Actual source code: ts.c
petsc-3.9.1 2018-04-29
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
7: /* Logging support */
8: PetscClassId TS_CLASSID, DMTS_CLASSID;
9: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
11: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
13: /*@C
14: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
16: Collective on TS
18: Input Parameters:
19: + ts - TS object you wish to monitor
20: . name - the monitor type one is seeking
21: . help - message indicating what monitoring is done
22: . manual - manual page for the monitor
23: . monitor - the monitor function
24: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
26: Level: developer
28: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
29: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
30: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
31: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
32: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
33: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
34: PetscOptionsFList(), PetscOptionsEList()
35: @*/
36: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
37: {
38: PetscErrorCode ierr;
39: PetscViewer viewer;
40: PetscViewerFormat format;
41: PetscBool flg;
44: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
45: if (flg) {
46: PetscViewerAndFormat *vf;
47: PetscViewerAndFormatCreate(viewer,format,&vf);
48: PetscObjectDereference((PetscObject)viewer);
49: if (monitorsetup) {
50: (*monitorsetup)(ts,vf);
51: }
52: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
53: }
54: return(0);
55: }
57: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
58: {
64: if (!((PetscObject)adapt)->type_name) {
65: TSAdaptSetType(adapt,default_type);
66: }
67: return(0);
68: }
70: /*@
71: TSSetFromOptions - Sets various TS parameters from user options.
73: Collective on TS
75: Input Parameter:
76: . ts - the TS context obtained from TSCreate()
78: Options Database Keys:
79: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE
80: . -ts_save_trajectory - checkpoint the solution at each time-step
81: . -ts_max_time <time> - maximum time to compute to
82: . -ts_max_steps <steps> - maximum number of time-steps to take
83: . -ts_init_time <time> - initial time to start computation
84: . -ts_final_time <time> - final time to compute to
85: . -ts_dt <dt> - initial time step
86: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
87: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
88: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
89: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
90: . -ts_rtol <rtol> - relative tolerance for local truncation error
91: . -ts_atol <atol> Absolute tolerance for local truncation error
92: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
93: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
94: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
95: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
96: . -ts_monitor - print information at each timestep
97: . -ts_monitor_lg_solution - Monitor solution graphically
98: . -ts_monitor_lg_error - Monitor error graphically
99: . -ts_monitor_error - Monitors norm of error
100: . -ts_monitor_lg_timestep - Monitor timestep size graphically
101: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
102: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
103: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
104: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
105: . -ts_monitor_draw_solution - Monitor solution graphically
106: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
107: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
108: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
109: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
110: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
112: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
114: Level: beginner
116: .keywords: TS, timestep, set, options, database
118: .seealso: TSGetType()
119: @*/
120: PetscErrorCode TSSetFromOptions(TS ts)
121: {
122: PetscBool opt,flg,tflg;
123: PetscErrorCode ierr;
124: char monfilename[PETSC_MAX_PATH_LEN];
125: PetscReal time_step;
126: TSExactFinalTimeOption eftopt;
127: char dir[16];
128: TSIFunction ifun;
129: const char *defaultType;
130: char typeName[256];
135: TSRegisterAll();
136: TSGetIFunction(ts,NULL,&ifun,NULL);
138: PetscObjectOptionsBegin((PetscObject)ts);
139: if (((PetscObject)ts)->type_name)
140: defaultType = ((PetscObject)ts)->type_name;
141: else
142: defaultType = ifun ? TSBEULER : TSEULER;
143: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
144: if (opt) {
145: TSSetType(ts,typeName);
146: } else {
147: TSSetType(ts,defaultType);
148: }
150: /* Handle generic TS options */
151: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
152: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
153: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
154: PetscOptionsReal("-ts_final_time","Final time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
155: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
156: if (flg) {TSSetTimeStep(ts,time_step);}
157: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
158: if (flg) {TSSetExactFinalTime(ts,eftopt);}
159: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
160: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
161: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
162: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
163: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
165: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
166: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
167: #if defined(PETSC_HAVE_SAWS)
168: {
169: PetscBool set;
170: flg = PETSC_FALSE;
171: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
172: if (set) {
173: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
174: }
175: }
176: #endif
178: /* Monitor options */
179: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
180: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
182: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
183: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
185: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
186: if (opt) {
187: TSMonitorLGCtx ctx;
188: PetscInt howoften = 1;
190: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
191: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
192: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
193: }
195: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
196: if (opt) {
197: TSMonitorLGCtx ctx;
198: PetscInt howoften = 1;
200: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
201: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
202: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
203: }
204: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
206: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
207: if (opt) {
208: TSMonitorLGCtx ctx;
209: PetscInt howoften = 1;
211: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
212: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
213: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
214: }
215: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
216: if (opt) {
217: TSMonitorLGCtx ctx;
218: PetscInt howoften = 1;
220: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
221: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
222: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
223: ctx->semilogy = PETSC_TRUE;
224: }
226: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
227: if (opt) {
228: TSMonitorLGCtx ctx;
229: PetscInt howoften = 1;
231: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
232: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
233: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
234: }
235: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
236: if (opt) {
237: TSMonitorLGCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
241: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
243: }
244: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
245: if (opt) {
246: TSMonitorSPEigCtx ctx;
247: PetscInt howoften = 1;
249: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
250: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
251: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
252: }
253: opt = PETSC_FALSE;
254: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
255: if (opt) {
256: TSMonitorDrawCtx ctx;
257: PetscInt howoften = 1;
259: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
260: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
261: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
262: }
263: opt = PETSC_FALSE;
264: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
265: if (opt) {
266: TSMonitorDrawCtx ctx;
267: PetscReal bounds[4];
268: PetscInt n = 4;
269: PetscDraw draw;
270: PetscDrawAxis axis;
272: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
273: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
274: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
275: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
276: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
277: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
278: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
279: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
280: }
281: opt = PETSC_FALSE;
282: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
283: if (opt) {
284: TSMonitorDrawCtx ctx;
285: PetscInt howoften = 1;
287: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
288: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
289: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
290: }
291: opt = PETSC_FALSE;
292: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
293: if (opt) {
294: TSMonitorDrawCtx ctx;
295: PetscInt howoften = 1;
297: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
298: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
299: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
300: }
302: opt = PETSC_FALSE;
303: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
304: if (flg) {
305: const char *ptr,*ptr2;
306: char *filetemplate;
307: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
308: /* Do some cursory validation of the input. */
309: PetscStrstr(monfilename,"%",(char**)&ptr);
310: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
311: for (ptr++; ptr && *ptr; ptr++) {
312: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
313: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
314: if (ptr2) break;
315: }
316: PetscStrallocpy(monfilename,&filetemplate);
317: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
318: }
320: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
321: if (flg) {
322: TSMonitorDMDARayCtx *rayctx;
323: int ray = 0;
324: DMDADirection ddir;
325: DM da;
326: PetscMPIInt rank;
328: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
329: if (dir[0] == 'x') ddir = DMDA_X;
330: else if (dir[0] == 'y') ddir = DMDA_Y;
331: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
332: sscanf(dir+2,"%d",&ray);
334: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
335: PetscNew(&rayctx);
336: TSGetDM(ts,&da);
337: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
338: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
339: if (!rank) {
340: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
341: }
342: rayctx->lgctx = NULL;
343: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
344: }
345: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
346: if (flg) {
347: TSMonitorDMDARayCtx *rayctx;
348: int ray = 0;
349: DMDADirection ddir;
350: DM da;
351: PetscInt howoften = 1;
353: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
354: if (dir[0] == 'x') ddir = DMDA_X;
355: else if (dir[0] == 'y') ddir = DMDA_Y;
356: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
357: sscanf(dir+2, "%d", &ray);
359: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
360: PetscNew(&rayctx);
361: TSGetDM(ts, &da);
362: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
363: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
364: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
365: }
367: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
368: if (opt) {
369: TSMonitorEnvelopeCtx ctx;
371: TSMonitorEnvelopeCtxCreate(ts,&ctx);
372: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
373: }
375: flg = PETSC_FALSE;
376: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
377: if (flg) {
378: DM dm;
379: DMTS tdm;
381: TSGetDM(ts, &dm);
382: DMGetDMTS(dm, &tdm);
383: tdm->ijacobianctx = NULL;
384: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
385: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
386: }
388: /* Handle specific TS options */
389: if (ts->ops->setfromoptions) {
390: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
391: }
393: /* Handle TSAdapt options */
394: TSGetAdapt(ts,&ts->adapt);
395: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
396: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
398: /* TS trajectory must be set after TS, since it may use some TS options above */
399: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
400: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
401: if (tflg) {
402: TSSetSaveTrajectory(ts);
403: }
405: TSAdjointSetFromOptions(PetscOptionsObject,ts);
407: /* process any options handlers added with PetscObjectAddOptionsHandler() */
408: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
409: PetscOptionsEnd();
411: if (ts->trajectory) {
412: TSTrajectorySetFromOptions(ts->trajectory,ts);
413: }
415: TSGetSNES(ts,&ts->snes);
416: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
417: SNESSetFromOptions(ts->snes);
418: return(0);
419: }
421: /*@
422: TSGetTrajectory - Gets the trajectory from a TS if it exists
424: Collective on TS
426: Input Parameters:
427: . ts - the TS context obtained from TSCreate()
429: Output Parameters;
430: . tr - the TSTrajectory object, if it exists
432: Note: This routine should be called after all TS options have been set
434: Level: advanced
436: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
438: .keywords: TS, set, checkpoint,
439: @*/
440: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
441: {
444: *tr = ts->trajectory;
445: return(0);
446: }
448: /*@
449: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
451: Collective on TS
453: Input Parameters:
454: . ts - the TS context obtained from TSCreate()
456: Options Database:
457: + -ts_save_trajectory - saves the trajectory to a file
458: - -ts_trajectory_type type
460: Note: This routine should be called after all TS options have been set
462: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
463: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
465: Level: intermediate
467: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectoryType, TSSetTrajectoryType()
469: .keywords: TS, set, checkpoint,
470: @*/
471: PetscErrorCode TSSetSaveTrajectory(TS ts)
472: {
477: if (!ts->trajectory) {
478: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
479: }
480: return(0);
481: }
483: /*@
484: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
485: set with TSSetRHSJacobian().
487: Collective on TS and Vec
489: Input Parameters:
490: + ts - the TS context
491: . t - current timestep
492: - U - input vector
494: Output Parameters:
495: + A - Jacobian matrix
496: . B - optional preconditioning matrix
497: - flag - flag indicating matrix structure
499: Notes:
500: Most users should not need to explicitly call this routine, as it
501: is used internally within the nonlinear solvers.
503: See KSPSetOperators() for important information about setting the
504: flag parameter.
506: Level: developer
508: .keywords: SNES, compute, Jacobian, matrix
510: .seealso: TSSetRHSJacobian(), KSPSetOperators()
511: @*/
512: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
513: {
514: PetscErrorCode ierr;
515: PetscObjectState Ustate;
516: PetscObjectId Uid;
517: DM dm;
518: DMTS tsdm;
519: TSRHSJacobian rhsjacobianfunc;
520: void *ctx;
521: TSIJacobian ijacobianfunc;
522: TSRHSFunction rhsfunction;
528: TSGetDM(ts,&dm);
529: DMGetDMTS(dm,&tsdm);
530: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
531: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
532: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
533: PetscObjectStateGet((PetscObject)U,&Ustate);
534: PetscObjectGetId((PetscObject)U,&Uid);
535: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
536: return(0);
537: }
539: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
541: if (ts->rhsjacobian.reuse) {
542: MatShift(A,-ts->rhsjacobian.shift);
543: MatScale(A,1./ts->rhsjacobian.scale);
544: if (B && A != B) {
545: MatShift(B,-ts->rhsjacobian.shift);
546: MatScale(B,1./ts->rhsjacobian.scale);
547: }
548: ts->rhsjacobian.shift = 0;
549: ts->rhsjacobian.scale = 1.;
550: }
552: if (rhsjacobianfunc) {
553: PetscBool missing;
554: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
555: PetscStackPush("TS user Jacobian function");
556: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
557: PetscStackPop;
558: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
559: if (A) {
560: MatMissingDiagonal(A,&missing,NULL);
561: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
562: }
563: if (B && B != A) {
564: MatMissingDiagonal(B,&missing,NULL);
565: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
566: }
567: } else {
568: MatZeroEntries(A);
569: if (A != B) {MatZeroEntries(B);}
570: }
571: ts->rhsjacobian.time = t;
572: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
573: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
574: return(0);
575: }
577: /*@
578: TSComputeRHSFunction - Evaluates the right-hand-side function.
580: Collective on TS and Vec
582: Input Parameters:
583: + ts - the TS context
584: . t - current time
585: - U - state vector
587: Output Parameter:
588: . y - right hand side
590: Note:
591: Most users should not need to explicitly call this routine, as it
592: is used internally within the nonlinear solvers.
594: Level: developer
596: .keywords: TS, compute
598: .seealso: TSSetRHSFunction(), TSComputeIFunction()
599: @*/
600: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
601: {
603: TSRHSFunction rhsfunction;
604: TSIFunction ifunction;
605: void *ctx;
606: DM dm;
612: TSGetDM(ts,&dm);
613: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
614: DMTSGetIFunction(dm,&ifunction,NULL);
616: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
618: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
619: if (rhsfunction) {
620: PetscStackPush("TS user right-hand-side function");
621: (*rhsfunction)(ts,t,U,y,ctx);
622: PetscStackPop;
623: } else {
624: VecZeroEntries(y);
625: }
627: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
628: return(0);
629: }
631: /*@
632: TSComputeSolutionFunction - Evaluates the solution function.
634: Collective on TS and Vec
636: Input Parameters:
637: + ts - the TS context
638: - t - current time
640: Output Parameter:
641: . U - the solution
643: Note:
644: Most users should not need to explicitly call this routine, as it
645: is used internally within the nonlinear solvers.
647: Level: developer
649: .keywords: TS, compute
651: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
652: @*/
653: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
654: {
655: PetscErrorCode ierr;
656: TSSolutionFunction solutionfunction;
657: void *ctx;
658: DM dm;
663: TSGetDM(ts,&dm);
664: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
666: if (solutionfunction) {
667: PetscStackPush("TS user solution function");
668: (*solutionfunction)(ts,t,U,ctx);
669: PetscStackPop;
670: }
671: return(0);
672: }
673: /*@
674: TSComputeForcingFunction - Evaluates the forcing function.
676: Collective on TS and Vec
678: Input Parameters:
679: + ts - the TS context
680: - t - current time
682: Output Parameter:
683: . U - the function value
685: Note:
686: Most users should not need to explicitly call this routine, as it
687: is used internally within the nonlinear solvers.
689: Level: developer
691: .keywords: TS, compute
693: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
694: @*/
695: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
696: {
697: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
698: void *ctx;
699: DM dm;
704: TSGetDM(ts,&dm);
705: DMTSGetForcingFunction(dm,&forcing,&ctx);
707: if (forcing) {
708: PetscStackPush("TS user forcing function");
709: (*forcing)(ts,t,U,ctx);
710: PetscStackPop;
711: }
712: return(0);
713: }
715: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
716: {
717: Vec F;
721: *Frhs = NULL;
722: TSGetIFunction(ts,&F,NULL,NULL);
723: if (!ts->Frhs) {
724: VecDuplicate(F,&ts->Frhs);
725: }
726: *Frhs = ts->Frhs;
727: return(0);
728: }
730: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
731: {
732: Mat A,B;
734: TSIJacobian ijacobian;
737: if (Arhs) *Arhs = NULL;
738: if (Brhs) *Brhs = NULL;
739: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
740: if (Arhs) {
741: if (!ts->Arhs) {
742: if (ijacobian) {
743: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
744: } else {
745: ts->Arhs = A;
746: PetscObjectReference((PetscObject)A);
747: }
748: } else {
749: PetscBool flg;
750: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
751: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
752: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
753: PetscObjectDereference((PetscObject)ts->Arhs);
754: ts->Arhs = A;
755: PetscObjectReference((PetscObject)A);
756: }
757: }
758: *Arhs = ts->Arhs;
759: }
760: if (Brhs) {
761: if (!ts->Brhs) {
762: if (A != B) {
763: if (ijacobian) {
764: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
765: } else {
766: ts->Brhs = B;
767: PetscObjectReference((PetscObject)B);
768: }
769: } else {
770: PetscObjectReference((PetscObject)ts->Arhs);
771: ts->Brhs = ts->Arhs;
772: }
773: }
774: *Brhs = ts->Brhs;
775: }
776: return(0);
777: }
779: /*@
780: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
782: Collective on TS and Vec
784: Input Parameters:
785: + ts - the TS context
786: . t - current time
787: . U - state vector
788: . Udot - time derivative of state vector
789: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
791: Output Parameter:
792: . Y - right hand side
794: Note:
795: Most users should not need to explicitly call this routine, as it
796: is used internally within the nonlinear solvers.
798: If the user did did not write their equations in implicit form, this
799: function recasts them in implicit form.
801: Level: developer
803: .keywords: TS, compute
805: .seealso: TSSetIFunction(), TSComputeRHSFunction()
806: @*/
807: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
808: {
810: TSIFunction ifunction;
811: TSRHSFunction rhsfunction;
812: void *ctx;
813: DM dm;
821: TSGetDM(ts,&dm);
822: DMTSGetIFunction(dm,&ifunction,&ctx);
823: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
825: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
827: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
828: if (ifunction) {
829: PetscStackPush("TS user implicit function");
830: (*ifunction)(ts,t,U,Udot,Y,ctx);
831: PetscStackPop;
832: }
833: if (imex) {
834: if (!ifunction) {
835: VecCopy(Udot,Y);
836: }
837: } else if (rhsfunction) {
838: if (ifunction) {
839: Vec Frhs;
840: TSGetRHSVec_Private(ts,&Frhs);
841: TSComputeRHSFunction(ts,t,U,Frhs);
842: VecAXPY(Y,-1,Frhs);
843: } else {
844: TSComputeRHSFunction(ts,t,U,Y);
845: VecAYPX(Y,-1,Udot);
846: }
847: }
848: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
849: return(0);
850: }
852: /*@
853: TSComputeIJacobian - Evaluates the Jacobian of the DAE
855: Collective on TS and Vec
857: Input
858: Input Parameters:
859: + ts - the TS context
860: . t - current timestep
861: . U - state vector
862: . Udot - time derivative of state vector
863: . shift - shift to apply, see note below
864: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
866: Output Parameters:
867: + A - Jacobian matrix
868: - B - matrix from which the preconditioner is constructed; often the same as A
870: Notes:
871: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
873: dF/dU + shift*dF/dUdot
875: Most users should not need to explicitly call this routine, as it
876: is used internally within the nonlinear solvers.
878: Level: developer
880: .keywords: TS, compute, Jacobian, matrix
882: .seealso: TSSetIJacobian()
883: @*/
884: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
885: {
887: TSIJacobian ijacobian;
888: TSRHSJacobian rhsjacobian;
889: DM dm;
890: void *ctx;
901: TSGetDM(ts,&dm);
902: DMTSGetIJacobian(dm,&ijacobian,&ctx);
903: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
905: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
907: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
908: if (ijacobian) {
909: PetscBool missing;
910: PetscStackPush("TS user implicit Jacobian");
911: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
912: PetscStackPop;
913: MatMissingDiagonal(A,&missing,NULL);
914: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
915: if (B != A) {
916: MatMissingDiagonal(B,&missing,NULL);
917: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
918: }
919: }
920: if (imex) {
921: if (!ijacobian) { /* system was written as Udot = G(t,U) */
922: PetscBool assembled;
923: MatZeroEntries(A);
924: MatAssembled(A,&assembled);
925: if (!assembled) {
926: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
927: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
928: }
929: MatShift(A,shift);
930: if (A != B) {
931: MatZeroEntries(B);
932: MatAssembled(B,&assembled);
933: if (!assembled) {
934: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
935: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
936: }
937: MatShift(B,shift);
938: }
939: }
940: } else {
941: Mat Arhs = NULL,Brhs = NULL;
942: if (rhsjacobian) {
943: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
944: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
945: }
946: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
947: PetscBool flg;
948: ts->rhsjacobian.scale = -1;
949: ts->rhsjacobian.shift = shift;
950: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
951: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
952: if (!flg) {
953: MatScale(A,-1);
954: MatShift(A,shift);
955: }
956: if (A != B) {
957: MatScale(B,-1);
958: MatShift(B,shift);
959: }
960: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
961: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
962: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
963: MatZeroEntries(A);
964: MatShift(A,shift);
965: if (A != B) {
966: MatZeroEntries(B);
967: MatShift(B,shift);
968: }
969: }
970: MatAXPY(A,-1,Arhs,axpy);
971: if (A != B) {
972: MatAXPY(B,-1,Brhs,axpy);
973: }
974: }
975: }
976: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
977: return(0);
978: }
980: /*@C
981: TSSetRHSFunction - Sets the routine for evaluating the function,
982: where U_t = G(t,u).
984: Logically Collective on TS
986: Input Parameters:
987: + ts - the TS context obtained from TSCreate()
988: . r - vector to put the computed right hand side (or NULL to have it created)
989: . f - routine for evaluating the right-hand-side function
990: - ctx - [optional] user-defined context for private data for the
991: function evaluation routine (may be NULL)
993: Calling sequence of func:
994: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
996: + t - current timestep
997: . u - input vector
998: . F - function vector
999: - ctx - [optional] user-defined function context
1001: Level: beginner
1003: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1005: .keywords: TS, timestep, set, right-hand-side, function
1007: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1008: @*/
1009: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1010: {
1012: SNES snes;
1013: Vec ralloc = NULL;
1014: DM dm;
1020: TSGetDM(ts,&dm);
1021: DMTSSetRHSFunction(dm,f,ctx);
1022: TSGetSNES(ts,&snes);
1023: if (!r && !ts->dm && ts->vec_sol) {
1024: VecDuplicate(ts->vec_sol,&ralloc);
1025: r = ralloc;
1026: }
1027: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1028: VecDestroy(&ralloc);
1029: return(0);
1030: }
1032: /*@C
1033: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1035: Logically Collective on TS
1037: Input Parameters:
1038: + ts - the TS context obtained from TSCreate()
1039: . f - routine for evaluating the solution
1040: - ctx - [optional] user-defined context for private data for the
1041: function evaluation routine (may be NULL)
1043: Calling sequence of func:
1044: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1046: + t - current timestep
1047: . u - output vector
1048: - ctx - [optional] user-defined function context
1050: Options Database:
1051: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1052: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1054: Notes:
1055: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1056: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1057: create closed-form solutions with non-physical forcing terms.
1059: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1061: Level: beginner
1063: .keywords: TS, timestep, set, right-hand-side, function
1065: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1066: @*/
1067: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1068: {
1070: DM dm;
1074: TSGetDM(ts,&dm);
1075: DMTSSetSolutionFunction(dm,f,ctx);
1076: return(0);
1077: }
1079: /*@C
1080: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1082: Logically Collective on TS
1084: Input Parameters:
1085: + ts - the TS context obtained from TSCreate()
1086: . func - routine for evaluating the forcing function
1087: - ctx - [optional] user-defined context for private data for the
1088: function evaluation routine (may be NULL)
1090: Calling sequence of func:
1091: $ func (TS ts,PetscReal t,Vec f,void *ctx);
1093: + t - current timestep
1094: . f - output vector
1095: - ctx - [optional] user-defined function context
1097: Notes:
1098: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1099: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1100: definition of the problem you are solving and hence possibly introducing bugs.
1102: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1104: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1105: parameters can be passed in the ctx variable.
1107: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1109: Level: beginner
1111: .keywords: TS, timestep, set, right-hand-side, function
1113: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1114: @*/
1115: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1116: {
1118: DM dm;
1122: TSGetDM(ts,&dm);
1123: DMTSSetForcingFunction(dm,func,ctx);
1124: return(0);
1125: }
1127: /*@C
1128: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1129: where U_t = G(U,t), as well as the location to store the matrix.
1131: Logically Collective on TS
1133: Input Parameters:
1134: + ts - the TS context obtained from TSCreate()
1135: . Amat - (approximate) Jacobian matrix
1136: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1137: . f - the Jacobian evaluation routine
1138: - ctx - [optional] user-defined context for private data for the
1139: Jacobian evaluation routine (may be NULL)
1141: Calling sequence of f:
1142: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1144: + t - current timestep
1145: . u - input vector
1146: . Amat - (approximate) Jacobian matrix
1147: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1148: - ctx - [optional] user-defined context for matrix evaluation routine
1150: Notes:
1151: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1153: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1154: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1156: Level: beginner
1158: .keywords: TS, timestep, set, right-hand-side, Jacobian
1160: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1162: @*/
1163: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1164: {
1166: SNES snes;
1167: DM dm;
1168: TSIJacobian ijacobian;
1177: TSGetDM(ts,&dm);
1178: DMTSSetRHSJacobian(dm,f,ctx);
1179: if (f == TSComputeRHSJacobianConstant) {
1180: /* Handle this case automatically for the user; otherwise user should call themselves. */
1181: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1182: }
1183: DMTSGetIJacobian(dm,&ijacobian,NULL);
1184: TSGetSNES(ts,&snes);
1185: if (!ijacobian) {
1186: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1187: }
1188: if (Amat) {
1189: PetscObjectReference((PetscObject)Amat);
1190: MatDestroy(&ts->Arhs);
1191: ts->Arhs = Amat;
1192: }
1193: if (Pmat) {
1194: PetscObjectReference((PetscObject)Pmat);
1195: MatDestroy(&ts->Brhs);
1196: ts->Brhs = Pmat;
1197: }
1198: return(0);
1199: }
1201: /*@C
1202: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1204: Logically Collective on TS
1206: Input Parameters:
1207: + ts - the TS context obtained from TSCreate()
1208: . r - vector to hold the residual (or NULL to have it created internally)
1209: . f - the function evaluation routine
1210: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1212: Calling sequence of f:
1213: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1215: + t - time at step/stage being solved
1216: . u - state vector
1217: . u_t - time derivative of state vector
1218: . F - function vector
1219: - ctx - [optional] user-defined context for matrix evaluation routine
1221: Important:
1222: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1224: Level: beginner
1226: .keywords: TS, timestep, set, DAE, Jacobian
1228: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1229: @*/
1230: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1231: {
1233: SNES snes;
1234: Vec ralloc = NULL;
1235: DM dm;
1241: TSGetDM(ts,&dm);
1242: DMTSSetIFunction(dm,f,ctx);
1244: TSGetSNES(ts,&snes);
1245: if (!r && !ts->dm && ts->vec_sol) {
1246: VecDuplicate(ts->vec_sol,&ralloc);
1247: r = ralloc;
1248: }
1249: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1250: VecDestroy(&ralloc);
1251: return(0);
1252: }
1254: /*@C
1255: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1257: Not Collective
1259: Input Parameter:
1260: . ts - the TS context
1262: Output Parameter:
1263: + r - vector to hold residual (or NULL)
1264: . func - the function to compute residual (or NULL)
1265: - ctx - the function context (or NULL)
1267: Level: advanced
1269: .keywords: TS, nonlinear, get, function
1271: .seealso: TSSetIFunction(), SNESGetFunction()
1272: @*/
1273: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1274: {
1276: SNES snes;
1277: DM dm;
1281: TSGetSNES(ts,&snes);
1282: SNESGetFunction(snes,r,NULL,NULL);
1283: TSGetDM(ts,&dm);
1284: DMTSGetIFunction(dm,func,ctx);
1285: return(0);
1286: }
1288: /*@C
1289: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1291: Not Collective
1293: Input Parameter:
1294: . ts - the TS context
1296: Output Parameter:
1297: + r - vector to hold computed right hand side (or NULL)
1298: . func - the function to compute right hand side (or NULL)
1299: - ctx - the function context (or NULL)
1301: Level: advanced
1303: .keywords: TS, nonlinear, get, function
1305: .seealso: TSSetRHSFunction(), SNESGetFunction()
1306: @*/
1307: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1308: {
1310: SNES snes;
1311: DM dm;
1315: TSGetSNES(ts,&snes);
1316: SNESGetFunction(snes,r,NULL,NULL);
1317: TSGetDM(ts,&dm);
1318: DMTSGetRHSFunction(dm,func,ctx);
1319: return(0);
1320: }
1322: /*@C
1323: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1324: provided with TSSetIFunction().
1326: Logically Collective on TS
1328: Input Parameters:
1329: + ts - the TS context obtained from TSCreate()
1330: . Amat - (approximate) Jacobian matrix
1331: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1332: . f - the Jacobian evaluation routine
1333: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1335: Calling sequence of f:
1336: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1338: + t - time at step/stage being solved
1339: . U - state vector
1340: . U_t - time derivative of state vector
1341: . a - shift
1342: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1343: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1344: - ctx - [optional] user-defined context for matrix evaluation routine
1346: Notes:
1347: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1349: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1350: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1352: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1353: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1354: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1355: a and vector W depend on the integration method, step size, and past states. For example with
1356: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1357: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1359: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1361: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1362: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1364: Level: beginner
1366: .keywords: TS, timestep, DAE, Jacobian
1368: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1370: @*/
1371: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1372: {
1374: SNES snes;
1375: DM dm;
1384: TSGetDM(ts,&dm);
1385: DMTSSetIJacobian(dm,f,ctx);
1387: TSGetSNES(ts,&snes);
1388: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1389: return(0);
1390: }
1392: /*@
1393: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1394: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1395: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1396: not been changed by the TS.
1398: Logically Collective
1400: Input Arguments:
1401: + ts - TS context obtained from TSCreate()
1402: - reuse - PETSC_TRUE if the RHS Jacobian
1404: Level: intermediate
1406: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1407: @*/
1408: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1409: {
1411: ts->rhsjacobian.reuse = reuse;
1412: return(0);
1413: }
1415: /*@C
1416: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1418: Logically Collective on TS
1420: Input Parameters:
1421: + ts - the TS context obtained from TSCreate()
1422: . F - vector to hold the residual (or NULL to have it created internally)
1423: . fun - the function evaluation routine
1424: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1426: Calling sequence of fun:
1427: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1429: + t - time at step/stage being solved
1430: . U - state vector
1431: . U_t - time derivative of state vector
1432: . U_tt - second time derivative of state vector
1433: . F - function vector
1434: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1436: Level: beginner
1438: .keywords: TS, timestep, set, ODE, DAE, Function
1440: .seealso: TSSetI2Jacobian()
1441: @*/
1442: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1443: {
1444: DM dm;
1450: TSSetIFunction(ts,F,NULL,NULL);
1451: TSGetDM(ts,&dm);
1452: DMTSSetI2Function(dm,fun,ctx);
1453: return(0);
1454: }
1456: /*@C
1457: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1459: Not Collective
1461: Input Parameter:
1462: . ts - the TS context
1464: Output Parameter:
1465: + r - vector to hold residual (or NULL)
1466: . fun - the function to compute residual (or NULL)
1467: - ctx - the function context (or NULL)
1469: Level: advanced
1471: .keywords: TS, nonlinear, get, function
1473: .seealso: TSSetI2Function(), SNESGetFunction()
1474: @*/
1475: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1476: {
1478: SNES snes;
1479: DM dm;
1483: TSGetSNES(ts,&snes);
1484: SNESGetFunction(snes,r,NULL,NULL);
1485: TSGetDM(ts,&dm);
1486: DMTSGetI2Function(dm,fun,ctx);
1487: return(0);
1488: }
1490: /*@C
1491: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1492: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1494: Logically Collective on TS
1496: Input Parameters:
1497: + ts - the TS context obtained from TSCreate()
1498: . J - Jacobian matrix
1499: . P - preconditioning matrix for J (may be same as J)
1500: . jac - the Jacobian evaluation routine
1501: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1503: Calling sequence of jac:
1504: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1506: + t - time at step/stage being solved
1507: . U - state vector
1508: . U_t - time derivative of state vector
1509: . U_tt - second time derivative of state vector
1510: . v - shift for U_t
1511: . a - shift for U_tt
1512: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1513: . P - preconditioning matrix for J, may be same as J
1514: - ctx - [optional] user-defined context for matrix evaluation routine
1516: Notes:
1517: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1519: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1520: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1521: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1522: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1524: Level: beginner
1526: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1528: .seealso: TSSetI2Function()
1529: @*/
1530: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1531: {
1532: DM dm;
1539: TSSetIJacobian(ts,J,P,NULL,NULL);
1540: TSGetDM(ts,&dm);
1541: DMTSSetI2Jacobian(dm,jac,ctx);
1542: return(0);
1543: }
1545: /*@C
1546: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1548: Not Collective, but parallel objects are returned if TS is parallel
1550: Input Parameter:
1551: . ts - The TS context obtained from TSCreate()
1553: Output Parameters:
1554: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1555: . P - The matrix from which the preconditioner is constructed, often the same as J
1556: . jac - The function to compute the Jacobian matrices
1557: - ctx - User-defined context for Jacobian evaluation routine
1559: Notes: You can pass in NULL for any return argument you do not need.
1561: Level: advanced
1563: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
1565: .keywords: TS, timestep, get, matrix, Jacobian
1566: @*/
1567: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1568: {
1570: SNES snes;
1571: DM dm;
1574: TSGetSNES(ts,&snes);
1575: SNESSetUpMatrices(snes);
1576: SNESGetJacobian(snes,J,P,NULL,NULL);
1577: TSGetDM(ts,&dm);
1578: DMTSGetI2Jacobian(dm,jac,ctx);
1579: return(0);
1580: }
1582: /*@
1583: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1585: Collective on TS and Vec
1587: Input Parameters:
1588: + ts - the TS context
1589: . t - current time
1590: . U - state vector
1591: . V - time derivative of state vector (U_t)
1592: - A - second time derivative of state vector (U_tt)
1594: Output Parameter:
1595: . F - the residual vector
1597: Note:
1598: Most users should not need to explicitly call this routine, as it
1599: is used internally within the nonlinear solvers.
1601: Level: developer
1603: .keywords: TS, compute, function, vector
1605: .seealso: TSSetI2Function()
1606: @*/
1607: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1608: {
1609: DM dm;
1610: TSI2Function I2Function;
1611: void *ctx;
1612: TSRHSFunction rhsfunction;
1622: TSGetDM(ts,&dm);
1623: DMTSGetI2Function(dm,&I2Function,&ctx);
1624: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1626: if (!I2Function) {
1627: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1628: return(0);
1629: }
1631: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1633: PetscStackPush("TS user implicit function");
1634: I2Function(ts,t,U,V,A,F,ctx);
1635: PetscStackPop;
1637: if (rhsfunction) {
1638: Vec Frhs;
1639: TSGetRHSVec_Private(ts,&Frhs);
1640: TSComputeRHSFunction(ts,t,U,Frhs);
1641: VecAXPY(F,-1,Frhs);
1642: }
1644: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1645: return(0);
1646: }
1648: /*@
1649: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1651: Collective on TS and Vec
1653: Input Parameters:
1654: + ts - the TS context
1655: . t - current timestep
1656: . U - state vector
1657: . V - time derivative of state vector
1658: . A - second time derivative of state vector
1659: . shiftV - shift to apply, see note below
1660: - shiftA - shift to apply, see note below
1662: Output Parameters:
1663: + J - Jacobian matrix
1664: - P - optional preconditioning matrix
1666: Notes:
1667: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1669: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1671: Most users should not need to explicitly call this routine, as it
1672: is used internally within the nonlinear solvers.
1674: Level: developer
1676: .keywords: TS, compute, Jacobian, matrix
1678: .seealso: TSSetI2Jacobian()
1679: @*/
1680: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1681: {
1682: DM dm;
1683: TSI2Jacobian I2Jacobian;
1684: void *ctx;
1685: TSRHSJacobian rhsjacobian;
1696: TSGetDM(ts,&dm);
1697: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1698: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1700: if (!I2Jacobian) {
1701: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1702: return(0);
1703: }
1705: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1707: PetscStackPush("TS user implicit Jacobian");
1708: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1709: PetscStackPop;
1711: if (rhsjacobian) {
1712: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1713: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1714: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1715: MatAXPY(J,-1,Jrhs,axpy);
1716: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1717: }
1719: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1720: return(0);
1721: }
1723: /*@
1724: TS2SetSolution - Sets the initial solution and time derivative vectors
1725: for use by the TS routines handling second order equations.
1727: Logically Collective on TS and Vec
1729: Input Parameters:
1730: + ts - the TS context obtained from TSCreate()
1731: . u - the solution vector
1732: - v - the time derivative vector
1734: Level: beginner
1736: .keywords: TS, timestep, set, solution, initial conditions
1737: @*/
1738: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1739: {
1746: TSSetSolution(ts,u);
1747: PetscObjectReference((PetscObject)v);
1748: VecDestroy(&ts->vec_dot);
1749: ts->vec_dot = v;
1750: return(0);
1751: }
1753: /*@
1754: TS2GetSolution - Returns the solution and time derivative at the present timestep
1755: for second order equations. It is valid to call this routine inside the function
1756: that you are evaluating in order to move to the new timestep. This vector not
1757: changed until the solution at the next timestep has been calculated.
1759: Not Collective, but Vec returned is parallel if TS is parallel
1761: Input Parameter:
1762: . ts - the TS context obtained from TSCreate()
1764: Output Parameter:
1765: + u - the vector containing the solution
1766: - v - the vector containing the time derivative
1768: Level: intermediate
1770: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1772: .keywords: TS, timestep, get, solution
1773: @*/
1774: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1775: {
1780: if (u) *u = ts->vec_sol;
1781: if (v) *v = ts->vec_dot;
1782: return(0);
1783: }
1785: /*@C
1786: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1788: Collective on PetscViewer
1790: Input Parameters:
1791: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1792: some related function before a call to TSLoad().
1793: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1795: Level: intermediate
1797: Notes:
1798: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1800: Notes for advanced users:
1801: Most users should not need to know the details of the binary storage
1802: format, since TSLoad() and TSView() completely hide these details.
1803: But for anyone who's interested, the standard binary matrix storage
1804: format is
1805: .vb
1806: has not yet been determined
1807: .ve
1809: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1810: @*/
1811: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1812: {
1814: PetscBool isbinary;
1815: PetscInt classid;
1816: char type[256];
1817: DMTS sdm;
1818: DM dm;
1823: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1824: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1826: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1827: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1828: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1829: TSSetType(ts, type);
1830: if (ts->ops->load) {
1831: (*ts->ops->load)(ts,viewer);
1832: }
1833: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1834: DMLoad(dm,viewer);
1835: TSSetDM(ts,dm);
1836: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1837: VecLoad(ts->vec_sol,viewer);
1838: DMGetDMTS(ts->dm,&sdm);
1839: DMTSLoad(sdm,viewer);
1840: return(0);
1841: }
1843: #include <petscdraw.h>
1844: #if defined(PETSC_HAVE_SAWS)
1845: #include <petscviewersaws.h>
1846: #endif
1847: /*@C
1848: TSView - Prints the TS data structure.
1850: Collective on TS
1852: Input Parameters:
1853: + ts - the TS context obtained from TSCreate()
1854: - viewer - visualization context
1856: Options Database Key:
1857: . -ts_view - calls TSView() at end of TSStep()
1859: Notes:
1860: The available visualization contexts include
1861: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1862: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1863: output where only the first processor opens
1864: the file. All other processors send their
1865: data to the first processor to print.
1867: The user can open an alternative visualization context with
1868: PetscViewerASCIIOpen() - output to a specified file.
1870: Level: beginner
1872: .keywords: TS, timestep, view
1874: .seealso: PetscViewerASCIIOpen()
1875: @*/
1876: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1877: {
1879: TSType type;
1880: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1881: DMTS sdm;
1882: #if defined(PETSC_HAVE_SAWS)
1883: PetscBool issaws;
1884: #endif
1888: if (!viewer) {
1889: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1890: }
1894: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1895: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1896: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1897: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1898: #if defined(PETSC_HAVE_SAWS)
1899: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1900: #endif
1901: if (iascii) {
1902: PetscInt tabs;
1903: PetscViewerASCIIGetTab(viewer, &tabs);
1904: PetscViewerASCIISetTab(viewer, ((PetscObject)ts)->tablevel);
1905: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1906: if (ts->ops->view) {
1907: PetscViewerASCIIPushTab(viewer);
1908: (*ts->ops->view)(ts,viewer);
1909: PetscViewerASCIIPopTab(viewer);
1910: }
1911: if (ts->max_steps < PETSC_MAX_INT) {
1912: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1913: }
1914: if (ts->max_time < PETSC_MAX_REAL) {
1915: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1916: }
1917: if (ts->usessnes) {
1918: PetscBool lin;
1919: if (ts->problem_type == TS_NONLINEAR) {
1920: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1921: }
1922: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1923: PetscObjectTypeCompare((PetscObject)ts->snes,SNESKSPONLY,&lin);
1924: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
1925: }
1926: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1927: if (ts->vrtol) {
1928: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
1929: } else {
1930: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
1931: }
1932: if (ts->vatol) {
1933: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
1934: } else {
1935: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
1936: }
1937: PetscViewerASCIIPushTab(viewer);
1938: TSAdaptView(ts->adapt,viewer);
1939: PetscViewerASCIIPopTab(viewer);
1940: if (ts->snes && ts->usessnes) {
1941: PetscViewerASCIIPushTab(viewer);
1942: SNESView(ts->snes,viewer);
1943: PetscViewerASCIIPopTab(viewer);
1944: }
1945: DMGetDMTS(ts->dm,&sdm);
1946: DMTSView(sdm,viewer);
1947: PetscViewerASCIISetTab(viewer, tabs);
1948: } else if (isstring) {
1949: TSGetType(ts,&type);
1950: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1951: } else if (isbinary) {
1952: PetscInt classid = TS_FILE_CLASSID;
1953: MPI_Comm comm;
1954: PetscMPIInt rank;
1955: char type[256];
1957: PetscObjectGetComm((PetscObject)ts,&comm);
1958: MPI_Comm_rank(comm,&rank);
1959: if (!rank) {
1960: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1961: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1962: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1963: }
1964: if (ts->ops->view) {
1965: (*ts->ops->view)(ts,viewer);
1966: }
1967: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1968: DMView(ts->dm,viewer);
1969: VecView(ts->vec_sol,viewer);
1970: DMGetDMTS(ts->dm,&sdm);
1971: DMTSView(sdm,viewer);
1972: } else if (isdraw) {
1973: PetscDraw draw;
1974: char str[36];
1975: PetscReal x,y,bottom,h;
1977: PetscViewerDrawGetDraw(viewer,0,&draw);
1978: PetscDrawGetCurrentPoint(draw,&x,&y);
1979: PetscStrcpy(str,"TS: ");
1980: PetscStrcat(str,((PetscObject)ts)->type_name);
1981: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1982: bottom = y - h;
1983: PetscDrawPushCurrentPoint(draw,x,bottom);
1984: if (ts->ops->view) {
1985: (*ts->ops->view)(ts,viewer);
1986: }
1987: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1988: if (ts->snes) {SNESView(ts->snes,viewer);}
1989: PetscDrawPopCurrentPoint(draw);
1990: #if defined(PETSC_HAVE_SAWS)
1991: } else if (issaws) {
1992: PetscMPIInt rank;
1993: const char *name;
1995: PetscObjectGetName((PetscObject)ts,&name);
1996: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1997: if (!((PetscObject)ts)->amsmem && !rank) {
1998: char dir[1024];
2000: PetscObjectViewSAWs((PetscObject)ts,viewer);
2001: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2002: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2003: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2004: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2005: }
2006: if (ts->ops->view) {
2007: (*ts->ops->view)(ts,viewer);
2008: }
2009: #endif
2010: }
2012: PetscViewerASCIIPushTab(viewer);
2013: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2014: PetscViewerASCIIPopTab(viewer);
2015: return(0);
2016: }
2018: /*@
2019: TSSetApplicationContext - Sets an optional user-defined context for
2020: the timesteppers.
2022: Logically Collective on TS
2024: Input Parameters:
2025: + ts - the TS context obtained from TSCreate()
2026: - usrP - optional user context
2028: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2029: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2031: Level: intermediate
2033: .keywords: TS, timestep, set, application, context
2035: .seealso: TSGetApplicationContext()
2036: @*/
2037: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2038: {
2041: ts->user = usrP;
2042: return(0);
2043: }
2045: /*@
2046: TSGetApplicationContext - Gets the user-defined context for the
2047: timestepper.
2049: Not Collective
2051: Input Parameter:
2052: . ts - the TS context obtained from TSCreate()
2054: Output Parameter:
2055: . usrP - user context
2057: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2058: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2060: Level: intermediate
2062: .keywords: TS, timestep, get, application, context
2064: .seealso: TSSetApplicationContext()
2065: @*/
2066: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2067: {
2070: *(void**)usrP = ts->user;
2071: return(0);
2072: }
2074: /*@
2075: TSGetStepNumber - Gets the number of steps completed.
2077: Not Collective
2079: Input Parameter:
2080: . ts - the TS context obtained from TSCreate()
2082: Output Parameter:
2083: . steps - number of steps completed so far
2085: Level: intermediate
2087: .keywords: TS, timestep, get, iteration, number
2088: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2089: @*/
2090: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2091: {
2095: *steps = ts->steps;
2096: return(0);
2097: }
2099: /*@
2100: TSSetStepNumber - Sets the number of steps completed.
2102: Logically Collective on TS
2104: Input Parameters:
2105: + ts - the TS context
2106: - steps - number of steps completed so far
2108: Notes:
2109: For most uses of the TS solvers the user need not explicitly call
2110: TSSetStepNumber(), as the step counter is appropriately updated in
2111: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2112: reinitialize timestepping by setting the step counter to zero (and time
2113: to the initial time) to solve a similar problem with different initial
2114: conditions or parameters. Other possible use case is to continue
2115: timestepping from a previously interrupted run in such a way that TS
2116: monitors will be called with a initial nonzero step counter.
2118: Level: advanced
2120: .keywords: TS, timestep, set, iteration, number
2121: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2122: @*/
2123: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2124: {
2128: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2129: ts->steps = steps;
2130: return(0);
2131: }
2133: /*@
2134: TSSetTimeStep - Allows one to reset the timestep at any time,
2135: useful for simple pseudo-timestepping codes.
2137: Logically Collective on TS
2139: Input Parameters:
2140: + ts - the TS context obtained from TSCreate()
2141: - time_step - the size of the timestep
2143: Level: intermediate
2145: .seealso: TSGetTimeStep(), TSSetTime()
2147: .keywords: TS, set, timestep
2148: @*/
2149: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2150: {
2154: ts->time_step = time_step;
2155: return(0);
2156: }
2158: /*@
2159: TSSetExactFinalTime - Determines whether to adapt the final time step to
2160: match the exact final time, interpolate solution to the exact final time,
2161: or just return at the final time TS computed.
2163: Logically Collective on TS
2165: Input Parameter:
2166: + ts - the time-step context
2167: - eftopt - exact final time option
2169: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2170: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2171: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2173: Options Database:
2174: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2176: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2177: then the final time you selected.
2179: Level: beginner
2181: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2182: @*/
2183: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2184: {
2188: ts->exact_final_time = eftopt;
2189: return(0);
2190: }
2192: /*@
2193: TSGetExactFinalTime - Gets the exact final time option.
2195: Not Collective
2197: Input Parameter:
2198: . ts - the TS context
2200: Output Parameter:
2201: . eftopt - exact final time option
2203: Level: beginner
2205: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2206: @*/
2207: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2208: {
2212: *eftopt = ts->exact_final_time;
2213: return(0);
2214: }
2216: /*@
2217: TSGetTimeStep - Gets the current timestep size.
2219: Not Collective
2221: Input Parameter:
2222: . ts - the TS context obtained from TSCreate()
2224: Output Parameter:
2225: . dt - the current timestep size
2227: Level: intermediate
2229: .seealso: TSSetTimeStep(), TSGetTime()
2231: .keywords: TS, get, timestep
2232: @*/
2233: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2234: {
2238: *dt = ts->time_step;
2239: return(0);
2240: }
2242: /*@
2243: TSGetSolution - Returns the solution at the present timestep. It
2244: is valid to call this routine inside the function that you are evaluating
2245: in order to move to the new timestep. This vector not changed until
2246: the solution at the next timestep has been calculated.
2248: Not Collective, but Vec returned is parallel if TS is parallel
2250: Input Parameter:
2251: . ts - the TS context obtained from TSCreate()
2253: Output Parameter:
2254: . v - the vector containing the solution
2256: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2257: final time. It returns the solution at the next timestep.
2259: Level: intermediate
2261: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2263: .keywords: TS, timestep, get, solution
2264: @*/
2265: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2266: {
2270: *v = ts->vec_sol;
2271: return(0);
2272: }
2274: /*@
2275: TSGetSolutionComponents - Returns any solution components at the present
2276: timestep, if available for the time integration method being used.
2277: Solution components are quantities that share the same size and
2278: structure as the solution vector.
2280: Not Collective, but Vec returned is parallel if TS is parallel
2282: Parameters :
2283: . ts - the TS context obtained from TSCreate() (input parameter).
2284: . n - If v is PETSC_NULL, then the number of solution components is
2285: returned through n, else the n-th solution component is
2286: returned in v.
2287: . v - the vector containing the n-th solution component
2288: (may be PETSC_NULL to use this function to find out
2289: the number of solutions components).
2291: Level: advanced
2293: .seealso: TSGetSolution()
2295: .keywords: TS, timestep, get, solution
2296: @*/
2297: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2298: {
2303: if (!ts->ops->getsolutioncomponents) *n = 0;
2304: else {
2305: (*ts->ops->getsolutioncomponents)(ts,n,v);
2306: }
2307: return(0);
2308: }
2310: /*@
2311: TSGetAuxSolution - Returns an auxiliary solution at the present
2312: timestep, if available for the time integration method being used.
2314: Not Collective, but Vec returned is parallel if TS is parallel
2316: Parameters :
2317: . ts - the TS context obtained from TSCreate() (input parameter).
2318: . v - the vector containing the auxiliary solution
2320: Level: intermediate
2322: .seealso: TSGetSolution()
2324: .keywords: TS, timestep, get, solution
2325: @*/
2326: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2327: {
2332: if (ts->ops->getauxsolution) {
2333: (*ts->ops->getauxsolution)(ts,v);
2334: } else {
2335: VecZeroEntries(*v);
2336: }
2337: return(0);
2338: }
2340: /*@
2341: TSGetTimeError - Returns the estimated error vector, if the chosen
2342: TSType has an error estimation functionality.
2344: Not Collective, but Vec returned is parallel if TS is parallel
2346: Note: MUST call after TSSetUp()
2348: Parameters :
2349: . ts - the TS context obtained from TSCreate() (input parameter).
2350: . n - current estimate (n=0) or previous one (n=-1)
2351: . v - the vector containing the error (same size as the solution).
2353: Level: intermediate
2355: .seealso: TSGetSolution(), TSSetTimeError()
2357: .keywords: TS, timestep, get, error
2358: @*/
2359: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2360: {
2365: if (ts->ops->gettimeerror) {
2366: (*ts->ops->gettimeerror)(ts,n,v);
2367: } else {
2368: VecZeroEntries(*v);
2369: }
2370: return(0);
2371: }
2373: /*@
2374: TSSetTimeError - Sets the estimated error vector, if the chosen
2375: TSType has an error estimation functionality. This can be used
2376: to restart such a time integrator with a given error vector.
2378: Not Collective, but Vec returned is parallel if TS is parallel
2380: Parameters :
2381: . ts - the TS context obtained from TSCreate() (input parameter).
2382: . v - the vector containing the error (same size as the solution).
2384: Level: intermediate
2386: .seealso: TSSetSolution(), TSGetTimeError)
2388: .keywords: TS, timestep, get, error
2389: @*/
2390: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2391: {
2396: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2397: if (ts->ops->settimeerror) {
2398: (*ts->ops->settimeerror)(ts,v);
2399: }
2400: return(0);
2401: }
2403: /* ----- Routines to initialize and destroy a timestepper ---- */
2404: /*@
2405: TSSetProblemType - Sets the type of problem to be solved.
2407: Not collective
2409: Input Parameters:
2410: + ts - The TS
2411: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2412: .vb
2413: U_t - A U = 0 (linear)
2414: U_t - A(t) U = 0 (linear)
2415: F(t,U,U_t) = 0 (nonlinear)
2416: .ve
2418: Level: beginner
2420: .keywords: TS, problem type
2421: .seealso: TSSetUp(), TSProblemType, TS
2422: @*/
2423: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2424: {
2429: ts->problem_type = type;
2430: if (type == TS_LINEAR) {
2431: SNES snes;
2432: TSGetSNES(ts,&snes);
2433: SNESSetType(snes,SNESKSPONLY);
2434: }
2435: return(0);
2436: }
2438: /*@C
2439: TSGetProblemType - Gets the type of problem to be solved.
2441: Not collective
2443: Input Parameter:
2444: . ts - The TS
2446: Output Parameter:
2447: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2448: .vb
2449: M U_t = A U
2450: M(t) U_t = A(t) U
2451: F(t,U,U_t)
2452: .ve
2454: Level: beginner
2456: .keywords: TS, problem type
2457: .seealso: TSSetUp(), TSProblemType, TS
2458: @*/
2459: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2460: {
2464: *type = ts->problem_type;
2465: return(0);
2466: }
2468: /*@
2469: TSSetUp - Sets up the internal data structures for the later use
2470: of a timestepper.
2472: Collective on TS
2474: Input Parameter:
2475: . ts - the TS context obtained from TSCreate()
2477: Notes:
2478: For basic use of the TS solvers the user need not explicitly call
2479: TSSetUp(), since these actions will automatically occur during
2480: the call to TSStep() or TSSolve(). However, if one wishes to control this
2481: phase separately, TSSetUp() should be called after TSCreate()
2482: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2484: Level: advanced
2486: .keywords: TS, timestep, setup
2488: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2489: @*/
2490: PetscErrorCode TSSetUp(TS ts)
2491: {
2493: DM dm;
2494: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2495: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2496: TSIFunction ifun;
2497: TSIJacobian ijac;
2498: TSI2Jacobian i2jac;
2499: TSRHSJacobian rhsjac;
2500: PetscBool isnone;
2504: if (ts->setupcalled) return(0);
2506: if (!((PetscObject)ts)->type_name) {
2507: TSGetIFunction(ts,NULL,&ifun,NULL);
2508: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2509: }
2511: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2513: if (ts->rhsjacobian.reuse) {
2514: Mat Amat,Pmat;
2515: SNES snes;
2516: TSGetSNES(ts,&snes);
2517: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2518: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2519: * have displaced the RHS matrix */
2520: if (Amat == ts->Arhs) {
2521: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2522: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2523: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2524: MatDestroy(&Amat);
2525: }
2526: if (Pmat == ts->Brhs) {
2527: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2528: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2529: MatDestroy(&Pmat);
2530: }
2531: }
2533: TSGetAdapt(ts,&ts->adapt);
2534: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2536: if (ts->ops->setup) {
2537: (*ts->ops->setup)(ts);
2538: }
2540: /* Attempt to check/preset a default value for the exact final time option */
2541: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2542: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED)
2543: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2545: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2546: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2547: */
2548: TSGetDM(ts,&dm);
2549: DMSNESGetFunction(dm,&func,NULL);
2550: if (!func) {
2551: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2552: }
2553: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2554: Otherwise, the SNES will use coloring internally to form the Jacobian.
2555: */
2556: DMSNESGetJacobian(dm,&jac,NULL);
2557: DMTSGetIJacobian(dm,&ijac,NULL);
2558: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2559: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2560: if (!jac && (ijac || i2jac || rhsjac)) {
2561: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2562: }
2564: /* if time integration scheme has a starting method, call it */
2565: if (ts->ops->startingmethod) {
2566: (*ts->ops->startingmethod)(ts);
2567: }
2569: ts->setupcalled = PETSC_TRUE;
2570: return(0);
2571: }
2573: /*@
2574: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2576: Collective on TS
2578: Input Parameter:
2579: . ts - the TS context obtained from TSCreate()
2581: Level: beginner
2583: .keywords: TS, timestep, reset
2585: .seealso: TSCreate(), TSSetup(), TSDestroy()
2586: @*/
2587: PetscErrorCode TSReset(TS ts)
2588: {
2594: if (ts->ops->reset) {
2595: (*ts->ops->reset)(ts);
2596: }
2597: if (ts->snes) {SNESReset(ts->snes);}
2598: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2600: MatDestroy(&ts->Arhs);
2601: MatDestroy(&ts->Brhs);
2602: VecDestroy(&ts->Frhs);
2603: VecDestroy(&ts->vec_sol);
2604: VecDestroy(&ts->vec_dot);
2605: VecDestroy(&ts->vatol);
2606: VecDestroy(&ts->vrtol);
2607: VecDestroyVecs(ts->nwork,&ts->work);
2609: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2610: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2612: MatDestroy(&ts->Jacp);
2613: VecDestroy(&ts->vec_costintegral);
2614: VecDestroy(&ts->vec_costintegrand);
2615: MatDestroy(&ts->mat_sensip);
2617: ts->setupcalled = PETSC_FALSE;
2618: return(0);
2619: }
2621: /*@
2622: TSDestroy - Destroys the timestepper context that was created
2623: with TSCreate().
2625: Collective on TS
2627: Input Parameter:
2628: . ts - the TS context obtained from TSCreate()
2630: Level: beginner
2632: .keywords: TS, timestepper, destroy
2634: .seealso: TSCreate(), TSSetUp(), TSSolve()
2635: @*/
2636: PetscErrorCode TSDestroy(TS *ts)
2637: {
2641: if (!*ts) return(0);
2643: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2645: TSReset((*ts));
2647: /* if memory was published with SAWs then destroy it */
2648: PetscObjectSAWsViewOff((PetscObject)*ts);
2649: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2651: TSTrajectoryDestroy(&(*ts)->trajectory);
2653: TSAdaptDestroy(&(*ts)->adapt);
2654: TSEventDestroy(&(*ts)->event);
2656: SNESDestroy(&(*ts)->snes);
2657: DMDestroy(&(*ts)->dm);
2658: TSMonitorCancel((*ts));
2659: TSAdjointMonitorCancel((*ts));
2661: PetscHeaderDestroy(ts);
2662: return(0);
2663: }
2665: /*@
2666: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2667: a TS (timestepper) context. Valid only for nonlinear problems.
2669: Not Collective, but SNES is parallel if TS is parallel
2671: Input Parameter:
2672: . ts - the TS context obtained from TSCreate()
2674: Output Parameter:
2675: . snes - the nonlinear solver context
2677: Notes:
2678: The user can then directly manipulate the SNES context to set various
2679: options, etc. Likewise, the user can then extract and manipulate the
2680: KSP, KSP, and PC contexts as well.
2682: TSGetSNES() does not work for integrators that do not use SNES; in
2683: this case TSGetSNES() returns NULL in snes.
2685: Level: beginner
2687: .keywords: timestep, get, SNES
2688: @*/
2689: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2690: {
2696: if (!ts->snes) {
2697: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2698: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2699: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2700: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2701: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2702: if (ts->problem_type == TS_LINEAR) {
2703: SNESSetType(ts->snes,SNESKSPONLY);
2704: }
2705: }
2706: *snes = ts->snes;
2707: return(0);
2708: }
2710: /*@
2711: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2713: Collective
2715: Input Parameter:
2716: + ts - the TS context obtained from TSCreate()
2717: - snes - the nonlinear solver context
2719: Notes:
2720: Most users should have the TS created by calling TSGetSNES()
2722: Level: developer
2724: .keywords: timestep, set, SNES
2725: @*/
2726: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2727: {
2729: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2734: PetscObjectReference((PetscObject)snes);
2735: SNESDestroy(&ts->snes);
2737: ts->snes = snes;
2739: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2740: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2741: if (func == SNESTSFormJacobian) {
2742: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2743: }
2744: return(0);
2745: }
2747: /*@
2748: TSGetKSP - Returns the KSP (linear solver) associated with
2749: a TS (timestepper) context.
2751: Not Collective, but KSP is parallel if TS is parallel
2753: Input Parameter:
2754: . ts - the TS context obtained from TSCreate()
2756: Output Parameter:
2757: . ksp - the nonlinear solver context
2759: Notes:
2760: The user can then directly manipulate the KSP context to set various
2761: options, etc. Likewise, the user can then extract and manipulate the
2762: KSP and PC contexts as well.
2764: TSGetKSP() does not work for integrators that do not use KSP;
2765: in this case TSGetKSP() returns NULL in ksp.
2767: Level: beginner
2769: .keywords: timestep, get, KSP
2770: @*/
2771: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2772: {
2774: SNES snes;
2779: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2780: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2781: TSGetSNES(ts,&snes);
2782: SNESGetKSP(snes,ksp);
2783: return(0);
2784: }
2786: /* ----------- Routines to set solver parameters ---------- */
2788: /*@
2789: TSSetMaxSteps - Sets the maximum number of steps to use.
2791: Logically Collective on TS
2793: Input Parameters:
2794: + ts - the TS context obtained from TSCreate()
2795: - maxsteps - maximum number of steps to use
2797: Options Database Keys:
2798: . -ts_max_steps <maxsteps> - Sets maxsteps
2800: Notes:
2801: The default maximum number of steps is 5000
2803: Level: intermediate
2805: .keywords: TS, timestep, set, maximum, steps
2807: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2808: @*/
2809: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2810: {
2814: if (maxsteps < 0 ) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2815: ts->max_steps = maxsteps;
2816: return(0);
2817: }
2819: /*@
2820: TSGetMaxSteps - Gets the maximum number of steps to use.
2822: Not Collective
2824: Input Parameters:
2825: . ts - the TS context obtained from TSCreate()
2827: Output Parameter:
2828: . maxsteps - maximum number of steps to use
2830: Level: advanced
2832: .keywords: TS, timestep, get, maximum, steps
2834: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
2835: @*/
2836: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
2837: {
2841: *maxsteps = ts->max_steps;
2842: return(0);
2843: }
2845: /*@
2846: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
2848: Logically Collective on TS
2850: Input Parameters:
2851: + ts - the TS context obtained from TSCreate()
2852: - maxtime - final time to step to
2854: Options Database Keys:
2855: . -ts_max_time <maxtime> - Sets maxtime
2857: Notes:
2858: The default maximum time is 5.0
2860: Level: intermediate
2862: .keywords: TS, timestep, set, maximum, time
2864: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
2865: @*/
2866: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
2867: {
2871: ts->max_time = maxtime;
2872: return(0);
2873: }
2875: /*@
2876: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
2878: Not Collective
2880: Input Parameters:
2881: . ts - the TS context obtained from TSCreate()
2883: Output Parameter:
2884: . maxtime - final time to step to
2886: Level: advanced
2888: .keywords: TS, timestep, get, maximum, time
2890: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
2891: @*/
2892: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
2893: {
2897: *maxtime = ts->max_time;
2898: return(0);
2899: }
2901: /*@
2902: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
2904: Level: deprecated
2906: @*/
2907: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2908: {
2912: TSSetTime(ts,initial_time);
2913: TSSetTimeStep(ts,time_step);
2914: return(0);
2915: }
2917: /*@
2918: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
2920: Level: deprecated
2922: @*/
2923: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2924: {
2927: if (maxsteps) {
2929: *maxsteps = ts->max_steps;
2930: }
2931: if (maxtime) {
2933: *maxtime = ts->max_time;
2934: }
2935: return(0);
2936: }
2938: /*@
2939: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
2941: Level: deprecated
2943: @*/
2944: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2945: {
2950: if (maxsteps >= 0) ts->max_steps = maxsteps;
2951: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2952: return(0);
2953: }
2955: /*@
2956: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
2958: Level: deprecated
2960: @*/
2961: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2963: /*@
2964: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
2966: Level: deprecated
2968: @*/
2969: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2971: /*@
2972: TSSetSolution - Sets the initial solution vector
2973: for use by the TS routines.
2975: Logically Collective on TS and Vec
2977: Input Parameters:
2978: + ts - the TS context obtained from TSCreate()
2979: - u - the solution vector
2981: Level: beginner
2983: .keywords: TS, timestep, set, solution, initial values
2985: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
2986: @*/
2987: PetscErrorCode TSSetSolution(TS ts,Vec u)
2988: {
2990: DM dm;
2995: PetscObjectReference((PetscObject)u);
2996: VecDestroy(&ts->vec_sol);
2997: ts->vec_sol = u;
2999: TSGetDM(ts,&dm);
3000: DMShellSetGlobalVector(dm,u);
3001: return(0);
3002: }
3004: /*@C
3005: TSSetPreStep - Sets the general-purpose function
3006: called once at the beginning of each time step.
3008: Logically Collective on TS
3010: Input Parameters:
3011: + ts - The TS context obtained from TSCreate()
3012: - func - The function
3014: Calling sequence of func:
3015: . func (TS ts);
3017: Level: intermediate
3019: .keywords: TS, timestep
3020: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3021: @*/
3022: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3023: {
3026: ts->prestep = func;
3027: return(0);
3028: }
3030: /*@
3031: TSPreStep - Runs the user-defined pre-step function.
3033: Collective on TS
3035: Input Parameters:
3036: . ts - The TS context obtained from TSCreate()
3038: Notes:
3039: TSPreStep() is typically used within time stepping implementations,
3040: so most users would not generally call this routine themselves.
3042: Level: developer
3044: .keywords: TS, timestep
3045: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3046: @*/
3047: PetscErrorCode TSPreStep(TS ts)
3048: {
3053: if (ts->prestep) {
3054: Vec U;
3055: PetscObjectState sprev,spost;
3057: TSGetSolution(ts,&U);
3058: PetscObjectStateGet((PetscObject)U,&sprev);
3059: PetscStackCallStandard((*ts->prestep),(ts));
3060: PetscObjectStateGet((PetscObject)U,&spost);
3061: if (sprev != spost) {TSRestartStep(ts);}
3062: }
3063: return(0);
3064: }
3066: /*@C
3067: TSSetPreStage - Sets the general-purpose function
3068: called once at the beginning of each stage.
3070: Logically Collective on TS
3072: Input Parameters:
3073: + ts - The TS context obtained from TSCreate()
3074: - func - The function
3076: Calling sequence of func:
3077: . PetscErrorCode func(TS ts, PetscReal stagetime);
3079: Level: intermediate
3081: Note:
3082: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3083: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3084: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3086: .keywords: TS, timestep
3087: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3088: @*/
3089: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3090: {
3093: ts->prestage = func;
3094: return(0);
3095: }
3097: /*@C
3098: TSSetPostStage - Sets the general-purpose function
3099: called once at the end of each stage.
3101: Logically Collective on TS
3103: Input Parameters:
3104: + ts - The TS context obtained from TSCreate()
3105: - func - The function
3107: Calling sequence of func:
3108: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3110: Level: intermediate
3112: Note:
3113: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3114: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3115: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3117: .keywords: TS, timestep
3118: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3119: @*/
3120: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3121: {
3124: ts->poststage = func;
3125: return(0);
3126: }
3128: /*@C
3129: TSSetPostEvaluate - Sets the general-purpose function
3130: called once at the end of each step evaluation.
3132: Logically Collective on TS
3134: Input Parameters:
3135: + ts - The TS context obtained from TSCreate()
3136: - func - The function
3138: Calling sequence of func:
3139: . PetscErrorCode func(TS ts);
3141: Level: intermediate
3143: Note:
3144: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3145: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3146: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3147: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3148: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3150: .keywords: TS, timestep
3151: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3152: @*/
3153: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3154: {
3157: ts->postevaluate = func;
3158: return(0);
3159: }
3161: /*@
3162: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3164: Collective on TS
3166: Input Parameters:
3167: . ts - The TS context obtained from TSCreate()
3168: stagetime - The absolute time of the current stage
3170: Notes:
3171: TSPreStage() is typically used within time stepping implementations,
3172: most users would not generally call this routine themselves.
3174: Level: developer
3176: .keywords: TS, timestep
3177: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3178: @*/
3179: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3180: {
3185: if (ts->prestage) {
3186: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3187: }
3188: return(0);
3189: }
3191: /*@
3192: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3194: Collective on TS
3196: Input Parameters:
3197: . ts - The TS context obtained from TSCreate()
3198: stagetime - The absolute time of the current stage
3199: stageindex - Stage number
3200: Y - Array of vectors (of size = total number
3201: of stages) with the stage solutions
3203: Notes:
3204: TSPostStage() is typically used within time stepping implementations,
3205: most users would not generally call this routine themselves.
3207: Level: developer
3209: .keywords: TS, timestep
3210: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3211: @*/
3212: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3213: {
3218: if (ts->poststage) {
3219: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3220: }
3221: return(0);
3222: }
3224: /*@
3225: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3227: Collective on TS
3229: Input Parameters:
3230: . ts - The TS context obtained from TSCreate()
3232: Notes:
3233: TSPostEvaluate() is typically used within time stepping implementations,
3234: most users would not generally call this routine themselves.
3236: Level: developer
3238: .keywords: TS, timestep
3239: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3240: @*/
3241: PetscErrorCode TSPostEvaluate(TS ts)
3242: {
3247: if (ts->postevaluate) {
3248: Vec U;
3249: PetscObjectState sprev,spost;
3251: TSGetSolution(ts,&U);
3252: PetscObjectStateGet((PetscObject)U,&sprev);
3253: PetscStackCallStandard((*ts->postevaluate),(ts));
3254: PetscObjectStateGet((PetscObject)U,&spost);
3255: if (sprev != spost) {TSRestartStep(ts);}
3256: }
3257: return(0);
3258: }
3260: /*@C
3261: TSSetPostStep - Sets the general-purpose function
3262: called once at the end of each time step.
3264: Logically Collective on TS
3266: Input Parameters:
3267: + ts - The TS context obtained from TSCreate()
3268: - func - The function
3270: Calling sequence of func:
3271: $ func (TS ts);
3273: Notes:
3274: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3275: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3276: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3278: Level: intermediate
3280: .keywords: TS, timestep
3281: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3282: @*/
3283: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3284: {
3287: ts->poststep = func;
3288: return(0);
3289: }
3291: /*@
3292: TSPostStep - Runs the user-defined post-step function.
3294: Collective on TS
3296: Input Parameters:
3297: . ts - The TS context obtained from TSCreate()
3299: Notes:
3300: TSPostStep() is typically used within time stepping implementations,
3301: so most users would not generally call this routine themselves.
3303: Level: developer
3305: .keywords: TS, timestep
3306: @*/
3307: PetscErrorCode TSPostStep(TS ts)
3308: {
3313: if (ts->poststep) {
3314: Vec U;
3315: PetscObjectState sprev,spost;
3317: TSGetSolution(ts,&U);
3318: PetscObjectStateGet((PetscObject)U,&sprev);
3319: PetscStackCallStandard((*ts->poststep),(ts));
3320: PetscObjectStateGet((PetscObject)U,&spost);
3321: if (sprev != spost) {TSRestartStep(ts);}
3322: }
3323: return(0);
3324: }
3326: /* ------------ Routines to set performance monitoring options ----------- */
3328: /*@C
3329: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3330: timestep to display the iteration's progress.
3332: Logically Collective on TS
3334: Input Parameters:
3335: + ts - the TS context obtained from TSCreate()
3336: . monitor - monitoring routine
3337: . mctx - [optional] user-defined context for private data for the
3338: monitor routine (use NULL if no context is desired)
3339: - monitordestroy - [optional] routine that frees monitor context
3340: (may be NULL)
3342: Calling sequence of monitor:
3343: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3345: + ts - the TS context
3346: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3347: . time - current time
3348: . u - current iterate
3349: - mctx - [optional] monitoring context
3351: Notes:
3352: This routine adds an additional monitor to the list of monitors that
3353: already has been loaded.
3355: Fortran notes: Only a single monitor function can be set for each TS object
3357: Level: intermediate
3359: .keywords: TS, timestep, set, monitor
3361: .seealso: TSMonitorDefault(), TSMonitorCancel()
3362: @*/
3363: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3364: {
3366: PetscInt i;
3367: PetscBool identical;
3371: for (i=0; i<ts->numbermonitors;i++) {
3372: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3373: if (identical) return(0);
3374: }
3375: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3376: ts->monitor[ts->numbermonitors] = monitor;
3377: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3378: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3379: return(0);
3380: }
3382: /*@C
3383: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3385: Logically Collective on TS
3387: Input Parameters:
3388: . ts - the TS context obtained from TSCreate()
3390: Notes:
3391: There is no way to remove a single, specific monitor.
3393: Level: intermediate
3395: .keywords: TS, timestep, set, monitor
3397: .seealso: TSMonitorDefault(), TSMonitorSet()
3398: @*/
3399: PetscErrorCode TSMonitorCancel(TS ts)
3400: {
3402: PetscInt i;
3406: for (i=0; i<ts->numbermonitors; i++) {
3407: if (ts->monitordestroy[i]) {
3408: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3409: }
3410: }
3411: ts->numbermonitors = 0;
3412: return(0);
3413: }
3415: /*@C
3416: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3418: Level: intermediate
3420: .keywords: TS, set, monitor
3422: .seealso: TSMonitorSet()
3423: @*/
3424: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3425: {
3427: PetscViewer viewer = vf->viewer;
3428: PetscBool iascii,ibinary;
3432: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3433: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3434: PetscViewerPushFormat(viewer,vf->format);
3435: if (iascii) {
3436: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3437: if (step == -1){ /* this indicates it is an interpolated solution */
3438: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3439: } else {
3440: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3441: }
3442: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3443: } else if (ibinary) {
3444: PetscMPIInt rank;
3445: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3446: if (!rank) {
3447: PetscBool skipHeader;
3448: PetscInt classid = REAL_FILE_CLASSID;
3450: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3451: if (!skipHeader) {
3452: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
3453: }
3454: PetscRealView(1,&ptime,viewer);
3455: } else {
3456: PetscRealView(0,&ptime,viewer);
3457: }
3458: }
3459: PetscViewerPopFormat(viewer);
3460: return(0);
3461: }
3463: /*@
3464: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3466: Collective on TS
3468: Input Argument:
3469: + ts - time stepping context
3470: - t - time to interpolate to
3472: Output Argument:
3473: . U - state at given time
3475: Level: intermediate
3477: Developer Notes:
3478: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3480: .keywords: TS, set
3482: .seealso: TSSetExactFinalTime(), TSSolve()
3483: @*/
3484: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3485: {
3491: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3492: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3493: (*ts->ops->interpolate)(ts,t,U);
3494: return(0);
3495: }
3497: /*@
3498: TSStep - Steps one time step
3500: Collective on TS
3502: Input Parameter:
3503: . ts - the TS context obtained from TSCreate()
3505: Level: developer
3507: Notes:
3508: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3510: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3511: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3513: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3514: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3516: .keywords: TS, timestep, solve
3518: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3519: @*/
3520: PetscErrorCode TSStep(TS ts)
3521: {
3522: PetscErrorCode ierr;
3523: static PetscBool cite = PETSC_FALSE;
3524: PetscReal ptime;
3528: PetscCitationsRegister("@techreport{tspaper,\n"
3529: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3530: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3531: " type = {Preprint},\n"
3532: " number = {ANL/MCS-P5061-0114},\n"
3533: " institution = {Argonne National Laboratory},\n"
3534: " year = {2014}\n}\n",&cite);
3536: TSSetUp(ts);
3537: TSTrajectorySetUp(ts->trajectory,ts);
3539: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3540: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3541: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3543: if (!ts->steps) ts->ptime_prev = ts->ptime;
3544: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3545: ts->reason = TS_CONVERGED_ITERATING;
3546: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3547: PetscLogEventBegin(TS_Step,ts,0,0,0);
3548: (*ts->ops->step)(ts);
3549: PetscLogEventEnd(TS_Step,ts,0,0,0);
3550: ts->ptime_prev = ptime;
3551: ts->steps++;
3552: ts->steprollback = PETSC_FALSE;
3553: ts->steprestart = PETSC_FALSE;
3555: if (ts->reason < 0) {
3556: if (ts->errorifstepfailed) {
3557: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3558: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3559: }
3560: } else if (!ts->reason) {
3561: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3562: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3563: }
3564: return(0);
3565: }
3567: /*@
3568: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3569: at the end of a time step with a given order of accuracy.
3571: Collective on TS
3573: Input Arguments:
3574: + ts - time stepping context
3575: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3576: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3578: Output Arguments:
3579: + order - optional, the actual order of the error evaluation
3580: - wlte - the weighted local truncation error norm
3582: Level: advanced
3584: Notes:
3585: If the timestepper cannot evaluate the error in a particular step
3586: (eg. in the first step or restart steps after event handling),
3587: this routine returns wlte=-1.0 .
3589: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3590: @*/
3591: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3592: {
3602: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3603: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3604: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3605: return(0);
3606: }
3608: /*@
3609: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3611: Collective on TS
3613: Input Arguments:
3614: + ts - time stepping context
3615: . order - desired order of accuracy
3616: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3618: Output Arguments:
3619: . U - state at the end of the current step
3621: Level: advanced
3623: Notes:
3624: This function cannot be called until all stages have been evaluated.
3625: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3627: .seealso: TSStep(), TSAdapt
3628: @*/
3629: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3630: {
3637: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3638: (*ts->ops->evaluatestep)(ts,order,U,done);
3639: return(0);
3640: }
3642: /*@
3643: TSSolve - Steps the requested number of timesteps.
3645: Collective on TS
3647: Input Parameter:
3648: + ts - the TS context obtained from TSCreate()
3649: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
3650: otherwise must contain the initial conditions and will contain the solution at the final requested time
3652: Level: beginner
3654: Notes:
3655: The final time returned by this function may be different from the time of the internally
3656: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3657: stepped over the final time.
3659: .keywords: TS, timestep, solve
3661: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
3662: @*/
3663: PetscErrorCode TSSolve(TS ts,Vec u)
3664: {
3665: Vec solution;
3666: PetscErrorCode ierr;
3672: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3673: if (!ts->vec_sol || u == ts->vec_sol) {
3674: VecDuplicate(u,&solution);
3675: TSSetSolution(ts,solution);
3676: VecDestroy(&solution); /* grant ownership */
3677: }
3678: VecCopy(u,ts->vec_sol);
3679: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
3680: } else if (u) {
3681: TSSetSolution(ts,u);
3682: }
3683: TSSetUp(ts);
3684: TSTrajectorySetUp(ts->trajectory,ts);
3686: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3687: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
3688: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3690: if (ts->forward_solve) {
3691: TSForwardSetUp(ts);
3692: }
3694: /* reset number of steps only when the step is not restarted. ARKIMEX
3695: restarts the step after an event. Resetting these counters in such case causes
3696: TSTrajectory to incorrectly save the output files
3697: */
3698: /* reset time step and iteration counters */
3699: if (!ts->steps) {
3700: ts->ksp_its = 0;
3701: ts->snes_its = 0;
3702: ts->num_snes_failures = 0;
3703: ts->reject = 0;
3704: ts->steprestart = PETSC_TRUE;
3705: ts->steprollback = PETSC_FALSE;
3706: }
3707: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && ts->ptime + ts->time_step > ts->max_time) ts->time_step = ts->max_time - ts->ptime;
3708: ts->reason = TS_CONVERGED_ITERATING;
3710: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3712: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3713: (*ts->ops->solve)(ts);
3714: if (u) {VecCopy(ts->vec_sol,u);}
3715: ts->solvetime = ts->ptime;
3716: solution = ts->vec_sol;
3717: } else { /* Step the requested number of timesteps. */
3718: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3719: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3721: if (!ts->steps) {
3722: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3723: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
3724: }
3726: while (!ts->reason) {
3727: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3728: if (!ts->steprollback) {
3729: TSPreStep(ts);
3730: }
3731: TSStep(ts);
3732: if (ts->testjacobian) {
3733: TSRHSJacobianTest(ts,NULL);
3734: }
3735: if (ts->testjacobiantranspose) {
3736: TSRHSJacobianTestTranspose(ts,NULL);
3737: }
3738: if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
3739: TSForwardCostIntegral(ts);
3740: }
3741: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
3742: TSForwardStep(ts);
3743: }
3744: TSPostEvaluate(ts);
3745: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
3746: if (ts->steprollback) {
3747: TSPostEvaluate(ts);
3748: }
3749: if (!ts->steprollback) {
3750: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3751: TSPostStep(ts);
3752: }
3753: }
3754: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3756: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3757: TSInterpolate(ts,ts->max_time,u);
3758: ts->solvetime = ts->max_time;
3759: solution = u;
3760: TSMonitor(ts,-1,ts->solvetime,solution);
3761: } else {
3762: if (u) {VecCopy(ts->vec_sol,u);}
3763: ts->solvetime = ts->ptime;
3764: solution = ts->vec_sol;
3765: }
3766: }
3768: TSViewFromOptions(ts,NULL,"-ts_view");
3769: VecViewFromOptions(solution,NULL,"-ts_view_solution");
3770: PetscObjectSAWsBlock((PetscObject)ts);
3771: if (ts->adjoint_solve) {
3772: TSAdjointSolve(ts);
3773: }
3774: return(0);
3775: }
3777: /*@C
3778: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
3780: Collective on TS
3782: Input Parameters:
3783: + ts - time stepping context obtained from TSCreate()
3784: . step - step number that has just completed
3785: . ptime - model time of the state
3786: - u - state at the current model time
3788: Notes:
3789: TSMonitor() is typically used automatically within the time stepping implementations.
3790: Users would almost never call this routine directly.
3792: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
3794: Level: developer
3796: .keywords: TS, timestep
3797: @*/
3798: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
3799: {
3800: DM dm;
3801: PetscInt i,n = ts->numbermonitors;
3808: TSGetDM(ts,&dm);
3809: DMSetOutputSequenceNumber(dm,step,ptime);
3811: VecLockPush(u);
3812: for (i=0; i<n; i++) {
3813: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
3814: }
3815: VecLockPop(u);
3816: return(0);
3817: }
3819: /* ------------------------------------------------------------------------*/
3820: /*@C
3821: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
3822: TS to monitor the solution process graphically in various ways
3824: Collective on TS
3826: Input Parameters:
3827: + host - the X display to open, or null for the local machine
3828: . label - the title to put in the title bar
3829: . x, y - the screen coordinates of the upper left coordinate of the window
3830: . m, n - the screen width and height in pixels
3831: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
3833: Output Parameter:
3834: . ctx - the context
3836: Options Database Key:
3837: + -ts_monitor_lg_timestep - automatically sets line graph monitor
3838: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
3839: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
3840: . -ts_monitor_lg_error - monitor the error
3841: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
3842: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
3843: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
3845: Notes:
3846: Use TSMonitorLGCtxDestroy() to destroy.
3848: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
3850: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
3851: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
3852: as the first argument.
3854: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
3856: Level: intermediate
3858: .keywords: TS, monitor, line graph, residual
3860: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
3861: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
3862: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
3863: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
3864: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
3866: @*/
3867: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
3868: {
3869: PetscDraw draw;
3873: PetscNew(ctx);
3874: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
3875: PetscDrawSetFromOptions(draw);
3876: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
3877: PetscDrawLGSetFromOptions((*ctx)->lg);
3878: PetscDrawDestroy(&draw);
3879: (*ctx)->howoften = howoften;
3880: return(0);
3881: }
3883: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
3884: {
3885: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
3886: PetscReal x = ptime,y;
3890: if (step < 0) return(0); /* -1 indicates an interpolated solution */
3891: if (!step) {
3892: PetscDrawAxis axis;
3893: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
3894: PetscDrawLGGetAxis(ctx->lg,&axis);
3895: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
3896: PetscDrawLGReset(ctx->lg);
3897: }
3898: TSGetTimeStep(ts,&y);
3899: if (ctx->semilogy) y = PetscLog10Real(y);
3900: PetscDrawLGAddPoint(ctx->lg,&x,&y);
3901: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
3902: PetscDrawLGDraw(ctx->lg);
3903: PetscDrawLGSave(ctx->lg);
3904: }
3905: return(0);
3906: }
3908: /*@C
3909: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
3910: with TSMonitorLGCtxCreate().
3912: Collective on TSMonitorLGCtx
3914: Input Parameter:
3915: . ctx - the monitor context
3917: Level: intermediate
3919: .keywords: TS, monitor, line graph, destroy
3921: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
3922: @*/
3923: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
3924: {
3928: if ((*ctx)->transformdestroy) {
3929: ((*ctx)->transformdestroy)((*ctx)->transformctx);
3930: }
3931: PetscDrawLGDestroy(&(*ctx)->lg);
3932: PetscStrArrayDestroy(&(*ctx)->names);
3933: PetscStrArrayDestroy(&(*ctx)->displaynames);
3934: PetscFree((*ctx)->displayvariables);
3935: PetscFree((*ctx)->displayvalues);
3936: PetscFree(*ctx);
3937: return(0);
3938: }
3940: /*@
3941: TSGetTime - Gets the time of the most recently completed step.
3943: Not Collective
3945: Input Parameter:
3946: . ts - the TS context obtained from TSCreate()
3948: Output Parameter:
3949: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
3951: Level: beginner
3953: Note:
3954: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
3955: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
3957: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep()
3959: .keywords: TS, get, time
3960: @*/
3961: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
3962: {
3966: *t = ts->ptime;
3967: return(0);
3968: }
3970: /*@
3971: TSGetPrevTime - Gets the starting time of the previously completed step.
3973: Not Collective
3975: Input Parameter:
3976: . ts - the TS context obtained from TSCreate()
3978: Output Parameter:
3979: . t - the previous time
3981: Level: beginner
3983: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
3985: .keywords: TS, get, time
3986: @*/
3987: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
3988: {
3992: *t = ts->ptime_prev;
3993: return(0);
3994: }
3996: /*@
3997: TSSetTime - Allows one to reset the time.
3999: Logically Collective on TS
4001: Input Parameters:
4002: + ts - the TS context obtained from TSCreate()
4003: - time - the time
4005: Level: intermediate
4007: .seealso: TSGetTime(), TSSetMaxSteps()
4009: .keywords: TS, set, time
4010: @*/
4011: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4012: {
4016: ts->ptime = t;
4017: return(0);
4018: }
4020: /*@C
4021: TSSetOptionsPrefix - Sets the prefix used for searching for all
4022: TS options in the database.
4024: Logically Collective on TS
4026: Input Parameter:
4027: + ts - The TS context
4028: - prefix - The prefix to prepend to all option names
4030: Notes:
4031: A hyphen (-) must NOT be given at the beginning of the prefix name.
4032: The first character of all runtime options is AUTOMATICALLY the
4033: hyphen.
4035: Level: advanced
4037: .keywords: TS, set, options, prefix, database
4039: .seealso: TSSetFromOptions()
4041: @*/
4042: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4043: {
4045: SNES snes;
4049: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4050: TSGetSNES(ts,&snes);
4051: SNESSetOptionsPrefix(snes,prefix);
4052: return(0);
4053: }
4055: /*@C
4056: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4057: TS options in the database.
4059: Logically Collective on TS
4061: Input Parameter:
4062: + ts - The TS context
4063: - prefix - The prefix to prepend to all option names
4065: Notes:
4066: A hyphen (-) must NOT be given at the beginning of the prefix name.
4067: The first character of all runtime options is AUTOMATICALLY the
4068: hyphen.
4070: Level: advanced
4072: .keywords: TS, append, options, prefix, database
4074: .seealso: TSGetOptionsPrefix()
4076: @*/
4077: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4078: {
4080: SNES snes;
4084: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4085: TSGetSNES(ts,&snes);
4086: SNESAppendOptionsPrefix(snes,prefix);
4087: return(0);
4088: }
4090: /*@C
4091: TSGetOptionsPrefix - Sets the prefix used for searching for all
4092: TS options in the database.
4094: Not Collective
4096: Input Parameter:
4097: . ts - The TS context
4099: Output Parameter:
4100: . prefix - A pointer to the prefix string used
4102: Notes: On the fortran side, the user should pass in a string 'prifix' of
4103: sufficient length to hold the prefix.
4105: Level: intermediate
4107: .keywords: TS, get, options, prefix, database
4109: .seealso: TSAppendOptionsPrefix()
4110: @*/
4111: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4112: {
4118: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4119: return(0);
4120: }
4122: /*@C
4123: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4125: Not Collective, but parallel objects are returned if TS is parallel
4127: Input Parameter:
4128: . ts - The TS context obtained from TSCreate()
4130: Output Parameters:
4131: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4132: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4133: . func - Function to compute the Jacobian of the RHS (or NULL)
4134: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4136: Notes: You can pass in NULL for any return argument you do not need.
4138: Level: intermediate
4140: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4142: .keywords: TS, timestep, get, matrix, Jacobian
4143: @*/
4144: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4145: {
4147: DM dm;
4150: if (Amat || Pmat) {
4151: SNES snes;
4152: TSGetSNES(ts,&snes);
4153: SNESSetUpMatrices(snes);
4154: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4155: }
4156: TSGetDM(ts,&dm);
4157: DMTSGetRHSJacobian(dm,func,ctx);
4158: return(0);
4159: }
4161: /*@C
4162: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4164: Not Collective, but parallel objects are returned if TS is parallel
4166: Input Parameter:
4167: . ts - The TS context obtained from TSCreate()
4169: Output Parameters:
4170: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4171: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4172: . f - The function to compute the matrices
4173: - ctx - User-defined context for Jacobian evaluation routine
4175: Notes: You can pass in NULL for any return argument you do not need.
4177: Level: advanced
4179: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4181: .keywords: TS, timestep, get, matrix, Jacobian
4182: @*/
4183: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4184: {
4186: DM dm;
4189: if (Amat || Pmat) {
4190: SNES snes;
4191: TSGetSNES(ts,&snes);
4192: SNESSetUpMatrices(snes);
4193: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4194: }
4195: TSGetDM(ts,&dm);
4196: DMTSGetIJacobian(dm,f,ctx);
4197: return(0);
4198: }
4200: /*@C
4201: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4202: VecView() for the solution at each timestep
4204: Collective on TS
4206: Input Parameters:
4207: + ts - the TS context
4208: . step - current time-step
4209: . ptime - current time
4210: - dummy - either a viewer or NULL
4212: Options Database:
4213: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4215: Notes: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4216: will look bad
4218: Level: intermediate
4220: .keywords: TS, vector, monitor, view
4222: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4223: @*/
4224: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4225: {
4226: PetscErrorCode ierr;
4227: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4228: PetscDraw draw;
4231: if (!step && ictx->showinitial) {
4232: if (!ictx->initialsolution) {
4233: VecDuplicate(u,&ictx->initialsolution);
4234: }
4235: VecCopy(u,ictx->initialsolution);
4236: }
4237: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4239: if (ictx->showinitial) {
4240: PetscReal pause;
4241: PetscViewerDrawGetPause(ictx->viewer,&pause);
4242: PetscViewerDrawSetPause(ictx->viewer,0.0);
4243: VecView(ictx->initialsolution,ictx->viewer);
4244: PetscViewerDrawSetPause(ictx->viewer,pause);
4245: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4246: }
4247: VecView(u,ictx->viewer);
4248: if (ictx->showtimestepandtime) {
4249: PetscReal xl,yl,xr,yr,h;
4250: char time[32];
4252: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4253: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4254: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4255: h = yl + .95*(yr - yl);
4256: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4257: PetscDrawFlush(draw);
4258: }
4260: if (ictx->showinitial) {
4261: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4262: }
4263: return(0);
4264: }
4266: /*@C
4267: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4269: Collective on TS
4271: Input Parameters:
4272: + ts - the TS context
4273: . step - current time-step
4274: . ptime - current time
4275: - dummy - either a viewer or NULL
4277: Level: intermediate
4279: .keywords: TS, vector, monitor, view
4281: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4282: @*/
4283: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4284: {
4285: PetscErrorCode ierr;
4286: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4287: PetscDraw draw;
4288: PetscDrawAxis axis;
4289: PetscInt n;
4290: PetscMPIInt size;
4291: PetscReal U0,U1,xl,yl,xr,yr,h;
4292: char time[32];
4293: const PetscScalar *U;
4296: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4297: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4298: VecGetSize(u,&n);
4299: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4301: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4302: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4303: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4304: if (!step) {
4305: PetscDrawClear(draw);
4306: PetscDrawAxisDraw(axis);
4307: }
4309: VecGetArrayRead(u,&U);
4310: U0 = PetscRealPart(U[0]);
4311: U1 = PetscRealPart(U[1]);
4312: VecRestoreArrayRead(u,&U);
4313: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4315: PetscDrawCollectiveBegin(draw);
4316: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4317: if (ictx->showtimestepandtime) {
4318: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4319: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4320: h = yl + .95*(yr - yl);
4321: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4322: }
4323: PetscDrawCollectiveEnd(draw);
4324: PetscDrawFlush(draw);
4325: PetscDrawPause(draw);
4326: PetscDrawSave(draw);
4327: return(0);
4328: }
4330: /*@C
4331: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4333: Collective on TS
4335: Input Parameters:
4336: . ctx - the monitor context
4338: Level: intermediate
4340: .keywords: TS, vector, monitor, view
4342: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4343: @*/
4344: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4345: {
4349: PetscViewerDestroy(&(*ictx)->viewer);
4350: VecDestroy(&(*ictx)->initialsolution);
4351: PetscFree(*ictx);
4352: return(0);
4353: }
4355: /*@C
4356: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4358: Collective on TS
4360: Input Parameter:
4361: . ts - time-step context
4363: Output Patameter:
4364: . ctx - the monitor context
4366: Options Database:
4367: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4369: Level: intermediate
4371: .keywords: TS, vector, monitor, view
4373: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4374: @*/
4375: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4376: {
4377: PetscErrorCode ierr;
4380: PetscNew(ctx);
4381: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4382: PetscViewerSetFromOptions((*ctx)->viewer);
4384: (*ctx)->howoften = howoften;
4385: (*ctx)->showinitial = PETSC_FALSE;
4386: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4388: (*ctx)->showtimestepandtime = PETSC_FALSE;
4389: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4390: return(0);
4391: }
4393: /*@C
4394: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4395: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4397: Collective on TS
4399: Input Parameters:
4400: + ts - the TS context
4401: . step - current time-step
4402: . ptime - current time
4403: - dummy - either a viewer or NULL
4405: Options Database:
4406: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4408: Level: intermediate
4410: .keywords: TS, vector, monitor, view
4412: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4413: @*/
4414: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4415: {
4416: PetscErrorCode ierr;
4417: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4418: PetscViewer viewer = ctx->viewer;
4419: Vec work;
4422: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4423: VecDuplicate(u,&work);
4424: TSComputeSolutionFunction(ts,ptime,work);
4425: VecView(work,viewer);
4426: VecDestroy(&work);
4427: return(0);
4428: }
4430: /*@C
4431: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4432: VecView() for the error at each timestep
4434: Collective on TS
4436: Input Parameters:
4437: + ts - the TS context
4438: . step - current time-step
4439: . ptime - current time
4440: - dummy - either a viewer or NULL
4442: Options Database:
4443: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4445: Level: intermediate
4447: .keywords: TS, vector, monitor, view
4449: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4450: @*/
4451: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4452: {
4453: PetscErrorCode ierr;
4454: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4455: PetscViewer viewer = ctx->viewer;
4456: Vec work;
4459: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4460: VecDuplicate(u,&work);
4461: TSComputeSolutionFunction(ts,ptime,work);
4462: VecAXPY(work,-1.0,u);
4463: VecView(work,viewer);
4464: VecDestroy(&work);
4465: return(0);
4466: }
4468: #include <petsc/private/dmimpl.h>
4469: /*@
4470: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4472: Logically Collective on TS and DM
4474: Input Parameters:
4475: + ts - the ODE integrator object
4476: - dm - the dm, cannot be NULL
4478: Level: intermediate
4480: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4481: @*/
4482: PetscErrorCode TSSetDM(TS ts,DM dm)
4483: {
4485: SNES snes;
4486: DMTS tsdm;
4491: PetscObjectReference((PetscObject)dm);
4492: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4493: if (ts->dm->dmts && !dm->dmts) {
4494: DMCopyDMTS(ts->dm,dm);
4495: DMGetDMTS(ts->dm,&tsdm);
4496: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4497: tsdm->originaldm = dm;
4498: }
4499: }
4500: DMDestroy(&ts->dm);
4501: }
4502: ts->dm = dm;
4504: TSGetSNES(ts,&snes);
4505: SNESSetDM(snes,dm);
4506: return(0);
4507: }
4509: /*@
4510: TSGetDM - Gets the DM that may be used by some preconditioners
4512: Not Collective
4514: Input Parameter:
4515: . ts - the preconditioner context
4517: Output Parameter:
4518: . dm - the dm
4520: Level: intermediate
4522: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4523: @*/
4524: PetscErrorCode TSGetDM(TS ts,DM *dm)
4525: {
4530: if (!ts->dm) {
4531: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4532: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4533: }
4534: *dm = ts->dm;
4535: return(0);
4536: }
4538: /*@
4539: SNESTSFormFunction - Function to evaluate nonlinear residual
4541: Logically Collective on SNES
4543: Input Parameter:
4544: + snes - nonlinear solver
4545: . U - the current state at which to evaluate the residual
4546: - ctx - user context, must be a TS
4548: Output Parameter:
4549: . F - the nonlinear residual
4551: Notes:
4552: This function is not normally called by users and is automatically registered with the SNES used by TS.
4553: It is most frequently passed to MatFDColoringSetFunction().
4555: Level: advanced
4557: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4558: @*/
4559: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4560: {
4561: TS ts = (TS)ctx;
4569: (ts->ops->snesfunction)(snes,U,F,ts);
4570: return(0);
4571: }
4573: /*@
4574: SNESTSFormJacobian - Function to evaluate the Jacobian
4576: Collective on SNES
4578: Input Parameter:
4579: + snes - nonlinear solver
4580: . U - the current state at which to evaluate the residual
4581: - ctx - user context, must be a TS
4583: Output Parameter:
4584: + A - the Jacobian
4585: . B - the preconditioning matrix (may be the same as A)
4586: - flag - indicates any structure change in the matrix
4588: Notes:
4589: This function is not normally called by users and is automatically registered with the SNES used by TS.
4591: Level: developer
4593: .seealso: SNESSetJacobian()
4594: @*/
4595: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
4596: {
4597: TS ts = (TS)ctx;
4608: (ts->ops->snesjacobian)(snes,U,A,B,ts);
4609: return(0);
4610: }
4612: /*@C
4613: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
4615: Collective on TS
4617: Input Arguments:
4618: + ts - time stepping context
4619: . t - time at which to evaluate
4620: . U - state at which to evaluate
4621: - ctx - context
4623: Output Arguments:
4624: . F - right hand side
4626: Level: intermediate
4628: Notes:
4629: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
4630: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
4632: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
4633: @*/
4634: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
4635: {
4637: Mat Arhs,Brhs;
4640: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
4641: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
4642: MatMult(Arhs,U,F);
4643: return(0);
4644: }
4646: /*@C
4647: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4649: Collective on TS
4651: Input Arguments:
4652: + ts - time stepping context
4653: . t - time at which to evaluate
4654: . U - state at which to evaluate
4655: - ctx - context
4657: Output Arguments:
4658: + A - pointer to operator
4659: . B - pointer to preconditioning matrix
4660: - flg - matrix structure flag
4662: Level: intermediate
4664: Notes:
4665: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
4667: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
4668: @*/
4669: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
4670: {
4672: return(0);
4673: }
4675: /*@C
4676: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4678: Collective on TS
4680: Input Arguments:
4681: + ts - time stepping context
4682: . t - time at which to evaluate
4683: . U - state at which to evaluate
4684: . Udot - time derivative of state vector
4685: - ctx - context
4687: Output Arguments:
4688: . F - left hand side
4690: Level: intermediate
4692: Notes:
4693: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4694: user is required to write their own TSComputeIFunction.
4695: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
4696: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
4698: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
4700: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
4701: @*/
4702: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
4703: {
4705: Mat A,B;
4708: TSGetIJacobian(ts,&A,&B,NULL,NULL);
4709: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
4710: MatMult(A,Udot,F);
4711: return(0);
4712: }
4714: /*@C
4715: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
4717: Collective on TS
4719: Input Arguments:
4720: + ts - time stepping context
4721: . t - time at which to evaluate
4722: . U - state at which to evaluate
4723: . Udot - time derivative of state vector
4724: . shift - shift to apply
4725: - ctx - context
4727: Output Arguments:
4728: + A - pointer to operator
4729: . B - pointer to preconditioning matrix
4730: - flg - matrix structure flag
4732: Level: advanced
4734: Notes:
4735: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
4737: It is only appropriate for problems of the form
4739: $ M Udot = F(U,t)
4741: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
4742: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
4743: an implicit operator of the form
4745: $ shift*M + J
4747: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4748: a copy of M or reassemble it when requested.
4750: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
4751: @*/
4752: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
4753: {
4757: MatScale(A, shift / ts->ijacobian.shift);
4758: ts->ijacobian.shift = shift;
4759: return(0);
4760: }
4762: /*@
4763: TSGetEquationType - Gets the type of the equation that TS is solving.
4765: Not Collective
4767: Input Parameter:
4768: . ts - the TS context
4770: Output Parameter:
4771: . equation_type - see TSEquationType
4773: Level: beginner
4775: .keywords: TS, equation type
4777: .seealso: TSSetEquationType(), TSEquationType
4778: @*/
4779: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
4780: {
4784: *equation_type = ts->equation_type;
4785: return(0);
4786: }
4788: /*@
4789: TSSetEquationType - Sets the type of the equation that TS is solving.
4791: Not Collective
4793: Input Parameter:
4794: + ts - the TS context
4795: - equation_type - see TSEquationType
4797: Level: advanced
4799: .keywords: TS, equation type
4801: .seealso: TSGetEquationType(), TSEquationType
4802: @*/
4803: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
4804: {
4807: ts->equation_type = equation_type;
4808: return(0);
4809: }
4811: /*@
4812: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
4814: Not Collective
4816: Input Parameter:
4817: . ts - the TS context
4819: Output Parameter:
4820: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4821: manual pages for the individual convergence tests for complete lists
4823: Level: beginner
4825: Notes:
4826: Can only be called after the call to TSSolve() is complete.
4828: .keywords: TS, nonlinear, set, convergence, test
4830: .seealso: TSSetConvergenceTest(), TSConvergedReason
4831: @*/
4832: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
4833: {
4837: *reason = ts->reason;
4838: return(0);
4839: }
4841: /*@
4842: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
4844: Not Collective
4846: Input Parameter:
4847: + ts - the TS context
4848: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4849: manual pages for the individual convergence tests for complete lists
4851: Level: advanced
4853: Notes:
4854: Can only be called during TSSolve() is active.
4856: .keywords: TS, nonlinear, set, convergence, test
4858: .seealso: TSConvergedReason
4859: @*/
4860: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
4861: {
4864: ts->reason = reason;
4865: return(0);
4866: }
4868: /*@
4869: TSGetSolveTime - Gets the time after a call to TSSolve()
4871: Not Collective
4873: Input Parameter:
4874: . ts - the TS context
4876: Output Parameter:
4877: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
4879: Level: beginner
4881: Notes:
4882: Can only be called after the call to TSSolve() is complete.
4884: .keywords: TS, nonlinear, set, convergence, test
4886: .seealso: TSSetConvergenceTest(), TSConvergedReason
4887: @*/
4888: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
4889: {
4893: *ftime = ts->solvetime;
4894: return(0);
4895: }
4897: /*@
4898: TSGetSNESIterations - Gets the total number of nonlinear iterations
4899: used by the time integrator.
4901: Not Collective
4903: Input Parameter:
4904: . ts - TS context
4906: Output Parameter:
4907: . nits - number of nonlinear iterations
4909: Notes:
4910: This counter is reset to zero for each successive call to TSSolve().
4912: Level: intermediate
4914: .keywords: TS, get, number, nonlinear, iterations
4916: .seealso: TSGetKSPIterations()
4917: @*/
4918: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
4919: {
4923: *nits = ts->snes_its;
4924: return(0);
4925: }
4927: /*@
4928: TSGetKSPIterations - Gets the total number of linear iterations
4929: used by the time integrator.
4931: Not Collective
4933: Input Parameter:
4934: . ts - TS context
4936: Output Parameter:
4937: . lits - number of linear iterations
4939: Notes:
4940: This counter is reset to zero for each successive call to TSSolve().
4942: Level: intermediate
4944: .keywords: TS, get, number, linear, iterations
4946: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
4947: @*/
4948: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
4949: {
4953: *lits = ts->ksp_its;
4954: return(0);
4955: }
4957: /*@
4958: TSGetStepRejections - Gets the total number of rejected steps.
4960: Not Collective
4962: Input Parameter:
4963: . ts - TS context
4965: Output Parameter:
4966: . rejects - number of steps rejected
4968: Notes:
4969: This counter is reset to zero for each successive call to TSSolve().
4971: Level: intermediate
4973: .keywords: TS, get, number
4975: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
4976: @*/
4977: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
4978: {
4982: *rejects = ts->reject;
4983: return(0);
4984: }
4986: /*@
4987: TSGetSNESFailures - Gets the total number of failed SNES solves
4989: Not Collective
4991: Input Parameter:
4992: . ts - TS context
4994: Output Parameter:
4995: . fails - number of failed nonlinear solves
4997: Notes:
4998: This counter is reset to zero for each successive call to TSSolve().
5000: Level: intermediate
5002: .keywords: TS, get, number
5004: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5005: @*/
5006: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5007: {
5011: *fails = ts->num_snes_failures;
5012: return(0);
5013: }
5015: /*@
5016: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5018: Not Collective
5020: Input Parameter:
5021: + ts - TS context
5022: - rejects - maximum number of rejected steps, pass -1 for unlimited
5024: Notes:
5025: The counter is reset to zero for each step
5027: Options Database Key:
5028: . -ts_max_reject - Maximum number of step rejections before a step fails
5030: Level: intermediate
5032: .keywords: TS, set, maximum, number
5034: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5035: @*/
5036: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5037: {
5040: ts->max_reject = rejects;
5041: return(0);
5042: }
5044: /*@
5045: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5047: Not Collective
5049: Input Parameter:
5050: + ts - TS context
5051: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5053: Notes:
5054: The counter is reset to zero for each successive call to TSSolve().
5056: Options Database Key:
5057: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5059: Level: intermediate
5061: .keywords: TS, set, maximum, number
5063: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5064: @*/
5065: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5066: {
5069: ts->max_snes_failures = fails;
5070: return(0);
5071: }
5073: /*@
5074: TSSetErrorIfStepFails - Error if no step succeeds
5076: Not Collective
5078: Input Parameter:
5079: + ts - TS context
5080: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5082: Options Database Key:
5083: . -ts_error_if_step_fails - Error if no step succeeds
5085: Level: intermediate
5087: .keywords: TS, set, error
5089: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5090: @*/
5091: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5092: {
5095: ts->errorifstepfailed = err;
5096: return(0);
5097: }
5099: /*@C
5100: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5102: Collective on TS
5104: Input Parameters:
5105: + ts - the TS context
5106: . step - current time-step
5107: . ptime - current time
5108: . u - current state
5109: - vf - viewer and its format
5111: Level: intermediate
5113: .keywords: TS, vector, monitor, view
5115: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5116: @*/
5117: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5118: {
5122: PetscViewerPushFormat(vf->viewer,vf->format);
5123: VecView(u,vf->viewer);
5124: PetscViewerPopFormat(vf->viewer);
5125: return(0);
5126: }
5128: /*@C
5129: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5131: Collective on TS
5133: Input Parameters:
5134: + ts - the TS context
5135: . step - current time-step
5136: . ptime - current time
5137: . u - current state
5138: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5140: Level: intermediate
5142: Notes:
5143: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5144: These are named according to the file name template.
5146: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5148: .keywords: TS, vector, monitor, view
5150: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5151: @*/
5152: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5153: {
5155: char filename[PETSC_MAX_PATH_LEN];
5156: PetscViewer viewer;
5159: if (step < 0) return(0); /* -1 indicates interpolated solution */
5160: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5161: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5162: VecView(u,viewer);
5163: PetscViewerDestroy(&viewer);
5164: return(0);
5165: }
5167: /*@C
5168: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5170: Collective on TS
5172: Input Parameters:
5173: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5175: Level: intermediate
5177: Note:
5178: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5180: .keywords: TS, vector, monitor, view
5182: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5183: @*/
5184: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5185: {
5189: PetscFree(*(char**)filenametemplate);
5190: return(0);
5191: }
5193: /*@
5194: TSGetAdapt - Get the adaptive controller context for the current method
5196: Collective on TS if controller has not been created yet
5198: Input Arguments:
5199: . ts - time stepping context
5201: Output Arguments:
5202: . adapt - adaptive controller
5204: Level: intermediate
5206: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5207: @*/
5208: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5209: {
5215: if (!ts->adapt) {
5216: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5217: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5218: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5219: }
5220: *adapt = ts->adapt;
5221: return(0);
5222: }
5224: /*@
5225: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5227: Logically Collective
5229: Input Arguments:
5230: + ts - time integration context
5231: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5232: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5233: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5234: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5236: Options Database keys:
5237: + -ts_rtol <rtol> - relative tolerance for local truncation error
5238: - -ts_atol <atol> Absolute tolerance for local truncation error
5240: Notes:
5241: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5242: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5243: computed only for the differential or the algebraic part then this can be done using the vector of
5244: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5245: differential part and infinity for the algebraic part, the LTE calculation will include only the
5246: differential variables.
5248: Level: beginner
5250: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
5251: @*/
5252: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5253: {
5257: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5258: if (vatol) {
5259: PetscObjectReference((PetscObject)vatol);
5260: VecDestroy(&ts->vatol);
5261: ts->vatol = vatol;
5262: }
5263: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5264: if (vrtol) {
5265: PetscObjectReference((PetscObject)vrtol);
5266: VecDestroy(&ts->vrtol);
5267: ts->vrtol = vrtol;
5268: }
5269: return(0);
5270: }
5272: /*@
5273: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5275: Logically Collective
5277: Input Arguments:
5278: . ts - time integration context
5280: Output Arguments:
5281: + atol - scalar absolute tolerances, NULL to ignore
5282: . vatol - vector of absolute tolerances, NULL to ignore
5283: . rtol - scalar relative tolerances, NULL to ignore
5284: - vrtol - vector of relative tolerances, NULL to ignore
5286: Level: beginner
5288: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
5289: @*/
5290: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5291: {
5293: if (atol) *atol = ts->atol;
5294: if (vatol) *vatol = ts->vatol;
5295: if (rtol) *rtol = ts->rtol;
5296: if (vrtol) *vrtol = ts->vrtol;
5297: return(0);
5298: }
5300: /*@
5301: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5303: Collective on TS
5305: Input Arguments:
5306: + ts - time stepping context
5307: . U - state vector, usually ts->vec_sol
5308: - Y - state vector to be compared to U
5310: Output Arguments:
5311: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5312: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5313: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5315: Level: developer
5317: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5318: @*/
5319: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5320: {
5321: PetscErrorCode ierr;
5322: PetscInt i,n,N,rstart;
5323: PetscInt n_loc,na_loc,nr_loc;
5324: PetscReal n_glb,na_glb,nr_glb;
5325: const PetscScalar *u,*y;
5326: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5327: PetscReal tol,tola,tolr;
5328: PetscReal err_loc[6],err_glb[6];
5340: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5342: VecGetSize(U,&N);
5343: VecGetLocalSize(U,&n);
5344: VecGetOwnershipRange(U,&rstart,NULL);
5345: VecGetArrayRead(U,&u);
5346: VecGetArrayRead(Y,&y);
5347: sum = 0.; n_loc = 0;
5348: suma = 0.; na_loc = 0;
5349: sumr = 0.; nr_loc = 0;
5350: if (ts->vatol && ts->vrtol) {
5351: const PetscScalar *atol,*rtol;
5352: VecGetArrayRead(ts->vatol,&atol);
5353: VecGetArrayRead(ts->vrtol,&rtol);
5354: for (i=0; i<n; i++) {
5355: diff = PetscAbsScalar(y[i] - u[i]);
5356: tola = PetscRealPart(atol[i]);
5357: if(tola>0.){
5358: suma += PetscSqr(diff/tola);
5359: na_loc++;
5360: }
5361: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5362: if(tolr>0.){
5363: sumr += PetscSqr(diff/tolr);
5364: nr_loc++;
5365: }
5366: tol=tola+tolr;
5367: if(tol>0.){
5368: sum += PetscSqr(diff/tol);
5369: n_loc++;
5370: }
5371: }
5372: VecRestoreArrayRead(ts->vatol,&atol);
5373: VecRestoreArrayRead(ts->vrtol,&rtol);
5374: } else if (ts->vatol) { /* vector atol, scalar rtol */
5375: const PetscScalar *atol;
5376: VecGetArrayRead(ts->vatol,&atol);
5377: for (i=0; i<n; i++) {
5378: diff = PetscAbsScalar(y[i] - u[i]);
5379: tola = PetscRealPart(atol[i]);
5380: if(tola>0.){
5381: suma += PetscSqr(diff/tola);
5382: na_loc++;
5383: }
5384: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5385: if(tolr>0.){
5386: sumr += PetscSqr(diff/tolr);
5387: nr_loc++;
5388: }
5389: tol=tola+tolr;
5390: if(tol>0.){
5391: sum += PetscSqr(diff/tol);
5392: n_loc++;
5393: }
5394: }
5395: VecRestoreArrayRead(ts->vatol,&atol);
5396: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5397: const PetscScalar *rtol;
5398: VecGetArrayRead(ts->vrtol,&rtol);
5399: for (i=0; i<n; i++) {
5400: diff = PetscAbsScalar(y[i] - u[i]);
5401: tola = ts->atol;
5402: if(tola>0.){
5403: suma += PetscSqr(diff/tola);
5404: na_loc++;
5405: }
5406: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5407: if(tolr>0.){
5408: sumr += PetscSqr(diff/tolr);
5409: nr_loc++;
5410: }
5411: tol=tola+tolr;
5412: if(tol>0.){
5413: sum += PetscSqr(diff/tol);
5414: n_loc++;
5415: }
5416: }
5417: VecRestoreArrayRead(ts->vrtol,&rtol);
5418: } else { /* scalar atol, scalar rtol */
5419: for (i=0; i<n; i++) {
5420: diff = PetscAbsScalar(y[i] - u[i]);
5421: tola = ts->atol;
5422: if(tola>0.){
5423: suma += PetscSqr(diff/tola);
5424: na_loc++;
5425: }
5426: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5427: if(tolr>0.){
5428: sumr += PetscSqr(diff/tolr);
5429: nr_loc++;
5430: }
5431: tol=tola+tolr;
5432: if(tol>0.){
5433: sum += PetscSqr(diff/tol);
5434: n_loc++;
5435: }
5436: }
5437: }
5438: VecRestoreArrayRead(U,&u);
5439: VecRestoreArrayRead(Y,&y);
5441: err_loc[0] = sum;
5442: err_loc[1] = suma;
5443: err_loc[2] = sumr;
5444: err_loc[3] = (PetscReal)n_loc;
5445: err_loc[4] = (PetscReal)na_loc;
5446: err_loc[5] = (PetscReal)nr_loc;
5448: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5450: gsum = err_glb[0];
5451: gsuma = err_glb[1];
5452: gsumr = err_glb[2];
5453: n_glb = err_glb[3];
5454: na_glb = err_glb[4];
5455: nr_glb = err_glb[5];
5457: *norm = 0.;
5458: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5459: *norma = 0.;
5460: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5461: *normr = 0.;
5462: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5464: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5465: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5466: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5467: return(0);
5468: }
5470: /*@
5471: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5473: Collective on TS
5475: Input Arguments:
5476: + ts - time stepping context
5477: . U - state vector, usually ts->vec_sol
5478: - Y - state vector to be compared to U
5480: Output Arguments:
5481: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5482: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5483: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5485: Level: developer
5487: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5488: @*/
5489: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5490: {
5491: PetscErrorCode ierr;
5492: PetscInt i,n,N,rstart;
5493: const PetscScalar *u,*y;
5494: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5495: PetscReal tol,tola,tolr,diff;
5496: PetscReal err_loc[3],err_glb[3];
5508: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5510: VecGetSize(U,&N);
5511: VecGetLocalSize(U,&n);
5512: VecGetOwnershipRange(U,&rstart,NULL);
5513: VecGetArrayRead(U,&u);
5514: VecGetArrayRead(Y,&y);
5516: max=0.;
5517: maxa=0.;
5518: maxr=0.;
5520: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5521: const PetscScalar *atol,*rtol;
5522: VecGetArrayRead(ts->vatol,&atol);
5523: VecGetArrayRead(ts->vrtol,&rtol);
5525: for (i=0; i<n; i++) {
5526: diff = PetscAbsScalar(y[i] - u[i]);
5527: tola = PetscRealPart(atol[i]);
5528: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5529: tol = tola+tolr;
5530: if(tola>0.){
5531: maxa = PetscMax(maxa,diff / tola);
5532: }
5533: if(tolr>0.){
5534: maxr = PetscMax(maxr,diff / tolr);
5535: }
5536: if(tol>0.){
5537: max = PetscMax(max,diff / tol);
5538: }
5539: }
5540: VecRestoreArrayRead(ts->vatol,&atol);
5541: VecRestoreArrayRead(ts->vrtol,&rtol);
5542: } else if (ts->vatol) { /* vector atol, scalar rtol */
5543: const PetscScalar *atol;
5544: VecGetArrayRead(ts->vatol,&atol);
5545: for (i=0; i<n; i++) {
5546: diff = PetscAbsScalar(y[i] - u[i]);
5547: tola = PetscRealPart(atol[i]);
5548: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5549: tol = tola+tolr;
5550: if(tola>0.){
5551: maxa = PetscMax(maxa,diff / tola);
5552: }
5553: if(tolr>0.){
5554: maxr = PetscMax(maxr,diff / tolr);
5555: }
5556: if(tol>0.){
5557: max = PetscMax(max,diff / tol);
5558: }
5559: }
5560: VecRestoreArrayRead(ts->vatol,&atol);
5561: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5562: const PetscScalar *rtol;
5563: VecGetArrayRead(ts->vrtol,&rtol);
5565: for (i=0; i<n; i++) {
5566: diff = PetscAbsScalar(y[i] - u[i]);
5567: tola = ts->atol;
5568: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5569: tol = tola+tolr;
5570: if(tola>0.){
5571: maxa = PetscMax(maxa,diff / tola);
5572: }
5573: if(tolr>0.){
5574: maxr = PetscMax(maxr,diff / tolr);
5575: }
5576: if(tol>0.){
5577: max = PetscMax(max,diff / tol);
5578: }
5579: }
5580: VecRestoreArrayRead(ts->vrtol,&rtol);
5581: } else { /* scalar atol, scalar rtol */
5583: for (i=0; i<n; i++) {
5584: diff = PetscAbsScalar(y[i] - u[i]);
5585: tola = ts->atol;
5586: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5587: tol = tola+tolr;
5588: if(tola>0.){
5589: maxa = PetscMax(maxa,diff / tola);
5590: }
5591: if(tolr>0.){
5592: maxr = PetscMax(maxr,diff / tolr);
5593: }
5594: if(tol>0.){
5595: max = PetscMax(max,diff / tol);
5596: }
5597: }
5598: }
5599: VecRestoreArrayRead(U,&u);
5600: VecRestoreArrayRead(Y,&y);
5601: err_loc[0] = max;
5602: err_loc[1] = maxa;
5603: err_loc[2] = maxr;
5604: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5605: gmax = err_glb[0];
5606: gmaxa = err_glb[1];
5607: gmaxr = err_glb[2];
5609: *norm = gmax;
5610: *norma = gmaxa;
5611: *normr = gmaxr;
5612: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5613: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5614: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5615: return(0);
5616: }
5618: /*@
5619: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
5621: Collective on TS
5623: Input Arguments:
5624: + ts - time stepping context
5625: . U - state vector, usually ts->vec_sol
5626: . Y - state vector to be compared to U
5627: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5629: Output Arguments:
5630: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5631: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5632: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5634: Options Database Keys:
5635: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5637: Level: developer
5639: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
5640: @*/
5641: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5642: {
5646: if (wnormtype == NORM_2) {
5647: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
5648: } else if(wnormtype == NORM_INFINITY) {
5649: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
5650: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5651: return(0);
5652: }
5655: /*@
5656: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
5658: Collective on TS
5660: Input Arguments:
5661: + ts - time stepping context
5662: . E - error vector
5663: . U - state vector, usually ts->vec_sol
5664: - Y - state vector, previous time step
5666: Output Arguments:
5667: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5668: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5669: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5671: Level: developer
5673: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
5674: @*/
5675: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5676: {
5677: PetscErrorCode ierr;
5678: PetscInt i,n,N,rstart;
5679: PetscInt n_loc,na_loc,nr_loc;
5680: PetscReal n_glb,na_glb,nr_glb;
5681: const PetscScalar *e,*u,*y;
5682: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
5683: PetscReal tol,tola,tolr;
5684: PetscReal err_loc[6],err_glb[6];
5700: VecGetSize(E,&N);
5701: VecGetLocalSize(E,&n);
5702: VecGetOwnershipRange(E,&rstart,NULL);
5703: VecGetArrayRead(E,&e);
5704: VecGetArrayRead(U,&u);
5705: VecGetArrayRead(Y,&y);
5706: sum = 0.; n_loc = 0;
5707: suma = 0.; na_loc = 0;
5708: sumr = 0.; nr_loc = 0;
5709: if (ts->vatol && ts->vrtol) {
5710: const PetscScalar *atol,*rtol;
5711: VecGetArrayRead(ts->vatol,&atol);
5712: VecGetArrayRead(ts->vrtol,&rtol);
5713: for (i=0; i<n; i++) {
5714: err = PetscAbsScalar(e[i]);
5715: tola = PetscRealPart(atol[i]);
5716: if(tola>0.){
5717: suma += PetscSqr(err/tola);
5718: na_loc++;
5719: }
5720: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5721: if(tolr>0.){
5722: sumr += PetscSqr(err/tolr);
5723: nr_loc++;
5724: }
5725: tol=tola+tolr;
5726: if(tol>0.){
5727: sum += PetscSqr(err/tol);
5728: n_loc++;
5729: }
5730: }
5731: VecRestoreArrayRead(ts->vatol,&atol);
5732: VecRestoreArrayRead(ts->vrtol,&rtol);
5733: } else if (ts->vatol) { /* vector atol, scalar rtol */
5734: const PetscScalar *atol;
5735: VecGetArrayRead(ts->vatol,&atol);
5736: for (i=0; i<n; i++) {
5737: err = PetscAbsScalar(e[i]);
5738: tola = PetscRealPart(atol[i]);
5739: if(tola>0.){
5740: suma += PetscSqr(err/tola);
5741: na_loc++;
5742: }
5743: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5744: if(tolr>0.){
5745: sumr += PetscSqr(err/tolr);
5746: nr_loc++;
5747: }
5748: tol=tola+tolr;
5749: if(tol>0.){
5750: sum += PetscSqr(err/tol);
5751: n_loc++;
5752: }
5753: }
5754: VecRestoreArrayRead(ts->vatol,&atol);
5755: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5756: const PetscScalar *rtol;
5757: VecGetArrayRead(ts->vrtol,&rtol);
5758: for (i=0; i<n; i++) {
5759: err = PetscAbsScalar(e[i]);
5760: tola = ts->atol;
5761: if(tola>0.){
5762: suma += PetscSqr(err/tola);
5763: na_loc++;
5764: }
5765: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5766: if(tolr>0.){
5767: sumr += PetscSqr(err/tolr);
5768: nr_loc++;
5769: }
5770: tol=tola+tolr;
5771: if(tol>0.){
5772: sum += PetscSqr(err/tol);
5773: n_loc++;
5774: }
5775: }
5776: VecRestoreArrayRead(ts->vrtol,&rtol);
5777: } else { /* scalar atol, scalar rtol */
5778: for (i=0; i<n; i++) {
5779: err = PetscAbsScalar(e[i]);
5780: tola = ts->atol;
5781: if(tola>0.){
5782: suma += PetscSqr(err/tola);
5783: na_loc++;
5784: }
5785: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5786: if(tolr>0.){
5787: sumr += PetscSqr(err/tolr);
5788: nr_loc++;
5789: }
5790: tol=tola+tolr;
5791: if(tol>0.){
5792: sum += PetscSqr(err/tol);
5793: n_loc++;
5794: }
5795: }
5796: }
5797: VecRestoreArrayRead(E,&e);
5798: VecRestoreArrayRead(U,&u);
5799: VecRestoreArrayRead(Y,&y);
5801: err_loc[0] = sum;
5802: err_loc[1] = suma;
5803: err_loc[2] = sumr;
5804: err_loc[3] = (PetscReal)n_loc;
5805: err_loc[4] = (PetscReal)na_loc;
5806: err_loc[5] = (PetscReal)nr_loc;
5808: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5810: gsum = err_glb[0];
5811: gsuma = err_glb[1];
5812: gsumr = err_glb[2];
5813: n_glb = err_glb[3];
5814: na_glb = err_glb[4];
5815: nr_glb = err_glb[5];
5817: *norm = 0.;
5818: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5819: *norma = 0.;
5820: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5821: *normr = 0.;
5822: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5824: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5825: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5826: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5827: return(0);
5828: }
5830: /*@
5831: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
5832: Collective on TS
5834: Input Arguments:
5835: + ts - time stepping context
5836: . E - error vector
5837: . U - state vector, usually ts->vec_sol
5838: - Y - state vector, previous time step
5840: Output Arguments:
5841: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5842: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5843: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5845: Level: developer
5847: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
5848: @*/
5849: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5850: {
5851: PetscErrorCode ierr;
5852: PetscInt i,n,N,rstart;
5853: const PetscScalar *e,*u,*y;
5854: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
5855: PetscReal tol,tola,tolr;
5856: PetscReal err_loc[3],err_glb[3];
5872: VecGetSize(E,&N);
5873: VecGetLocalSize(E,&n);
5874: VecGetOwnershipRange(E,&rstart,NULL);
5875: VecGetArrayRead(E,&e);
5876: VecGetArrayRead(U,&u);
5877: VecGetArrayRead(Y,&y);
5879: max=0.;
5880: maxa=0.;
5881: maxr=0.;
5883: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5884: const PetscScalar *atol,*rtol;
5885: VecGetArrayRead(ts->vatol,&atol);
5886: VecGetArrayRead(ts->vrtol,&rtol);
5888: for (i=0; i<n; i++) {
5889: err = PetscAbsScalar(e[i]);
5890: tola = PetscRealPart(atol[i]);
5891: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5892: tol = tola+tolr;
5893: if(tola>0.){
5894: maxa = PetscMax(maxa,err / tola);
5895: }
5896: if(tolr>0.){
5897: maxr = PetscMax(maxr,err / tolr);
5898: }
5899: if(tol>0.){
5900: max = PetscMax(max,err / tol);
5901: }
5902: }
5903: VecRestoreArrayRead(ts->vatol,&atol);
5904: VecRestoreArrayRead(ts->vrtol,&rtol);
5905: } else if (ts->vatol) { /* vector atol, scalar rtol */
5906: const PetscScalar *atol;
5907: VecGetArrayRead(ts->vatol,&atol);
5908: for (i=0; i<n; i++) {
5909: err = PetscAbsScalar(e[i]);
5910: tola = PetscRealPart(atol[i]);
5911: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5912: tol = tola+tolr;
5913: if(tola>0.){
5914: maxa = PetscMax(maxa,err / tola);
5915: }
5916: if(tolr>0.){
5917: maxr = PetscMax(maxr,err / tolr);
5918: }
5919: if(tol>0.){
5920: max = PetscMax(max,err / tol);
5921: }
5922: }
5923: VecRestoreArrayRead(ts->vatol,&atol);
5924: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5925: const PetscScalar *rtol;
5926: VecGetArrayRead(ts->vrtol,&rtol);
5928: for (i=0; i<n; i++) {
5929: err = PetscAbsScalar(e[i]);
5930: tola = ts->atol;
5931: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5932: tol = tola+tolr;
5933: if(tola>0.){
5934: maxa = PetscMax(maxa,err / tola);
5935: }
5936: if(tolr>0.){
5937: maxr = PetscMax(maxr,err / tolr);
5938: }
5939: if(tol>0.){
5940: max = PetscMax(max,err / tol);
5941: }
5942: }
5943: VecRestoreArrayRead(ts->vrtol,&rtol);
5944: } else { /* scalar atol, scalar rtol */
5946: for (i=0; i<n; i++) {
5947: err = PetscAbsScalar(e[i]);
5948: tola = ts->atol;
5949: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5950: tol = tola+tolr;
5951: if(tola>0.){
5952: maxa = PetscMax(maxa,err / tola);
5953: }
5954: if(tolr>0.){
5955: maxr = PetscMax(maxr,err / tolr);
5956: }
5957: if(tol>0.){
5958: max = PetscMax(max,err / tol);
5959: }
5960: }
5961: }
5962: VecRestoreArrayRead(E,&e);
5963: VecRestoreArrayRead(U,&u);
5964: VecRestoreArrayRead(Y,&y);
5965: err_loc[0] = max;
5966: err_loc[1] = maxa;
5967: err_loc[2] = maxr;
5968: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5969: gmax = err_glb[0];
5970: gmaxa = err_glb[1];
5971: gmaxr = err_glb[2];
5973: *norm = gmax;
5974: *norma = gmaxa;
5975: *normr = gmaxr;
5976: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5977: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5978: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5979: return(0);
5980: }
5982: /*@
5983: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
5985: Collective on TS
5987: Input Arguments:
5988: + ts - time stepping context
5989: . E - error vector
5990: . U - state vector, usually ts->vec_sol
5991: . Y - state vector, previous time step
5992: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5994: Output Arguments:
5995: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5996: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5997: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5999: Options Database Keys:
6000: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6002: Level: developer
6004: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6005: @*/
6006: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6007: {
6011: if (wnormtype == NORM_2) {
6012: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6013: } else if(wnormtype == NORM_INFINITY) {
6014: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6015: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6016: return(0);
6017: }
6020: /*@
6021: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6023: Logically Collective on TS
6025: Input Arguments:
6026: + ts - time stepping context
6027: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6029: Note:
6030: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6032: Level: intermediate
6034: .seealso: TSGetCFLTime(), TSADAPTCFL
6035: @*/
6036: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6037: {
6040: ts->cfltime_local = cfltime;
6041: ts->cfltime = -1.;
6042: return(0);
6043: }
6045: /*@
6046: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6048: Collective on TS
6050: Input Arguments:
6051: . ts - time stepping context
6053: Output Arguments:
6054: . cfltime - maximum stable time step for forward Euler
6056: Level: advanced
6058: .seealso: TSSetCFLTimeLocal()
6059: @*/
6060: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6061: {
6065: if (ts->cfltime < 0) {
6066: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6067: }
6068: *cfltime = ts->cfltime;
6069: return(0);
6070: }
6072: /*@
6073: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6075: Input Parameters:
6076: . ts - the TS context.
6077: . xl - lower bound.
6078: . xu - upper bound.
6080: Notes:
6081: If this routine is not called then the lower and upper bounds are set to
6082: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6084: Level: advanced
6086: @*/
6087: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6088: {
6090: SNES snes;
6093: TSGetSNES(ts,&snes);
6094: SNESVISetVariableBounds(snes,xl,xu);
6095: return(0);
6096: }
6098: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6099: #include <mex.h>
6101: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
6103: /*
6104: TSComputeFunction_Matlab - Calls the function that has been set with
6105: TSSetFunctionMatlab().
6107: Collective on TS
6109: Input Parameters:
6110: + snes - the TS context
6111: - u - input vector
6113: Output Parameter:
6114: . y - function vector, as set by TSSetFunction()
6116: Notes:
6117: TSComputeFunction() is typically used within nonlinear solvers
6118: implementations, so most users would not generally call this routine
6119: themselves.
6121: Level: developer
6123: .keywords: TS, nonlinear, compute, function
6125: .seealso: TSSetFunction(), TSGetFunction()
6126: */
6127: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6128: {
6129: PetscErrorCode ierr;
6130: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6131: int nlhs = 1,nrhs = 7;
6132: mxArray *plhs[1],*prhs[7];
6133: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
6143: PetscMemcpy(&ls,&snes,sizeof(snes));
6144: PetscMemcpy(&lx,&u,sizeof(u));
6145: PetscMemcpy(&lxdot,&udot,sizeof(udot));
6146: PetscMemcpy(&ly,&y,sizeof(u));
6148: prhs[0] = mxCreateDoubleScalar((double)ls);
6149: prhs[1] = mxCreateDoubleScalar(time);
6150: prhs[2] = mxCreateDoubleScalar((double)lx);
6151: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6152: prhs[4] = mxCreateDoubleScalar((double)ly);
6153: prhs[5] = mxCreateString(sctx->funcname);
6154: prhs[6] = sctx->ctx;
6155: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6156: mxGetScalar(plhs[0]);
6157: mxDestroyArray(prhs[0]);
6158: mxDestroyArray(prhs[1]);
6159: mxDestroyArray(prhs[2]);
6160: mxDestroyArray(prhs[3]);
6161: mxDestroyArray(prhs[4]);
6162: mxDestroyArray(prhs[5]);
6163: mxDestroyArray(plhs[0]);
6164: return(0);
6165: }
6167: /*
6168: TSSetFunctionMatlab - Sets the function evaluation routine and function
6169: vector for use by the TS routines in solving ODEs
6170: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
6172: Logically Collective on TS
6174: Input Parameters:
6175: + ts - the TS context
6176: - func - function evaluation routine
6178: Calling sequence of func:
6179: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
6181: Level: beginner
6183: .keywords: TS, nonlinear, set, function
6185: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6186: */
6187: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6188: {
6189: PetscErrorCode ierr;
6190: TSMatlabContext *sctx;
6193: /* currently sctx is memory bleed */
6194: PetscNew(&sctx);
6195: PetscStrallocpy(func,&sctx->funcname);
6196: /*
6197: This should work, but it doesn't
6198: sctx->ctx = ctx;
6199: mexMakeArrayPersistent(sctx->ctx);
6200: */
6201: sctx->ctx = mxDuplicateArray(ctx);
6203: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6204: return(0);
6205: }
6207: /*
6208: TSComputeJacobian_Matlab - Calls the function that has been set with
6209: TSSetJacobianMatlab().
6211: Collective on TS
6213: Input Parameters:
6214: + ts - the TS context
6215: . u - input vector
6216: . A, B - the matrices
6217: - ctx - user context
6219: Level: developer
6221: .keywords: TS, nonlinear, compute, function
6223: .seealso: TSSetFunction(), TSGetFunction()
6224: @*/
6225: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6226: {
6227: PetscErrorCode ierr;
6228: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6229: int nlhs = 2,nrhs = 9;
6230: mxArray *plhs[2],*prhs[9];
6231: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
6237: /* call Matlab function in ctx with arguments u and y */
6239: PetscMemcpy(&ls,&ts,sizeof(ts));
6240: PetscMemcpy(&lx,&u,sizeof(u));
6241: PetscMemcpy(&lxdot,&udot,sizeof(u));
6242: PetscMemcpy(&lA,A,sizeof(u));
6243: PetscMemcpy(&lB,B,sizeof(u));
6245: prhs[0] = mxCreateDoubleScalar((double)ls);
6246: prhs[1] = mxCreateDoubleScalar((double)time);
6247: prhs[2] = mxCreateDoubleScalar((double)lx);
6248: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6249: prhs[4] = mxCreateDoubleScalar((double)shift);
6250: prhs[5] = mxCreateDoubleScalar((double)lA);
6251: prhs[6] = mxCreateDoubleScalar((double)lB);
6252: prhs[7] = mxCreateString(sctx->funcname);
6253: prhs[8] = sctx->ctx;
6254: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
6255: mxGetScalar(plhs[0]);
6256: mxDestroyArray(prhs[0]);
6257: mxDestroyArray(prhs[1]);
6258: mxDestroyArray(prhs[2]);
6259: mxDestroyArray(prhs[3]);
6260: mxDestroyArray(prhs[4]);
6261: mxDestroyArray(prhs[5]);
6262: mxDestroyArray(prhs[6]);
6263: mxDestroyArray(prhs[7]);
6264: mxDestroyArray(plhs[0]);
6265: mxDestroyArray(plhs[1]);
6266: return(0);
6267: }
6269: /*
6270: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
6271: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
6273: Logically Collective on TS
6275: Input Parameters:
6276: + ts - the TS context
6277: . A,B - Jacobian matrices
6278: . func - function evaluation routine
6279: - ctx - user context
6281: Calling sequence of func:
6282: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
6284: Level: developer
6286: .keywords: TS, nonlinear, set, function
6288: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6289: */
6290: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
6291: {
6292: PetscErrorCode ierr;
6293: TSMatlabContext *sctx;
6296: /* currently sctx is memory bleed */
6297: PetscNew(&sctx);
6298: PetscStrallocpy(func,&sctx->funcname);
6299: /*
6300: This should work, but it doesn't
6301: sctx->ctx = ctx;
6302: mexMakeArrayPersistent(sctx->ctx);
6303: */
6304: sctx->ctx = mxDuplicateArray(ctx);
6306: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
6307: return(0);
6308: }
6310: /*
6311: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
6313: Collective on TS
6315: .seealso: TSSetFunction(), TSGetFunction()
6316: @*/
6317: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
6318: {
6319: PetscErrorCode ierr;
6320: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6321: int nlhs = 1,nrhs = 6;
6322: mxArray *plhs[1],*prhs[6];
6323: long long int lx = 0,ls = 0;
6329: PetscMemcpy(&ls,&ts,sizeof(ts));
6330: PetscMemcpy(&lx,&u,sizeof(u));
6332: prhs[0] = mxCreateDoubleScalar((double)ls);
6333: prhs[1] = mxCreateDoubleScalar((double)it);
6334: prhs[2] = mxCreateDoubleScalar((double)time);
6335: prhs[3] = mxCreateDoubleScalar((double)lx);
6336: prhs[4] = mxCreateString(sctx->funcname);
6337: prhs[5] = sctx->ctx;
6338: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
6339: mxGetScalar(plhs[0]);
6340: mxDestroyArray(prhs[0]);
6341: mxDestroyArray(prhs[1]);
6342: mxDestroyArray(prhs[2]);
6343: mxDestroyArray(prhs[3]);
6344: mxDestroyArray(prhs[4]);
6345: mxDestroyArray(plhs[0]);
6346: return(0);
6347: }
6349: /*
6350: TSMonitorSetMatlab - Sets the monitor function from Matlab
6352: Level: developer
6354: .keywords: TS, nonlinear, set, function
6356: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6357: */
6358: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
6359: {
6360: PetscErrorCode ierr;
6361: TSMatlabContext *sctx;
6364: /* currently sctx is memory bleed */
6365: PetscNew(&sctx);
6366: PetscStrallocpy(func,&sctx->funcname);
6367: /*
6368: This should work, but it doesn't
6369: sctx->ctx = ctx;
6370: mexMakeArrayPersistent(sctx->ctx);
6371: */
6372: sctx->ctx = mxDuplicateArray(ctx);
6374: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
6375: return(0);
6376: }
6377: #endif
6379: /*@C
6380: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6381: in a time based line graph
6383: Collective on TS
6385: Input Parameters:
6386: + ts - the TS context
6387: . step - current time-step
6388: . ptime - current time
6389: . u - current solution
6390: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6392: Options Database:
6393: . -ts_monitor_lg_solution_variables
6395: Level: intermediate
6397: Notes: Each process in a parallel run displays its component solutions in a separate window
6399: .keywords: TS, vector, monitor, view
6401: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6402: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6403: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6404: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6405: @*/
6406: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6407: {
6408: PetscErrorCode ierr;
6409: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6410: const PetscScalar *yy;
6411: Vec v;
6414: if (step < 0) return(0); /* -1 indicates interpolated solution */
6415: if (!step) {
6416: PetscDrawAxis axis;
6417: PetscInt dim;
6418: PetscDrawLGGetAxis(ctx->lg,&axis);
6419: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6420: if (!ctx->names) {
6421: PetscBool flg;
6422: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6423: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6424: if (flg) {
6425: PetscInt i,n;
6426: char **names;
6427: VecGetSize(u,&n);
6428: PetscMalloc1(n+1,&names);
6429: for (i=0; i<n; i++) {
6430: PetscMalloc1(5,&names[i]);
6431: PetscSNPrintf(names[i],5,"%D",i);
6432: }
6433: names[n] = NULL;
6434: ctx->names = names;
6435: }
6436: }
6437: if (ctx->names && !ctx->displaynames) {
6438: char **displaynames;
6439: PetscBool flg;
6440: VecGetLocalSize(u,&dim);
6441: PetscMalloc1(dim+1,&displaynames);
6442: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
6443: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6444: if (flg) {
6445: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6446: }
6447: PetscStrArrayDestroy(&displaynames);
6448: }
6449: if (ctx->displaynames) {
6450: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6451: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6452: } else if (ctx->names) {
6453: VecGetLocalSize(u,&dim);
6454: PetscDrawLGSetDimension(ctx->lg,dim);
6455: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6456: } else {
6457: VecGetLocalSize(u,&dim);
6458: PetscDrawLGSetDimension(ctx->lg,dim);
6459: }
6460: PetscDrawLGReset(ctx->lg);
6461: }
6463: if (!ctx->transform) v = u;
6464: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6465: VecGetArrayRead(v,&yy);
6466: if (ctx->displaynames) {
6467: PetscInt i;
6468: for (i=0; i<ctx->ndisplayvariables; i++)
6469: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6470: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6471: } else {
6472: #if defined(PETSC_USE_COMPLEX)
6473: PetscInt i,n;
6474: PetscReal *yreal;
6475: VecGetLocalSize(v,&n);
6476: PetscMalloc1(n,&yreal);
6477: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6478: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6479: PetscFree(yreal);
6480: #else
6481: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6482: #endif
6483: }
6484: VecRestoreArrayRead(v,&yy);
6485: if (ctx->transform) {VecDestroy(&v);}
6487: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6488: PetscDrawLGDraw(ctx->lg);
6489: PetscDrawLGSave(ctx->lg);
6490: }
6491: return(0);
6492: }
6494: /*@C
6495: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6497: Collective on TS
6499: Input Parameters:
6500: + ts - the TS context
6501: - names - the names of the components, final string must be NULL
6503: Level: intermediate
6505: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6507: .keywords: TS, vector, monitor, view
6509: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6510: @*/
6511: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6512: {
6513: PetscErrorCode ierr;
6514: PetscInt i;
6517: for (i=0; i<ts->numbermonitors; i++) {
6518: if (ts->monitor[i] == TSMonitorLGSolution) {
6519: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6520: break;
6521: }
6522: }
6523: return(0);
6524: }
6526: /*@C
6527: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6529: Collective on TS
6531: Input Parameters:
6532: + ts - the TS context
6533: - names - the names of the components, final string must be NULL
6535: Level: intermediate
6537: .keywords: TS, vector, monitor, view
6539: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6540: @*/
6541: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6542: {
6543: PetscErrorCode ierr;
6546: PetscStrArrayDestroy(&ctx->names);
6547: PetscStrArrayallocpy(names,&ctx->names);
6548: return(0);
6549: }
6551: /*@C
6552: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6554: Collective on TS
6556: Input Parameter:
6557: . ts - the TS context
6559: Output Parameter:
6560: . names - the names of the components, final string must be NULL
6562: Level: intermediate
6564: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6566: .keywords: TS, vector, monitor, view
6568: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6569: @*/
6570: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6571: {
6572: PetscInt i;
6575: *names = NULL;
6576: for (i=0; i<ts->numbermonitors; i++) {
6577: if (ts->monitor[i] == TSMonitorLGSolution) {
6578: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6579: *names = (const char *const *)ctx->names;
6580: break;
6581: }
6582: }
6583: return(0);
6584: }
6586: /*@C
6587: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6589: Collective on TS
6591: Input Parameters:
6592: + ctx - the TSMonitorLG context
6593: . displaynames - the names of the components, final string must be NULL
6595: Level: intermediate
6597: .keywords: TS, vector, monitor, view
6599: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6600: @*/
6601: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6602: {
6603: PetscInt j = 0,k;
6604: PetscErrorCode ierr;
6607: if (!ctx->names) return(0);
6608: PetscStrArrayDestroy(&ctx->displaynames);
6609: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6610: while (displaynames[j]) j++;
6611: ctx->ndisplayvariables = j;
6612: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6613: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6614: j = 0;
6615: while (displaynames[j]) {
6616: k = 0;
6617: while (ctx->names[k]) {
6618: PetscBool flg;
6619: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6620: if (flg) {
6621: ctx->displayvariables[j] = k;
6622: break;
6623: }
6624: k++;
6625: }
6626: j++;
6627: }
6628: return(0);
6629: }
6631: /*@C
6632: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6634: Collective on TS
6636: Input Parameters:
6637: + ts - the TS context
6638: . displaynames - the names of the components, final string must be NULL
6640: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6642: Level: intermediate
6644: .keywords: TS, vector, monitor, view
6646: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6647: @*/
6648: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6649: {
6650: PetscInt i;
6651: PetscErrorCode ierr;
6654: for (i=0; i<ts->numbermonitors; i++) {
6655: if (ts->monitor[i] == TSMonitorLGSolution) {
6656: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6657: break;
6658: }
6659: }
6660: return(0);
6661: }
6663: /*@C
6664: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6666: Collective on TS
6668: Input Parameters:
6669: + ts - the TS context
6670: . transform - the transform function
6671: . destroy - function to destroy the optional context
6672: - ctx - optional context used by transform function
6674: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6676: Level: intermediate
6678: .keywords: TS, vector, monitor, view
6680: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6681: @*/
6682: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6683: {
6684: PetscInt i;
6685: PetscErrorCode ierr;
6688: for (i=0; i<ts->numbermonitors; i++) {
6689: if (ts->monitor[i] == TSMonitorLGSolution) {
6690: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6691: }
6692: }
6693: return(0);
6694: }
6696: /*@C
6697: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6699: Collective on TSLGCtx
6701: Input Parameters:
6702: + ts - the TS context
6703: . transform - the transform function
6704: . destroy - function to destroy the optional context
6705: - ctx - optional context used by transform function
6707: Level: intermediate
6709: .keywords: TS, vector, monitor, view
6711: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6712: @*/
6713: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6714: {
6716: ctx->transform = transform;
6717: ctx->transformdestroy = destroy;
6718: ctx->transformctx = tctx;
6719: return(0);
6720: }
6722: /*@C
6723: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6724: in a time based line graph
6726: Collective on TS
6728: Input Parameters:
6729: + ts - the TS context
6730: . step - current time-step
6731: . ptime - current time
6732: . u - current solution
6733: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6735: Level: intermediate
6737: Notes: Each process in a parallel run displays its component errors in a separate window
6739: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6741: Options Database Keys:
6742: . -ts_monitor_lg_error - create a graphical monitor of error history
6744: .keywords: TS, vector, monitor, view
6746: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6747: @*/
6748: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6749: {
6750: PetscErrorCode ierr;
6751: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6752: const PetscScalar *yy;
6753: Vec y;
6756: if (!step) {
6757: PetscDrawAxis axis;
6758: PetscInt dim;
6759: PetscDrawLGGetAxis(ctx->lg,&axis);
6760: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6761: VecGetLocalSize(u,&dim);
6762: PetscDrawLGSetDimension(ctx->lg,dim);
6763: PetscDrawLGReset(ctx->lg);
6764: }
6765: VecDuplicate(u,&y);
6766: TSComputeSolutionFunction(ts,ptime,y);
6767: VecAXPY(y,-1.0,u);
6768: VecGetArrayRead(y,&yy);
6769: #if defined(PETSC_USE_COMPLEX)
6770: {
6771: PetscReal *yreal;
6772: PetscInt i,n;
6773: VecGetLocalSize(y,&n);
6774: PetscMalloc1(n,&yreal);
6775: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6776: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6777: PetscFree(yreal);
6778: }
6779: #else
6780: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6781: #endif
6782: VecRestoreArrayRead(y,&yy);
6783: VecDestroy(&y);
6784: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6785: PetscDrawLGDraw(ctx->lg);
6786: PetscDrawLGSave(ctx->lg);
6787: }
6788: return(0);
6789: }
6791: /*@C
6792: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
6794: Collective on TS
6796: Input Parameters:
6797: + ts - the TS context
6798: . step - current time-step
6799: . ptime - current time
6800: . u - current solution
6801: - dctx - unused context
6803: Level: intermediate
6805: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6807: Options Database Keys:
6808: . -ts_monitor_error - create a graphical monitor of error history
6810: .keywords: TS, vector, monitor, view
6812: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6813: @*/
6814: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
6815: {
6816: PetscErrorCode ierr;
6817: Vec y;
6818: PetscReal nrm;
6819: PetscBool flg;
6822: VecDuplicate(u,&y);
6823: TSComputeSolutionFunction(ts,ptime,y);
6824: VecAXPY(y,-1.0,u);
6825: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
6826: if (flg) {
6827: VecNorm(y,NORM_2,&nrm);
6828: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
6829: }
6830: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
6831: if (flg) {
6832: VecView(y,vf->viewer);
6833: }
6834: VecDestroy(&y);
6835: return(0);
6836: }
6838: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6839: {
6840: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6841: PetscReal x = ptime,y;
6843: PetscInt its;
6846: if (n < 0) return(0); /* -1 indicates interpolated solution */
6847: if (!n) {
6848: PetscDrawAxis axis;
6849: PetscDrawLGGetAxis(ctx->lg,&axis);
6850: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
6851: PetscDrawLGReset(ctx->lg);
6852: ctx->snes_its = 0;
6853: }
6854: TSGetSNESIterations(ts,&its);
6855: y = its - ctx->snes_its;
6856: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6857: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6858: PetscDrawLGDraw(ctx->lg);
6859: PetscDrawLGSave(ctx->lg);
6860: }
6861: ctx->snes_its = its;
6862: return(0);
6863: }
6865: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6866: {
6867: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6868: PetscReal x = ptime,y;
6870: PetscInt its;
6873: if (n < 0) return(0); /* -1 indicates interpolated solution */
6874: if (!n) {
6875: PetscDrawAxis axis;
6876: PetscDrawLGGetAxis(ctx->lg,&axis);
6877: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
6878: PetscDrawLGReset(ctx->lg);
6879: ctx->ksp_its = 0;
6880: }
6881: TSGetKSPIterations(ts,&its);
6882: y = its - ctx->ksp_its;
6883: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6884: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6885: PetscDrawLGDraw(ctx->lg);
6886: PetscDrawLGSave(ctx->lg);
6887: }
6888: ctx->ksp_its = its;
6889: return(0);
6890: }
6892: /*@
6893: TSComputeLinearStability - computes the linear stability function at a point
6895: Collective on TS and Vec
6897: Input Parameters:
6898: + ts - the TS context
6899: - xr,xi - real and imaginary part of input arguments
6901: Output Parameters:
6902: . yr,yi - real and imaginary part of function value
6904: Level: developer
6906: .keywords: TS, compute
6908: .seealso: TSSetRHSFunction(), TSComputeIFunction()
6909: @*/
6910: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
6911: {
6916: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
6917: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
6918: return(0);
6919: }
6921: /* ------------------------------------------------------------------------*/
6922: /*@C
6923: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
6925: Collective on TS
6927: Input Parameters:
6928: . ts - the ODE solver object
6930: Output Parameter:
6931: . ctx - the context
6933: Level: intermediate
6935: .keywords: TS, monitor, line graph, residual, seealso
6937: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
6939: @*/
6940: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
6941: {
6945: PetscNew(ctx);
6946: return(0);
6947: }
6949: /*@C
6950: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
6952: Collective on TS
6954: Input Parameters:
6955: + ts - the TS context
6956: . step - current time-step
6957: . ptime - current time
6958: . u - current solution
6959: - dctx - the envelope context
6961: Options Database:
6962: . -ts_monitor_envelope
6964: Level: intermediate
6966: Notes: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
6968: .keywords: TS, vector, monitor, view
6970: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
6971: @*/
6972: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6973: {
6974: PetscErrorCode ierr;
6975: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
6978: if (!ctx->max) {
6979: VecDuplicate(u,&ctx->max);
6980: VecDuplicate(u,&ctx->min);
6981: VecCopy(u,ctx->max);
6982: VecCopy(u,ctx->min);
6983: } else {
6984: VecPointwiseMax(ctx->max,u,ctx->max);
6985: VecPointwiseMin(ctx->min,u,ctx->min);
6986: }
6987: return(0);
6988: }
6990: /*@C
6991: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
6993: Collective on TS
6995: Input Parameter:
6996: . ts - the TS context
6998: Output Parameter:
6999: + max - the maximum values
7000: - min - the minimum values
7002: Notes: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7004: Level: intermediate
7006: .keywords: TS, vector, monitor, view
7008: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7009: @*/
7010: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7011: {
7012: PetscInt i;
7015: if (max) *max = NULL;
7016: if (min) *min = NULL;
7017: for (i=0; i<ts->numbermonitors; i++) {
7018: if (ts->monitor[i] == TSMonitorEnvelope) {
7019: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7020: if (max) *max = ctx->max;
7021: if (min) *min = ctx->min;
7022: break;
7023: }
7024: }
7025: return(0);
7026: }
7028: /*@C
7029: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7031: Collective on TSMonitorEnvelopeCtx
7033: Input Parameter:
7034: . ctx - the monitor context
7036: Level: intermediate
7038: .keywords: TS, monitor, line graph, destroy
7040: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7041: @*/
7042: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7043: {
7047: VecDestroy(&(*ctx)->min);
7048: VecDestroy(&(*ctx)->max);
7049: PetscFree(*ctx);
7050: return(0);
7051: }
7053: /*@
7054: TSRestartStep - Flags the solver to restart the next step
7056: Collective on TS
7058: Input Parameter:
7059: . ts - the TS context obtained from TSCreate()
7061: Level: advanced
7063: Notes:
7064: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7065: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7066: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7067: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7068: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7069: discontinuous source terms).
7071: .keywords: TS, timestep, restart
7073: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7074: @*/
7075: PetscErrorCode TSRestartStep(TS ts)
7076: {
7079: ts->steprestart = PETSC_TRUE;
7080: return(0);
7081: }
7083: /*@
7084: TSRollBack - Rolls back one time step
7086: Collective on TS
7088: Input Parameter:
7089: . ts - the TS context obtained from TSCreate()
7091: Level: advanced
7093: .keywords: TS, timestep, rollback
7095: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7096: @*/
7097: PetscErrorCode TSRollBack(TS ts)
7098: {
7103: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7104: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7105: (*ts->ops->rollback)(ts);
7106: ts->time_step = ts->ptime - ts->ptime_prev;
7107: ts->ptime = ts->ptime_prev;
7108: ts->ptime_prev = ts->ptime_prev_rollback;
7109: ts->steps--;
7110: ts->steprollback = PETSC_TRUE;
7111: return(0);
7112: }
7114: /*@
7115: TSGetStages - Get the number of stages and stage values
7117: Input Parameter:
7118: . ts - the TS context obtained from TSCreate()
7120: Level: advanced
7122: .keywords: TS, getstages
7124: .seealso: TSCreate()
7125: @*/
7126: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7127: {
7134: if (!ts->ops->getstages) *ns=0;
7135: else {
7136: (*ts->ops->getstages)(ts,ns,Y);
7137: }
7138: return(0);
7139: }
7141: /*@C
7142: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7144: Collective on SNES
7146: Input Parameters:
7147: + ts - the TS context
7148: . t - current timestep
7149: . U - state vector
7150: . Udot - time derivative of state vector
7151: . shift - shift to apply, see note below
7152: - ctx - an optional user context
7154: Output Parameters:
7155: + J - Jacobian matrix (not altered in this routine)
7156: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7158: Level: intermediate
7160: Notes:
7161: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7163: dF/dU + shift*dF/dUdot
7165: Most users should not need to explicitly call this routine, as it
7166: is used internally within the nonlinear solvers.
7168: This will first try to get the coloring from the DM. If the DM type has no coloring
7169: routine, then it will try to get the coloring from the matrix. This requires that the
7170: matrix have nonzero entries precomputed.
7172: .keywords: TS, finite differences, Jacobian, coloring, sparse
7173: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7174: @*/
7175: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7176: {
7177: SNES snes;
7178: MatFDColoring color;
7179: PetscBool hascolor, matcolor = PETSC_FALSE;
7183: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7184: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7185: if (!color) {
7186: DM dm;
7187: ISColoring iscoloring;
7189: TSGetDM(ts, &dm);
7190: DMHasColoring(dm, &hascolor);
7191: if (hascolor && !matcolor) {
7192: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7193: MatFDColoringCreate(B, iscoloring, &color);
7194: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7195: MatFDColoringSetFromOptions(color);
7196: MatFDColoringSetUp(B, iscoloring, color);
7197: ISColoringDestroy(&iscoloring);
7198: } else {
7199: MatColoring mc;
7201: MatColoringCreate(B, &mc);
7202: MatColoringSetDistance(mc, 2);
7203: MatColoringSetType(mc, MATCOLORINGSL);
7204: MatColoringSetFromOptions(mc);
7205: MatColoringApply(mc, &iscoloring);
7206: MatColoringDestroy(&mc);
7207: MatFDColoringCreate(B, iscoloring, &color);
7208: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7209: MatFDColoringSetFromOptions(color);
7210: MatFDColoringSetUp(B, iscoloring, color);
7211: ISColoringDestroy(&iscoloring);
7212: }
7213: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7214: PetscObjectDereference((PetscObject) color);
7215: }
7216: TSGetSNES(ts, &snes);
7217: MatFDColoringApply(B, color, U, snes);
7218: if (J != B) {
7219: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7220: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7221: }
7222: return(0);
7223: }
7225: /*@
7226: TSSetFunctionDomainError - Set the function testing if the current state vector is valid
7228: Input Parameters:
7229: ts - the TS context
7230: func - function called within TSFunctionDomainError
7232: Level: intermediate
7234: .keywords: TS, state, domain
7235: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7236: @*/
7238: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7239: {
7242: ts->functiondomainerror = func;
7243: return(0);
7244: }
7246: /*@
7247: TSFunctionDomainError - Check if the current state is valid
7249: Input Parameters:
7250: ts - the TS context
7251: stagetime - time of the simulation
7252: Y - state vector to check.
7254: Output Parameter:
7255: accept - Set to PETSC_FALSE if the current state vector is valid.
7257: Note:
7258: This function should be used to ensure the state is in a valid part of the space.
7259: For example, one can ensure here all values are positive.
7261: Level: advanced
7262: @*/
7263: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7264: {
7270: *accept = PETSC_TRUE;
7271: if (ts->functiondomainerror) {
7272: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7273: }
7274: return(0);
7275: }
7277: /*@C
7278: TSClone - This function clones a time step object.
7280: Collective on MPI_Comm
7282: Input Parameter:
7283: . tsin - The input TS
7285: Output Parameter:
7286: . tsout - The output TS (cloned)
7288: Notes:
7289: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7291: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7293: Level: developer
7295: .keywords: TS, clone
7296: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7297: @*/
7298: PetscErrorCode TSClone(TS tsin, TS *tsout)
7299: {
7300: TS t;
7302: SNES snes_start;
7303: DM dm;
7304: TSType type;
7308: *tsout = NULL;
7310: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7312: /* General TS description */
7313: t->numbermonitors = 0;
7314: t->setupcalled = 0;
7315: t->ksp_its = 0;
7316: t->snes_its = 0;
7317: t->nwork = 0;
7318: t->rhsjacobian.time = -1e20;
7319: t->rhsjacobian.scale = 1.;
7320: t->ijacobian.shift = 1.;
7322: TSGetSNES(tsin,&snes_start);
7323: TSSetSNES(t,snes_start);
7325: TSGetDM(tsin,&dm);
7326: TSSetDM(t,dm);
7328: t->adapt = tsin->adapt;
7329: PetscObjectReference((PetscObject)t->adapt);
7331: t->trajectory = tsin->trajectory;
7332: PetscObjectReference((PetscObject)t->trajectory);
7334: t->event = tsin->event;
7335: if (t->event) t->event->refct++;
7337: t->problem_type = tsin->problem_type;
7338: t->ptime = tsin->ptime;
7339: t->ptime_prev = tsin->ptime_prev;
7340: t->time_step = tsin->time_step;
7341: t->max_time = tsin->max_time;
7342: t->steps = tsin->steps;
7343: t->max_steps = tsin->max_steps;
7344: t->equation_type = tsin->equation_type;
7345: t->atol = tsin->atol;
7346: t->rtol = tsin->rtol;
7347: t->max_snes_failures = tsin->max_snes_failures;
7348: t->max_reject = tsin->max_reject;
7349: t->errorifstepfailed = tsin->errorifstepfailed;
7351: TSGetType(tsin,&type);
7352: TSSetType(t,type);
7354: t->vec_sol = NULL;
7356: t->cfltime = tsin->cfltime;
7357: t->cfltime_local = tsin->cfltime_local;
7358: t->exact_final_time = tsin->exact_final_time;
7360: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7362: if (((PetscObject)tsin)->fortran_func_pointers) {
7363: PetscInt i;
7364: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7365: for (i=0; i<10; i++) {
7366: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7367: }
7368: }
7369: *tsout = t;
7370: return(0);
7371: }
7373: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7374: {
7376: TS ts = (TS) ctx;
7379: TSComputeRHSFunction(ts,0,x,y);
7380: return(0);
7381: }
7383: /*@
7384: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7386: Logically Collective on TS and Mat
7388: Input Parameters:
7389: TS - the time stepping routine
7391: Output Parameter:
7392: . flg - PETSC_TRUE if the multiply is likely correct
7394: Options Database:
7395: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7397: Level: advanced
7399: Notes: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7401: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7402: @*/
7403: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7404: {
7405: Mat J,B;
7407: TSRHSJacobian func;
7408: void* ctx;
7411: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7412: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7413: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7414: return(0);
7415: }
7417: /*@C
7418: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7420: Logically Collective on TS and Mat
7422: Input Parameters:
7423: TS - the time stepping routine
7425: Output Parameter:
7426: . flg - PETSC_TRUE if the multiply is likely correct
7428: Options Database:
7429: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7431: Notes: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7433: Level: advanced
7435: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7436: @*/
7437: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7438: {
7439: Mat J,B;
7441: void *ctx;
7442: TSRHSJacobian func;
7445: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7446: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7447: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7448: return(0);
7449: }