Actual source code: da1.c
petsc-3.8.3 2017-12-09
2: /*
3: Code for manipulating distributed regular 1d arrays in parallel.
4: This file was created by Peter Mell 6/30/95
5: */
7: #include <petsc/private/dmdaimpl.h>
9: #include <petscdraw.h>
10: static PetscErrorCode DMView_DA_1d(DM da,PetscViewer viewer)
11: {
13: PetscMPIInt rank;
14: PetscBool iascii,isdraw,isglvis,isbinary;
15: DM_DA *dd = (DM_DA*)da->data;
16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
17: PetscBool ismatlab;
18: #endif
21: MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);
23: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
24: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
25: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERGLVIS,&isglvis);
26: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
28: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
29: #endif
30: if (iascii) {
31: PetscViewerFormat format;
33: PetscViewerGetFormat(viewer, &format);
34: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
35: DMDALocalInfo info;
36: DMDAGetLocalInfo(da,&info);
37: PetscViewerASCIIPushSynchronized(viewer);
38: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D m %D w %D s %D\n",rank,dd->M,dd->m,dd->w,dd->s);
39: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D\n",info.xs,info.xs+info.xm);
40: PetscViewerFlush(viewer);
41: PetscViewerASCIIPopSynchronized(viewer);
42: } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
43: DMView_DA_GLVis(da,viewer);
44: } else {
45: DMView_DA_VTK(da, viewer);
46: }
47: } else if (isdraw) {
48: PetscDraw draw;
49: double ymin = -1,ymax = 1,xmin = -1,xmax = dd->M,x;
50: PetscInt base;
51: char node[10];
52: PetscBool isnull;
54: PetscViewerDrawGetDraw(viewer,0,&draw);
55: PetscDrawIsNull(draw,&isnull);
56: if (isnull) return(0);
58: PetscDrawCheckResizedWindow(draw);
59: PetscDrawClear(draw);
60: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
62: PetscDrawCollectiveBegin(draw);
63: /* first processor draws all node lines */
64: if (!rank) {
65: PetscInt xmin_tmp;
66: ymin = 0.0; ymax = 0.3;
67: for (xmin_tmp=0; xmin_tmp < dd->M; xmin_tmp++) {
68: PetscDrawLine(draw,(double)xmin_tmp,ymin,(double)xmin_tmp,ymax,PETSC_DRAW_BLACK);
69: }
70: xmin = 0.0; xmax = dd->M - 1;
71: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
72: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_BLACK);
73: }
74: PetscDrawCollectiveEnd(draw);
75: PetscDrawFlush(draw);
76: PetscDrawPause(draw);
78: PetscDrawCollectiveBegin(draw);
79: /* draw my box */
80: ymin = 0; ymax = 0.3; xmin = dd->xs / dd->w; xmax = (dd->xe / dd->w) - 1;
81: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
82: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
83: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
84: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
85: /* Put in index numbers */
86: base = dd->base / dd->w;
87: for (x=xmin; x<=xmax; x++) {
88: PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
89: PetscDrawString(draw,x,ymin,PETSC_DRAW_RED,node);
90: }
91: PetscDrawCollectiveEnd(draw);
92: PetscDrawFlush(draw);
93: PetscDrawPause(draw);
94: PetscDrawSave(draw);
95: } else if (isglvis) {
96: DMView_DA_GLVis(da,viewer);
97: } else if (isbinary) {
98: DMView_DA_Binary(da,viewer);
99: #if defined(PETSC_HAVE_MATLAB_ENGINE)
100: } else if (ismatlab) {
101: DMView_DA_Matlab(da,viewer);
102: #endif
103: }
104: return(0);
105: }
108: PetscErrorCode DMSetUp_DA_1D(DM da)
109: {
110: DM_DA *dd = (DM_DA*)da->data;
111: const PetscInt M = dd->M;
112: const PetscInt dof = dd->w;
113: const PetscInt s = dd->s;
114: const PetscInt sDist = s; /* stencil distance in points */
115: const PetscInt *lx = dd->lx;
116: DMBoundaryType bx = dd->bx;
117: MPI_Comm comm;
118: Vec local, global;
119: VecScatter gtol;
120: IS to, from;
121: PetscBool flg1 = PETSC_FALSE, flg2 = PETSC_FALSE;
122: PetscMPIInt rank, size;
123: PetscInt i,*idx,nn,left,xs,xe,x,Xs,Xe,start,m,IXs,IXe;
124: PetscErrorCode ierr;
127: PetscObjectGetComm((PetscObject) da, &comm);
128: MPI_Comm_size(comm,&size);
129: MPI_Comm_rank(comm,&rank);
131: dd->p = 1;
132: dd->n = 1;
133: dd->m = size;
134: m = dd->m;
136: if (s > 0) {
137: /* if not communicating data then should be ok to have nothing on some processes */
138: if (M < m) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"More processes than data points! %D %D",m,M);
139: if ((M-1) < s && size > 1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Array is too small for stencil! %D %D",M-1,s);
140: }
142: /*
143: Determine locally owned region
144: xs is the first local node number, x is the number of local nodes
145: */
146: if (!lx) {
147: PetscMalloc1(m, &dd->lx);
148: PetscOptionsGetBool(((PetscObject)da)->options,((PetscObject)da)->prefix,"-da_partition_blockcomm",&flg1,NULL);
149: PetscOptionsGetBool(((PetscObject)da)->options,((PetscObject)da)->prefix,"-da_partition_nodes_at_end",&flg2,NULL);
150: if (flg1) { /* Block Comm type Distribution */
151: xs = rank*M/m;
152: x = (rank + 1)*M/m - xs;
153: } else if (flg2) { /* The odd nodes are evenly distributed across last nodes */
154: x = (M + rank)/m;
155: if (M/m == x) xs = rank*x;
156: else xs = rank*(x-1) + (M+rank)%(x*m);
157: } else { /* The odd nodes are evenly distributed across the first k nodes */
158: /* Regular PETSc Distribution */
159: x = M/m + ((M % m) > rank);
160: if (rank >= (M % m)) xs = (rank * (PetscInt)(M/m) + M % m);
161: else xs = rank * (PetscInt)(M/m) + rank;
162: }
163: MPI_Allgather(&xs,1,MPIU_INT,dd->lx,1,MPIU_INT,comm);
164: for (i=0; i<m-1; i++) dd->lx[i] = dd->lx[i+1] - dd->lx[i];
165: dd->lx[m-1] = M - dd->lx[m-1];
166: } else {
167: x = lx[rank];
168: xs = 0;
169: for (i=0; i<rank; i++) xs += lx[i];
170: /* verify that data user provided is consistent */
171: left = xs;
172: for (i=rank; i<size; i++) left += lx[i];
173: if (left != M) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Sum of lx across processors not equal to M %D %D",left,M);
174: }
176: /*
177: check if the scatter requires more than one process neighbor or wraps around
178: the domain more than once
179: */
180: if ((x < s) & ((M > 1) | (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
182: xe = xs + x;
184: /* determine ghost region (Xs) and region scattered into (IXs) */
185: if (xs-sDist > 0) {
186: Xs = xs - sDist;
187: IXs = xs - sDist;
188: } else {
189: if (bx) Xs = xs - sDist;
190: else Xs = 0;
191: IXs = 0;
192: }
193: if (xe+sDist <= M) {
194: Xe = xe + sDist;
195: IXe = xe + sDist;
196: } else {
197: if (bx) Xe = xe + sDist;
198: else Xe = M;
199: IXe = M;
200: }
202: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
203: Xs = xs - sDist;
204: Xe = xe + sDist;
205: IXs = xs - sDist;
206: IXe = xe + sDist;
207: }
209: /* allocate the base parallel and sequential vectors */
210: dd->Nlocal = dof*x;
211: VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
212: dd->nlocal = dof*(Xe-Xs);
213: VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);
215: VecGetOwnershipRange(global,&start,NULL);
217: /* Create Global to Local Vector Scatter Context */
218: /* global to local must retrieve ghost points */
219: ISCreateStride(comm,dof*(IXe-IXs),dof*(IXs-Xs),1,&to);
221: PetscMalloc1(x+2*sDist,&idx);
222: PetscLogObjectMemory((PetscObject)da,(x+2*(sDist))*sizeof(PetscInt));
224: for (i=0; i<IXs-Xs; i++) idx[i] = -1; /* prepend with -1s if needed for ghosted case*/
226: nn = IXs-Xs;
227: if (bx == DM_BOUNDARY_PERIODIC) { /* Handle all cases with periodic first */
228: for (i=0; i<sDist; i++) { /* Left ghost points */
229: if ((xs-sDist+i)>=0) idx[nn++] = xs-sDist+i;
230: else idx[nn++] = M+(xs-sDist+i);
231: }
233: for (i=0; i<x; i++) idx [nn++] = xs + i; /* Non-ghost points */
235: for (i=0; i<sDist; i++) { /* Right ghost points */
236: if ((xe+i)<M) idx [nn++] = xe+i;
237: else idx [nn++] = (xe+i) - M;
238: }
239: } else if (bx == DM_BOUNDARY_MIRROR) { /* Handle all cases with periodic first */
240: for (i=0; i<(sDist); i++) { /* Left ghost points */
241: if ((xs-sDist+i)>=0) idx[nn++] = xs-sDist+i;
242: else idx[nn++] = sDist - i;
243: }
245: for (i=0; i<x; i++) idx [nn++] = xs + i; /* Non-ghost points */
247: for (i=0; i<(sDist); i++) { /* Right ghost points */
248: if ((xe+i)<M) idx[nn++] = xe+i;
249: else idx[nn++] = M - (i + 2);
250: }
251: } else { /* Now do all cases with no periodicity */
252: if (0 <= xs-sDist) {
253: for (i=0; i<sDist; i++) idx[nn++] = xs - sDist + i;
254: } else {
255: for (i=0; i<xs; i++) idx[nn++] = i;
256: }
258: for (i=0; i<x; i++) idx [nn++] = xs + i;
260: if ((xe+sDist)<=M) {
261: for (i=0; i<sDist; i++) idx[nn++]=xe+i;
262: } else {
263: for (i=xe; i<M; i++) idx[nn++]=i;
264: }
265: }
267: ISCreateBlock(comm,dof,nn-IXs+Xs,&idx[IXs-Xs],PETSC_USE_POINTER,&from);
268: VecScatterCreate(global,from,local,to,>ol);
269: PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
270: ISDestroy(&to);
271: ISDestroy(&from);
272: VecDestroy(&local);
273: VecDestroy(&global);
275: dd->xs = dof*xs; dd->xe = dof*xe; dd->ys = 0; dd->ye = 1; dd->zs = 0; dd->ze = 1;
276: dd->Xs = dof*Xs; dd->Xe = dof*Xe; dd->Ys = 0; dd->Ye = 1; dd->Zs = 0; dd->Ze = 1;
278: dd->gtol = gtol;
279: dd->base = dof*xs;
280: da->ops->view = DMView_DA_1d;
282: /*
283: Set the local to global ordering in the global vector, this allows use
284: of VecSetValuesLocal().
285: */
286: for (i=0; i<Xe-IXe; i++) idx[nn++] = -1; /* pad with -1s if needed for ghosted case*/
288: ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
289: PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);
291: return(0);
292: }
295: /*@C
296: DMDACreate1d - Creates an object that will manage the communication of one-dimensional
297: regular array data that is distributed across some processors.
299: Collective on MPI_Comm
301: Input Parameters:
302: + comm - MPI communicator
303: . bx - type of ghost cells at the boundary the array should have, if any. Use
304: DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or DM_BOUNDARY_PERIODIC.
305: . M - global dimension of the array
306: from the command line with -da_grid_x <M>)
307: . dof - number of degrees of freedom per node
308: . s - stencil width
309: - lx - array containing number of nodes in the X direction on each processor,
310: or NULL. If non-null, must be of length as the number of processes in the MPI_Comm.
312: Output Parameter:
313: . da - the resulting distributed array object
315: Options Database Key:
316: + -dm_view - Calls DMView() at the conclusion of DMDACreate1d()
317: . -da_grid_x <nx> - number of grid points in x direction; can set if M < 0
318: . -da_refine_x <rx> - refinement factor
319: - -da_refine <n> - refine the DMDA n times before creating it, if M < 0
321: Level: beginner
323: Notes:
324: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
325: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
326: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
328: You must call DMSetUp() after this call before using this DM.
330: If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
331: but before DMSetUp().
333: .keywords: distributed array, create, one-dimensional
335: .seealso: DMDestroy(), DMView(), DMDACreate2d(), DMDACreate3d(), DMGlobalToLocalBegin(), DMDASetRefinementFactor(),
336: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDAGetRefinementFactor(),
337: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
339: @*/
340: PetscErrorCode DMDACreate1d(MPI_Comm comm, DMBoundaryType bx, PetscInt M, PetscInt dof, PetscInt s, const PetscInt lx[], DM *da)
341: {
343: PetscMPIInt size;
346: DMDACreate(comm, da);
347: DMSetDimension(*da, 1);
348: DMDASetSizes(*da, M, 1, 1);
349: MPI_Comm_size(comm, &size);
350: DMDASetNumProcs(*da, size, PETSC_DECIDE, PETSC_DECIDE);
351: DMDASetBoundaryType(*da, bx, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE);
352: DMDASetDof(*da, dof);
353: DMDASetStencilWidth(*da, s);
354: DMDASetOwnershipRanges(*da, lx, NULL, NULL);
355: return(0);
356: }