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1 Introduction

R includes functions to compute the probability density function (pdf) or the
probability mass function (pmf), the cumulative distribution function (cdf)
and the quantile function, as well as functions to generate variates from a
fair number of continuous and discrete distributions. For some root foo, the
support functions are named dfoo, pfoo, qfoo and rfoo, respectively.

Package actuar provides d, p, q and r functions for a large number of
continuous distributions useful for loss severity modeling; for phase-type
distributions used in computation of ruin probabilities; for zero-truncated and
zero-modified extensions of the discrete distributions commonly used in loss
frequency modeling; for the heavy tailed Poisson-inverse Gaussian discrete
distribution. The package also introduces support functions to compute raw
moments, limited moments and the moment generating function (when it
exists) of continuous distributions.

2 Additional continuous distributions

The package provides support functions for all the probability distributions
found in Appendix A of Klugman et al. (2012) and not already present in base
R, excluding the log-t, but including the loggamma distribution (Hogg and
Klugman, 1984). These distributions mostly fall under the umbrella of extreme
value or heavy tailed distributions.

Table 1 lists the distributions supported by actuar — using the nomenclature
of Klugman et al. (2012) — along with the root names of the R functions.
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Family Distribution Root

Transformed beta Transformed beta trbeta
Burr burr
Loglogistic llogis
Paralogistic paralogis
Generalized Pareto genpareto
Pareto pareto
Inverse Burr invburr
Inverse Pareto invpareto
Inverse paralogistic invparalogis

Transformed gamma Transformed gamma trgamma
Inverse transformed gamma invtrgamma
Inverse gamma invgamma
Inverse Weibull invweibull
Inverse exponential invexp

Other Loggamma lgamma
Gumbel gumbel
Inverse Gaussian invgauss
Single parameter Pareto pareto1
Generalized beta genbeta

Table 1: Probability distributions supported by actuar classified by family and
root names of the R functions.

Appendix A details the formulas implemented and the name of the argument
corresponding to each parameter. By default, all functions (except those for
the Pareto distribution) use a rate parameter equal to the inverse of the scale
parameter. This differs from Klugman et al. (2012) but is better in line with the
functions for the gamma, exponential and Weibull distributions in base R.

In addition to the d, p, q and r functions, actuar introduces m, lev and mgf
functions to compute, respectively, the theoretical raw moments

mk = E[Xk],

the theoretical limited moments

E[(X ∧ x)k] = E[min(X, x)k]

and the moment generating function

MX(t) = E[etX ],

when it exists. Every distribution of Table 1 is supported, along with the follow-
ing distributions of base R: beta, exponential, chi-square, gamma, lognormal,
normal (no lev), uniform and Weibull.
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The m and lev functions are especially useful for estimation methods based
on the matching of raw or limited moments; see the ‘lossdist’ vignette for
their empirical counterparts. The mgf functions come in handy to compute the
adjustment coefficient in ruin theory; see the ‘risk’ vignette.

3 Support for phase-type distributions

In addition to the 19 distributions of Table 1, the package provides support
for a family of distributions deserving a separate presentation. Phase-type
distributions (Neuts, 1981) are defined as the distribution of the time until
absorption of continuous time, finite state Markov processes with m transient
states and one absorbing state. Let

Q =

[
T t
0 0

]
(1)

be the transition rates matrix (or intensity matrix) of such a process and let
(π, πm+1) be the initial probability vector. Here, T is an m×m non-singular
matrix with tii < 0 for i = 1, . . . , m and tij ≥ 0 for i 6= j, t = −Te and e is a
column vector with all components equal to 1. Then the cdf of the time until
absorption random variable with parameters π and T is

F(x) =

{
πm+1, x = 0,
1−πeTxe, x > 0,

(2)

where

eM =
∞

∑
n=0

Mn

n!
(3)

is the matrix exponential of matrix M.
The exponential distribution, the Erlang (gamma with integer shape param-

eter) and discrete mixtures thereof are common special cases of phase-type
distributions.

The package provides d, p, r, m and mgf functions for phase-type distribu-
tions. The root is phtype and parameters π and T are named prob and rates,
respectively; see also Appendix B.

For the package, function pphtype is central to the evaluation of the ruin
probabilities; see ‘?ruin’ and the ‘risk’ vignette.

4 Extensions to standard discrete distributions

The package introduces support functions for counting distributions com-
monly used in loss frequency modeling. A counting distribution is a discrete
distribution defined on the non-negative integers 0, 1, 2, . . . .
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Let N be the counting random variable. We denote pk the probability that
the random variable N takes the value k, that is:

pk = Pr[N = k].

Klugman et al. (2012) classify counting distributions in two main classes.
First, a discrete random variable is a member of the (a, b, 0) class of distributions
if there exists constants a and b such that

pk
pk−1

= a +
b
k

, k = 1, 2, . . . .

The probability at zero, p0, is set such that ∑∞
k=0 pk = 1. The members of this

class are the Poisson, the binomial, the negative binomial and its special case,
the geometric. These distributions are all well supported in base R with d, p, q
and r functions.

The second class of distributions is the (a, b, 1) class. A discrete random
variable is a member of the (a, b, 1) class of distributions if there exists constants
a and b such that

pk
pk−1

= a +
b
k

, k = 2, 3, . . . .

One will note that recursions start at k = 2 for the (a, b, 1) class. Therefore, the
probability at zero can be any arbitrary number 0 ≤ p0 ≤ 1.

Setting p0 = 0 defines a subclass of so-called zero-truncated distributions.
The members of this subclass are the zero-truncated Poisson, the zero-truncated
binomial, the zero-truncated negative binomial and the zero-truncated geomet-
ric.

Let pT
k denote the probability mass in k for a zero-truncated distribution.

As above, pk denotes the probability mass for the corresponding member of
the (a, b, 0) class. We have

pT
k =

0, k = 0
pk

1− p0
, k = 1, 2, . . . .

Moreover, let P(k) denotes the cumulative distribution function of a member
of the (a, b, 0) class. Then the cdf PT(k) of the corresponding zero-truncated
distribution is

PT(k) =
P(k)− P(0)

1− P(0)
=

P(k)− p0

1− p0

for all k = 0, 1, 2, . . . . Alternatively, the survival function P̄T(k) = 1− PT(k) is

P̄T(k) =
P̄(k)
P̄(0)

=
P̄(k)

1− p0
.

Package actuar provides d, p, q and r functions for the all the zero-truncated
distributions mentioned above. Table 2 lists the root names of the functions;
see Appendix C for additional details.
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Distribution Root

Zero-truncated Poisson ztpois
Zero-truncated binomial ztbinom
Zero-truncated negative binomial ztnbinom
Zero-truncated geometric ztgeom
Logarithmic logarithmic

Zero-modified Poisson zmpois
Zero-modified binomial zmbinom
Zero-modified negative binomial zmnbinom
Zero-modified geometric zmgeom
Zero-modified logarithmic zmlogarithmic

Table 2: Members of the (a, b, 1) class of discrete distributions supported by
actuar and root names of the R functions.

An entry of Table 2 deserves a few additional words. The logarithmic (or
log-series) distribution with parameter θ has pmf

pk =
aθx

k
, k = 1, 2, . . . ,

with a = −1/ log(1− θ) and for 0 ≤ θ < 1. This is the standard parametriza-
tion in the literature (Johnson et al., 2005).

The logarithmic distribution is always defined on the strictly positive in-
tegers. As such, it is not qualified as “zero-truncated”, but it nevertheless
belongs to the (a, b, 1) class of distributions, more specifically to the subclass
with p0 = 0. Actually, the logarithmic distribution is the limiting case of the
zero-truncated negative binomial distribution with size parameter equal to
zero and θ = 1− p, where p is the probability of success for the zero-truncated
negative binomial. Note that this differs from the presentation in Klugman
et al. (2012).

Another subclass of the (a, b, 1) class of distributions is obtained by setting
p0 to some arbitrary number pM

0 subject to 0 < pM
0 ≤ 1. The members of

this subclass are called zero-modified distributions. Zero-modified distribu-
tions are discrete mixtures between a degenerate distribution at zero and the
corresponding distribution from the (a, b, 0) class.

Let pM
k and PM(k) denote the pmf and cdf of a zero-modified distribution.

Written as a mixture, the pmf is

pM
k =

(
1−

1− pM
0

1− p0

)
1{k=0} +

1− pM
0

1− p0
pk. (4)
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Alternatively, we have

pM
k =


pM

0 , k = 0
1− pM

0
1− p0

pk, k = 1, 2, . . .

and

PM(k) = pM
0 + (1− pM

0 )
P(k)− P(0)

1− P(0)
= pM

0 +
1− pM

0
1− p0

(P(k)− p0)

for all k = 0, 1, 2, . . . . The survival function is

P̄M(k) = (1− pM
0 )

P̄(k)
P̄(0)

=
1− pM

0
1− p0

P̄(k).

The members of the subclass are the zero-modified Poisson, zero-modified
binomial, zero-modified negative binomial and zero-modified geometric, to-
gether with the zero-modified logarithmic as a limiting case of the zero-
modified negative binomial. Table 2 lists the root names of the support
functions provided in actuar; see also Appendix C.

Quite obviously, zero-truncated distributions are zero-modified distribu-
tions with pM

0 = 0. However, using the dedicated functions in R will be more
efficient.

5 Support for the Poisson-inverse Gaussian distri-
bution

The Poisson-inverse Gaussian (PIG) distribution results from the continuous
mixture between a Poisson distribution and an inverse Gaussian. That is, the
Poisson-inverse Gaussian is the (marginal) distribution of the random variable
X when the conditional random variable X|Λ = λ is Poisson with parameter
λ and the random variable Λ is inverse Gaussian distribution with parameters
µ and φ.

The literature proposes many different expressions for the pmf of the PIG
(Holla, 1966; Shaban, 1981; Johnson et al., 2005; Klugman et al., 2012). Using
the parametrization for the inverse Gaussian found in Appendix A, we have:

px =

√
2

πφ

e(φµ)−1

x!

(√
2φ

(
1 +

1
2φµ2

))−(x− 1
2 )

× Kx− 1
2

(√
2
φ

(
1 +

1
2φµ2

))
,

(5)

for x = 0, 1, . . . , µ > 0, φ > 0 and where

Kν(ax) =
a−ν

2

∫ ∞

0
tν−1e−z(t+at−1)/2dt, a2z > 0 (6)
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is the modified Bessel function of the third kind (Bateman, 1953; Abramowitz
and Stegun, 1972).

One may compute the probabilities px, x = 0, 1, . . . recursively using the
following equations:

p0 = exp
{

1
φµ

(
1−

√
1 + 2φµ2

)}
p1 =

µ√
1 + 2φµ2

p0

px =
2φµ2

1 + 2φµ2

(
1− 3

2x

)
px−1 +

µ2

1 + 2φµ2
1

x(x− 1)
px−2, x = 2, 3, . . . .

(7)

The first moment of the distribution is µ. The second and third central
moment are, respectively,

µ2 = σ2 = µ + φµ3

µ3 = µ + 3φµ2σ2.

For the limiting case µ = ∞, the underlying inverse Gaussian has an inverse
chi-squared distribution. The latter has no finite strictly positive, integer
moments and, consequently, neither does the Poisson-inverse Gaussian. See
subsection C.4 for the formulas in this case.

6 Special integrals

Many of the cumulative distribution functions of Appendix A are expressed in
terms of the incomplete gamma function or the incomplete beta function.

From a probability theory perspective, the incomplete gamma function is
usually defined as

Γ(α; x) =
1

Γ(α)

∫ x

0
tα−1e−t dt, α > 0, x > 0, (8)

with
Γ(α) =

∫ ∞

0
tα−1e−t dt,

whereas the (regularized) incomplete beta function is defined as

β(a, b; x) =
1

β(a, b)

x∫
0

ta−1(1− t)b−1 dt, a > 0, b > 0, 0 < x < 1, (9)

with

β(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt =

Γ(a)Γ(b)
Γ(a + b)

.
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Now, there exist alternative definitions of the these functions that are valid
for negative values of the parameters. Klugman et al. (2012) introduce them to
extend the range of admissible values for limited expected value functions.

First, following Abramowitz and Stegun (1972, Section 6.5), we define the
“extended” incomplete gamma function as

G(α; x) =
∫ ∞

x
tα−1e−t dt (10)

for α real and x > 0. When α > 0, we clearly have

G(α; x) = Γ(a)[1− Γ(α; x)]. (11)

The integral is also defined for α ≤ 0.
As outlined in Klugman et al. (2012, Appendix A), integration by parts of

(10) yields the relation

G(α; x) = − xαe−x

α
+

1
α

G(α + 1; x).

This process can be repeated until α + k is a positive number, in which case the
right hand side can be evaluated with (11). If α = 0,−1,−2, . . . , this calculation
requires the value of

G(0; x) =
∫ ∞

x

e−t

t
dt = E1(x),

which is known in the literature as the exponential integral (Abramowitz and
Stegun, 1972, Section 5.1).

Second, as seen in Abramowitz and Stegun (1972, Section 6.6), we have the
following relation for the integral on the right hand side of (9):

x∫
0

ta−1(1− t)b−1 dt =
xa

a
F(a, 1− b; a + 1; x),

where

F(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + k)
Γ(c + k)

zk

k!

is the Gauss hypergeometric series. With the above definition, the incomplete
beta function also admits negative, non integer values for parameters a and b.

Now, let

B(a, b; x) = Γ(a + b)
∫ x

0
ta−1(1− t)b−1dt (12)

for a > 0, b 6= −1,−2, . . . and 0 < x < 1. Again, it is clear that when b > 0,

B(a, b; x) = Γ(a)Γ(b)β(a, b; x).
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Of more interest here is the case where b < 0, b 6= −1,−2, . . . and a > 1+ b−bc.
Integration by parts of (12) yields

B(a, b; x) = −Γ(a + b)

[
xa−1(1− x)b

b
+

(a− 1)xa−2(1− x)b+1

b(b + 1)

+ · · ·+ (a− 1) · · · (a− r)xa−r−1(1− x)b+r

b(b + 1) · · · (b + r)

]

+
(a− 1) · · · (a− r− 1)

b(b + 1) · · · (b + r)
Γ(a− r− 1)

× Γ(b + r + 1)β(a− r− 1, b + r + 1; x),

(13)

where r = b−bc. For the needs of actuar, we dubbed (12) the beta integral.
Package actuar includes a C implementation of (13) and imports function-

alities of package expint (Goulet, 2017) to compute the incomplete gamma
function (10) at the C level. The routines are used to evaluate the limited ex-
pected value for distributions of the transformed beta and transformed gamma
families.

7 Implementation details

The core of all the functions presented in this document is written in C for
speed.

The cdf of the continuous distributions of Table 1 use pbeta and pgamma to
compute the incomplete beta and incomplete gamma functions, respectively.
Functions dinvgauss, pinvgauss and qinvgauss rely on C implementations of
functions of the same name from package statmod (Giner and Smyth, 2016).

The matrix exponential C routine needed in dphtype and pphtype is based
on expm from package Matrix (Bates and Maechler, 2016).

The C code to compute the beta integral (13) was written by the second
author.

For all but the trivial input values, the pmf, cdf and quantile functions for
the zero-truncated and zero-modified distributions of Table 2 use the internal
R functions for the corresponding standard distribution.

Generation of random variates from zero-truncated distributions uses the
following simple inversion algorithm on a restricted range (Dalgaard, 2005;
Thomopoulos, 2013). Let u be a random number from a uniform distribution
on (p0, 1). Then x = P−1(u) is distributed according to the zero-truncated
version of the distribution with cdf P(k).

For zero-modified distributions, we generate variates from the discrete
mixture (4) when pM

0 ≥ p0. When pM
0 < p0, we can use either of two methods:

i) the classical rejection method with an envelope that differs from the target
distribution only at zero (meaning that only zeros are rejected);
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ii) the inversion method on a restricted range explained above.

Which approach is faster depends on the relative speeds of the standard
random generation function and the standard quantile function, and also on
the proportion of zeros that are rejected using the rejection algorithm. Based
on the difference p0 − pM

0 , we determined (empirically) distribution-specific
cutoff points between the two methods.

Finally, computation of the Poisson-inverse Gaussian pmf uses the direct
expression (5) — and the C level function bessel_k part of the R API — rather
than the recursive equations (7). We thereby take advantage of the various
optimizations in bessel_k, with no negative impact on performance.

A Continuous distributions

This appendix gives the root name and the parameters of the R support
functions for the distributions of Table 1, as well as the formulas for the pdf,
the cdf, the raw moment of order k and the limited moment of order k using
the parametrization of Klugman et al. (2012) and Hogg and Klugman (1984).

In the following, Γ(α; x) is the incomplete gamma function (8), β(a, b; x) is
the incomplete beta function (9), G(α; x) is the “extended” incomplete gamma
function (10), B(a, b; x) is the beta integral (12) and Kν(x) is the modified Bessel
function of the third kind (6).

Unless otherwise stated, all parameters are finite and strictly positive, and
the functions are defined for x > 0.

A.1 Transformed beta family

A.1.1 Transformed beta

Root: trbeta, pearson6
Parameters: shape1 (α), shape2 (γ), shape3 (τ), rate (λ = 1/θ), scale (θ)

f (x) =
γuτ(1− u)α

xβ(α, τ)
, u =

v
1 + v

, v =
( x

θ

)γ

F(x) = β(τ, α; u)

E[Xk] =
θkΓ(τ + k/γ)Γ(α− k/γ)

Γ(α)Γ(τ)
, −τγ < k < αγ

E[(X ∧ x)k] =
θkB(τ + k/γ, α− k/γ; u)

Γ(α)Γ(τ)

+ xk[1− β(τ, α; u)], k > −τγ

A.1.2 Burr

Root: burr
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Parameters: shape1 (α), shape2 (γ), rate (λ = 1/θ), scale (θ)

f (x) =
αγuα(1− u)

x
, u =

1
1 + v

, v =
( x

θ

)γ

F(x) = 1− uα

E[Xk] =
θkΓ(1 + k/γ)Γ(α− k/γ)

Γ(α)
, −γ < k < αγ

E[(X ∧ x)k] =
θkB(1 + k/γ, α− k/γ; 1− u)

Γ(α)

+ xkuα, k > −γ

A.1.3 Loglogistic

Root: llogis
Parameters: shape (γ), rate (λ = 1/θ), scale (θ)

f (x) =
γu(1− u)

x
, u =

v
1 + v

, v =
( x

θ

)γ

F(x) = u

E[Xk] = θkΓ(1 + k/γ)Γ(1− k/γ), −γ < k < γ

E[(X ∧ x)k] = θkB(1 + k/γ, 1− k/γ; u)

+ xk(1− u), k > −γ

A.1.4 Paralogistic

Root: paralogis
Parameters: shape (α), rate (λ = 1/θ), scale (θ)

f (x) =
α2uα(1− u)

x
, u =

1
1 + v

, v =
( x

θ

)α

F(x) = 1− uα

E[Xk] =
θkΓ(1 + k/α)Γ(α− k/α)

Γ(α)
, −α < k < α2

E[(X ∧ x)k] =
θkB(1 + k/α, α− k/α; 1− u)

Γ(α)

+ xkuα, k > −α

A.1.5 Generalized Pareto

Root: genpareto
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)
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f (x) =
uτ(1− u)α

xβ(α, τ)
, u =

v
1 + v

, v =
x
θ

F(x) = β(τ, α; u)

E[Xk] =
θkΓ(τ + k)Γ(α− k)

Γ(α)Γ(τ)
, −τ < k < α

E[(X ∧ x)k] =
θkB(τ + k, α− k; u)

Γ(α)Γ(τ)

+ xk[1− β(τ, α; u)], k > −τ

A.1.6 Pareto

Root: pareto, pareto2
Parameters: shape (α), scale (θ)

f (x) =
αuα(1− u)

x
, u =

1
1 + v

, v =
x
θ

F(x) = 1− uα

E[Xk] =
θkΓ(1 + k)Γ(α− k)

Γ(α)
, −1 < k < α

E[(X ∧ x)k] =
θkB(1 + k, α− k; 1− u)

Γ(α)

+ xkuα, k > −1

A.1.7 Inverse Burr

Root: invburr
Parameters: shape1 (τ), shape2 (γ), rate (λ = 1/θ), scale (θ)

f (x) =
τγuτ(1− u)

x
, u =

v
1 + v

, v =
( x

θ

)γ

F(x) = uτ

E[Xk] =
θkΓ(τ + k/γ)Γ(1− k/γ)

Γ(τ)
, −γ < k < αγ

E[(X ∧ x)k] =
θkB(τ + k/γ, 1− k/γ; u)

Γ(τ)

+ xk(1− uτ), k > −τγ

A.1.8 Inverse Pareto

Root: invpareto
Parameters: shape (τ), scale (θ)
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f (x) =
τuτ(1− u)

x
, u =

v
1 + v

, v =
x
θ

F(x) = uτ

E[Xk] =
θkΓ(τ + k)Γ(1− k)

Γ(τ)
, −τ < k < 1

E[(X ∧ x)k] = θkτ
∫ u

0
yτ+k−1(1− y)−k dy

+ xk(1− uτ), k > −τ

A.1.9 Inverse paralogistic

Root: invparalogis
Parameters: shape (τ), rate (λ = 1/θ), scale (θ)

f (x) =
τ2uτ(1− u)

x
, u =

v
1 + v

, v =
( x

θ

)τ

F(x) = uτ

E[Xk] =
θkΓ(τ + k/τ)Γ(1− k/τ)

Γ(τ)
, −τ2 < k < τ

E[(X ∧ x)k] =
θkB(τ + k/τ, 1− k/τ; u)

Γ(τ)

+ xk(1− uτ), k > −τ2

A.2 Transformed gamma family

A.2.1 Transformed gamma

Root: trgamma
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)

f (x) =
τuαe−u

xΓ(α)
, u =

( x
θ

)τ

F(x) = Γ(α; u)

E[Xk] =
θkΓ(α + k/τ)

Γ(α)
k > −ατ

E[(X ∧ x)k] =
θkΓ(α + k/τ)

Γ(α)
Γ(α + k/τ; u)

+ xk[1− Γ(α; u)], k > −ατ

A.2.2 Inverse transformed gamma

Root: invtrgamma
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)
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f (x) =
τuαe−u

xΓ(α)
, u =

(
θ

x

)τ

F(x) = 1− Γ(α; u)

E[Xk] =
θkΓ(α− k/τ)

Γ(α)
k < ατ

E[(X ∧ x)k] =
θkG(α− k/τ; u)

Γ(α)
+ xkΓ(α; u), all k

A.2.3 Inverse gamma

Root: invgamma
Parameters: shape (α), rate (λ = 1/θ), scale (θ)

f (x) =
uαe−u

xΓ(α)
, u =

θ

x
F(x) = 1− Γ(α; u)

E[Xk] =
θkΓ(α− k)

Γ(α)
k < α

E[(X ∧ x)k] =
θkG(α− k; u)

Γ(α)
+ xkΓ(α; u), all k

M(t) =
2

Γ(α)
(−θt)α/2Kα(

√
−4θt)

A.2.4 Inverse Weibull

Root: invweibull, lgompertz
Parameters: shape (τ), rate (λ = 1/θ), scale (θ)

f (x) =
τue−u

x
, u =

(
θ

x

)τ

F(x) = e−u

E[Xk] = θkΓ(1− k/τ) k < τ

E[(X ∧ x)k] = θkG(1− k/τ; u) + xk(1− e−u), all k

A.2.5 Inverse exponential

Root: invexp
Parameters: rate (λ = 1/θ), scale (θ)

f (x) =
ue−u

x
, u =

θ

x
F(x) = e−u

E[Xk] = θkΓ(1− k) k < 1
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E[(X ∧ x)k] = θkG(1− k; u) + xk(1− e−u), all k

A.3 Other distributions

A.3.1 Loggamma

Root: lgamma
Parameters: shapelog (α), ratelog (λ)

f (x) =
λα(ln x)α−1

xλ+1Γ(α)
, x > 1

F(x) = Γ(α; λ ln x), x > 1

E[Xk] =

(
λ

λ− x

)α

, k < λ

E[(X ∧ x)k] =

(
λ

λ− x

)α

Γ(α; (λ− k) ln x)

+ xkΓ(α; λ ln x), k < λ

A.3.2 Gumbel

Root: gumbel
Parameters: alpha (−∞ < α < ∞), scale (θ)

f (x) =
e−(u+e−u)

θ
, u =

x− α

θ
, −∞ < x < ∞

F(x) = exp[− exp(−u)]
E[X] = α + γθ, γ ≈ 0.57721566490153

Var[X] =
π2θ2

6
M(t) = eαtΓ(1− θt)

A.3.3 Inverse Gaussian

Root: invgauss
Parameters: mean (µ), shape (λ = 1/φ), dispersion (φ)

f (x) =
(

1
2πφx3

)1/2
exp

{
− (x/µ− 1)2

2φµ2x

}
F(x) = Φ

(
x/µ− 1√

φx

)
+ e2/(φµ)Φ

(
− x/µ + 1√

φx

)
E[Xk] = µk

k−1

∑
i=0

(k + i− 1)!
i!(k− i− 1)!

(
φµ

2

)i
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E[X ∧ x] = µ

[
Φ
(

x/µ− 1√
φx

)
− e2/(φµ)Φ

(
− x/µ + 1√

φx

)]
+ x(1− F(x))

M(t) = exp
{

1
φµ

(
1−

√
1− 2φµ2t

)}
, t ≤ 1

2φµ2

The limiting case µ = ∞ is an inverse gamma distribution with α = 1/2 and
λ = 2φ (or inverse chi-squared).

A.3.4 Single parameter Pareto

Root: pareto1
Parameters: shape (α), min (θ)

f (x) =
αθα

xα+1 , x > θ

F(x) = 1−
(

θ

x

)α

, x > θ

E[Xk] =
αθk

α− k
, k < α

E[(X ∧ x)k] =
αθk

α− k
− kθα

(α− k)xα−k , x ≥ θ

Although there appears to be two parameters, only α is a true parameter. The
value of θ is the minimum of the distribution and is usually set in advance.

A.3.5 Generalized beta

Root: genbeta
Parameters: shape1 (a), shape2 (b), shape3 (τ), rate (λ = 1/θ), scale (θ)

f (x) =
τua(1− u)b−1

xβ(a, b)
, u =

( x
θ

)τ
, 0 < x < θ

F(x) = β(a, b; u)

E[Xk] =
θkβ(a + k/τ, b)

β(a, b)
, k > −aτ

E[(X ∧ x)k] =
θkβ(a + k/τ, b)

β(a, b)
β(a + k/τ, b; u)

+ xk[1− β(a, b; u)], k > −τγ
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B Phase-type distributions

Consider a continuous-time Markov process with m transient states and one
absorbing state. Let

Q =

[
T t
0 0

]
(14)

be the transition rates matrix (or intensity matrix) of such a process and let
(π, πm+1) be the initial probability vector. Here, T is an m×m non-singular
matrix with tii < 0 for i = 1, . . . , m and tij ≥ 0 for i 6= j; π is an 1×m vector of
probabilities such that πe + πm+1 = 1; t = −Te; e = [1]m×1 is a column vector
of ones.

Root: phtype
Parameters: prob (π1×m), rates (Tm×m)

f (x) =

{
1−πe x = 0,
πeTxt, x > 0

F(x) =

{
1−πe, x = 0,
1−πeTxe, x > 0

E[Xk] = k!π(−T)−ke

M(t) = π(−tI − T)−1t + (1−πe)

C Discrete distributions

This appendix gives the root name and the parameters of the R support
functions for the members of the (a, b, 0) and (a, b, 1) discrete distributions as
defined in Klugman et al. (2012); the values of a, b and p0 in the representation;
the pmf; the relationship with other distributions, when there is one. The
appendix also provides the main characteristics of the Poisson-inverse Gaussian
distribution.

C.1 The (a, b, 0) class

The distributions in this section are all supported in base R. Their pmf can
be computed recursively by fixing p0 to the specified value and then using
pk = (a + b/k)pk−1, for k = 1, 2, . . . .

All parameters are finite.

C.1.1 Poisson

Root: pois
Parameter: lambda (λ ≥ 0)
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a = 0, b = λ, p0 = e−λ

pk =
e−λλk

k!

C.1.2 Negative binomial

Root: nbinom
Parameters: size (r ≥ 0), prob (0 < p ≤ 1), mu (r(1− p)/p)

a = 1− p, b = (r− 1)(1− p), p0 = pr

pk =

(
r + k− 1

k

)
pr(1− p)k

Special case: Geometric(p) when r = 1.

C.1.3 Geometric

Root: geom
Parameter: prob (0 < p ≤ 1)

a = 1− p, b = 0, p0 = p

pk = p(1− p)k

C.1.4 Binomial

Root: binom
Parameters: size (n = 0, 1, 2, . . . ), prob (0 ≤ p ≤ 1)

a = − p
1− p

, b =
(n + 1)p

1− p
, p0 = (1− p)n

pk =

(
n
k

)
pk(1− p)n−k, k = 1, 2, . . . , n

Special case: Bernoulli(p) when n = 1.

C.2 The zero-truncated (a, b, 1) class

Package actuar provides support for the distributions in this section. Zero-
truncated distributions have probability at zero pT

0 = 0. Their pmf can be
computed recursively by fixing p1 to the value specified below and then using
pk = (a + b/k)pk−1, for k = 2, 3, . . . . The distributions are all defined on
k = 1, 2, . . . .

The limiting case of zero-truncated distributions when p1 is infinite is a
point mass in k = 1.

18



C.2.1 Zero-truncated Poisson

Root: ztpois
Parameter: lambda (λ ≥ 0)

a = 0, b = λ, p1 =
λ

eλ − 1

pk =
λk

k!(eλ − 1)

C.2.2 Zero-truncated negative binomial

Root: ztnbinom
Parameters: size (r ≥ 0), prob (0 < p ≤ 1)

a = 1− p, b = (r− 1)(1− p), p1 =
rpr(1− p)

1− pr

pk =

(
r + k− 1

k

)
pr(1− p)k

1− pr

Special cases: Logarithmic(1− p) when r = 0; Zero-truncated geometric(p)
when r = 1.

C.2.3 Zero-truncated geometric

Root: ztgeom
Parameter: prob (0 < p ≤ 1)

a = 1− p, b = 0, p1 = p

pk = p(1− p)k−1

C.2.4 Zero-truncated binomial

Root: ztbinom
Parameters: size (n = 0, 1, 2, . . . ), prob (0 ≤ p ≤ 1)

a = − p
1− p

, b =
(n + 1)p

1− p
, p1 =

mp(1− p)n−1

1− (1− p)n

pk =

(
n
k

)
pk(1− p)n−k

1− (1− p)n , k = 1, 2, . . . , n

C.2.5 Logarithmic

Root: logarithmic
Parameter: prob (0 ≤ p < 1)
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a = p, b = −p, p1 = − p
log(1− p)

pk = −
pk

k log(1− p)

C.3 The zero-modified (a, b, 1) class

Package actuar provides support for the distributions in this section. Zero-
modified distributions have an arbitrary probability at zero pM

0 6= p0, where p0
is the probability at zero for the corresponding member of the (a, b, 0) class.
Their pmf can be computed recursively by fixing p1 to the value specified
below and then using pk = (a + b/k)pk−1, for k = 2, 3, . . . . The distributions
are all defined on k = 0, 1, 2, . . . .

The limiting case of zero-modified distributions when p1 is infinite is a
discrete mixture between a point mass in k = 0 (with probability pM

0 ) and a
point mass in k = 1 (with probability 1− pM

0 ).

C.3.1 Zero-modified Poisson

Root: zmpois
Parameters: lambda (λ > 0), p0 (0 ≤ pM

0 ≤ 1)

a = 0, b = λ, p1 =
(1− pM

0 )λ

eλ − 1

pk =
(1− pM

0 )λk

k!(eλ − 1)

C.3.2 Zero-modified negative binomial

Root: zmnbinom
Parameters: size (r ≥ 0), prob (0 < p ≤ 1), p0 (0 ≤ pM

0 ≤ 1)

a = 1− p, b = (r− 1)(1− p), p1 =
(1− pM

0 )rpr(1− p)
1− pr

pk =

(
r + k− 1

k

)
(1− pM

0 )pr(1− p)k

1− pr

Special cases: Zero-modified logarithmic(1− p) when r = 0; Zero-modified
geometric(p) when r = 1.

C.3.3 Zero-modified geometric

Root: zmgeom
Parameters: prob (0 < p ≤ 1), p0 (0 ≤ pM

0 ≤ 1)

20



a = 1− p, b = 0, p1 = (1− pM
0 )p

pk = (1− pM
0 )p(1− p)k−1

C.3.4 Zero-modified binomial

Root: zmbinom
Parameters: size (n = 0, 1, 2, . . . ), prob (0 ≤ p ≤ 1), p0 (0 ≤ pM

0 ≤ 1)

a = − p
1− p

, b =
(n + 1)p

1− p
, pM

1 =
m(1− pM

0 )p(1− p)n−1

1− (1− p)n

pk =

(
n
k

)
(1− pM

0 )pk(1− p)n−k

1− (1− p)n , k = 1, 2, . . . , n

C.3.5 Zero-modified logarithmic

Root: logarithmic
Parameters: prob (0 ≤ p < 1), p0 (0 ≤ pM

0 ≤ 1)

a = p, b = −p, p1 = −
(1− pM

0 )p
log(1− p)

pk = −
(1− pM

0 )pk

k log(1− p)

C.4 Other distribution

C.4.1 Poisson-inverse Gaussian

Root: poisinvgauss, pig
Parameters: mean (µ > 0), shape (λ = 1/φ), dispersion (φ > 0)

px =

√
2

πφ

e(φµ)−1

x!

(√
2φ

(
1 +

1
2φµ2

))−(x− 1
2 )

× Kx−1/2

(√
2
φ

(
1 +

1
2φµ2

))
, x = 0, 1, . . . ,

Recursively:

p0 = exp
{

1
φµ

(
1−

√
1 + 2φµ2

)}
p1 =

µ√
1 + 2φµ2

p0

px =
2φµ2

1 + 2φµ2

(
1− 3

2x

)
px−1 +

µ2

1 + 2φµ2
1

x(x− 1)
px−2, x = 2, 3, . . . .
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In the limiting case µ = ∞, the pmf reduces to

px =

√
2

πφ

1
x!
(
√

2φ)−(x− 1
2 )Kx− 1

2
(
√

2/φ), x = 0, 1, . . .

and the recurrence relations become

p0 = exp
{
−
√

2/φ
}

p1 =
1√
2φ

p0

px =

(
1− 3

2x

)
px−1 +

1
2φ

1
x(x− 1)

px−2, x = 2, 3, . . . .
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