A Practical Executive for Secure Communications*

Gary Grossman
Digital Technology Incorporated

Champaign,

l. Introduction

Cormputer communication is now used in
many endeavors in which security and
privacy are important, both in government
and 1in the private sector. To support the
need for secure computer communication,
Digital Technology Incorporated (DTI) has
developed the Secure HUB** Executive (HUR),
a verified secure operating system oriented
toward supporting communications and other
real-time applications. The Secure HUB
Executive currently runs on Digital Equip-
ment Corporation PDP-11 and VAX-11
hardware, but it 1is portable to a wide
range of mini- and microcomputers.

Performance. in a communications pro-
cessor is heavily dependent on the speed at
which the operating system can perform
interprocess communication and process
switching functions. The HUB performs
interprocess communications functions
approximately two times faster, and process
switching functions approximately four
times faster, than a general purpose
operating system using the same hardware.

The first application of the HUB is in
the Communications Operating System Network
Front End (COS/NFL){1] under development at
DTI, under contract to the Defense Communi-
cations Agency. The COS/NFE is a prototype
verifiably secure network front end for the
AUTODIN II secure communications
network[2].

Other envisioned applications for the
HHUD include secure gateways between net-
works at different security levels, secure
packet-switching nodes, and secure dJdata
acquisition installations.
1l.1. Background
The HUR is the operating system that
supports the COS/NFE. The COS/NFE is a
prototype verifiably multi-level secure
communications processor that interfaces a
Honeywell H60GC computer to AUTODIN II.
The hardware base for the COS/NFE is a
Cigital ECquipment Corporation PDP-11/7€
rinicorputer. The COS/NFE performs AUTODIN
I1 protocol functions for the H6000. It
also interfaces terminals to both the H6ZEQ
and AUTODIN I1I (see Fioure 1).

* The specification and verification
werk described in this paper were performed
under contract DCL-100-79-C-D035 with the
Defense Communications Agency.

** HUR is a trademark of Digital Tech-
nology Incorporated.

CH1753-3/82/0000/0144%$00.75 © 1982 IEEE

Illinois

COS/NFE Terminals

o=

Terminat Protocols

4L

| Local

@ Host COS/NFE
Locat

Terminaf

o

e
Remote
Terminat

Host

— | Remote

A —
Host to Front End Protocols

—

S,
Local Subscriber Remote Subscriber

81209
COS/NFE Functions

Figure 1

Lxcept for security, the COS/KFE per-
forms functions identical to those of the
Interim Network Front End (INFE)[{3]. The
INFE 1is also based on a PDP-11/7¢, but its
operating system, called INFL UNIX***, js a
modified version of the Bell Laboratories
UNIX operating system[4].

UNIX is a general purpose time sharing
operating system that 1is available on a
variety of mini- and microcomputers. The
standard UNIX interprocess communication
(IPC) mechanisms are inadequate to support
bigh-bandwidth communications. They do not
permit the xind of interprocess connec-
tivity that is required, and they introduce
a areat deal of CPU overhead. UNIX was
modified for the INFE to add a new IPC
mechanism, called Attach 1I/0[51]. Attach
I1/0 was designed to provide higher perfor-
mance than the existing UNIX IPC mechan-
isms. Fven with Attach I/0, 78% of all CPU
cycles in the INFL are consumed by IPC and
process switching overhead.

The COS/NFE performs the same func-
tions wusing the same hardware base ag the
INFE. It thus provides an opportunity for
comparing the performance of non-secure
INFE UNIX with the performance of tte
Secure HUB Executive.

1.2. Protoceol processing In both the
INFE and the COS/NFLC, several protocols
must be interpreted for each message as it
travels throuch the system. For instance,
on a conmunications connection from the
6008, through the COS/NFE or the INFE, to
AUTODIN II, eight different protocols may’
have to be interpreted for each message
(see Figure 2). Of these protocols, three
are Host to Front End Protocols[6] and five
are AUTODIN II protocols.

*** UNIX is a trademark of Bell Labora-
tories.

144

Service e] - THP
Access | | TCP
T
Channel 1) bl
{ | SiP
. J _ Mode Vi _ AUTODIN i
HEO000 ao . _ LM% _!
Host to AUTODIN It
Front End Protocols
Protocols
81-210
Network Front End Protocols
Figure 2
In the INFE, each of these protocols

is implemented in a separate process (see
Figure 3). (Actually, the mapping of pro-
tocols to processes in the INFE is slightly
different than is shown here, but this is
irrelevant for the purposes of this discus-
sion.) This is to maintain functional iso-
lation between the protocol implementations
and to ensure that each process will fit
into the restricted PDP-11/7@ address space
(64I'B each for program and data). Two of
the protocols, the AUTODIN II Transmission
Control Protocol (TCP) and the Host to
Front End Channel Protocol, perform multi-
plexing and derultiplexing of connections.
As the ficure shows, whether a protocol
interpreter process handles the connections
as a single multiplexed stream or as
separate streams, the same process handles
all connections that require a particular
protocol.

In a system that is to be verified as
multi-level secure, handling all connec-
tions by the same process, regardless of
the security levels of the connections,
would require all application level
software to be verified. At the current
state of the art in software verification,
this would be prohibitively expensive, if
not infeasible. The amount of software
that is to be verified@ must be reduced to a
minimum if verification is to be practical.

To minimize the amount of COS/NFE
software that must be verified, software
that performs security-related functions is
separated from non-security-relevant
software. For exarmple, the portions of the

mentation that need to be trusted to handle
data a multiple security levels will be
separated from the portions that do not
need to be trusted. The TCP performs func-
tions roughly equivalent to those of the
Transport Layer of the International Stan-
dards Organization Reference Model for Open
Systems Interconnection[7], but it is
designed to operate in environments where
security and high reliability are required,

even when the available transmission media
are unreliable.
The TCP has the capability of taogging

each message with the security level of its
contents. In the COS/NFE multi-level
secure environment, this facility of the
TCP will be used to dermultiplex messages

arriving from the multi-level AUTODIN II
network into the appropriate separate sin-
gle security levels. This security-

relevant function will be performed bhy a
trusted process, called the TCP Multi-
plexor, with verified software. Other por-
tions of the TCP, that are not security
relevant, and therefore do not have to Dbe
trusted, will be implemented in separate
processes, called TCP connection machines,
with at least one per security level (see
Figure 4).

This principle is used throuchout the
COS/NFE to reduce the amouynt of software
that needs to be verified. Figure 5 shows
the mapping of protocols to processes for
connections between the H6G€O and AUTODIL
II through the COS/NFE. (The figure shows
multi-level connections with the HOO0O;
this will not be the case in actual prac-
tice.) There are more processes for each
connection than there were for the INFE,
because both the TCF implementation and the
Host to Front End Channel Protocol imple-
mentation have been divided into trusted
and untrusted portions as described above.

Because there are more processes per
connection in the COS/NFE, there is neces-
sarily more interprocess communication and
more process switching to perform the same
communications functions. This is a pro-
perty of any verifiably secure system at
the present state of the art. Any oOperat-
ing system that 1is to support verifiably

Transmission Control Protocol (TCP) imple- secure communications must therefore per=-
Muttipiexed Connections
Demuitiplexed
Connections
Link Channe! Service THP TCP P SIP Mode Vi
Access
I e
HE6000 —--{} -€- ""1% -—- I> - O -——- -—- — — =} AUTODIN Il
~ S nwa ik
N) \ ~——]
Host to Front End Protocols AUTODIN U Protocols
INFE Protocot Interpreter Processes 81-211

Figure 3

TCP Connection TCcP
Machines Multiplexor
Leve! X —e = =
N\
~
N
tevel ¥ — - — - —|— Levels
. X, Y, &2
-
7
Level Z — -
N— —
Untrusted Trusted
B81-212

COS/NFE TCP Implementation
Figure 4

form interprocess communication and process
switching correspondingly faster than UNIX
if the performance of the system is to
equal that of UMNIX.

1.3. Operating system requirements
An operating system that is to support

secure cormunication applications should

provide certain features:

(1) Low-overhead interprocess cormunica=-
tion 1is required to permit the multi-
ple layers of protocel to be imple-
nented in separate processes as

described above.
(2) Low-overhead process switching is also
required to permit the protocols to be
implemented in separate processes.

Leve!

(3)

A timing facility is required tc sup-
port tasks that are dependent on real
time. For example, transport and link
protocol implementations employ
timeout and retransmission to achieve
data integrity.

(4) Prioritization of processes is
required to ensure that work that is
more real-time dependent 1is accom-
plished before work that is less
real-time dependent. For example,
processes that handle input—~output
hardware are more real-time dependent
than processes that implement high-
level protocols such as virtual termi-
nal protocols.

(5) Verifiable security is required to
ensure that data is delivered only to
those for whom it is intended and that
data cannot be altered by those unau-

thorized to do so.

(6)

A flexible security policy is reguired
to permit the system to be utilized in
a wide variety of different applica-
tions for customers with a wide

variety of security needs.

In addition,
portable between
the exploitation
becomes available.

the system should be
hardware bases tc permit
of new hardware as it

These goals cannot be achieved without
an operating system designed for high per-
formance, for security, and for portabil-
ity.
1.4. state of the art
General purpose operating systems such

as UNIX provide neither the performance
required for high-bandwidth communications,

Level

i Levels >
XY,z &t
VA
Q
—
A
]
" TCP T
6
e Link Channel Channel Service THP Conn. TCcP P 8P Mode Vi g
0 MUX M Access Machi MUX '
° AAJ/ N
n
J \ v
Channel Protocol interpreter YCP
Legend

Trusted

: Untrusted

Figure 5

146

COS/NFE Protocol Interpreter Processes

81-213

nor do they provide for security. The
interprocess communication and process-—
switching overhead in general purpose
operating systems is too hich for high-
bandwidth communications.

There are a number of operating sys-

tems that are designed to provide security.
The UCLA[8] and MITRE[9] security kernels

were pioneering efforts that showed the
feasibility of the security kernel
approach. Their performance was consider-

ably slower than that of UNIX. KS0S-11[10]
and KS05-6[11] are more current efforts.
Their performance will never equal that of
UNIX; at worst, it will be several times
slower than that of UNIX. The SDC Communi-
cation Kernel[l2] is designed to handle
data communications functions securely, but
it has not Dbeen subject to any trusted
software development methodology, and its

interprocess communication is slower than
that of UNIX. The AUTODIN II security ker-
nel is designed to support secure communi-

cations functions. It is written in assem-
bler, which precludes verifying the source

code at the present state of the art in
software verification. It also precludes
portability to processors other than the

PDP-11 on which the system is implemented.

All of the secure operating systems
mentioned above implement Department of
Defense nmulti-level security as formulated
by Bell ané LaPadulall3]. This makes them
less flexihle for supporting security in
non-military environments.

2.

The Gecure [IUB Executive

The HUB fulfills the reguirements for
a verifiably secure operating system that
supports cormunications applications.
(1) 1t provides inter-process communica-
tion functions at approximately twice
the speed of INFE UNIX, which has been
rmodified to improve IPC performance
over that of standard UNIX.
(2) 1t provides process switching that is
approximately 3 times faster than INFE
unIix.

(3)
(4)

It provides timing and prioritization.

Its design has been verified down to a
low level of detail wusing System
Development Corporation's (SDC) Formal
Development Methodology (FDM).

An analysis, also by SDC, shows that
the bandwidths of any security leakage
paths (potential storage and timing
channels) are extremely low.

(6) It is designed for portability;
machine-dependent portions of the
Secure HUE Executive are isolated from
the machine-independent portions,
which form the bulk of the executive.
(7) 1t is implemented for portability; the
machine-independent portions are writ-
ten in PASCAL. The HUB was first
implemented on the PDP-11/7@¢. It was

147

ported to the VAX-11/780 with a few
man-weeks of effort.

2.1. HUB Functions
The HUR provides only those functions

that are required to support communications

and real-time applications. Functions
normally found in general purpose operating
systems, such as file systems, sophisti-
cated schedulers, and swapping, are not
supported by the HUB. All programs and
data are memory resident.

The HUB supports processes that per-

form the application functions for the sys-
tem. The HUB provides access to its func-
tions through a set of primitive operations
that are available as procedure calls to
the processes. These functions are pro-
vided to the processes within the security
constraints that are imposed by the HUB
security policy.

(1) Resource management primitives provide
processes with the ability to dynami-
cally allocate buffers.

(2) Process management primitives provide
processes with the ability to create

and destroy other processes.

Address space managerent primitives
provide processes with the ability to
alter their address spaces by mapping
buffers in and out of the accessible
memory space.

(4) 1Interprocess comnunication primitives
provide processes with the ability to
connect and disconnect from other
processes and to send messages to them

and receive messages from them.

(5) Flow control primitives provide
processes with the ability to control

the flow of messages between them.

(6) Input/output primitives provide
processes with the ability to communi-
cate to the Cevice Interface Handlers
(DIHs) that provide access to hardware
i/o devices.

(7) Timing primitives
with
tion when a
has elapsed.

provide processes
the ability to receive notifica-
specified tire interval

functions
supporting

These primitives cover the
that are required for
communications applications.

2.2. Security policy
The security policy of the Secure HUB
Executive can be described in three simple

statements:
(1) Each security level is dJdistinct from
every other security level; no level
includes another level; there is no
order relation Dbetween levels other
than equality.

(2)

Security levels may be aggregated into

security level sets. Every process
and every interprocess communication
connection between processes is tagged
with a security level set.
(3) Two processes that are tagged with
different security level sets can com-
municate if and only if the security
level set at which they communicate is
a subset of the security level sets of
both processes. In other words, an
interprocess communication connection
can be established between two
processes if and only if the security
level set that tags the connection is
a subset of both of the security level
sets that tac¢ the two processes.

A process that is tagged with a secu-
rity level set that has more than one
member 1is considered to be trusted, since

it is empowered to handle interprocess con-
nections at multiple security levels. Even
trusted processes are each restricted toc a
particular set of security levels. This is
unlike nmost kernelized systems, in which
each trusted process is empowered to handle
all security levels. This restriction per-

mits different trusted processes to handle
different sets of security levels. Multi-
ple security policies involving completely

distinct sets of security levels could be
implemented in the same system without
interfering with one another. Using this

feature, a cormmunications processor in a
public data network could handle multiple
corporate and/or government customers
without mutual interference.

of the HUB security
HUB to support a wide
security policies,

The simplicity
policy permits the
variety of epplication

through the wuse of trusted processes that
make the Jjudgements when data must be
passed from a connection that is tagged

with one security level set to a connection
that 1s tagged with another security level
set.

Consider, for example, the case in
which two processes, A and B, A tagged with
security level X and B tagged with security
level Y, need to communicate. The HUB
security policy does not permit A and B to
be connected. But they could be connected
through the mediation of a process, C, that
is tagged with security levels X and Y, as
shown in Fiqure 6.

Level

81-214

Processes Connected via a Trusted Process
Figure 6

148

Suppose that the security policy that
the application 1is to implement permits
information to flow from level X to level
Y., but not from level Y to level X. C, the
mediating process, can implement this pol-
icy by sending to B all data it receives
from A, but discarding all data it receives
from B. (It could also discard all data it
gets from A, but let us assume that the
system is intended to do useful work.) This
simple example illustrates how the HUB
security policy can be used to support mote
sophisticated security policies, such as
the Department of Defense security policy
as formulated by Bell and LaPadula.

2.3. BStructural concepts

3.2.&. Processes

Each process supported by the HUB con-
sists of a program, memory, and IPC ports.

2.3.1.1. Programs

The programs for processes that the
HUB supports are sharable and re-entrant.
This permits many processes to simultane-
ously use the same program without
interference. Each program is tagged with

a security level set that controls the
security levels of the data that it can
handle.
2.3.1.2. Memory

Each process has two kinds of memory:

a private memory that is used to maintain
the state of computation of the process,
and a set of buffers that can be used to
send messages to other processes via the
IPC mechanism. Private memories are not
shared Dbetween processes. Buffers are
serially sharable, i.e., each buffer can be
accessed by at most one process at any one
time. No memory is simultaneously sharable
between any two processes.
2.3.1.3. Ports

Each process has a set of ports that
are used to access its IPC connections to
other processes. Each port is the endpoint

of at most one connection. Ports are used
by the HUB to keep track of the state of
connections and of their security level
tags. Ports are also used in buffer allo-
cation and in flow control.
2.3.2. Interprocess communication

All interprocess communication takes

over connections between processes'
ports. Connections can be dynamically made
and broken. Each connection is tagged with
a security level set that cannot be chanced
while the connection exists.

place

Data 1is sent from one process to
another by placing the data in a buffer and
sending the buffer over a connection. Once
the buffer has been sent, it is no longer
accessible by the process that sent it.
When the other process receives the buffer,
the huffer becomes accessible tc that pro-
cess.

The interface between processes and
the HUB IPC facility is unique to the HUB.
This interface imposes a structure on pro-
grams that is natural for implementing com-
munication protocols, but it may be awkward
for other kinds of programs.

2.3.3. Sessions
A session is a set of processes and

resources, all tagged with the same secu-
rity level set, that is dedicated to a par-

ticular |user. For each session, the HUB

controls:

(1) what programs can be executed in
the session,

(2) what connections can be made by

processes running in the session,
and
(3) what resources can be used by

processes running in the session.

2.3.4. Device interface handlers

Device interface handlers (DIHs) pro-
vide the means for processes to access
input/output hardware. Each DIH performs
the input/output inititation functions angd
the interrupt handler functions for a sin-
gle hardware device. The DIHs are accessed
by processes via a procedure call inter-
face, Jjust as in UNIX. Unlike UNIX, the
DIH's execute in an address space that is
separate from that of the HUB and those of
the processes. This makes it possible to
verify the DIHs separately from the HUB.
Each DIH is tagged with a security level
set that controls the security levels of
the data that it can handle.

2.4. Implementing security in the HUR
The HUB is intended to enforce secu-
rity in three different ways:
(1) formal security correctness,
(2) storace and timing channel
bandwidth limitation, and
(3) prevention of denial of service.
2.4.1. Formal security correctness
Formal mathematical techniques have
been used to verify that the RUP correctly
implements its security policy. System
Development Corporation's (SDC's) Formal
Development Methodology[14] has been used

to produce proven first and second level
specifications of the correctness o©of the
desicn o©of the HUB as it relates to secu-
rity. These specifications are formal
mathermatical descriptions of the design of
the HUB. The first level specification is
very abstract and general. The level of
detail of the second level specification is
close to that of the HUE code itself. This
can be seen from the fact that the second
level specification contains approximately

149

2400 lines of 1INA JO****, gpC's formal
specification language. The HUB consists
of approximately 2800 lines of PASCAL. To

give some idea of the magnitude of the task
of proving a specification of this size,
the proof runs to some 2088 pages. For-
tunately, the proof process 1s semi-
automated through the use of SDC's Interac-
tive Theorem Prover.

The simplicity
policy

of the HUB security
and of the HUB desicn makes a secu-
rity correctness proof at this level of
detail tractable. From a formal point of
view, the most important security correct-
ness criterion for the HUB can be stated as

(1) Let L be the set of

levels

all security

(2)
(3)
(4)

Let S be the set of all sessions

SLS: § —-> 2%*],
All sl,s2 in S:
sl comm s2 <=>
SLS(sl) "~ SLS(s2) # NULL

Line 3 says that there is a function B&SLS
that maps the set of sessions onto the set
of all security 1level sets. Line 4 says
that two sessions can communicate 1if and
only if their security level sets have a
non-empty intersection.
2.4.2. Storage and timing channel
bandwidth limitation

Whenever twoO processes share any
resource that can be modified in some way
by one process, while the modification can
be detected by the other process, the
resource can be used to pass information
between the two processes. Since the
operating system is shared by all
processes, even an operating system

desioned for security can potentially pro-
vide an information channel between
processes, in violation of the very secu-
rity policy that the operating system is
designed to enforce. Information channels
of this kind fall into two classes: storage
channels and timing channels.

Storage channels are information chan-
nels that are implemented via variables
within the operating system or via vari-
ables that can be accessed through the
operating system. For example, 1if the
"length" attribute of a file can be modi-
fied by one process, and if the wvalue of
the attribute can be read by another pro-
cess, a potential storage channel exists.

Timing channels are information chan-
nels that are implemented via the ability
to affect the time at which an event hap-

pens and the ability to detect the effect.
For example, if one process can affect the
time at which another process is run

(perhaps by controlling the duration of its

**%*% TIIA JO is a trademark of

Developrent Corporation.

System

own running time), and if the second pro-
cess can detect the difference between its
expected run time and the time at which it
was' actually run, a potential timing chan-
nel exists.

It 1is impossible to eliminate all
storage and timing channels in a system in
which resources are shared by processes at
different security levels. The goal of the
designer of such a system 1is to minimize
both the number of potential storage and
timing channels, and the bandwidth of each.

while it is the task of formal specif-
ication and proof to show that the actions
of the HUB regardinc the obijects that |is
explicitly handles do not viclate the HUB
security policy, other techniques are
required to show that the internal mechan-
isms of the HUB itself do not provide
storage or timing channels that can be used
to violate the security policy. SDC's
Shared Resource Matrix Methodology[15]
(SRMM) is an analysis tool that has been
used to identify potential stcrage and tim-
ing channels in the HUB.

The basic idea behind SRMM is to con-
struct a matrix whose rows correspond to
the attributes of resources and whose
columns correspond to the HUB primitives.
If the use of a primitive can modify a
resource attribute, a "W" (for “write") is
placed in the corresponding cell of the
matrix. If the use of a primitive can
detect a modification in a resource attri-
(for "read®) is placed in the

bute, an “"R"

corresponding cell of the matrix. If there
are both an "R" and a "W" in the same row
of the matrix, then the resocurce attribute
corresponding to that row can be exploited
as an information channel by processes

using the primitives that correspond to the
columns containing the “R" and the "W". An
example of a shared-resource matrix is
shown in Figure 7. It is presented only to
illustrate the concept:; the resources and

primitives shown are not drawn from the
HUR.
Primitive | READ WRITE SEEK CREATE | DELETE
Rosour e e FILE FILE
Existence RW RW
File R w R w
Files Length
Current
tocation | AW w AW w
Arm
bisk | Position RwW Rw
Device F
Space Rw R w
Shared Resource Matrix eerranarmazer
Figure 7
The detection of a potential informa-
tion channel by SRMM does ncot mean that

there exists a storage or timing channel
that can be used to violate the HUB secu-
rity policy. Detailed analysis of the
design "and even of the source code is
required to determine whether usable
storage or timing channel dces in fact

a

150

exist. For example, it may be that a
resource attribute can be modified and that
the modification can be detected only by
the same process that modified it, or only
by two processes that are tagged with the
same security level set.

SDC performed a storage and timino
channel analysis of the HUB. They first
employed SRMM to identify candidate storage
and timing channels. They then constructed
scenarios to determine how the candidate
channels could be used by processes tagged
with different security levels to pass
information. Finally, they estimated the
bandwidth of the channels from the
scenarios. The results of this analysis
are summarized below.

In every computer system with
resource sharing across security
domains, there are necessarily
covert f[i.e., storage and timingl
channels that cannot be completely
blocked. It is interesting to note
that, in the present case, the
COS/NFE desicn as of 9 lNovember
1979 has relatively few such chan-

nels, as compared to other systems
with which we are familiar....[16]

There are several reasons for this:
(1) The HUB is tailored tc perforninc com-
munications functions. The resulting
relative simplicity has macde it easier

to control the internal resources of
the HUB to 1limit the bandwidth of
storage and timing channels.

(2) The HUB has been desiaoned with few
resources shared between processes, in
order to reduce the possibilities for
storage and timinc channels.

(3) when resources are shared among
processes, the sharing 1is strictly
controlled to reduce the bandwidth of

any resulting storace and timing chan-
nels.

(4) Only specifically designated trusted

processes can change resource alloca-
tion. This reduces the number of
processes that can act as storage and

timing information "senders".

An example of an actual storage chan-

nel that was found in an early version of
the HUB is illustrated in Figure 8. Pro-
cess T 1is a trusted process that performs

some service for untrusted processes (U1,
U2) at different 1levels. T has a finite
number of ports that are intended to permit
the untrusted processes to communicate with

it. These ports are a resource that is
shared among the untrusted processes.
Suppose two processes tagged with two

levels are to communi-
cate usinc this shared@ resource. One of
the untrusted processes, say Ul, is to be
the sender, while another, say U2, is to be
the receiver. To transfer data, Ul will

different security

U, 558\\\\\\\\\

::::::::::O__

O

= T |-

O

ors
_O////////
ME /

Trusted Process’ Ports as Storage Channel
Figuré 8

modulate the availability of T's ports for
connection, and U2 will detect whether or
not it can connect to T. Ul will connect
to all of T's ports to signal a £, and
disconnect from one of them to signal a 1.
To read the value of the signal, U2 will
have to repeatedly attempt to connect to
one of T's ports. If a port is available,
U2 will interpret the signal as a binary 1:
if no port is available, U2 will interpret
the signal as a binary 8.

SDC estimated that, under worst case
conditions, information could be signalled
between two processes at approximately 50€¢
baud using this storage channel. This
assumes that there are no other active
processes using the system. Under more
typical conditions, with other processes
using the system and perhaps even interfer-
inc by themselves connecting and discon-
necting to T, the bandwidth was estimated
at approximately 20 baud.

low Dbandwidth
some of which

Even this relatively
requires several assumptions,
may not be valid:

(1) The processes Ul and U2 must be able
to synchronize and remain in synchrony
in order to avoid confusion. This
presupposes that Ul and U2 have access

to a shared clock, or to some other
mechanism for synchronization. The
HUB does provide a facility for noti-

fying a process after a specified time
interval has elapsed, but a process is

limited to the knowledge that it will
not receive a "timer expired" notifi-
cation before the specified time

interval has expired. The receipt of
a "timer expired" notification does
not give the process any information
about how much time elapsed between
the end of the specified time interval
and the receipt of the notification.
Looked at another way, the clock that
is available to processes is "fuzzy".
This nakes it difficult to wuse real
time as a synchronization method. It
also makes it difficult to exploit
timing channels.

(2)

The frequency of other processes' use

of the ports of T must be relatively
low, otherwise there will be suffi-
cient noise introduced in the signals

151

to make the channel useless.

(3) ui,
ports

ports.

the sender, needs to have enough
to be able to tie up all of T's
This will usually not be the
case, since most untrusted processes
are given only a small number of
ports.

Notwithstanding the invalidity of some
of the assumptions, a quota was added to
each session that limits the number of con-

nection initiations that can be made from
within a ogiven session. In most applica-
tions, this quota will typically be set to

a very small number such as 1 or 2 for each
untrusted session. This will prevent the
use of this storage channel.

The
cludes
could be
storage

security policy of the HUB pre-
one synchronization method that
used in some systems to support a
or timing channel. Suppose that
there is some resource that can be affected
by a process A with security level H, and
that the modifications can be detected by

process B, with security level L {see Fig-
ure 9). Suppose further that the security
policy of the operating system (not the

HUB) were to permit data to flow from level
L to level H, but not the reverse. In this
case, the operating system micht allow an
IPC connection between A and B, but would
then allow data to be sent from B to A, but
not from A to B. (This is called the “"star
property" in the Bell and LaPadula security
model.) Then this IPC connection could be
used to send synchronizing signals from B
to A. This would enabkle A and B to use the
shared resource as an information channel.
The HUB security policy does not permit an
IPC connection between processes under
these conditions. Even if a connection is
made indirectly through a third, trusted,
process, the added 1latency will at least
lower the bandwidth of any storage or tim-
ing channel implemented in this way.

Modify

e

Shared

Synchronize Resource

PN

()

Detect

81-216

Synchronization Channel inherent in “W-property”
Figure 9

z.ﬁ.g. Prevention of denial of service

Users can deny service to other users

in two ways:

1. By tying up some critical resource
2. By causing the system to fail

Users are prevented from tying up
critical resources in the HUB by the same
strict resource control mechanisms that are
used to 1limit storage and timing channel
bandwidth.

The 1likelihood of
software system failure
reduced in two ways:

(1)

users
in the

causing
HUB is

The HUB
rigorous
reduce

is being subjected to a
quality assurance program to
the probability of inherent
error. This proagram includes rigorous
testing of the correct operation of
each procedure in the HUB.
(2) The HUB is a relatively
gram, utilizing simple
There is a relatively small amount
complication to "break".

simple pro-
alcorithms.
of

3. Performance

The performance of the HUB was demon-
strated in two experiments: one to show
that its unique IPC interface could support
complex protocol processing, and the other
to show its performance relative to the
INFE.

3.1. Implementation experiment

The purpose of this experiment was to
ascertain whether the HUB could be used to
support the complex protocol processing
that 1is required in modern communications
processors.

The Transmission Control Protocol
(TcP)[17], the most complex protocol pro=-
cessing module from the INFE, was modified
to run on an experimental version of the
HUB. The feasibility of splitting up a
complex program such as the TCP into
trusted and untrusted portions was recog-
nized as one ey to the applicability of
the HUB to multi-level secure protocol pro-
cessing. The split was accomplished in a
few person-weeks by a programmer who was
familiar with the TCP.

An experimental version of the HUB weas
written in the programming language "C" for
running the experiment. Every effort was
made to include the security overhead that
would be present in the prototype IlIUB. To
facilitate measurement, the experiment was
run in a UNIX process, rather than on a
bare PDP-11/7¢. It was believed at that
time that the experiment would realisti-
cally predict the performance of the proto-
type HUB.

The TCP, both on INFE UNIX and on the
experimental HUB, was driven by two
processes, a data source and a data sink,

152

A third process simulated
the AUTODIN II network (see Figure 10).
2000 messages were sent from the source
process to the sink process through the TCP
in both implementations, and the elapsed
time for each implementation was measured.
The results of the experiment were very
encouraging:

(1)

respectively.

The TCP ran 3.2 times faster on the

experimental HUB than on INFE UNIX.
(2) Most of this increase was due to the
great reduction of IPC overhead
achieved through use of the HUR, but
15%¢ fewer CPU cycles were executed by
the TCP process running on the HUB
than by the TCP process running on
INFE UNIX. This is attributable to
the fact that a number of functions,
such as buffer allocation and timing,
that had to be performed in user
processes on INFE UNIX, are performed
by the HUB itself. 1In addition, there
was 40% nmore IPC work performed by the

HUB than by INFE UNIX. Thus the
experimental HUB performed more work
more quickly.

(3) The source code for the TCP was
reduced 1in size by 20%. This is also
because the HUB performs functions
that had to Dbe performed by the TCP

process itself in INFE UNIX.

b
————me——|

INFE Experiment Software

(Data)- >

<-(Ack) | AUTODIN
TCP | e———p]
<-~(Deta) [Simulator

(Ack)->

{Data)- > (Data)->
__. Tep | <-thew)
cm1 (Data)- >
TCP <-(Ack) | AUTODIN
MUX | ———p n
Tcp < -(Data)
A rrenren < -(Data)
< -(Data) (Ack)- >
81-217
HUB Experiment Software
Experiment Software Configurations
Figure 10
Based on the results of this experi-

ment, it was expected that the overall per-
formance of a secure network front end
based on the HUB would be approximately 3
times that of the nonsecure INFE.

3.2. Performance experiment

Once the prototype HUB was coded and
debugged to the point of usefulness, an
experiment was conducted to see how well
the prototype HUBR bore out the performance
expectations generated by the experimental
HUB. The application 1level software for
the performance experiment was identical to
that for the implementation experiment, .
except for modifications that were made to
accommodate differences in the user inter-
faces between the experimental and proto-
type HUBs. Again, 2080 messaces were sent

from the source process to the sink process
in the HUB implementation, and the elapsed
time was measured.

3.2.1. oOverall performance

The TCP running on the prototype HUB
ran 1.17 times faster than the TCP running
on INFE UNIX. An explanation of the rea-
sons for the difference in performance
between the two experiments follows.

The prototype HUR differed from the

experimental HUB in a number of ways:
(1) It is coded in PASCAL; the experimen-
tal HUB was coded in C. PASCAL source
code produces object code that is 3€%
larger (and slower) than equivalent C
code. PASCAL presents the programmer
with a paucity of control structures
that forces tradeoffs between effi-
ciency and understandability. PASCAL
also lacks facilities (such as C
peinters or the Euclid bind) that per-
mit the programmer to avoid the re-
evaluation of complex addressing
operations.

It runs on a bare PDP-11/7¢ and uses
the memory nanagement hardware to
effect application process protection
and isoclation; the experimental HUB
ran in a UNIX process and simulated
application process protection and
isolation.

The PDP-11's menory management
hardware and 1its relatively small
per-process address space place a
large processing overhead on any
operating system. 24 registers must
be loaded to change from one process's
address space to that of another.
Both the HUB and the processes it sup-
ports must execute extra code to map
all the memory they need into and out
of the address space. iore complex
data structures are required to keep
track of what is mapped in and what
isn't.

(3) It has a sophisticated resource allo-
cation system that 1is designed to
limit storage channel bandwidth; the
experimental HUB had a simple resource
allocation system that did not have
any protection against storage chan-
nels. The prototype HUB's resource
allocation scheme consumes 46% of all
CPU cycles.

(4) 1t clears buffers when they pass from
one security domain to another, and
clears several machine registers
whenever it switches from one process
to another; these features were omit-
ted from the experimental HUB.

The measurements were made on a first
version of the prototype HUB. Very little
tuning has been performed on the code.
There seems to be considerable potential
for improving system performance by tuning
individual procedures. A few hours work on
one key IPC procedure resulted in a 30%

153

improvement in its performance.

Similar improvements can
in other key spots.
for improvement is in the ring crossing
code that is executed on the user side.
This code currently restructures all of the

be expected
One prime candidate

parameters on each call across the
system/user interface to adapt programs
written in C to the HUB interface, which is
designed for programs written in PASCAL.

This parameter restructuring consumes about
8% of all CPU cycles.

By careful tuning of existing HUB
code, we estimate that performance can be
improved@ to between 1.5 and 2 times the

performance of the INFL.

consunmption of CPU
resource allocation

The extremely large
cycles (46%) by the
mechanisms 1is another opportunity for
improving performance. In some environ-
ments, such as military intelligence, pro-
tection against the possibility of comprom-
ise via storage channels may be worth the
loss in performance. But in commercial and
in non-military government environments,
threats involving storace channels may be
considered less serious. In these environ-
ments, a resource allocator that is less
stringent in protecting against the exploi-
tation of storage channels could replace
the current HUB resource allocator. A lesc
stringent resource allocator would be
simpler and would consume significantly
fewer CPU cycles. The internal implementa-
tion of the current resource allocator is
isolated from the rest of the HUB. Its
interface has been designed to permit the
entire resource allocator to be replaced.

did not
HUB that
example,

The performance experiment
exercise some features of the
could influence performance. For
no device interface handlers were employed.
It remains to be seen whether the HUB medi-
ation of interaction between processes and
device interface handlers will affect per-
formance.

3.2.2. 1IPC and process switching perfor-
mance During the two experiments,
detailed measurements of the consumption of

CPU time in the HUB implementation were
performed. Based on these measurements, it
was possible to derive the amount of time

consumed by IPC operations and by process
switchingo. In both the HUEB and the INFE,
the transfer of data from one process to
another requires several operations such as
buffer allocation, actually sending the
buffer, receiving the buffer, and mapping
the buffer into the process address space.
The IPC facilities of the HUB and of INFE
UNIX are very different. 1In order to com-
pare them, it is necessary to aggregate all
of these operations together and simrply
consider the mean amount of CPU time it
takes to transfer data fromr one process to
another in each system.

INFE UNIX consumed a mean of 41.8 mil-
liseconds to send a message from the source
process to the sink process. Sending one

message involved six interprocess data
transfers, four for the message itself, and
two for the TCP acknowledgement. Each
interprocess data transfer in INFE UNIX
took a mean of 6.97 milliseconds
(41.8 /).

The HUB consumed a mean of 31.4 mil-
liseconds to send a message from the source
process to the sink process. Sending one

message took 1e interprocess data
transfers, six for the message itself, and
four for the TCP acknowledgement. Each

interprocess data transfer in the HUB took
a mean of 3.14 milliseconds (3.14 / 19).

The HUB performed
transfers 2.2 times
than did INFE UNIX.

interprocess data
(6.97 / 3.14) faster

The time to switch from one process to
another in the HUB, as derived from the
experiment measurements, is approximately
30¢ nmnmicroseconds. Measurements of INFE
UNIX[18] give the process switching time as
1.175 milliseconds. The HUE performs pro-
cess switching approximately four times
faster than does INFE UNIX.

4. Summary
4.1. Security The design of the HUB has

been formally verified to a level of detail
close to that of the source code. An
analysis shows that there are relatively
few potential storage and timing channels
through the HUB. And the HUE security pol-
icy will permit a wide variety of security
rolicies to be implemented at the applica-
tion level.

4.2. Performance HUB performance is
currently 178 faster than that of INFE UNIX
as specially modified for the same applica-
tion. IPC operations are 2.2 times faster,
and process switching is four times faster,
than INFE UNIX. There is still potential
for substantially increasing performance.
And, by relaxing restrictions on storage
and timing channels when the security
environment warrants it, much hicher per-
formance could be achieved.

4.3. Portabilit The HUB was moved from
The PDP-11/70 to the VAX-11/780 with only a
few man-weeks of effort. We expect that
movinc it to other machines will bhe equally
rapid.

5. Acknowledgements
The initial development of the secu-
rity concepts of the HUB was accomplished

in conjunction with Peter Alsberg. Steve
Bunch and David Healy shared in the design
and specification of the HUB equally with
the author. Daniel Putnam contributed to
the design of some aspects of the interpro-
cess communication implementation and the
assurance of its correctness. The coding

of the HUB was performed by Steve Bunch,
David Healy, Daniel Kopetzky, and Glenn
Kowack. Testing and measurement were
performed by the coding group with the
addition of Daniel Putnam. Tom Hinke, John
Scheid, and Richard Kemmerer, all of SDC,

154

are responsible for the storage and timing
channel analysis. In addition, Sue Lan-
dauer and Judy Stein, both of SDC, partici-
pated in the verification effort in con-
junction with Daniel Putnam. Stephen Levin
assumed the administration of the COS/NFE

project, thus permitting the author to par-
ticipate in the technical work. Last but
by no means least, Stephen Levin, and

Anne-Marie G. Discepolo of the MITRE Cor-
poration, provided the motivation without
which this paper would have, in all proba-
bility, never been written.

(1]

£23

£3]

[el]

[el

[o]

References
Grossman, G.R., S.R. Bunch, and D.E.
Putnam, COS/NFE Functional Specifica-

tion, 88003.C-CNFE.5, Digital Technol-
ogy Incorporated, Champaign, IL, Janu-
ary 1981 (Proprietary document).

Bergman, S., A System Description of
AUTODIN II, MTR~5306, The MITRE Corp.,
Bedford, MA, May 1978.

Grossman, G.R., S.F. Holmgren, and
R.H. Howe, "INFE Software Functional
Description Overview", Document 2,
Digital Technology Incorporated, Cham-
paign, 1L, March, 1978.

Ritchie, D.M. and K. Thompson, "The

UNIX Time-Sharing System", Communica-

tions of the ACM, Vol. 17, No. 7, July
1574, pp. 365-375.
Attach 1/0 User Manual, 78019.C-

cor-
8.

INFE.12, ~Digital
porated, Champaign,

Technology I
IL, October 19

bay, J.D., G.R. Grossman, and R.H.
Howe, WWMCCS Host to Front End Proto-
cols: Specifications, /8012.C-INFE.14,
Digital Technoleay Incorporated, Cham-
paign, IL, November, 1979.

Data Processing - Open Systems Inter-
connection - Basic PReference Model,
Second Draft Proposal 1S0/DP 7498,
American lNational Standards Institute,
New York, NY, August 1981.

Porek, G.J., et al., "UCLA Data Secure
UNIX", Proceedings of the 1979
National ~Computer Conference, AFIPS
Conference Proceedings, Vol. 48, AFPIPS
Press, Montvale, NJ, June 1979, pp.
355-364.

Biba, K., J. Woodward, and G. Nibaldi,

UNIX Design,
Bed~

A Iernel Based Secure
ESD-TR-79-134, The MITRE Corp.,
ford, MA, June 1973.

55

[19]

[11]

[12]

[13]

£14]

[15]

[16]

[17]

(18]

McCauley,
"KSO0S:

E.J., and P. Droncowski,
Design of a Secure Operatinc
System", Proceedings of the 1979
National Computer Conference, AFiPS
Conference Proceedings, Vol. 48, AFIPS

Press, Montvale, NJ, June 1979, pp.
345-354.
Fraim, L., "SCOMP (KSOS-6) Development

Experience Update"”, Proceedings of the
Fourth Seminar on the DoD Computer
Security Initiative, National Bureau
of Standards, Gaithersburg, MD, August
1981.

Colber, T., "The SDC Communications
Kernel," Proceedings of the Fourth
Seminar on the DoD Computer ctecurity
Initiative, National Bureau of Stan-
dards, Gaithersburg, MD, August 1981.

Bell, D.E. and L.J. LaFadula, Secure
Computer Systems: Mathematical Founda-
tions and Model, M74-244, The MITRE
Corp., Bedford, Ma, May 1973.

Kemmerer, R.A., FDM - A Specification
and Verification Methodology, SP-408%,
System Development Corporation, Santa
Monica, CA, November 1986,

FKemmerer, R.A., “"Shared Resource
Matrix Methodology: A Practical
Approach to Identifying Storage and

Timing Channels", these proceedincs.

Aycock, T., and R. Kemmerer, COS/NFE
Security Analysis, TM-6981, ~System
Development Corporation, Santa Monice,
CA, January, 1984.

Transmission Control Protocol, RFC
793, 1Information Sciences Institute,
Marina del Rey, CA, September 1¢81.

Jody Kravitz, personal communication.

