
A Practical Executive for Secure Communications*

Gary Grossman
Digital Technology Incorporated

Champaign, Illinois

1. Introduction

Computer communication is now used in
many entieavors in which security and
privacy are important, both in government
an$ in the private sector. To support the
neecl for secure computer communication,
Digital Technology Incorporated (DTI) has
developed the Secure HUB** Executive (HUB),
e verified secure operating system oriented
toward supportin~ communications an~ other
real-time applications. The Secure HUB
Executive currently runs on Digital Equip-
ment Corporation PDP-11 and VAX-11
hardware, but it is portable to a wide
range of mini- and microcomputers.

Performance in a communications pro-
cessor is heavily dependent on the speed at
which the operating system can perform
interprocess communication and process
switchinc functions . The HUB perforns
interprocess communications functions
approximately two times faster, and process
switchin? functions approximately four
times faster, than a general purpose
operating systen usincj the same hardware.

The first application of the H133 is in
the Communications Operating System Network
Front End (COS/NFE)[l~ under development at
DTI , under contract to the Defense Communi-
cations Agency. The COS/NFE is a prototype
verifiably secure network front end for the
AUTOEIIf II secure communications
network[2].

Other envisioned applications for the
IIur! incluc?e secure gateways between net-
works at different security levels, secure
packet-switchinq nodes, and secure c?ata
acquisition installations.

1.1. Background—.

The HUE is the operating system that
supports the COS/NFE. The COS/NF% is a
prototype verifiably multi-level secure
communications processor that interfaces a
Honeywell H6UGG computer to N.JTODIN II.
Tb e hardware base for the COS/NFE is a
Eigital Equipment Corporation PDP-11/7G
rinicorputer. The COS/IJFE performs AUTODIN
11 protocol functions for the H6000. It
also interfaces terminals to both the H60GP
and AUTODI?: 11 (see Figure 1) .

* The specification ant? verification
wcrk described in this paper were performed
un$er contract DCP.-lfl@-79-C-Cl!335 with the
Defense Communications Agency.

** IHJR is a trademark of Digital Tech-
nology Incorporated.

Qb–
Local

T.rmmal

COSINFE Termn.ls

GA@
IT

Termmal Protocols

--a

“e???
Remote

Term,., 1

u
Host to Front End Protocols

~J -
LocalS.bscrlber Remote Sub,c,OeI

8,209

CO S/NFE Fun. t,.an.

F,wre 1

Except for security, the COS/liFE per-
forms functions identical to those of the
Interim Network Front End (IIHT)[33. The
INFE is also base? on a PDP-11/7G, but its
operati~q system, called INFE UNIX***, is a
modified version of the Bell. Laboratories
UNIX operating system[4~.

UFJIX is a general purpose time sharing
operatinq system that is available on a
variety of mini- and microcomputers. The
standard UIJIX interprocess communication
(IPC) mechanisms are inadequate to support
hi~h-bandwiclth communications. They do not
permit the kind of interprocess conrlec-
tivity that is required, and they introduce
a ~reat deal of CPU overhead. UIJIx was
modified for tl:e IrVFE to afid a new IPC
mechanism, called ?.ttach I/0[5~. Attach
1/0 was desicjned to provide higher perfor-
mance than the existincj UNIX IPC mechan-
isms. Fven h~i.thAttach 1/0, 7E!? of all CPU
cycles in the INFE are consumed by IPC and
process switchinq overheati.

The COS/NFE performs the same func-
tions using the same hardware base as the
IIJ~E. It thus provides an opportunity for
conparing the performance of non-secure
lNFE llFiIX with the performance of tke
Secure HUB Executive.

.
must be interpreted for each message as it
travels throuqh the system. For instance,
on a communications connection from the
116@0U, through the COS/NFE or the INFE, to
AUTODIII II, eiyht different protocols may
have to be lnterpretefi for each message
(see Figure 2). Of these protocols, three
are Host to Front End Protocols[G] and five
are AUTODIN II protocols.

*** UNIX is a trademark of Bell Labora-
tories.

CH17’53-3/82/OOOO/O144$O0.75@19821EEE 144

h
Service ~
Access ,

Channel I

“6000–1- - }!’k- -:

HTkiP

TCP

1P

IGEl----
L I

Most to AUTODIN II
Front End Protocols
Protocols

81.210

Network Front End Protocols

Figure 2

In the IN??E, each of these protocols
is implemented in a separate process (see
Figure 3). (Actually, the mapping of pro-
tocols to processes in the INFE is slightly
different than is shown here, but this Is
irrelevant for the purposes of this discus-
sion.) This is to maintain functional iso-
lation between the protocol implementations
and to ensure that each process will fit
into the restricted PDE’-ll/7D address space
(641:E each for program and data). Two of
the protocols, the AUTODIN II Transmission
Control Protocol (TCP) and the Host to
Front End Channel Protocol, perform multi-
plexing and denultiplexing of connections.
As the figure shows , whether a protocol
interpreter process handles the connections
as single multiplexed stream or ae
separ~te streams, the same process handles
all connections that require a particular
protocol.

In a syster that is to be verified as
multi-level secure, handling all connec-
tions by the same process, regardless of
the security levels of the connections,
would require all application level
software to be verified. P.t the current
state of the art in software verification,
this would be prohilnitively expensive, if
not infeasible. The amount of software
that is to be verifie$ must be reduced to a
minimum if verification is to be practical.

To minimize the amount of COS/NFE
software that Rust be verified, software
that performs security-relate? functions is
separated from non-security-relevant
software. For exanple, the portions of the
Transmission Control Protocol (TCP) imple-

Multiglexed Connections

mentation that need to be trusted to handle
data a multiple security levels will be
separated from tbe portions that do not
need to be trusted. The TCP performs func-
tions roughly equivalent to those of the
Transport Layer of the International Stan-
dards Organization Reference Model for Open
Systems Interconnection[7], but it is
designed to operate in environments where
security and high reliability are require?,
even when the available transmission media
are unreliable.

The ‘1’CPhas the capability of taq~in~
each messaqe with the security level of its
contents . In the COS/NFE multi-level
secure environment, this facility of the
TCP will be used to denultiplex’ messages
arrivincj from the multi-level AUTODIN 11
network into the appropriate separate sin-
gle security levels. This security-
relevant function will be performed by a
trusted process, called the TCP ~?ulti-

plexor, with verified software. Other por-
tions of the TCP , that zxe not security
relevant, ant? therefore do not have to be
trusted, will be implemented in separate
processes, called TCP connection machines,
with at least one per security level (see
Figure 4).

This principle is used throughout the
COS/NFE to reduce the amount of software
that needs to be verified. Figure 5 shows
the mapping of protocols to processes for
connections between the H6LX?U and AUTODIE
II through the COS/NFE. (The figure shows
multi-level connections with the H6D00;
this will not be the case in actual prac-
tice.) There are more processes for each
connection than there were for the INFE,
because both the TCF implementation and the
Host to Front End Channel Protocol imple-
mentation have been divide? into trusted
and untrusted portions as described above.

Because there are more processes per
connection in the COS/NFE, there is neces-
sarily more interprocess communication and
more process switchinq to perform the same
communications functions. This is a pro-

perty of any verifiably secure syste~. at
the present state of the art. Any operat-
ing system that is to support verifiably
secure communications must therefore per-

Demultiplexed
Connections

Link Channel Service THP TCP

Access

.6000_~*~-~/J~-~
++fi-:}AUTODIN,l

\ J t J
v

Ho8t to Front End Protocols AUTODIN II Protocols

INFE Protocol Interpreter Processes

Figure 3 “

145

TCP Connection TCP
Machines Multinlexor

Level X

(D

—----

\

{ m~l

\
\

\
Level Y —. .-. -_–>– _ Levels

/ X, Y.*Z
/

/

Level Z

{+1”

..-

Untrust ad

\ /

Trueted

81.212

COS/NFE TCP Implementation

F!gure 4

form interprocess communication and process
switching correspondingly faster than UNIX
if the performance #Jf the system is to
equal that of UITIX.

1.3. Operatincj system requirements——

An operatincj systen that is to support
secure communication applications should
provide certain features:

(1) Low-overhead interprocess communica-
ZZ5n is required to Permit the multi-
ple layers ~f protocoi to be imple-
nente$ in separate processes as
describec? above.

(2) Low-overhead pro~ess switching is also
~uired to permit the protocols to be
implemented in separate processes.

(3)

(4)

(5)

(6)

A timin~ facility is required to sup-
~ort tasks that are dependent on real
time. For example, transport and link
protocol implementations emp 1oy
timeout and retransmission to achieve
data integrity.

Prioritization of processes is
required to ens~e that work that is
more real-tirte dependent is accom-
plished before work that is less
real-tine dependent. For example,
processes that handle input-output
hardware are more real-time dependent
than processes that implement high-
level protocols such as virtual termi-
nal protocols.

Verifiable security is required to
ensure that data is delivered only to
those for whom it is inten$ed and ~hat
data cannot be altered by those unau-
thorized to do so.

A flexible security policy is requires
=0 permit the system to be utilized in
a wi~e variety of C!ifferent applica-
tions for customers with a wide
variety of security needs.

In addition, the system should be
portable between hardware bases tc permit
the exploitation of new hardware as it
becomes available.

These cjoals cannot be achieved without
an operating system designed for hiqh per-
formance, for security, and for portabil-
ity.

1.4. State of the art——— —— —

General purpose operating systems such
as UNIX provide neither
required for high-bandwidth

n
Level

x

the performance
communications,

w

A

H
u

6
0

:

0
D

o
I
u

\ / \ / \ / II

\) \ 1

Channel Protocol Intorproter TCP

F=iGl
1--.1-1lr----
L-JUntrusted CO S}NFE Protocol Interpreter Processes

F$gure S 81.213

146

nor do they provide for security. The
interprocess communication and process-
switching overhead in general purpose
operating systems is too hiqh for high-
bandwidth conununications.

There are a number of operatinq sys-
tems that are desicjned to provide security.
The UCLA[81 and MITRE[9] eecuriiy kernels
were pioneering efforts that showed the
feasibility of the security kernel
approach. Their performance was consider-
ably slower than that of UNIX. KSC)S-11[10]
and KSOS-6[111 are more current efforts.
Their performance will never equal that of
UMIX: at worst, it will be several times
slower than that of UNIX. The SDC Communi-
cation Kernel[12] is designed to handle
data communications functions securely, but
it has not been subject to any trusted
software development methodology, and its
interprocess communication is slower than
that of UNIX. The AUTODIN II security ker-
nel is designefi to support Secure comlnuni-
cations functions. It is written in assem-
bler, which precludes verifying the source
code at the present state of the art in
software verification. It also precludes
portability to processors other than the
PDP-11 on which the system is implemented.

All of the secure operatin~ systems
mentioned above implement Department of
Defense multi-level security as formulated
by Bell and LaPadula[13]. Tl?is makes them
less flexible for supporting security in
non-military environments.

2. The secure HUE Executive— —— —

The HUR fulfills the requirements for
a verifiably secure operating system that
supports connunications applications.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

It provifies inter-process communica-
tion functions at approximately twice
the speed of INFE UITIX, which has been
modified to improve IPC performance
over that of standard UNIX.

It provi?es process switchins that is
approximately 3 times faster than IIJFE
UEIX .

It provifles timing ant! prioritization.

Its design has been verified down to a
1Ow level of detail using System
Development Corporation’s (SDC) Formal
Development Methodology (FDM).

An analysis, also by SDC, show S that
the bandwidths of any security leakage
paths (potential storaqe and timing
channels) are extremely low.

It is tiesigned for portability;
n.achine-+ependent portions of the
Secure HUE Executive are isolated from
the nacbine-int+ependent portions,
which form the bulk of the executive.

It is implemented for portability; the
machine-independent portions are writ-
ten in PASCAL . The HUB was first
implemented on the PEP-11/7G. It was

2.1..-

that
and

ported to the vAx-n/780 with a few
man-weeks of effort.

HUPI Functions

The HUB provides only those functions
are required to support communications
real-time applications. Functions

normally found in general purpose operating
systems, such as file systems, sophisti-
cated schedulers, and swapping, are not
supporteti by the HUB. All programs and
data are memory resident.

The HUB supports processes that per-
form the application functions for the sys-
tem. The EUB provides access to its func-
tions throuqh a set of primitive operations
that are available as procedure calls to
the processes. These functions are pro-
vided to the processes within the security
constraints that are imposed by the HUB
security policy.

(1)

(2)

(~)

(4)

(5)

(6)

(7)

Resource management primitives provide
processes with the ability to dynami-
cally allocate buffers.

Process management primitives provide
processes with the ability to create
and destroy other processes.

Address E mar@sJ’=~ent primitives
provide processes with the ability to
alter their address spaces by mapping
buffers in and out of the accessible
memory space.

Interprocess conuwnication primitives
provide processes with the ability to
connect and disconnect from o~her
processes and to send messages to then
and receive messages from them.

Flow control primitives provi~e
processes with the ability to control
the flow of messages between them.

2N2WSW.UL primitives prcvifle
processes with the ability to communi-
cate to the Eevice Interface Handlers
(DIHs) that provide access to hardware
i/o devices.

Timinq primitives provide processes
with the ability to receive notifica-
tion when a specified time interval
has elapsed.

These primitives cover the functions
that are required for supporting
communications applications.

2.2..— security M

The security policy of the Secure HUB
Executive can be describeC in three simple
statements:

(1) Each security level is $istinct from.
every other security level; no level
includes another level; there is no
orfier relation between levels othler
than equality.

(2) Security levels may be aggregated into

147

security level sets. Every process
ant? every interprocess communication
connection between processes is tagged
wikh a security level set.

(3) Two processes that are taqged with
different security level sets can com-
municate if and only if the security
level set at which they communicate is
a subset of the security level sets of
both processes. In other wori!s, an
interprocess communication connection
can be established between two
processes if and only if the security
level set that tags the connection is
a subset of both of the security level
sets that tag the two processes.

A process that is tagged with a secu-
rity level set that has more than one
member is considered to be trusted, since
it is empowered to han@le interprocess con-
nections at multiple security levels. Even
trusted processes are each restricted tc a
particular set of security levels. This is
unlil:e rlost kernelized systems, in which
each trusted process is empowerefl to handle
all security levels. This restriction per-
mits different trusted processes to handle
Oifferent sets of security levels. Multi-
ple security policies involving completely
distinct sets of security levels could be
implemented in the same system with.out
interfering with one another. Using this
feature, a communications processor in a
public data network could handle multiple
corporate and /or government customers
without mutual interference.

The simplicity of the HUB security
policy permits the HUB to support a wide
variety of application security policies,
throuqh the use of trusted processes that
make the judgments when data must be
passed from a connection that is taqqed
with one security level set to a connection
that is taqcjed with another security level
set.

Consic?er, for example, the case in
which two processes, A and B, A tagged with
security level X and E tagged with security
level Y, need to communicate. The HUB
security policy does not permit A and B to
be connected . But they could be connected
through the mediation of a process, C, that
is tayged with security levels X and Y, as
shown in Figure 6.

CMm3
bLevel

Y

Processes Connected via a Trusted Process

Figure 6

81-214

Suppose that the security policy that
the application is to implement permits
information to flow from level X to level
Y, but not from level Y to level X. C, the
mediating process, can implement this pol-
icy by sending to B all data it receives
from A, but discardincj all data it receives
from B. (It could also discard all data it
gets from A, but let us assume that the
system is intenc?ed to do useful work.) This
simple example illustrates how the iiUB
security policy can be used to support mofe
sophisticated security policies, such as
the Department of Defense security policy
as formulated by Bell and LaPadula.

2.3. Structural concepts-—

2.3.1. Processes———

Each process supported
sists of a program, memory,

2.3.1.1. Programs——— —

by the HUB con-
anfi IPC ports.

The programs for processes that the
HUB supports are sharable and re-entrant.
This permits many processes to simultane-
ous ly use the same program without
interference. Each program is tagged with
a security level set that controls the
security levels of the data that it can
handle.

2.3.1.2. Memory——- —

Each process has two kinds of memory:
a private memory that is used to maintairi
the state of computation of the process,
and a set of buffers that can be use2 to
send messages to other processes via the
IPC mechanism. Private memories are not
shared between processes. Buffers are
serially sharable, i.e., each buffer can be
accessed by at most one process at any one
time. NO memory is simultaneously sharable
between any two processes.

2.3.1.3. Ports--— .—

Each process has a set of ports that
are usec? to access its IPC connections to
other processes. Each port ie the endpoint
of at most one connection. Ports are used
by the HUE to keep track cf the state of
connections ant? of their security level
tags. Ports are also used in buffer allo-
cation and in flow control.

2.3.2. Interprocess communication——

All interprocess communication takes
place over connections between processes’
ports. Connections can be dynamically made
and broken. Each connection is taqqed with
a security level set that cannot be chanqed
while the connection exists.

Data is sent from one process to
another by placing the data in a buffer and
sending the buffer over a connection. Once
the buffer has been sent, it is no longer
accessible by the process that sent it.
When the other process receives the buffer,
the buffer becomes accessible to that pro-
cess.

148

The interface between processes and
the HUB IPC facility is unique to the HUB.
This interface imposes a structure on pro-
grams that is natural for implenentin~ com-
munication protocols, but it may be awkward
for other kinds of programs.

2.3.3. Sessions---

A session is a set of processes and
resources, all tagcjed with the same secu-
rity level set, that is dedicated to a par-
ticular user. For each session, the HUB
controls:

(1) what programs can be executed in
the session,

(2) what connections can be made by
processes running in the session,
and

(3) what resources can be used by
processes running in the session.

2.3.4. Device interface handlers——— —

Device interface handlers (DIfis) pro-
vide the means for processes to access
inpu.t/o~tput hartiware. Each DIH performs
the input/output initiation functions and
the interrupt handler functions for a sin-
gle hardware device. The DIHs are accessed
by processes via a procedure call inter-
face, just as in UNIX. Unlike UNIX, the
DIH’s execute in an address space that is

separate from that of the HUB and those of
the processes. This makes it possible to
verify the DIHs separately from the HUB.
Each DIH is taqged with a security level
set that controls the security levels of
the data that it can handle.

2.4. Implementing security in the HUE?-— .— —

The HUB is intended to enforce secu-
rity in three different ways:

(1) formal security correctness,

(2) stora~e and timinq channel
bandwidth limitation, ant!

(3) prevention of denial of service.

2.4.1. Formal security correctness-—— —

I?ormal mathematical techniques have
been used to verify that the HUP correctly
implements its security policy. Syster
Development Corporation’s (SDC’S) Formal
Development Hethodology[14] has been used
to proc?uce proven first and second level
specifications of the correctness of the
desiqn of the HUB as it relates to secu-
rity. These specifications are forma 1
mathematical descriptions of the design of
the HUB. The first level specification is
very abstract and
detail of the second
close to that of the
can be seen from the
level specification

general. The level of
level specification is
HUE code itself. This
fact that the second
contains approximately

149

240U lines of 111A JO****, SDC ‘S forma 1
specification language. The HUB consists
of approximately 28QD lines of PASCAL. To
give some idea of the magnitude of the tssk
of proving a specification of this size,
the proof runs to some 2D00 pages. For-
tunately, the proof process is semi-
autonated through the use of SDC’S Interac-
tive Theorem Prover.

The simplicity of the HUB security
policy and of the HUB desiqn makes a secu-
rity correctness proof at this level of
detail tractable. From a formal point of
view, the most important security correct-
ness criterion for the HUB can be stated as

(1) Let L be the set of all security
levels

(2) Let S be the set of all sessions

(3) SLS: S -> 2**L

(4) All s1,s2 in S:
51 Comm 52 <=>
SLS(S1) “ SLS(S2) + NULL

Line 3 says that there is a function SLS
that maps the set of sessions onto the set
of all security level sets. Line 4 says
that two sessions can communicate if and
only if their security level sets have a
non-empty intersection.

2.4.2. Storage and ti~ing channel
~a~d~idth limitation—

Whenever two processes share any
resource that can be modified in some way
by one process, while the modification can
be detected by the other process, the
resource can be used tc pass information
between the two processes. Since the
operating system is shared by all
processes, even an operating system
designed for eecurity can potentially pro-
vide an information channel between
processes, in violation of the very secu-
rity policy that the operating system is
designed to enforce. Information channels
of this kind fall into two classes: storaqe
channels and timing channels.

storage channels are information chan-
nels that are implemented via variables
within the operating system or via vari-
ables that can be accesset? through the
operatinq system. For example, if the
“length” attribute of a file can be nodi-
fied by one process, and if the value of
the attribute can be read by another pro-
cess, a potential storage channel exists.

Timing channels are information chan-
nels that are implemented via the ability
to affect the time at which an event hap-
pens and the ability to detect the effect.
For example, if one process can affect the
time at which another process is run

(perhaps by controlling the duration of its

**** I~~A Jo is a trademark of System
Development Corporation.

own runninq time), and if the second pro-
cess can detect the difference between its
expected run time and the time at which it
was actually run, a potential timing chan-
nel exists.

It is impossible to eliminate all
storage and timing channels in a system in
whit?. resources are shared by processes at
different security levels. The goal of the
designer of such a system is to minimize
both the number of potential storage and
timiny channels, and the bandwidth of each.

While it is the task of formal specif-
ication ant! proof to show that the actions
of the HUB regarding the ofiject~ that is
explicitly handles do not violate the HUB
security policy, other techniques are

required. to show that the internal mechan-
isms of the HUB itself do not provide
stora~e or tir~ina channels that c?fn be use~
to violate the security policy. SDC ‘s
Shared Resource Flatrix Clethodology[151

(SRMP!) is an analysis tool that has been
used to i~entify potential stora$e and tim-
ing channels in the HUB.

The basic idea behind SRN!! is to con-

struct a matrix whose rows correspond to
the attributes of resources and whose
columns correspond to the HUB primitives.
If t}?e use of a primitive can modify a
resource attribute, a “W” (for “write”) is
placed in the correspond.inq cell of the
matrix. If the use of a primitive can
detect a modification in a resource attri-
bute, an “R” (for “read”) is placed in the
corresponding cell of the matrix. If there
are both an “R” and a “11” in the same row
of the natrix, then the resource attribute
corresponding to that row can be exploited
as an information channel by processes

usin~ the primitives that corresponti to the
columns containing the “R” and the “w”. An
example of a shared-resource matrix is

shown in Figure 7. It is presente$ only to
illustrate the concept; the resources anC
pri~itives shown are not drawn from the

HL!l?.

FILE FtLE

Exist.nc. Rw RW

Ffil.
Ftl.s Lonc,th R w R w

C.r. em
Location

Rw w RW w

r Arm
POsltio” RW RW

Disk
D.vi.e Fr..

Spat. RW R w
L

C.,, m”G,os-e ,SharedResow.. Matrix

F,wre 7

The detection of a potential informa-
tion channel by SRNM does not mean that
there exists a storage or timing channel
that can be usefi to violate the HUB secu-
rity policy. Detailed analysis of the
design and even of the source code is
required to determine whether a usable
storacje or timinq cb.annel does in fact

exist. For example, it may be that a
resource attribute can be modified and that
the modification can be detected only by
the same process that modifiecl it, or only
by two Processes that are taqged with the
same security level set.

SDC performed a storage and timing
channel analysis of the HUB. They first
employed Sl?tlklto identify candidate storage
and timing channels. They then constructed
scenarios to determine how the candidate
channels could be used by processes taqged
with different security levels to pass
information. Finally, they estimatec? the
bandwidth of the channels from, the
scenarios . The results of this analysis
are summarized below.

In every computer system w itb.
resource sharing across security
domains, there are necessarily
covert [i.e., storage anfi timingj
channels that cannot be completely
blocked. It is interesting to note
that, in the present case, the
cos /NFE desi~n as of 9 November
1979 has relatively few such chan-
nels, as comparec? to other systems
witti which we are familiar. ...[16~

There are several reasons for this:

(1)

(2)

(3)

(4)

The HUB is tailored to performing com-
munications functions. The resultic~
relative simplicity has made it easier
to control the internal resources of
the HUB to limit the bandwidth of
storage and ti~,ing channels.

The HUB has been desi$ned with few
resources shared between processes, in
order to reduce the possibilities for
storage and timing channels.

When resources are share? among
processes, the sharing is strictly
controlled to reduce the bandwidth of
any resulting stora~e and timing chan-
nels.

Only specifically designates trusted
processes can change resource alloca-
tion. This recluces the number of
processes that can act as storage and
timing information “senders”.

An example of an actual storage chan-
that was found in an early version of

HUB is illustrated in Figure 8. Pro-
nel
the
cess T is a trusted process that performs
some service for untrusted processes (U1,
U2) at Cifferent levels. T has a finite
number of ports that are intended to permit
the untrusted processes to communicate with
it. These ports are a resource that is
shared among the untrusted processes.

Suppose two processes taqqed with two
different security levels are to communi-
cate usinq this shares resource. One of
the untrusted processes, say Ul, is to be
the sender, while another, say U2,
the

is to be
receiver. To transfer data, U1 will

150

to make the channel useless.

81.215

Trusted Process’ Ports as Storage Channel

Figure 8

modulate the availability of T’s ports for
connection, and U2 will detect whether or
not it can connect to T. U1 will connect
to all of T’s ports to signal a E, and
disconnect from one of them to signal a 1.
To read the value of the siqnal, U2 will
have to repeatedly attempt to connect to
one of T’s ports. If a port is available,
U2 will interpret the signal as a binary 1:
if no port is available, U2 will interpret
the signal as a binary D.

SDC estimated that, under worst case
conditions, information could be signalled
between two processes at approximately 5QGC
baud using this storage channel. This
a~~umes that there are no other active
processes using the system. Under more
typical conditions, with other processes
using the system and perhaps even interfer-
in~ by therwelves connecting and discon-
necting to T, the bandwidth was estimated
at approximately 20 baud.

Even this relatively low bandwidth
requires several assumptions, some of which
nay not be valid:

(1) The processes U1 and U2 must be able
to synchronize and remain in synchrony
in order to avoid confusion. This
presupposes that U1 and U2 have access
to a shared clock, or to some other
mechanism for synchronization. The
HUB does provide a facility for noti-
fying a process after a specifiec? time

interval has elapses, but a process is
limited to the knowledqe that it will
not receive a “timer expired” notifi-
cation before the specified time
interval has expired. The receipt of
a “timer expired” notification does
not give the process any information
abOUt how much time elapsed between
the end of the specified time interval
ant! the receipt of the notification.
Looked at another way, the clock that
is available to processes is “fuzzy”.
This nakes it difficult to use real
time as a synchronization method. It
also makes it difficult to exploit
tin?inq channels.

(2) The frequency of other processes’ use
of the ports of T must be relatively
low, otherwise there will be suffi-
cient noise introduced in the signals

(3) Ul, the sender, needs to have enough
ports to be able to tie up all of T’s
ports. This will usually not be the
case, since most untrusted processes
are given only a small number of
ports.

Notwithstanding the invalidity of some
of the assumptions, a quota was added to
each session that limits the number of con-
nection initiations that can be made from
within a given session. In most applica-
tions, this quota will typically be set to
a very small number such as 1 or 2 for each
untrusted session. This will prevent the
use of this storage channel.

The security policy of the HUB pre-
cludes one synchronization method that
could be used in some system to support a
storage or timing channel. Suppose that
there is some resource that can be affected
by a rrocess A with security level H, and
that the modifications can be detected by
process B, with security level L (see Fiq-
ure 9). Suppose further that the security
policy of the operating system (not the
HUB) were to permit data to flow from level
L to level H, but not the reverse. In this
case, the operating system might allow an
IPC connection between A End B, but would
then allow data to be sent from B to A, but
not from. A to B. (This is called the “star
property” in the Bell and LaPadula security
model .) Then this IPC connection could be
used to send synchronizing signals from B
to A. This would enable A and B to use the
shared resource as an information channel.
The HUB security policy does not permit an
IPC connection between processes under
these conditions . Even if a connection is
made indirectly through a third, trusted,
process, the added latency will at least
lower the bandwidth of any storage or tim-
ing channel implemented in this way.

(-)7
‘Ynchronze(H

(J--’/
b~e+el

L

81.216

Synchronization Channel Inherent in *prOPert Y”

Figure 9

151

2.4.3. Prevention of denial of service-.— .— . respectively. A third process simulated
the AUTODIN II network (see Fiaure 10).

Users can deny service to other users 20@0 messages were sent from ;he source
in two ways: process to the sink process through the TCP

in both implementations, and the elapsed
1. By tying up some critical resource time for each implementation was measured.
2. By causing the system to fail The results of the experiment were very

encouraging:

Users are prevented from tying up
critical resources in the HUB by the same
strict resource control mechanisms that are
used to limit storage and timing channel
bandwidth.

The likelihood of users causing
software system failure in the HUB is
reduced in two ways:

(1) The HUB is being subjected to a
rigorous quality assurance program to
reduce the probability of inherent
error. This program includes rigorous
testing of the correct operation of
each procedure in the HUE.

(2) The HUB is a relatively simp].e pro-
gram, utilizing simple algorithms.
There is a relatively small amount of
complication to “break”.

3. Performance

The performance of the HUB was demon-
strated in two experiments: one to show
that its unique IPC interface could support
complex protocol processing, ant? the other
to show its performance relative to the
INFE .

3.1. Implementation experiment——

The purpose of this experiment was to
ascertain whether the IIUB could be used to
support the complex protocol processing
that is required in modern communications
processors.

The Transmission Control
(TCP)[173,

Protocol
the most complex protocol pro-

cessincj module from the INFE, was moc?ifiec!
to run on an experimental version of the
HUE . The feasibility of splittinq up a
complex program such as the TCP into
trusted anti untrusted portions was recoq-
nizec! as one key to the applicability of
the HIJB to multi-level secure protocol pro-
cessing. The split was accomplished in a
few person-weeks by a programmer who was
familiar with the TCP.

An experimental version of the HUB T.es
written in the programming language “C” for
runninq the experiment. Eve ry effort wa s
made to include the security overhead that
would be present in the prototype IIUB. To
facilitate measurement, the experiment was
run in a UNIX process, rather than on a
bare PDP-11/7C. It was believed at that
time that the experiment Woulc! realisti-
cally predict the performance of the proto-
type H[JB.

The TCP, both on ILJFE UNIX and on the
experimental HUB, was driven by two
processes, a data source and a data sink,

(1) The TCP ran 3.2 times faster on the
experimental liUB than on lNFE UIiIX.

(2) Most of this increase was c?ue to the
great reduction of IPC overheat?
achieved throuqh. use of the HUP , but
15% fewer CPU cycles were executed by
the TCP process running on the HUE
than by the TCP process runninq on
INFE UNIX. This is attributable to
the fact that a number of functions,
such as buffer allocation and timing,
that had to be performed in user
processes on INFE UNIX, are performed
by the HUB itself. In addition, there
was 4U% nore IPC work performed by the
HUB than by I~JFE UNIXO Thus the
experimental HUB performed m.ore work
more quickly.

(3) The source code for the T’CP was
reduced in size by 20%. This is also
because the HUB performs functions
that had to be performed by the TCP
process itself in INFE UNIX.

Fz+iiii+a
IMFE ExP*rlmm”t Seitwa,e

‘=-m. ,,:,,-.
❑ ~uM(JX~ II

TCP < ‘(D.!.) Slmulstor

n

CM2 — (Ack)->
Sink _

< -(Da18)
< -(Data)
(Ack)- >

.1 2,,

HUB ExP.,tmOnt So ftwar.

Experment S.altw.re Cml,gur.atwms

F1.wre 10

Based on the results of this experi-
ment, it was expected that tlie overall per-
formance of a secure network front end
based on the HUB would be approximately 3
times that of the nonsecure INFE.

3.2. Performance experiment——

Once the prototype HUB was co~ed and
debugqed to the point of usefulness, an
experiment was conducted to see how well
the prototype HUB bore out the performance
expectations generated by the experimental
HUB. The application level software for
the performance experiment was identical to
that for the implemental ion experiment, .
except for modifications that were made to
accommodate differences in the user inter-
faces between the experimental and
type

proto-
HUBS . Acjain, 200EI messages were sent

152

from the source process to the sink process
in the liUB implementation, and the elapsed
time was measured.

3.2.1. Overall performance.——

The TCP running on the prototype HUB
ran 1.17 times faster than the TCP running
on INFE UNIX. An explanation of the rea-
sons for the difference in performance
between the two experiments follows.

The prototype HUB differed from the
experimental HUB in a number of ways:

(1)

(2)

(3)

(4)

It is coded in PASCAL; the experimen-
tal HUB was coded in C. PASCAL source
code produces object code that is 30%
larger (and slower) than equivalent C
code. PASCAL presents the programmer
with a paucity of control structures
that forces tradeoffs between effi-
ciency and understandability. PASCAL
also lacks facilities (such as C
pointers or the Euclid bind) that per-
mit the programmer to avoid the re-
evaluation of complex addressing
operations .

It runs on a bare PDP-11/7U anti uses
the memory management hardware to
effect application process protection
and isolation; the experimental HUB
ran in a UNIX process and simulated
application process protection anti
isolation.

The PDP-11’s menory management
hardware and its relatively small
per-process address space place a
1arge processing overhea$ on any
operating system. 24 resisters must
be loaded to change from one process’s
address space to that of another.
Both the HUB and the processes it sup-
ports must execute extra code to map
all the memory they neefi into znZ out
of the address space. Nore complex
Ciata structures are required to keep
track of what is mapped in and what
isn’t.

It has a sophisticated resource allo-
cation system that is designee? to
limit storage channel bandwidth; the
experimental liUB had a simple resource
allocation system that did not have
any protection a~ainst storage chan-
nels. The prototype HUB ‘s resource
allocation scheme consumes 46% of all
CPU cycles.

It clears buffers when they pass from
one security domain to another, and
clears several machine reqisters
whenever it switches from one process
to another; these features were orcit-
tec? from the experimental HUE.

‘The measurements were made on a first
version of the prototype HUB. Very little
tuning has been performed on the code.
There seams to be considerable potential
for improving system performance by tunincj
individual procedures. A few hours work on
one key IPC procedure resulted in a 3t3%

improvement in its performance.

Similar improvements can be expected
in other key spots . One prime candidate
for improvement is in the ring crossing
code that is executed on the user side.
This code currently restructures all of the
parameters on each call across the
system/user interface to adapt programs
written in C to the HU.E interface, which is
designed for prograns written in PASCAL .
This parameter restructuring consumes about
8% of all CPU cycles.

By careful tuning of existinq INJB
code, we estimate that performance can be
improved to between 1.5 ant? 2 times the
performance of the INFE.

The extremely large consumption of CPU
cycles (46%) by the resource allocation
mechanisms is another opportunity for
improvinq performance. In some environ-
ments, such as military intelligence, pro-
tection against tb.e possibility of comprom-
ise via storage channels nay be worth the
loss in performance. But in co~mercial and
in non-militzry government environments,
threats involving storaqe channels may be
considered less serious. In these environ-
ments, a resource allocator that is less
strinqent in protecting against the exploi-
tation of storage channels could replace
the current HUB resource allocator. A less
stringent resource allocator wou13 be
simpler and would consume significantly
fewer CPU cycles. The internal implementa-
tion of the current resource allocator is
isolatefi from the rest of the EiUB. Its
interface has been designed to permLit the
entire resource allocator to be replaced.

The performance experiment did not
exercise some features of the 9UB that
could influence performance. For example,
no device interface handlers were employed.
It remains to be seen whether the HUB medi-
ation of interaction between processes and
device interface handlers will affect per-
formance.

3.2.2. IPC and process switchinq perfor-——- .-
mance During the two experiments,
=led measurements of the consur,ption of
CPU time in the HUB implementation were
performed. Based on these measurements, it
was possible to derive the amount of time
consumed by IPC operations anti by process
switching. In both the HUE and the It”FE,
the transfer of clata from one process to
another requires several operations such as
buffer allocation, actually sen~ing the

buffer, receiving the buffer, and mapping
the buffer into the process at+dress space.
The IPC facilities of the HUE and of INFE
U1:IX are very different. In order to com–
pare them, it is necessary to aggregate all
of these operations together and simply
consider the mean amount of CPU time it
takea to transfer data from one process to
another in each system.

INFE UITIX consumed a mean of 41.8 mil-
liseconds to send a nessage from the source
process to the sink process. Sending one

153

message involved six interprocess data
transfers, four for the message itself, and
two for the TCP acknowledgement. Each
interprocess data transfer in IIJFE UNIX
took mean of 6.97 milliseconds
(41.8 / ;).

The FiUB consumed a mean of 31.4 mil-
liseconds to send a message from the source
process to the sink process. Sending one
messaqe took 10 interprocess data
transfers, six for the message itself, and
four for the TCP acknowled~ement. Each
interprocess data transfer in the HUB took
a mean of 3.14 milliseconds (3.14 / 10).

The HUB performed interprocess data
transfers 2.2 times (6.97 / 3.14) faster
than did INFE UNIX.

The time to switch from one process to
another in the HUB, as derived from the
experiment measurements, is approximately
3QG microseconds. Measurements of lNFE
UNIX[18] give the process switching time as
1.175 milliseconds. The HUE performs pro-
cess switching approximately four times
faster than does IN17E UNIX.

4. Sununary—

4.1. Security The design of the HUB has——
been formally verified to a level of detail
close to that of the source code. An
analysis shows that there are relatively
few potential storage and timinq channels
through the HUB. And the HUE security pol-
icy will permit a wide variety of security
policies to be implemented at the applica-
tion level.

4.2. Performance HUB performance is
~u<rently 17% faster than that of INFE UNIX
as specially modified for the same applica-
tion. IPC operations are 2.2 times faster,
and process switching is four times faster,
than INFE UITIX. There is still potential
for substantially increasing performance.
And, by relaxing restrictions on storage
anfi timing channels wh.en the security
environment warrants it, much higher per-
formance coulcl be achieved.

:=”p==%=h~=% R:do:;o:
few m.sn-weeks of effort. We expect that
moving it to other machines will be equally
rapid.

5. Acknowledgements—

The initial development of the secu-
rity concepts of the HUB was accomplished
in conjunction with Peter Alsberg. Steve
Bunch and David Healy shared in the design
and specification of the HUE equally with
the author. Daniel Putnam contributed to
the design of some aspects of the interpro-
cess communication implementation and the
assurance of its correctness. The codinq
of the HUB was performed by Steve Bunch,
David liealy, Daniel Kopetzky, and Glenn
Kowack. Testing and measurement were
performed by the coding group with the
addition of Daniel Putnam. Tom Hinke, John
Scheid, and Richard Kemmerer, all of SDC ,

are responsible for the storage and timing
channel analysis. In addition, Sue Lan-
dauer and Judy Stein, both of SDC, partici-
pated in the verification effort in con-
junction with Daniel Putnam. Stephen Levin
assumed the administration of the COS/NFE
project, thus permitting the author to par-
ticipate in the technical work. Last but
by no means least, Stephen Levin, and
Anne-Marie G. Discepolo of the MI’TFW Cor-
poration, provided the motivation without
which this paper would have, in all proba-
bility, never been written.

154

[11

[2]

[3]

[43

[5]

[6]

[7]

[f31

[91

References

Grossman, G.R., S.R. Runch, anti D.E.
Putnam, COS/NFE Functional Specifica-—.
tion, 8g003.C-CNFE.5, Digital Technol-
ogy Incorporated, Champaign, IL, Janu-
ary 1981 (Proprietary document).

Bergman, S., ~ System Description of
AUTODIN ~, MTP.-53!36, The MITRE Corp7
Bedford, MA, May 1978.

Grossman, G.P.., S.F. Holmgren, and
R.H. Howe, “IHFE Software Functional
Description Overview”, Document 2,
Di7ital Technology Incorporated, Cl!am-
paign, IL, March, 1978.

Ritchie, D.F!. anti K. Thompson, “The
UNIX Time-Sharing System”, Comn?unica-
tions of the AC!I, Vol. 17, No. 7, July——
~ ~. 365-375.

Attach 1/0 User Manual, 78@19.C-
— – ‘Di~lINFr.12, Technology I cor-

%porated, Champaign, IL, October 19 8.

Dav, J.D.. G.R. Grossman, and P..E.<.
Howe, WW~lCCS Host to Front End Proto-
cols : S-cfinZ ~.~NFE.14,
Digital Technology Incorporated, Cham-
paign, IL, November, 1979.

Data Processing - Ql?..QS1’ste”s ~
connection - Basic Reference Model,
Second Draft Proposal ISO/DP ~,
American National Standards Institute,
New York, NY, August 1981.

Ponek. G.J.. et al., “UCLA Data Secure
UNiX “; Proceedings of the 1979
National Computer ConT’6renZ AiZfi%
Conference Proceedings, Vol. 48, AF’IPS
Press, Vontvale, NJ,” bune 1979, pp.
355-364.

Eiba, K., J. Woodward, and G. Nibaldi,

[100 McCauley, E.J., and P. Drorqowski,
“KSOS : Desic!n of a Secure Oneratinq
System”, Proceedings of th; 197G
National Computer ConZren~ AF’iPS
Conference Proceedings, t’ol. 48, AFIPS
Press, Montvale, NJ, June 1979, pp.
345-354.

[11] Fraim, L., “SCOMP (KSOS-6) Development
Experience Update”, Proceedings of the
Fourth Seminar on

——
the DoD Computer

~ty Initia=ve~ National Bureau
of Standards, Gaithersburg, ND, August
1981.

[12] Colber, T., “The SDC Communications
Kernel, “ Proceedings of the Fourth
Seminar on the DoD ‘Se=Com~ter
Initiative,“— ?a=nal Bureau of Stan-
dards, Gaithersburg, ED, August 19.81.

[13] Bell, D.E. and L.J. LaFadula, Secure
Computer Systems: Mathematical Founda-
tions and Model, !174-244, The MITRE
~,=dford, MA, May 1973.

[14] Iiemmerer, R.A., FDM - A Specification
and Verification Methodology , SP-4CHU3,
~tem Development Corporation, Santa
Monica, CA, November 198!3.

[151 Kemmerer, R.A. , “Shared Resource
Eatrix Methodology: A Practical
Approach to Identifying Stfirage ant!
Timing Channels”, these proceeclinqs.

[16] Aycock, T., and R. Kenmerer, C~S/NFE
Security Analysis, TN-6981, ~ystem
Development Corporation, Santa Monica,
CA, January, 1980.

[17] Transmission Control Protocol, RFC
793, Information Sciences Institute,
Marina del Rey, CA, September 1981.

[18] Jody Kravitz, personal communication.

A Kernel Based Secure UNIX Design,— .
~SD~-134, The MITRE Corp. , Bed-
ford, MA, June 1973.

155

