViewerASCIIPrintf(viewer,"%% Size = %D %D \n",A->rmap->n,A->cmap->n);
1221:       PetscViewerASCIIPrintf(viewer,"%s = zeros(%D,%D);\n",name,A->rmap->n,A->cmap->n);
1222:       PetscViewerASCIIPrintf(viewer,"%s = [\n",name);
1223:     }

1225:     for (i=0; i<A->rmap->n; i++) {
1226:       v = av + i;
1227:       for (j=0; j<A->cmap->n; j++) {
1228: #if defined(PETSC_USE_COMPLEX)
1229:         if (allreal) {
1230:           PetscViewerASCIIPrintf(viewer,"%18.16e ",(double)PetscRealPart(*v));
1231:         } else {
1232:           PetscViewerASCIIPrintf(viewer,"%18.16e + %18.16ei ",(double)PetscRealPart(*v),(double)PetscImaginaryPart(*v));
1233:         }
1234: #else
1235:         PetscViewerASCIIPrintf(viewer,"%18.16e ",(double)*v);
1236: #endif
1237:         v += a->lda;
1238:       }
1239:       PetscViewerASCIIPrintf(viewer,"\n");
1240:     }
1241:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
1242:       PetscViewerASCIIPrintf(viewer,"];\n");
1243:     }
1244:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
1245:   }
1246:   MatDenseRestoreArrayRead(A,(const PetscScalar**)&av);
1247:   PetscViewerFlush(viewer);
1248:   return(0);
1249: }

1251: static PetscErrorCode MatView_SeqDense_Binary(Mat A,PetscViewer viewer)
1252: {
1253:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
1254:   PetscErrorCode    ierr;
1255:   int               fd;
1256:   PetscInt          ict,j,n = A->cmap->n,m = A->rmap->n,i,*col_lens,nz = m*n;
1257:   PetscScalar       *av,*v,*anonz,*vals;
1258:   PetscViewerFormat format;

1261:   PetscViewerBinaryGetDescriptor(viewer,&fd);
1262:   MatDenseGetArrayRead(A,(const PetscScalar**)&av);
1263:   PetscViewerGetFormat(viewer,&format);
1264:   if (format == PETSC_VIEWER_NATIVE) {
1265:     /* store the matrix as a dense matrix */
1266:     PetscMalloc1(4,&col_lens);

1268:     col_lens[0] = MAT_FILE_CLASSID;
1269:     col_lens[1] = m;
1270:     col_lens[2] = n;
1271:     col_lens[3] = MATRIX_BINARY_FORMAT_DENSE;

1273:     PetscBinaryWrite(fd,col_lens,4,PETSC_INT,PETSC_TRUE);
1274:     PetscFree(col_lens);

1276:     /* write out matrix, by rows */
1277:     PetscMalloc1(m*n+1,&vals);
1278:     v    = av;
1279:     for (j=0; j<n; j++) {
1280:       for (i=0; i<m; i++) {
1281:         vals[j + i*n] = *v++;
1282:       }
1283:     }
1284:     PetscBinaryWrite(fd,vals,n*m,PETSC_SCALAR,PETSC_FALSE);
1285:     PetscFree(vals);
1286:   } else {
1287:     PetscMalloc1(4+nz,&col_lens);

1289:     col_lens[0] = MAT_FILE_CLASSID;
1290:     col_lens[1] = m;
1291:     col_lens[2] = n;
1292:     col_lens[3] = nz;

1294:     /* store lengths of each row and write (including header) to file */
1295:     for (i=0; i<m; i++) col_lens[4+i] = n;
1296:     PetscBinaryWrite(fd,col_lens,4+m,PETSC_INT,PETSC_TRUE);

1298:     /* Possibly should write in smaller increments, not whole matrix at once? */
1299:     /* store column indices (zero start index) */
1300:     ict = 0;
1301:     for (i=0; i<m; i++) {
1302:       for (j=0; j<n; j++) col_lens[ict++] = j;
1303:     }
1304:     PetscBinaryWrite(fd,col_lens,nz,PETSC_INT,PETSC_FALSE);
1305:     PetscFree(col_lens);

1307:     /* store nonzero values */
1308:     PetscMalloc1(nz+1,&anonz);
1309:     ict  = 0;
1310:     for (i=0; i<m; i++) {
1311:       v = av + i;
1312:       for (j=0; j<n; j++) {
1313:         anonz[ict++] = *v; v += a->lda;
1314:       }
1315:     }
1316:     PetscBinaryWrite(fd,anonz,nz,PETSC_SCALAR,PETSC_FALSE);
1317:     PetscFree(anonz);
1318:   }
1319:   MatDenseRestoreArrayRead(A,(const PetscScalar**)&av);
1320:   return(0);
1321: }

1323:  #include <petscdraw.h>
1324: static PetscErrorCode MatView_SeqDense_Draw_Zoom(PetscDraw draw,void *Aa)
1325: {
1326:   Mat               A  = (Mat) Aa;
1327:   PetscErrorCode    ierr;
1328:   PetscInt          m  = A->rmap->n,n = A->cmap->n,i,j;
1329:   int               color = PETSC_DRAW_WHITE;
1330:   const PetscScalar *v;
1331:   PetscViewer       viewer;
1332:   PetscReal         xl,yl,xr,yr,x_l,x_r,y_l,y_r;
1333:   PetscViewerFormat format;

1336:   PetscObjectQuery((PetscObject)A,"Zoomviewer",(PetscObject*)&viewer);
1337:   PetscViewerGetFormat(viewer,&format);
1338:   PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);

1340:   /* Loop over matrix elements drawing boxes */
1341:   MatDenseGetArrayRead(A,&v);
1342:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1343:     PetscDrawCollectiveBegin(draw);
1344:     /* Blue for negative and Red for positive */
1345:     for (j = 0; j < n; j++) {
1346:       x_l = j; x_r = x_l + 1.0;
1347:       for (i = 0; i < m; i++) {
1348:         y_l = m - i - 1.0;
1349:         y_r = y_l + 1.0;
1350:         if (PetscRealPart(v[j*m+i]) >  0.) color = PETSC_DRAW_RED;
1351:         else if (PetscRealPart(v[j*m+i]) <  0.) color = PETSC_DRAW_BLUE;
1352:         else continue;
1353:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
1354:       }
1355:     }
1356:     PetscDrawCollectiveEnd(draw);
1357:   } else {
1358:     /* use contour shading to indicate magnitude of values */
1359:     /* first determine max of all nonzero values */
1360:     PetscReal minv = 0.0, maxv = 0.0;
1361:     PetscDraw popup;

1363:     for (i=0; i < m*n; i++) {
1364:       if (PetscAbsScalar(v[i]) > maxv) maxv = PetscAbsScalar(v[i]);
1365:     }
1366:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1367:     PetscDrawGetPopup(draw,&popup);
1368:     PetscDrawScalePopup(popup,minv,maxv);

1370:     PetscDrawCollectiveBegin(draw);
1371:     for (j=0; j<n; j++) {
1372:       x_l = j;
1373:       x_r = x_l + 1.0;
1374:       for (i=0; i<m; i++) {
1375:         y_l   = m - i - 1.0;
1376:         y_r   = y_l + 1.0;
1377:         color = PetscDrawRealToColor(PetscAbsScalar(v[j*m+i]),minv,maxv);
1378:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
1379:       }
1380:     }
1381:     PetscDrawCollectiveEnd(draw);
1382:   }
1383:   MatDenseRestoreArrayRead(A,&v);
1384:   return(0);
1385: }

1387: static PetscErrorCode MatView_SeqDense_Draw(Mat A,PetscViewer viewer)
1388: {
1389:   PetscDraw      draw;
1390:   PetscBool      isnull;
1391:   PetscReal      xr,yr,xl,yl,h,w;

1395:   PetscViewerDrawGetDraw(viewer,0,&draw);
1396:   PetscDrawIsNull(draw,&isnull);
1397:   if (isnull) return(0);

1399:   xr   = A->cmap->n; yr = A->rmap->n; h = yr/10.0; w = xr/10.0;
1400:   xr  += w;          yr += h;        xl = -w;     yl = -h;
1401:   PetscDrawSetCoordinates(draw,xl,yl,xr,yr);
1402:   PetscObjectCompose((PetscObject)A,"Zoomviewer",(PetscObject)viewer);
1403:   PetscDrawZoom(draw,MatView_SeqDense_Draw_Zoom,A);
1404:   PetscObjectCompose((PetscObject)A,"Zoomviewer",NULL);
1405:   PetscDrawSave(draw);
1406:   return(0);
1407: }

1409: PetscErrorCode MatView_SeqDense(Mat A,PetscViewer viewer)
1410: {
1412:   PetscBool      iascii,isbinary,isdraw;

1415:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1416:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1417:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);

1419:   if (iascii) {
1420:     MatView_SeqDense_ASCII(A,viewer);
1421:   } else if (isbinary) {
1422:     MatView_SeqDense_Binary(A,viewer);
1423:   } else if (isdraw) {
1424:     MatView_SeqDense_Draw(A,viewer);
1425:   }
1426:   return(0);
1427: }

1429: static PetscErrorCode MatDensePlaceArray_SeqDense(Mat A,const PetscScalar array[])
1430: {
1431:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;

1434:   a->unplacedarray       = a->v;
1435:   a->unplaced_user_alloc = a->user_alloc;
1436:   a->v                   = (PetscScalar*) array;
1437: #if defined(PETSC_HAVE_CUDA)
1438:   A->offloadmask = PETSC_OFFLOAD_CPU;
1439: #endif
1440:   return(0);
1441: }

1443: static PetscErrorCode MatDenseResetArray_SeqDense(Mat A)
1444: {
1445:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;

1448:   a->v             = a->unplacedarray;
1449:   a->user_alloc    = a->unplaced_user_alloc;
1450:   a->unplacedarray = NULL;
1451: #if defined(PETSC_HAVE_CUDA)
1452:   A->offloadmask = PETSC_OFFLOAD_CPU;
1453: #endif
1454:   return(0);
1455: }

1457: PetscErrorCode MatDestroy_SeqDense(Mat mat)
1458: {
1459:   Mat_SeqDense   *l = (Mat_SeqDense*)mat->data;

1463: #if defined(PETSC_USE_LOG)
1464:   PetscLogObjectState((PetscObject)mat,"Rows %D Cols %D",mat->rmap->n,mat->cmap->n);
1465: #endif
1466:   PetscFree(l->pivots);
1467:   PetscFree(l->fwork);
1468:   MatDestroy(&l->ptapwork);
1469:   if (!l->user_alloc) {PetscFree(l->v);}
1470:   PetscFree(mat->data);

1472:   PetscObjectChangeTypeName((PetscObject)mat,0);
1473:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseGetLDA_C",NULL);
1474:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseGetArray_C",NULL);
1475:   PetscObjectComposeFunction((PetscObject)mat,"MatDensePlaceArray_C",NULL);
1476:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseResetArray_C",NULL);
1477:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseRestoreArray_C",NULL);
1478:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_seqdense_seqaij_C",NULL);
1479: #if defined(PETSC_HAVE_ELEMENTAL)
1480:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_seqdense_elemental_C",NULL);
1481: #endif
1482: #if defined(PETSC_HAVE_CUDA)
1483:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_seqdense_seqdensecuda_C",NULL);
1484:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMult_seqaijcusparse_seqdense_C",NULL);
1485: #endif
1486: #if defined(PETSC_HAVE_VIENNACL)
1487:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMult_seqaijviennacl_seqdense_C",NULL);
1488: #endif
1489:   PetscObjectComposeFunction((PetscObject)mat,"MatSeqDenseSetPreallocation_C",NULL);
1490:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMult_seqaij_seqdense_C",NULL);
1491:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultSymbolic_seqaij_seqdense_C",NULL);
1492:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultNumeric_seqaij_seqdense_C",NULL);
1493:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMult_seqbaij_seqdense_C",NULL);
1494:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultSymbolic_seqbaij_seqdense_C",NULL);
1495:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultNumeric_seqbaij_seqdense_C",NULL);
1496:   PetscObjectComposeFunction((PetscObject)mat,"MatPtAP_seqaij_seqdense_C",NULL);
1497:   PetscObjectComposeFunction((PetscObject)mat,"MatTransposeMatMult_seqaij_seqdense_C",NULL);
1498:   PetscObjectComposeFunction((PetscObject)mat,"MatTransposeMatMultSymbolic_seqaij_seqdense_C",NULL);
1499:   PetscObjectComposeFunction((PetscObject)mat,"MatTransposeMatMultNumeric_seqaij_seqdense_C",NULL);
1500:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseGetColumn_C",NULL);
1501:   PetscObjectComposeFunction((PetscObject)mat,"MatDenseRestoreColumn_C",NULL);
1502:   return(0);
1503: }

1505: static PetscErrorCode MatTranspose_SeqDense(Mat A,MatReuse reuse,Mat *matout)
1506: {
1507:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
1509:   PetscInt       k,j,m,n,M;
1510:   PetscScalar    *v,tmp;

1513:   m = A->rmap->n; M = mat->lda; n = A->cmap->n;
1514:   if (reuse == MAT_INPLACE_MATRIX && m == n) { /* in place transpose */
1515:     MatDenseGetArray(A,&v);
1516:     for (j=0; j<m; j++) {
1517:       for (k=0; k<j; k++) {
1518:         tmp        = v[j + k*M];
1519:         v[j + k*M] = v[k + j*M];
1520:         v[k + j*M] = tmp;
1521:       }
1522:     }
1523:     MatDenseRestoreArray(A,&v);
1524:   } else { /* out-of-place transpose */
1525:     Mat          tmat;
1526:     Mat_SeqDense *tmatd;
1527:     PetscScalar  *v2;
1528:     PetscInt     M2;

1530:     if (reuse != MAT_REUSE_MATRIX) {
1531:       MatCreate(PetscObjectComm((PetscObject)A),&tmat);
1532:       MatSetSizes(tmat,A->cmap->n,A->rmap->n,A->cmap->n,A->rmap->n);
1533:       MatSetType(tmat,((PetscObject)A)->type_name);
1534:       MatSeqDenseSetPreallocation(tmat,NULL);
1535:     } else tmat = *matout;

1537:     MatDenseGetArrayRead(A,(const PetscScalar**)&v);
1538:     MatDenseGetArray(tmat,&v2);
1539:     tmatd = (Mat_SeqDense*)tmat->data;
1540:     M2    = tmatd->lda;
1541:     for (j=0; j<n; j++) {
1542:       for (k=0; k<m; k++) v2[j + k*M2] = v[k + j*M];
1543:     }
1544:     MatDenseRestoreArray(tmat,&v2);
1545:     MatDenseRestoreArrayRead(A,(const PetscScalar**)&v);
1546:     MatAssemblyBegin(tmat,MAT_FINAL_ASSEMBLY);
1547:     MatAssemblyEnd(tmat,MAT_FINAL_ASSEMBLY);
1548:     if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) *matout = tmat;
1549:     else {
1550:       MatHeaderMerge(A,&tmat);
1551:     }
1552:   }
1553:   return(0);
1554: }

1556: static PetscErrorCode MatEqual_SeqDense(Mat A1,Mat A2,PetscBool  *flg)
1557: {
1558:   Mat_SeqDense      *mat1 = (Mat_SeqDense*)A1->data;
1559:   Mat_SeqDense      *mat2 = (Mat_SeqDense*)A2->data;
1560:   PetscInt          i;
1561:   const PetscScalar *v1,*v2;
1562:   PetscErrorCode    ierr;

1565:   if (A1->rmap->n != A2->rmap->n) {*flg = PETSC_FALSE; return(0);}
1566:   if (A1->cmap->n != A2->cmap->n) {*flg = PETSC_FALSE; return(0);}
1567:   MatDenseGetArrayRead(A1,&v1);
1568:   MatDenseGetArrayRead(A2,&v2);
1569:   for (i=0; i<A1->cmap->n; i++) {
1570:     PetscArraycmp(v1,v2,A1->rmap->n,flg);
1571:     if (*flg == PETSC_FALSE) return(0);
1572:     v1 += mat1->lda;
1573:     v2 += mat2->lda;
1574:   }
1575:   MatDenseRestoreArrayRead(A1,&v1);
1576:   MatDenseRestoreArrayRead(A2,&v2);
1577:   *flg = PETSC_TRUE;
1578:   return(0);
1579: }

1581: static PetscErrorCode MatGetDiagonal_SeqDense(Mat A,Vec v)
1582: {
1583:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
1584:   PetscInt          i,n,len;
1585:   PetscScalar       *x;
1586:   const PetscScalar *vv;
1587:   PetscErrorCode    ierr;

1590:   VecGetSize(v,&n);
1591:   VecGetArray(v,&x);
1592:   len  = PetscMin(A->rmap->n,A->cmap->n);
1593:   MatDenseGetArrayRead(A,&vv);
1594:   if (n != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming mat and vec");
1595:   for (i=0; i<len; i++) {
1596:     x[i] = vv[i*mat->lda + i];
1597:   }
1598:   MatDenseRestoreArrayRead(A,&vv);
1599:   VecRestoreArray(v,&x);
1600:   return(0);
1601: }

1603: static PetscErrorCode MatDiagonalScale_SeqDense(Mat A,Vec ll,Vec rr)
1604: {
1605:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
1606:   const PetscScalar *l,*r;
1607:   PetscScalar       x,*v,*vv;
1608:   PetscErrorCode    ierr;
1609:   PetscInt          i,j,m = A->rmap->n,n = A->cmap->n;

1612:   MatDenseGetArray(A,&vv);
1613:   if (ll) {
1614:     VecGetSize(ll,&m);
1615:     VecGetArrayRead(ll,&l);
1616:     if (m != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Left scaling vec wrong size");
1617:     for (i=0; i<m; i++) {
1618:       x = l[i];
1619:       v = vv + i;
1620:       for (j=0; j<n; j++) { (*v) *= x; v+= mat->lda;}
1621:     }
1622:     VecRestoreArrayRead(ll,&l);
1623:     PetscLogFlops(1.0*n*m);
1624:   }
1625:   if (rr) {
1626:     VecGetSize(rr,&n);
1627:     VecGetArrayRead(rr,&r);
1628:     if (n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Right scaling vec wrong size");
1629:     for (i=0; i<n; i++) {
1630:       x = r[i];
1631:       v = vv + i*mat->lda;
1632:       for (j=0; j<m; j++) (*v++) *= x;
1633:     }
1634:     VecRestoreArrayRead(rr,&r);
1635:     PetscLogFlops(1.0*n*m);
1636:   }
1637:   MatDenseRestoreArray(A,&vv);
1638:   return(0);
1639: }

1641: PetscErrorCode MatNorm_SeqDense(Mat A,NormType type,PetscReal *nrm)
1642: {
1643:   Mat_SeqDense      *mat = (Mat_SeqDense*)A->data;
1644:   PetscScalar       *v,*vv;
1645:   PetscReal         sum  = 0.0;
1646:   PetscInt          lda  =mat->lda,m=A->rmap->n,i,j;
1647:   PetscErrorCode    ierr;

1650:   MatDenseGetArrayRead(A,(const PetscScalar**)&vv);
1651:   v    = vv;
1652:   if (type == NORM_FROBENIUS) {
1653:     if (lda>m) {
1654:       for (j=0; j<A->cmap->n; j++) {
1655:         v = vv+j*lda;
1656:         for (i=0; i<m; i++) {
1657:           sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
1658:         }
1659:       }
1660:     } else {
1661: #if defined(PETSC_USE_REAL___FP16)
1662:       PetscBLASInt one = 1,cnt = A->cmap->n*A->rmap->n;
1663:       *nrm = BLASnrm2_(&cnt,v,&one);
1664:     }
1665: #else
1666:       for (i=0; i<A->cmap->n*A->rmap->n; i++) {
1667:         sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
1668:       }
1669:     }
1670:     *nrm = PetscSqrtReal(sum);
1671: #endif
1672:     PetscLogFlops(2.0*A->cmap->n*A->rmap->n);
1673:   } else if (type == NORM_1) {
1674:     *nrm = 0.0;
1675:     for (j=0; j<A->cmap->n; j++) {
1676:       v   = vv + j*mat->lda;
1677:       sum = 0.0;
1678:       for (i=0; i<A->rmap->n; i++) {
1679:         sum += PetscAbsScalar(*v);  v++;
1680:       }
1681:       if (sum > *nrm) *nrm = sum;
1682:     }
1683:     PetscLogFlops(1.0*A->cmap->n*A->rmap->n);
1684:   } else if (type == NORM_INFINITY) {
1685:     *nrm = 0.0;
1686:     for (j=0; j<A->rmap->n; j++) {
1687:       v   = vv + j;
1688:       sum = 0.0;
1689:       for (i=0; i<A->cmap->n; i++) {
1690:         sum += PetscAbsScalar(*v); v += mat->lda;
1691:       }
1692:       if (sum > *nrm) *nrm = sum;
1693:     }
1694:     PetscLogFlops(1.0*A->cmap->n*A->rmap->n);
1695:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No two norm");
1696:   MatDenseRestoreArrayRead(A,(const PetscScalar**)&vv);
1697:   return(0);
1698: }

1700: static PetscErrorCode MatSetOption_SeqDense(Mat A,MatOption op,PetscBool flg)
1701: {
1702:   Mat_SeqDense   *aij = (Mat_SeqDense*)A->data;

1706:   switch (op) {
1707:   case MAT_ROW_ORIENTED:
1708:     aij->roworiented = flg;
1709:     break;
1710:   case MAT_NEW_NONZERO_LOCATIONS:
1711:   case MAT_NEW_NONZERO_LOCATION_ERR:
1712:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1713:   case MAT_NEW_DIAGONALS:
1714:   case MAT_KEEP_NONZERO_PATTERN:
1715:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1716:   case MAT_USE_HASH_TABLE:
1717:   case MAT_IGNORE_ZERO_ENTRIES:
1718:   case MAT_IGNORE_LOWER_TRIANGULAR:
1719:   case MAT_SORTED_FULL:
1720:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
1721:     break;
1722:   case MAT_SPD:
1723:   case MAT_SYMMETRIC:
1724:   case MAT_STRUCTURALLY_SYMMETRIC:
1725:   case MAT_HERMITIAN:
1726:   case MAT_SYMMETRY_ETERNAL:
1727:     /* These options are handled directly by MatSetOption() */
1728:     break;
1729:   default:
1730:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"unknown option %s",MatOptions[op]);
1731:   }
1732:   return(0);
1733: }

1735: static PetscErrorCode MatZeroEntries_SeqDense(Mat A)
1736: {
1737:   Mat_SeqDense   *l = (Mat_SeqDense*)A->data;
1739:   PetscInt       lda=l->lda,m=A->rmap->n,j;
1740:   PetscScalar    *v;

1743:   MatDenseGetArray(A,&v);
1744:   if (lda>m) {
1745:     for (j=0; j<A->cmap->n; j++) {
1746:       PetscArrayzero(v+j*lda,m);
1747:     }
1748:   } else {
1749:     PetscArrayzero(v,A->rmap->n*A->cmap->n);
1750:   }
1751:   MatDenseRestoreArray(A,&v);
1752:   return(0);
1753: }

1755: static PetscErrorCode MatZeroRows_SeqDense(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
1756: {
1757:   PetscErrorCode    ierr;
1758:   Mat_SeqDense      *l = (Mat_SeqDense*)A->data;
1759:   PetscInt          m  = l->lda, n = A->cmap->n, i,j;
1760:   PetscScalar       *slot,*bb,*v;
1761:   const PetscScalar *xx;

1764: #if defined(PETSC_USE_DEBUG)
1765:   for (i=0; i<N; i++) {
1766:     if (rows[i] < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row requested to be zeroed");
1767:     if (rows[i] >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D requested to be zeroed greater than or equal number of rows %D",rows[i],A->rmap->n);
1768:   }
1769: #endif
1770:   if (!N) return(0);

1772:   /* fix right hand side if needed */
1773:   if (x && b) {
1774:     VecGetArrayRead(x,&xx);
1775:     VecGetArray(b,&bb);
1776:     for (i=0; i<N; i++) bb[rows[i]] = diag*xx[rows[i]];
1777:     VecRestoreArrayRead(x,&xx);
1778:     VecRestoreArray(b,&bb);
1779:   }

1781:   MatDenseGetArray(A,&v);
1782:   for (i=0; i<N; i++) {
1783:     slot = v + rows[i];
1784:     for (j=0; j<n; j++) { *slot = 0.0; slot += m;}
1785:   }
1786:   if (diag != 0.0) {
1787:     if (A->rmap->n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only coded for square matrices");
1788:     for (i=0; i<N; i++) {
1789:       slot  = v + (m+1)*rows[i];
1790:       *slot = diag;
1791:     }
1792:   }
1793:   MatDenseRestoreArray(A,&v);
1794:   return(0);
1795: }

1797: static PetscErrorCode MatDenseGetLDA_SeqDense(Mat A,PetscInt *lda)
1798: {
1799:   Mat_SeqDense *mat = (Mat_SeqDense*)A->data;

1802:   *lda = mat->lda;
1803:   return(0);
1804: }

1806: PetscErrorCode MatDenseGetArray_SeqDense(Mat A,PetscScalar *array[])
1807: {
1808:   Mat_SeqDense *mat = (Mat_SeqDense*)A->data;

1811:   *array = mat->v;
1812:   return(0);
1813: }

1815: PetscErrorCode MatDenseRestoreArray_SeqDense(Mat A,PetscScalar *array[])
1816: {
1818:   return(0);
1819: }

1821: /*@C
1822:    MatDenseGetLDA - gets the leading dimension of the array returned from MatDenseGetArray()

1824:    Logically Collective on Mat

1826:    Input Parameter:
1827: .  mat - a MATSEQDENSE or MATMPIDENSE matrix

1829:    Output Parameter:
1830: .   lda - the leading dimension

1832:    Level: intermediate

1834: .seealso: MatDenseGetArray(), MatDenseRestoreArray(), MatDenseGetArrayRead(), MatDenseRestoreArrayRead(), MatSeqDenseSetLDA()
1835: @*/
1836: PetscErrorCode  MatDenseGetLDA(Mat A,PetscInt *lda)
1837: {

1841:   PetscUseMethod(A,"MatDenseGetLDA_C",(Mat,PetscInt*),(A,lda));
1842:   return(0);
1843: }

1845: /*@C
1846:    MatDenseGetArray - gives access to the array where the data for a SeqDense matrix is stored

1848:    Logically Collective on Mat

1850:    Input Parameter:
1851: .  mat - a MATSEQDENSE or MATMPIDENSE matrix

1853:    Output Parameter:
1854: .   array - pointer to the data

1856:    Level: intermediate

1858: .seealso: MatDenseRestoreArray(), MatDenseGetArrayRead(), MatDenseRestoreArrayRead()
1859: @*/
1860: PetscErrorCode  MatDenseGetArray(Mat A,PetscScalar **array)
1861: {

1865:   PetscUseMethod(A,"MatDenseGetArray_C",(Mat,PetscScalar**),(A,array));
1866:   return(0);
1867: }

1869: /*@C
1870:    MatDenseRestoreArray - returns access to the array where the data for a dense matrix is stored obtained by MatDenseGetArray()

1872:    Logically Collective on Mat

1874:    Input Parameters:
1875: +  mat - a MATSEQDENSE or MATMPIDENSE matrix
1876: -  array - pointer to the data

1878:    Level: intermediate

1880: .seealso: MatDenseGetArray(), MatDenseGetArrayRead(), MatDenseRestoreArrayRead()
1881: @*/
1882: PetscErrorCode  MatDenseRestoreArray(Mat A,PetscScalar **array)
1883: {

1887:   PetscUseMethod(A,"MatDenseRestoreArray_C",(Mat,PetscScalar**),(A,array));
1888:   if (array) *array = NULL;
1889:   PetscObjectStateIncrease((PetscObject)A);
1890:   return(0);
1891: }

1893: /*@C
1894:    MatDenseGetArrayRead - gives access to the array where the data for a SeqDense matrix is stored

1896:    Not Collective

1898:    Input Parameter:
1899: .  mat - a MATSEQDENSE or MATMPIDENSE matrix

1901:    Output Parameter:
1902: .   array - pointer to the data

1904:    Level: intermediate

1906: .seealso: MatDenseRestoreArray(), MatDenseGetArray(), MatDenseRestoreArrayRead()
1907: @*/
1908: PetscErrorCode  MatDenseGetArrayRead(Mat A,const PetscScalar **array)
1909: {

1913:   PetscUseMethod(A,"MatDenseGetArrayRead_C",(Mat,const PetscScalar**),(A,array));
1914:   return(0);
1915: }

1917: /*@C
1918:    MatDenseRestoreArrayRead - returns access to the array where the data for a dense matrix is stored obtained by MatDenseGetArray()

1920:    Not Collective

1922:    Input Parameters:
1923: +  mat - a MATSEQDENSE or MATMPIDENSE matrix
1924: -  array - pointer to the data

1926:    Level: intermediate

1928: .seealso: MatDenseGetArray(), MatDenseGetArrayRead(), MatDenseRestoreArray()
1929: @*/
1930: PetscErrorCode  MatDenseRestoreArrayRead(Mat A,const PetscScalar **array)
1931: {

1935:   PetscUseMethod(A,"MatDenseRestoreArrayRead_C",(Mat,const PetscScalar**),(A,array));
1936:   if (array) *array = NULL;
1937:   return(0);
1938: }

1940: static PetscErrorCode MatCreateSubMatrix_SeqDense(Mat A,IS isrow,IS iscol,PetscInt cs,MatReuse scall,Mat *B)
1941: {
1942:   Mat_SeqDense   *mat = (Mat_SeqDense*)A->data;
1944:   PetscInt       i,j,nrows,ncols,blda;
1945:   const PetscInt *irow,*icol;
1946:   PetscScalar    *av,*bv,*v = mat->v;
1947:   Mat            newmat;

1950:   ISGetIndices(isrow,&irow);
1951:   ISGetIndices(iscol,&icol);
1952:   ISGetLocalSize(isrow,&nrows);
1953:   ISGetLocalSize(iscol,&ncols);

1955:   /* Check submatrixcall */
1956:   if (scall == MAT_REUSE_MATRIX) {
1957:     PetscInt n_cols,n_rows;
1958:     MatGetSize(*B,&n_rows,&n_cols);
1959:     if (n_rows != nrows || n_cols != ncols) {
1960:       /* resize the result matrix to match number of requested rows/columns */
1961:       MatSetSizes(*B,nrows,ncols,nrows,ncols);
1962:     }
1963:     newmat = *B;
1964:   } else {
1965:     /* Create and fill new matrix */
1966:     MatCreate(PetscObjectComm((PetscObject)A),&newmat);
1967:     MatSetSizes(newmat,nrows,ncols,nrows,ncols);
1968:     MatSetType(newmat,((PetscObject)A)->type_name);
1969:     MatSeqDenseSetPreallocation(newmat,NULL);
1970:   }

1972:   /* Now extract the data pointers and do the copy,column at a time */
1973:   MatDenseGetArray(newmat,&bv);
1974:   MatDenseGetLDA(newmat,&blda);
1975:   for (i=0; i<ncols; i++) {
1976:     av = v + mat->lda*icol[i];
1977:     for (j=0; j<nrows; j++) bv[j] = av[irow[j]];
1978:     bv += blda;
1979:   }
1980:   MatDenseRestoreArray(newmat,&bv);

1982:   /* Assemble the matrices so that the correct flags are set */
1983:   MatAssemblyBegin(newmat,MAT_FINAL_ASSEMBLY);
1984:   MatAssemblyEnd(newmat,MAT_FINAL_ASSEMBLY);

1986:   /* Free work space */
1987:   ISRestoreIndices(isrow,&irow);
1988:   ISRestoreIndices(iscol,&icol);
1989:   *B   = newmat;
1990:   return(0);
1991: }

1993: static PetscErrorCode MatCreateSubMatrices_SeqDense(Mat A,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *B[])
1994: {
1996:   PetscInt       i;

1999:   if (scall == MAT_INITIAL_MATRIX) {
2000:     PetscCalloc1(n+1,B);
2001:   }

2003:   for (i=0; i<n; i++) {
2004:     MatCreateSubMatrix_SeqDense(A,irow[i],icol[i],PETSC_DECIDE,scall,&(*B)[i]);
2005:   }
2006:   return(0);
2007: }

2009: static PetscErrorCode MatAssemblyBegin_SeqDense(Mat mat,MatAssemblyType mode)
2010: {
2012:   return(0);
2013: }

2015: static PetscErrorCode MatAssemblyEnd_SeqDense(Mat mat,MatAssemblyType mode)
2016: {
2018:   return(0);
2019: }

2021: static PetscErrorCode MatCopy_SeqDense(Mat A,Mat B,MatStructure str)
2022: {
2023:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data,*b = (Mat_SeqDense*)B->data;
2024:   PetscErrorCode    ierr;
2025:   const PetscScalar *va;
2026:   PetscScalar       *vb;
2027:   PetscInt          lda1=a->lda,lda2=b->lda, m=A->rmap->n,n=A->cmap->n, j;

2030:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
2031:   if (A->ops->copy != B->ops->copy) {
2032:     MatCopy_Basic(A,B,str);
2033:     return(0);
2034:   }
2035:   if (m != B->rmap->n || n != B->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"size(B) != size(A)");
2036:   MatDenseGetArrayRead(A,&va);
2037:   MatDenseGetArray(B,&vb);
2038:   if (lda1>m || lda2>m) {
2039:     for (j=0; j<n; j++) {
2040:       PetscArraycpy(vb+j*lda2,va+j*lda1,m);
2041:     }
2042:   } else {
2043:     PetscArraycpy(vb,va,A->rmap->n*A->cmap->n);
2044:   }
2045:   MatDenseRestoreArray(B,&vb);
2046:   MatDenseRestoreArrayRead(A,&va);
2047:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
2048:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
2049:   return(0);
2050: }

2052: static PetscErrorCode MatSetUp_SeqDense(Mat A)
2053: {

2057:   MatSeqDenseSetPreallocation(A,0);
2058:   return(0);
2059: }

2061: static PetscErrorCode MatConjugate_SeqDense(Mat A)
2062: {
2063:   PetscInt       i,nz = A->rmap->n*A->cmap->n;
2064:   PetscScalar    *aa;

2068:   MatDenseGetArray(A,&aa);
2069:   for (i=0; i<nz; i++) aa[i] = PetscConj(aa[i]);
2070:   MatDenseRestoreArray(A,&aa);
2071:   return(0);
2072: }

2074: static PetscErrorCode MatRealPart_SeqDense(Mat A)
2075: {
2076:   PetscInt       i,nz = A->rmap->n*A->cmap->n;
2077:   PetscScalar    *aa;

2081:   MatDenseGetArray(A,&aa);
2082:   for (i=0; i<nz; i++) aa[i] = PetscRealPart(aa[i]);
2083:   MatDenseRestoreArray(A,&aa);
2084:   return(0);
2085: }

2087: static PetscErrorCode MatImaginaryPart_SeqDense(Mat A)
2088: {
2089:   PetscInt       i,nz = A->rmap->n*A->cmap->n;
2090:   PetscScalar    *aa;

2094:   MatDenseGetArray(A,&aa);
2095:   for (i=0; i<nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
2096:   MatDenseRestoreArray(A,&aa);
2097:   return(0);
2098: }

2100: /* ----------------------------------------------------------------*/
2101: PETSC_INTERN PetscErrorCode MatMatMult_SeqDense_SeqDense(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
2102: {

2106:   if (scall == MAT_INITIAL_MATRIX) {
2107:     PetscLogEventBegin(MAT_MatMultSymbolic,A,B,0,0);
2108:     MatMatMultSymbolic_SeqDense_SeqDense(A,B,fill,C);
2109:     PetscLogEventEnd(MAT_MatMultSymbolic,A,B,0,0);
2110:   }
2111:   PetscLogEventBegin(MAT_MatMultNumeric,A,B,0,0);
2112:   if ((*C)->ops->matmultnumeric) {
2113:     (*(*C)->ops->matmultnumeric)(A,B,*C);
2114:   } else {
2115:     MatMatMultNumeric_SeqDense_SeqDense(A,B,*C);
2116:   }
2117:   PetscLogEventEnd(MAT_MatMultNumeric,A,B,0,0);
2118:   return(0);
2119: }

2121: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqDense(Mat A,Mat B,PetscReal fill,Mat *C)
2122: {
2124:   PetscInt       m=A->rmap->n,n=B->cmap->n;
2125:   Mat            Cmat;
2126:   PetscBool      flg;

2129:   MatCreate(PETSC_COMM_SELF,&Cmat);
2130:   MatSetSizes(Cmat,m,n,m,n);
2131:   PetscObjectTypeCompare((PetscObject)B,((PetscObject)A)->type_name,&flg);
2132:   MatSetType(Cmat,flg ? ((PetscObject)A)->type_name : MATDENSE);
2133:   MatSeqDenseSetPreallocation(Cmat,NULL);
2134:   *C   = Cmat;
2135:   return(0);
2136: }

2138: PetscErrorCode MatMatMultNumeric_SeqDense_SeqDense(Mat A,Mat B,Mat C)
2139: {
2140:   Mat_SeqDense       *a = (Mat_SeqDense*)A->data;
2141:   Mat_SeqDense       *b = (Mat_SeqDense*)B->data;
2142:   Mat_SeqDense       *c = (Mat_SeqDense*)C->data;
2143:   PetscBLASInt       m,n,k;
2144:   const PetscScalar *av,*bv;
2145:   PetscScalar       *cv;
2146:   PetscScalar       _DOne=1.0,_DZero=0.0;
2147:   PetscErrorCode    ierr;
2148:   PetscBool         flg;

2151:   /* Handle case where where user provided the final C matrix rather than calling MatMatMult() with MAT_INITIAL_MATRIX*/
2152:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&flg);
2153:   if (flg) {
2154:     C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqDense;
2155:     (*C->ops->matmultnumeric)(A,B,C);
2156:     return(0);
2157:   }
2158:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&flg);
2159:   if (flg) {
2160:     C->ops->matmultnumeric = MatMatMultNumeric_SeqBAIJ_SeqDense;
2161:     (*C->ops->matmultnumeric)(A,B,C);
2162:     return(0);
2163:   }
2164:   PetscBLASIntCast(C->rmap->n,&m);
2165:   PetscBLASIntCast(C->cmap->n,&n);
2166:   PetscBLASIntCast(A->cmap->n,&k);
2167:   if (!m || !n || !k) return(0);
2168:   MatDenseGetArrayRead(A,&av);
2169:   MatDenseGetArrayRead(B,&bv);
2170:   MatDenseGetArray(C,&cv);
2171:   PetscStackCallBLAS("BLASgemm",BLASgemm_("N","N",&m,&n,&k,&_DOne,av,&a->lda,bv,&b->lda,&_DZero,cv,&c->lda));
2172:   PetscLogFlops(1.0*m*n*k + 1.0*m*n*(k-1));
2173:   MatDenseRestoreArrayRead(A,&av);
2174:   MatDenseRestoreArrayRead(B,&bv);
2175:   MatDenseRestoreArray(C,&cv);
2176:   return(0);
2177: }

2179: PetscErrorCode MatMatTransposeMult_SeqDense_SeqDense(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
2180: {

2184:   if (scall == MAT_INITIAL_MATRIX) {
2185:     PetscLogEventBegin(MAT_MatTransposeMultSymbolic,A,B,0,0);
2186:     MatMatTransposeMultSymbolic_SeqDense_SeqDense(A,B,fill,C);
2187:     PetscLogEventEnd(MAT_MatTransposeMultSymbolic,A,B,0,0);
2188:   }
2189:   PetscLogEventBegin(MAT_MatTransposeMultNumeric,A,B,0,0);
2190:   MatMatTransposeMultNumeric_SeqDense_SeqDense(A,B,*C);
2191:   PetscLogEventEnd(MAT_MatTransposeMultNumeric,A,B,0,0);
2192:   return(0);
2193: }

2195: PetscErrorCode MatMatTransposeMultSymbolic_SeqDense_SeqDense(Mat A,Mat B,PetscReal fill,Mat *C)
2196: {
2198:   PetscInt       m=A->rmap->n,n=B->rmap->n;
2199:   Mat            Cmat;
2200:   PetscBool      flg;

2203:   MatCreate(PETSC_COMM_SELF,&Cmat);
2204:   MatSetSizes(Cmat,m,n,m,n);
2205:   PetscObjectTypeCompare((PetscObject)B,((PetscObject)A)->type_name,&flg);
2206:   MatSetType(Cmat,flg ? ((PetscObject)A)->type_name : MATDENSE);
2207:   MatSeqDenseSetPreallocation(Cmat,NULL);
2208:   *C   = Cmat;
2209:   return(0);
2210: }

2212: PetscErrorCode MatMatTransposeMultNumeric_SeqDense_SeqDense(Mat A,Mat B,Mat C)
2213: {
2214:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;
2215:   Mat_SeqDense   *b = (Mat_SeqDense*)B->data;
2216:   Mat_SeqDense   *c = (Mat_SeqDense*)C->data;
2217:   PetscBLASInt   m,n,k;
2218:   PetscScalar    _DOne=1.0,_DZero=0.0;

2222:   PetscBLASIntCast(C->rmap->n,&m);
2223:   PetscBLASIntCast(C->cmap->n,&n);
2224:   PetscBLASIntCast(A->cmap->n,&k);
2225:   if (!m || !n || !k) return(0);
2226:   PetscStackCallBLAS("BLASgemm",BLASgemm_("N","T",&m,&n,&k,&_DOne,a->v,&a->lda,b->v,&b->lda,&_DZero,c->v,&c->lda));
2227:   PetscLogFlops(1.0*m*n*k + 1.0*m*n*(k-1));
2228:   return(0);
2229: }

2231: PetscErrorCode MatTransposeMatMult_SeqDense_SeqDense(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
2232: {

2236:   if (scall == MAT_INITIAL_MATRIX) {
2237:     PetscLogEventBegin(MAT_TransposeMatMultSymbolic,A,B,0,0);
2238:     MatTransposeMatMultSymbolic_SeqDense_SeqDense(A,B,fill,C);
2239:     PetscLogEventEnd(MAT_TransposeMatMultSymbolic,A,B,0,0);
2240:   }
2241:   PetscLogEventBegin(MAT_TransposeMatMultNumeric,A,B,0,0);
2242:   MatTransposeMatMultNumeric_SeqDense_SeqDense(A,B,*C);
2243:   PetscLogEventEnd(MAT_TransposeMatMultNumeric,A,B,0,0);
2244:   return(0);
2245: }

2247: PetscErrorCode MatTransposeMatMultSymbolic_SeqDense_SeqDense(Mat A,Mat B,PetscReal fill,Mat *C)
2248: {
2250:   PetscInt       m=A->cmap->n,n=B->cmap->n;
2251:   Mat            Cmat;
2252:   PetscBool      flg;

2255:   MatCreate(PETSC_COMM_SELF,&Cmat);
2256:   MatSetSizes(Cmat,m,n,m,n);
2257:   PetscObjectTypeCompare((PetscObject)B,((PetscObject)A)->type_name,&flg);
2258:   MatSetType(Cmat,flg ? ((PetscObject)A)->type_name : MATDENSE);
2259:   MatSeqDenseSetPreallocation(Cmat,NULL);
2260:   *C   = Cmat;
2261:   return(0);
2262: }

2264: PetscErrorCode MatTransposeMatMultNumeric_SeqDense_SeqDense(Mat A,Mat B,Mat C)
2265: {
2266:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;
2267:   Mat_SeqDense   *b = (Mat_SeqDense*)B->data;
2268:   Mat_SeqDense   *c = (Mat_SeqDense*)C->data;
2269:   PetscBLASInt   m,n,k;
2270:   PetscScalar    _DOne=1.0,_DZero=0.0;

2274:   PetscBLASIntCast(C->rmap->n,&m);
2275:   PetscBLASIntCast(C->cmap->n,&n);
2276:   PetscBLASIntCast(A->rmap->n,&k);
2277:   if (!m || !n || !k) return(0);
2278:   PetscStackCallBLAS("BLASgemm",BLASgemm_("T","N",&m,&n,&k,&_DOne,a->v,&a->lda,b->v,&b->lda,&_DZero,c->v,&c->lda));
2279:   PetscLogFlops(1.0*m*n*k + 1.0*m*n*(k-1));
2280:   return(0);
2281: }

2283: static PetscErrorCode MatGetRowMax_SeqDense(Mat A,Vec v,PetscInt idx[])
2284: {
2285:   Mat_SeqDense       *a = (Mat_SeqDense*)A->data;
2286:   PetscErrorCode     ierr;
2287:   PetscInt           i,j,m = A->rmap->n,n = A->cmap->n,p;
2288:   PetscScalar        *x;
2289:   const PetscScalar *aa;

2292:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2293:   VecGetArray(v,&x);
2294:   VecGetLocalSize(v,&p);
2295:   MatDenseGetArrayRead(A,&aa);
2296:   if (p != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
2297:   for (i=0; i<m; i++) {
2298:     x[i] = aa[i]; if (idx) idx[i] = 0;
2299:     for (j=1; j<n; j++) {
2300:       if (PetscRealPart(x[i]) < PetscRealPart(aa[i+a->lda*j])) {x[i] = aa[i + a->lda*j]; if (idx) idx[i] = j;}
2301:     }
2302:   }
2303:   MatDenseRestoreArrayRead(A,&aa);
2304:   VecRestoreArray(v,&x);
2305:   return(0);
2306: }

2308: static PetscErrorCode MatGetRowMaxAbs_SeqDense(Mat A,Vec v,PetscInt idx[])
2309: {
2310:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
2311:   PetscErrorCode    ierr;
2312:   PetscInt          i,j,m = A->rmap->n,n = A->cmap->n,p;
2313:   PetscScalar       *x;
2314:   PetscReal         atmp;
2315:   const PetscScalar *aa;

2318:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2319:   VecGetArray(v,&x);
2320:   VecGetLocalSize(v,&p);
2321:   MatDenseGetArrayRead(A,&aa);
2322:   if (p != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
2323:   for (i=0; i<m; i++) {
2324:     x[i] = PetscAbsScalar(aa[i]);
2325:     for (j=1; j<n; j++) {
2326:       atmp = PetscAbsScalar(aa[i+a->lda*j]);
2327:       if (PetscAbsScalar(x[i]) < atmp) {x[i] = atmp; if (idx) idx[i] = j;}
2328:     }
2329:   }
2330:   MatDenseRestoreArrayRead(A,&aa);
2331:   VecRestoreArray(v,&x);
2332:   return(0);
2333: }

2335: static PetscErrorCode MatGetRowMin_SeqDense(Mat A,Vec v,PetscInt idx[])
2336: {
2337:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
2338:   PetscErrorCode    ierr;
2339:   PetscInt          i,j,m = A->rmap->n,n = A->cmap->n,p;
2340:   PetscScalar       *x;
2341:   const PetscScalar *aa;

2344:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2345:   MatDenseGetArrayRead(A,&aa);
2346:   VecGetArray(v,&x);
2347:   VecGetLocalSize(v,&p);
2348:   if (p != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
2349:   for (i=0; i<m; i++) {
2350:     x[i] = aa[i]; if (idx) idx[i] = 0;
2351:     for (j=1; j<n; j++) {
2352:       if (PetscRealPart(x[i]) > PetscRealPart(aa[i+a->lda*j])) {x[i] = aa[i + a->lda*j]; if (idx) idx[i] = j;}
2353:     }
2354:   }
2355:   VecRestoreArray(v,&x);
2356:   MatDenseRestoreArrayRead(A,&aa);
2357:   return(0);
2358: }

2360: static PetscErrorCode MatGetColumnVector_SeqDense(Mat A,Vec v,PetscInt col)
2361: {
2362:   Mat_SeqDense      *a = (Mat_SeqDense*)A->data;
2363:   PetscErrorCode    ierr;
2364:   PetscScalar       *x;
2365:   const PetscScalar *aa;

2368:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2369:   MatDenseGetArrayRead(A,&aa);
2370:   VecGetArray(v,&x);
2371:   PetscArraycpy(x,aa+col*a->lda,A->rmap->n);
2372:   VecRestoreArray(v,&x);
2373:   MatDenseRestoreArrayRead(A,&aa);
2374:   return(0);
2375: }

2377: PetscErrorCode MatGetColumnNorms_SeqDense(Mat A,NormType type,PetscReal *norms)
2378: {
2379:   PetscErrorCode    ierr;
2380:   PetscInt          i,j,m,n;
2381:   const PetscScalar *a;

2384:   MatGetSize(A,&m,&n);
2385:   PetscArrayzero(norms,n);
2386:   MatDenseGetArrayRead(A,&a);
2387:   if (type == NORM_2) {
2388:     for (i=0; i<n; i++) {
2389:       for (j=0; j<m; j++) {
2390:         norms[i] += PetscAbsScalar(a[j]*a[j]);
2391:       }
2392:       a += m;
2393:     }
2394:   } else if (type == NORM_1) {
2395:     for (i=0; i<n; i++) {
2396:       for (j=0; j<m; j++) {
2397:         norms[i] += PetscAbsScalar(a[j]);
2398:       }
2399:       a += m;
2400:     }
2401:   } else if (type == NORM_INFINITY) {
2402:     for (i=0; i<n; i++) {
2403:       for (j=0; j<m; j++) {
2404:         norms[i] = PetscMax(PetscAbsScalar(a[j]),norms[i]);
2405:       }
2406:       a += m;
2407:     }
2408:   } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Unknown NormType");
2409:   MatDenseRestoreArrayRead(A,&a);
2410:   if (type == NORM_2) {
2411:     for (i=0; i<n; i++) norms[i] = PetscSqrtReal(norms[i]);
2412:   }
2413:   return(0);
2414: }

2416: static PetscErrorCode  MatSetRandom_SeqDense(Mat x,PetscRandom rctx)
2417: {
2419:   PetscScalar    *a;
2420:   PetscInt       m,n,i;

2423:   MatGetSize(x,&m,&n);
2424:   MatDenseGetArray(x,&a);
2425:   for (i=0; i<m*n; i++) {
2426:     PetscRandomGetValue(rctx,a+i);
2427:   }
2428:   MatDenseRestoreArray(x,&a);
2429:   return(0);
2430: }

2432: static PetscErrorCode MatMissingDiagonal_SeqDense(Mat A,PetscBool  *missing,PetscInt *d)
2433: {
2435:   *missing = PETSC_FALSE;
2436:   return(0);
2437: }

2439: /* vals is not const */
2440: static PetscErrorCode MatDenseGetColumn_SeqDense(Mat A,PetscInt col,PetscScalar **vals)
2441: {
2443:   Mat_SeqDense   *a = (Mat_SeqDense*)A->data;
2444:   PetscScalar    *v;

2447:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2448:   MatDenseGetArray(A,&v);
2449:   *vals = v+col*a->lda;
2450:   MatDenseRestoreArray(A,&v);
2451:   return(0);
2452: }

2454: static PetscErrorCode MatDenseRestoreColumn_SeqDense(Mat A,PetscScalar **vals)
2455: {
2457:   *vals = 0; /* user cannot accidently use the array later */
2458:   return(0);
2459: }

2461: /* -------------------------------------------------------------------*/
2462: static struct _MatOps MatOps_Values = { MatSetValues_SeqDense,
2463:                                         MatGetRow_SeqDense,
2464:                                         MatRestoreRow_SeqDense,
2465:                                         MatMult_SeqDense,
2466:                                 /*  4*/ MatMultAdd_SeqDense,
2467:                                         MatMultTranspose_SeqDense,
2468:                                         MatMultTransposeAdd_SeqDense,
2469:                                         0,
2470:                                         0,
2471:                                         0,
2472:                                 /* 10*/ 0,
2473:                                         MatLUFactor_SeqDense,
2474:                                         MatCholeskyFactor_SeqDense,
2475:                                         MatSOR_SeqDense,
2476:                                         MatTranspose_SeqDense,
2477:                                 /* 15*/ MatGetInfo_SeqDense,
2478:                                         MatEqual_SeqDense,
2479:                                         MatGetDiagonal_SeqDense,
2480:                                         MatDiagonalScale_SeqDense,
2481:                                         MatNorm_SeqDense,
2482:                                 /* 20*/ MatAssemblyBegin_SeqDense,
2483:                                         MatAssemblyEnd_SeqDense,
2484:                                         MatSetOption_SeqDense,
2485:                                         MatZeroEntries_SeqDense,
2486:                                 /* 24*/ MatZeroRows_SeqDense,
2487:                                         0,
2488:                                         0,
2489:                                         0,
2490:                                         0,
2491:                                 /* 29*/ MatSetUp_SeqDense,
2492:                                         0,
2493:                                         0,
2494:                                         0,
2495:                                         0,
2496:                                 /* 34*/ MatDuplicate_SeqDense,
2497:                                         0,
2498:                                         0,
2499:                                         0,
2500:                                         0,
2501:                                 /* 39*/ MatAXPY_SeqDense,
2502:                                         MatCreateSubMatrices_SeqDense,
2503:                                         0,
2504:                                         MatGetValues_SeqDense,
2505:                                         MatCopy_SeqDense,
2506:                                 /* 44*/ MatGetRowMax_SeqDense,
2507:                                         MatScale_SeqDense,
2508:                                         MatShift_Basic,
2509:                                         0,
2510:                                         MatZeroRowsColumns_SeqDense,
2511:                                 /* 49*/ MatSetRandom_SeqDense,
2512:                                         0,
2513:                                         0,
2514:                                         0,
2515:                                         0,
2516:                                 /* 54*/ 0,
2517:                                         0,
2518:                                         0,
2519:                                         0,
2520:                                         0,
2521:                                 /* 59*/ 0,
2522:                                         MatDestroy_SeqDense,
2523:                                         MatView_SeqDense,
2524:                                         0,
2525:                                         0,
2526:                                 /* 64*/ 0,
2527:                                         0,
2528:                                         0,
2529:                                         0,
2530:                                         0,
2531:                                 /* 69*/ MatGetRowMaxAbs_SeqDense,
2532:                                         0,
2533:                                         0,
2534:                                         0,
2535:                                         0,
2536:                                 /* 74*/ 0,
2537:                                         0,
2538:                                         0,
2539:                                         0,
2540:                                         0,
2541:                                 /* 79*/ 0,
2542:                                         0,
2543:                                         0,
2544:                                         0,
2545:                                 /* 83*/ MatLoad_SeqDense,
2546:                                         0,
2547:                                         MatIsHermitian_SeqDense,
2548:                                         0,
2549:                                         0,
2550:                                         0,
2551:                                 /* 89*/ MatMatMult_SeqDense_SeqDense,
2552:                                         MatMatMultSymbolic_SeqDense_SeqDense,
2553:                                         MatMatMultNumeric_SeqDense_SeqDense,
2554:                                         MatPtAP_SeqDense_SeqDense,
2555:                                         MatPtAPSymbolic_SeqDense_SeqDense,
2556:                                 /* 94*/ MatPtAPNumeric_SeqDense_SeqDense,
2557:                                         MatMatTransposeMult_SeqDense_SeqDense,
2558:                                         MatMatTransposeMultSymbolic_SeqDense_SeqDense,
2559:                                         MatMatTransposeMultNumeric_SeqDense_SeqDense,
2560:                                         0,
2561:                                 /* 99*/ 0,
2562:                                         0,
2563:                                         0,
2564:                                         MatConjugate_SeqDense,
2565:                                         0,
2566:                                 /*104*/ 0,
2567:                                         MatRealPart_SeqDense,
2568:                                         MatImaginaryPart_SeqDense,
2569:                                         0,
2570:                                         0,
2571:                                 /*109*/ 0,
2572:                                         0,
2573:                                         MatGetRowMin_SeqDense,
2574:                                         MatGetColumnVector_SeqDense,
2575:                                         MatMissingDiagonal_SeqDense,
2576:                                 /*114*/ 0,
2577:                                         0,
2578:                                         0,
2579:                                         0,
2580:                                         0,
2581:                                 /*119*/ 0,
2582:                                         0,
2583:                                         0,
2584:                                         0,
2585:                                         0,
2586:                                 /*124*/ 0,
2587:                                         MatGetColumnNorms_SeqDense,
2588:                                         0,
2589:                                         0,
2590:                                         0,
2591:                                 /*129*/ 0,
2592:                                         MatTransposeMatMult_SeqDense_SeqDense,
2593:                                         MatTransposeMatMultSymbolic_SeqDense_SeqDense,
2594:                                         MatTransposeMatMultNumeric_SeqDense_SeqDense,
2595:                                         0,
2596:                                 /*134*/ 0,
2597:                                         0,
2598:                                         0,
2599:                                         0,
2600:                                         0,
2601:                                 /*139*/ 0,
2602:                                         0,
2603:                                         0,
2604:                                         0,
2605:                                         0,
2606:                                 /*144*/ MatCreateMPIMatConcatenateSeqMat_SeqDense
2607: };

2609: /*@C
2610:    MatCreateSeqDense - Creates a sequential dense matrix that
2611:    is stored in column major order (the usual Fortran 77 manner). Many
2612:    of the matrix operations use the BLAS and LAPACK routines.

2614:    Collective

2616:    Input Parameters:
2617: +  comm - MPI communicator, set to PETSC_COMM_SELF
2618: .  m - number of rows
2619: .  n - number of columns
2620: -  data - optional location of matrix data in column major order.  Set data=NULL for PETSc
2621:    to control all matrix memory allocation.

2623:    Output Parameter:
2624: .  A - the matrix

2626:    Notes:
2627:    The data input variable is intended primarily for Fortran programmers
2628:    who wish to allocate their own matrix memory space.  Most users should
2629:    set data=NULL.

2631:    Level: intermediate

2633: .seealso: MatCreate(), MatCreateDense(), MatSetValues()
2634: @*/
2635: PetscErrorCode  MatCreateSeqDense(MPI_Comm comm,PetscInt m,PetscInt n,PetscScalar *data,Mat *A)
2636: {

2640:   MatCreate(comm,A);
2641:   MatSetSizes(*A,m,n,m,n);
2642:   MatSetType(*A,MATSEQDENSE);
2643:   MatSeqDenseSetPreallocation(*A,data);
2644:   return(0);
2645: }

2647: /*@C
2648:    MatSeqDenseSetPreallocation - Sets the array used for storing the matrix elements

2650:    Collective

2652:    Input Parameters:
2653: +  B - the matrix
2654: -  data - the array (or NULL)

2656:    Notes:
2657:    The data input variable is intended primarily for Fortran programmers
2658:    who wish to allocate their own matrix memory space.  Most users should
2659:    need not call this routine.

2661:    Level: intermediate

2663: .seealso: MatCreate(), MatCreateDense(), MatSetValues(), MatSeqDenseSetLDA()

2665: @*/
2666: PetscErrorCode  MatSeqDenseSetPreallocation(Mat B,PetscScalar data[])
2667: {

2671:   PetscTryMethod(B,"MatSeqDenseSetPreallocation_C",(Mat,PetscScalar[]),(B,data));
2672:   return(0);
2673: }

2675: PetscErrorCode  MatSeqDenseSetPreallocation_SeqDense(Mat B,PetscScalar *data)
2676: {
2677:   Mat_SeqDense   *b;

2681:   B->preallocated = PETSC_TRUE;

2683:   PetscLayoutSetUp(B->rmap);
2684:   PetscLayoutSetUp(B->cmap);

2686:   b       = (Mat_SeqDense*)B->data;
2687:   b->Mmax = B->rmap->n;
2688:   b->Nmax = B->cmap->n;
2689:   if (b->lda <= 0 || b->changelda) b->lda = B->rmap->n;

2691:   PetscIntMultError(b->lda,b->Nmax,NULL);
2692:   if (!data) { /* petsc-allocated storage */
2693:     if (!b->user_alloc) { PetscFree(b->v); }
2694:     PetscCalloc1((size_t)b->lda*b->Nmax,&b->v);
2695:     PetscLogObjectMemory((PetscObject)B,b->lda*b->Nmax*sizeof(PetscScalar));

2697:     b->user_alloc = PETSC_FALSE;
2698:   } else { /* user-allocated storage */
2699:     if (!b->user_alloc) { PetscFree(b->v); }
2700:     b->v          = data;
2701:     b->user_alloc = PETSC_TRUE;
2702:   }
2703:   B->assembled = PETSC_TRUE;
2704:   return(0);
2705: }

2707: #if defined(PETSC_HAVE_ELEMENTAL)
2708: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_Elemental(Mat A, MatType newtype,MatReuse reuse,Mat *newmat)
2709: {
2710:   Mat               mat_elemental;
2711:   PetscErrorCode    ierr;
2712:   const PetscScalar *array;
2713:   PetscScalar       *v_colwise;
2714:   PetscInt          M=A->rmap->N,N=A->cmap->N,i,j,k,*rows,*cols;

2717:   PetscMalloc3(M*N,&v_colwise,M,&rows,N,&cols);
2718:   MatDenseGetArrayRead(A,&array);
2719:   /* convert column-wise array into row-wise v_colwise, see MatSetValues_Elemental() */
2720:   k = 0;
2721:   for (j=0; j<N; j++) {
2722:     cols[j] = j;
2723:     for (i=0; i<M; i++) {
2724:       v_colwise[j*M+i] = array[k++];
2725:     }
2726:   }
2727:   for (i=0; i<M; i++) {
2728:     rows[i] = i;
2729:   }
2730:   MatDenseRestoreArrayRead(A,&array);

2732:   MatCreate(PetscObjectComm((PetscObject)A), &mat_elemental);
2733:   MatSetSizes(mat_elemental,PETSC_DECIDE,PETSC_DECIDE,M,N);
2734:   MatSetType(mat_elemental,MATELEMENTAL);
2735:   MatSetUp(mat_elemental);

2737:   /* PETSc-Elemental interaface uses axpy for setting off-processor entries, only ADD_VALUES is allowed */
2738:   MatSetValues(mat_elemental,M,rows,N,cols,v_colwise,ADD_VALUES);
2739:   MatAssemblyBegin(mat_elemental, MAT_FINAL_ASSEMBLY);
2740:   MatAssemblyEnd(mat_elemental, MAT_FINAL_ASSEMBLY);
2741:   PetscFree3(v_colwise,rows,cols);

2743:   if (reuse == MAT_INPLACE_MATRIX) {
2744:     MatHeaderReplace(A,&mat_elemental);
2745:   } else {
2746:     *newmat = mat_elemental;
2747:   }
2748:   return(0);
2749: }
2750: #endif

2752: /*@C
2753:   MatSeqDenseSetLDA - Declare the leading dimension of the user-provided array

2755:   Input parameter:
2756: + A - the matrix
2757: - lda - the leading dimension

2759:   Notes:
2760:   This routine is to be used in conjunction with MatSeqDenseSetPreallocation();
2761:   it asserts that the preallocation has a leading dimension (the LDA parameter
2762:   of Blas and Lapack fame) larger than M, the first dimension of the matrix.

2764:   Level: intermediate

2766: .seealso: MatCreate(), MatCreateSeqDense(), MatSeqDenseSetPreallocation(), MatSetMaximumSize()

2768: @*/
2769: PetscErrorCode  MatSeqDenseSetLDA(Mat B,PetscInt lda)
2770: {
2771:   Mat_SeqDense *b = (Mat_SeqDense*)B->data;

2774:   if (lda < B->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"LDA %D must be at least matrix dimension %D",lda,B->rmap->n);
2775:   b->lda       = lda;
2776:   b->changelda = PETSC_FALSE;
2777:   b->Mmax      = PetscMax(b->Mmax,lda);
2778:   return(0);
2779: }

2781: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqDense(MPI_Comm comm,Mat inmat,PetscInt n,MatReuse scall,Mat *outmat)
2782: {
2784:   PetscMPIInt    size;

2787:   MPI_Comm_size(comm,&size);
2788:   if (size == 1) {
2789:     if (scall == MAT_INITIAL_MATRIX) {
2790:       MatDuplicate(inmat,MAT_COPY_VALUES,outmat);
2791:     } else {
2792:       MatCopy(inmat,*outmat,SAME_NONZERO_PATTERN);
2793:     }
2794:   } else {
2795:     MatCreateMPIMatConcatenateSeqMat_MPIDense(comm,inmat,n,scall,outmat);
2796:   }
2797:   return(0);
2798: }

2800: /*MC
2801:    MATSEQDENSE - MATSEQDENSE = "seqdense" - A matrix type to be used for sequential dense matrices.

2803:    Options Database Keys:
2804: . -mat_type seqdense - sets the matrix type to "seqdense" during a call to MatSetFromOptions()

2806:   Level: beginner

2808: .seealso: MatCreateSeqDense()

2810: M*/
2811: PetscErrorCode MatCreate_SeqDense(Mat B)
2812: {
2813:   Mat_SeqDense   *b;
2815:   PetscMPIInt    size;

2818:   MPI_Comm_size(PetscObjectComm((PetscObject)B),&size);
2819:   if (size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Comm must be of size 1");

2821:   PetscNewLog(B,&b);
2822:   PetscMemcpy(B->ops,&MatOps_Values,sizeof(struct _MatOps));
2823:   B->data = (void*)b;

2825:   b->roworiented = PETSC_TRUE;

2827:   PetscObjectComposeFunction((PetscObject)B,"MatDenseGetLDA_C",MatDenseGetLDA_SeqDense);
2828:   PetscObjectComposeFunction((PetscObject)B,"MatDenseGetArray_C",MatDenseGetArray_SeqDense);
2829:   PetscObjectComposeFunction((PetscObject)B,"MatDenseRestoreArray_C",MatDenseRestoreArray_SeqDense);
2830:   PetscObjectComposeFunction((PetscObject)B,"MatDensePlaceArray_C",MatDensePlaceArray_SeqDense);
2831:   PetscObjectComposeFunction((PetscObject)B,"MatDenseResetArray_C",MatDenseResetArray_SeqDense);
2832:   PetscObjectComposeFunction((PetscObject)B,"MatDenseGetArrayRead_C",MatDenseGetArray_SeqDense);
2833:   PetscObjectComposeFunction((PetscObject)B,"MatDenseRestoreArrayRead_C",MatDenseRestoreArray_SeqDense);
2834:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqdense_seqaij_C",MatConvert_SeqDense_SeqAIJ);
2835: #if defined(PETSC_HAVE_ELEMENTAL)
2836:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqdense_elemental_C",MatConvert_SeqDense_Elemental);
2837: #endif
2838: #if defined(PETSC_HAVE_CUDA)
2839:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqdense_seqdensecuda_C",MatConvert_SeqDense_SeqDenseCUDA);
2840:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaijcusparse_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2841: #endif
2842:   PetscObjectComposeFunction((PetscObject)B,"MatSeqDenseSetPreallocation_C",MatSeqDenseSetPreallocation_SeqDense);
2843:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaij_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2844: #if defined(PETSC_HAVE_VIENNACL)
2845:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaijviennacl_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2846: #endif
2847:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqaij_seqdense_C",MatMatMultSymbolic_SeqAIJ_SeqDense);
2848:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqaij_seqdense_C",MatMatMultNumeric_SeqAIJ_SeqDense);
2849:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqbaij_seqdense_C",MatMatMult_SeqBAIJ_SeqDense);
2850:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqbaij_seqdense_C",MatMatMultSymbolic_SeqBAIJ_SeqDense);
2851:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqbaij_seqdense_C",MatMatMultNumeric_SeqBAIJ_SeqDense);
2852:   PetscObjectComposeFunction((PetscObject)B,"MatPtAP_seqaij_seqdense_C",MatPtAP_SeqDense_SeqDense);
2853:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaijperm_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2854:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqaijperm_seqdense_C",MatMatMultSymbolic_SeqAIJ_SeqDense);
2855:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqaijperm_seqdense_C",MatMatMultNumeric_SeqAIJ_SeqDense);
2856:   PetscObjectComposeFunction((PetscObject)B,"MatPtAP_seqaijperm_seqdense_C",MatPtAP_SeqDense_SeqDense);
2857:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaijsell_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2858:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqaijsell_seqdense_C",MatMatMultSymbolic_SeqAIJ_SeqDense);
2859:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqaijsell_seqdense_C",MatMatMultNumeric_SeqAIJ_SeqDense);
2860:   PetscObjectComposeFunction((PetscObject)B,"MatPtAP_seqaijsell_seqdense_C",MatPtAP_SeqDense_SeqDense);
2861:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqaijmkl_seqdense_C",MatMatMult_SeqAIJ_SeqDense);
2862:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqaijmkl_seqdense_C",MatMatMultSymbolic_SeqAIJ_SeqDense);
2863:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqaijmkl_seqdense_C",MatMatMultNumeric_SeqAIJ_SeqDense);
2864:   PetscObjectComposeFunction((PetscObject)B,"MatPtAP_seqaijmkl_seqdense_C",MatPtAP_SeqDense_SeqDense);

2866:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMult_seqaij_seqdense_C",MatTransposeMatMult_SeqAIJ_SeqDense);
2867:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultSymbolic_seqaij_seqdense_C",MatTransposeMatMultSymbolic_SeqAIJ_SeqDense);
2868:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultNumeric_seqaij_seqdense_C",MatTransposeMatMultNumeric_SeqAIJ_SeqDense);
2869:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMult_seqaijperm_seqdense_C",MatTransposeMatMult_SeqAIJ_SeqDense);
2870:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultSymbolic_seqaijperm_seqdense_C",MatTransposeMatMultSymbolic_SeqAIJ_SeqDense);
2871:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultNumeric_seqaijperm_seqdense_C",MatTransposeMatMultNumeric_SeqAIJ_SeqDense);
2872:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMult_seqaijsell_seqdense_C",MatTransposeMatMult_SeqAIJ_SeqDense);
2873:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultSymbolic_seqaijsell_seqdense_C",MatTransposeMatMultSymbolic_SeqAIJ_SeqDense);
2874:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultNumeric_seqaijsell_seqdense_C",MatTransposeMatMultNumeric_SeqAIJ_SeqDense);

2876:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMult_seqaijmkl_seqdense_C",MatTransposeMatMult_SeqAIJ_SeqDense);
2877:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultSymbolic_seqaijmkl_seqdense_C",MatTransposeMatMultSymbolic_SeqAIJ_SeqDense);
2878:   PetscObjectComposeFunction((PetscObject)B,"MatTransposeMatMultNumeric_seqaijmkl_seqdense_C",MatTransposeMatMultNumeric_SeqAIJ_SeqDense);
2879:   PetscObjectComposeFunction((PetscObject)B,"MatDenseGetColumn_C",MatDenseGetColumn_SeqDense);
2880:   PetscObjectComposeFunction((PetscObject)B,"MatDenseRestoreColumn_C",MatDenseRestoreColumn_SeqDense);
2881:   PetscObjectChangeTypeName((PetscObject)B,MATSEQDENSE);
2882:   return(0);
2883: }

2885: /*@C
2886:    MatDenseGetColumn - gives access to a column of a dense matrix. This is only the local part of the column. You MUST call MatDenseRestoreColumn() to avoid memory bleeding.

2888:    Not Collective

2890:    Input Parameter:
2891: +  mat - a MATSEQDENSE or MATMPIDENSE matrix
2892: -  col - column index

2894:    Output Parameter:
2895: .  vals - pointer to the data

2897:    Level: intermediate

2899: .seealso: MatDenseRestoreColumn()
2900: @*/
2901: PetscErrorCode MatDenseGetColumn(Mat A,PetscInt col,PetscScalar **vals)
2902: {

2906:   PetscUseMethod(A,"MatDenseGetColumn_C",(Mat,PetscInt,PetscScalar**),(A,col,vals));
2907:   return(0);
2908: }

2910: /*@C
2911:    MatDenseRestoreColumn - returns access to a column of a dense matrix which is returned by MatDenseGetColumn().

2913:    Not Collective

2915:    Input Parameter:
2916: .  mat - a MATSEQDENSE or MATMPIDENSE matrix

2918:    Output Parameter:
2919: .  vals - pointer to the data

2921:    Level: intermediate

2923: .seealso: MatDenseGetColumn()
2924: @*/
2925: PetscErrorCode MatDenseRestoreColumn(Mat A,PetscScalar **vals)
2926: {

2930:   PetscUseMethod(A,"MatDenseRestoreColumn_C",(Mat,PetscScalar**),(A,vals));
2931:   return(0);
2932: }