
DITA Readme map
[vertical list of authors]

© Copyright ,.

[cover art/text goes here]

Contents
Installing DITA OT 1.3 ...3
Enhanced command line help ...4
Extensible metadata attributes ..6
Graphic scaling improvement ... 7
Indexing ...8
New element <abstract> ...10
New element <data> ... 12
Supporting two file extensions in one DITA map ..13
Supporting foreign content vocabulary ... 14
Refactored ANT tasks .. 15
Standard XML catalog resolver ...16
Topic merge .. 17
Working with documentation plug-in ... 19
Building DITA output with Java command line ... 30
DITA Open Toolkit .. 33

DITA release notes .. 33
DITA release history ..34
DITA futures ...45
Tested platforms and tools ...45
Using DITA transforms ... 46
Building DITA output with Ant ... 47

Setting up Ant... 47
Running Ant.. 48
Ant tasks and script... 48

Building DITA output with Java command line .. 52
Problem determination and log analysis .. 56
Migrating HTML to DITA ..57
Controls, parameters, tweaks, and gizmos for dita2htmlImpl.xsl 58

Global variable declarations.. 59
Default values for externally modifiable parameters... 59
Stubs for user-provided override extensions.. 61

Known Limitations .. 61
Troubleshooting .. 62

DITA Readme map

i

DITA Readme map

2

Installing DITA OT 1.3
The software that the previous releases of DITA OT depend on are redistributed. The
installation package of DITA OT 1.3 includes the software, so the configuration process is
streamlined.

Before installing DITA Open Toolkit 1.3, you need to complete the following steps:
• Download and configure JDK properly.
• (Optional) Download and configure HTMLHelp Compiler properly for HTMLHelp

transformation.
• (Optional) Download and configure JavaHelp Compiler properly for JavaHelp

transformation.

Then, you need to complete the following steps:
1. Download the full DITA OT 1.3 package.
2. Run the batch file " startcmd.bat" for Windows or " startcmd.sh" for Linux to

set up the necessary environment variables.
3. Run the transformation in the command-line window by using Java command line or

ANT as you did in the previous releases of DITA OT.

You can still use the small package to install DITA OT 1.3:
• Download the small package.
• Configure the system environment as you did in previous releases of DITA OT, but

add two more paths %DITA_HOME%\lib;%DITA_HOME%\lib\resolver.jar; to the
CLASSPATH parameter.

• Run the package by using Java command line or Ant.

DITA Readme map

3

Enhanced command line help
In DITA OT 1.3, the command line help function is enhanced to improve usability. You
can know the version of toolkit and the usage of the command line from the command
line help by using the following commands:

java -jar lib/dost.jar
-version

java -jar lib/dost.jar
-h

You can see the brief description of the supported parameters in the command line
window when you type a specific command. For example, if you type java -jar
lib/dost.jar -h , you can get the following result:

D:\DITA-OT1.3_fullpackage_bin\DITA-OT1.3>java -jar lib/dost.jar -h
java -jar lib/dost.jar [mandatory parameters] [options]
Mandatory parameters:

/i:{args.input} specify the input file
/transtype:{transtype} specify the transformation type

Options:
-help, -h print this message
-version print the version information and exit
/basedir:{basedir} specify the working directory
/ditadir:{dita.dir} specify the toolkit's home directory
/outdir:{output.dir} specify the output directory
/tempdir:{dita.temp.dir} specify the temporary directory
/logdir:{args.logdir} specify the log directory
/ditaext:{dita.extname} specify the dita file extension
/filter:{dita.input.valfile} specify the filter file
/draft:{args.draft} specify whether to output draft info
/artlbl:{args.artlbl} specify whether to output artwork filenames
/ftr:{args.ftr} specify the file to be placed in the BODY

running-footi
ng area

/hdr:{args.hdr} specify the file to be placed in the BODY
running-headi
ng area

/hdf:{args.hdf} specify the file to be placed in the HEAD area
/csspath:{args.csspath} specify the path for css reference
/css:{args.css} specify user css file
/cssroot:{args.cssroot} specify the root directory for user specified

css file

/copycss:{args.copycss} specify whether to copy user specified css
files

/indexshow:{args.indexshow} specify whether each index entry should
display wi
thin the body of the text itself

/outext:{args.outext} specify the output file extension for generated
xhtml f
iles

/xsl:{args.xsl} specify the xsl file used to replace the
default xs
l file

/cleantemp:{clean.temp} specify whether to clean the temp directory
before eac
h build

/foimgext:{args.fo.img.ext} specify the extension of image file in pdf
transfo
rmation

/javahelptoc:{args.javahelp.toc} specify the root file name of the
output java
help toc file in javahelp transformation

/javahelpmap:{args.javahelp.map} specify the root file name of the
output java
help map file in javahelp transformation

/eclipsehelptoc:{args.eclipsehelp.toc} specify the root file name of
the outpu
t eclipsehelp toc file in eclipsehelp transformation

/eclipsecontenttoc:{args.eclipsecontent.toc} specify the root file name

DITA Readme map

4

of the
output Eclipse content provider toc file in eclipsecontent
transformation

/provider:{args.eclipse.provider} specify the provider name of the
eclipse hel
p output

/version:{args.eclipse.version} specify the version number of the
eclipse help
output
/xhtmltoc:{args.xhtml.toc} specify the root file name of the output

xhtml toc
file in xhtml transformation

/ditalocale:{args.dita.locale} specify the locale used for sorting
indexterms.

/fooutputrellinks:{args.fo.output.rel.links} specify whether to output
related
links in pdf transformation
/fouserconfig:{args.fo.userconfig} specify the user configuration file

for FOP

/htmlhelpincludefile:{args.htmlhelp.includefile} specify the file that
need to
be included by the HTMLHelp output

DITA Readme map

5

Extensible metadata attributes
OASIS DITA 1.1 provides the DITA architects with an enhanced feature, extensible
metadata attributes. If the architects want to achieve multiple purposes in one attribute,
especially in a selective attribute, they can use the extensible metadata attributes.

Note:
• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA

OT 1.3, the functionality described here should be considered a preview capability.
• The specification and the defined functions that need to be supported can change

by the time OASIS formally approves DITA 1.1.

Example

The following example illustrates how people of different roles use the extensible
metadata attributes in DITA 1.1.

• As a DITA architect of a team, you can perform the following actions:
#. Define new attributes that the team needs, for example, "proglanguage".
#. Express each new attribute as a separate domain package, for example,

proglanguage.mod, with the new attribute specialized from the "props"
attribute.

#. Integrate the domain packages into the authoring DTDs or schemas:
1. Redefine the "props" attribute entity to include the "proglanguage"

attribute. Similarly, you can redefine element entities to integrate new
domain elements.

2. Add the new attribute domain to the list of domains in the domains
attribute, preceded by an "a", for example, domains="a(props
proglanguage)".

• As an author, you can perform the following actions:
#. Add values to the new attributes of an element.
#. Define values in the DITA filter file.
#. Transform the DITA source files to remove or flag the content based on the

new attributes, for example, flagging all proglanguage="Java"

After you perform these actions, another user can reuse the content.

A specialization-unaware trademarking tool requires generalization of the
contributed content. If the user runs all the content through the tool, the content is
processed and filtered against the new attributes after the generalization. The new
attributes are now collapsed into the "props" attribute.

#. The generalization turned proglanguage="Java" into
props="proglanguage(Java)".

#. The conditional processing transform recognizes the new form as equivalent
to the old, and the instruction " flag all proglanguage=java" operates
on either props="proglanguage(Java)" or proglanguage="Java".

DITA Readme map

6

Graphic scaling improvement
Graphic scaling improvement is an enhanced feature that DITA Open Toolkit 1.3
provides. DITA OT 1.3 supports this feature in the transformation for different outputs,
such as HTML, XHTML, PDF, and FO. This feature is not applicable in RTF output.
Note:

• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA
OT 1.3, the functionality described here should be considered a preview capability.

• The specification and the defined functions that need to be supported can change
by the time OASIS formally approves DITA 1.1.

To implement this feature, you must first meet the following prerequisites:
• Install and configure the DITA Open Toolkit 1.3 successfully.
• Ensure that the image file referred to by the <image> tag exists.

In DITA 1.1, there are some attributes that you can use to set the actual display size of
the pictures in the <image> tag, such as "width", "height", and so on.

You can set the actual display size of the image in the output by taking the following
steps:

1. Specify the height and width of the picture in the "height" and "width" attributes of
the <image> tag, for example, <image height="80" width="60"
href="a.jpg"/>

2. (Optional) Specify the metric of the length in the height and width attributes fields,
for example, <image height="80pc" width="60pc" href="a.jpg"/>. The
metrics currently supported are: px, pc, pt, in, cm, mm, em. The default is px.
Note: If you do not specify the metric of the length, the toolkit will use the default
metric, px.

3. Run the transformation to generate the outputs, such as xhtml, HTML, and FO, that
support graphic scaling.

In the final output, you can see the image displayed in the size that you expected. As in
this example, the picture will be displayed by 80 pt in height and 60 pt in width.

You can also use the scaling function in setting the actual display size of the image in the
output by taking the following steps:

1. Specify the height and width of the picture in the "height" and "width" attributes of
the <image> tag, and the metric of the length.

2. Specify the scale rate in the scale attribute after you specify the height and width for
the image, for example, <image height="80pc" width="60pc"
href="a.jpg" scale="0.8"/>. Scale="0.8" means the picture in the output will
be displayed at 80% of the size that you specified by height and width.

3. Run the transformation to generate the outputs that support image scaling, such as
xhtml, HTML, and FO.

In the final output, you can see the image displayed in the size that you expected. As in
this example, the picture will be displayed by 64 pt in height and 48 pt in width.

DITA Readme map

7

Indexing
DITA 1.1 supports the following new indexing elements:

• <index-see>
• <index-see-also>
• <index-sort-as>
• <index-range-start>
• <index-range-end>

Note:
• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA

OT 1.3, the functionality described here should be considered a preview capability.
• The specification and the defined functions that need to be supported can change

by the time OASIS formally approves DITA 1.1.

See and See Also indexing elements

In DITA 1.0, you cannot specify the <see> and <see also> index entries by using the
current <indexterm> element. The DITA1.1 standard introduces the following new child
elements for <indexterm> that support this functionality:

• index-see
• index-see-also

For example, you can add an index entry, as illustrated in the following text in the DITA
source file:

<indexterm>computer
<index-see>monitor</index-see>
<index-see-also>Illustration</index-see-also>

</indexterm>

Then, if you generate a PDF output with the indexing function enabled, you can see the
following index entries in the PDF output:

computer 43
See monitor
See also Illustration

The "monitor" and "Illustration" entries after "see" and "see also" will not be links to the
"monitor" and "Illustration" index entries in a PDF output.

Index entries will only be processed when you generate HTMLHelp and JavaHelp. For
HTMLHelp and JavaHelp, the index contains an entry that uses the text "See xxx" or
"See also xxx". The "See xxx" or "See also xxx" index entries will link to their parent index
term.
Note:

• For HTML output, indexing is ignored.
• For PDF output, you must enable indexing using the FO plugin provided by Idiom.

For example, if you put the following content in the source file,

<indexterm>computer
<index-see>monitor</index-see>

</indexterm>

the output is as follows:

computer
See monitor

Sort order indexing elements

DITA Readme map

8

With the DITA 1.1 standard, you can specify a sort phrase and sort index entries under
the sort phrase. This feature provides you with the flexibility to sort an index entry in a
different way. Typically you can disregard insignificant leading text, such as punctuation
or words like "the" or "a". If you want to sort <data> under the letter D rather than the
character "<", you can include such an entry under both the punctuation heading and the
letter D. Thus, there can be two index entry directives differentiated only by the sort
order.

For example, if you put the following content in the source file,

<indexterm>data<index-sort-as>key</index-sort-as></indexterm>
<indexterm>indextest<index-sort-as>abc</index-sort-as></indexterm>

the output should be:
indextest data

If you have written an XML book with many punctuation-laden entries in its index, you
can use the <index-sort-as> element to specify how the sorting method of the entries if
the punctuation marks are eliminated. For example, <data> is always displayed as an
entry <data> in the index term under the letter D; otherwise, all the entries with
punctuations will be sorted under "<".

Here is another example. In a translation project, a document needs to be translated into
Japanese. Many of the index entries contain kanji, which need to be sorted in phonetic
order. The translators, who can understand the language and see the entry in its context,
can insert the <index-sort-as> elements into the <indexterm> elements as part of
their localization work.

Page-range indexing elements

In DITA OT 1.3, you can indicate page ranges instead of individual references over
consecutive pages. Page ranges indicate where the index entry links to an extended
discussion that goes over a number of pages. This is typically manifested as a page
range like 34-36. This is distinguished from individual references over consecutive pages
(34, 35, 36). The page-range indexing function is enabled when you use the FO plugin.

For example, you can add a page spanning index entry:

<indexterm>DITA<index-range-start/></indexterm>

. Later in the same topic, you can add a range terminating marker:
<indexterm>DITA<index-range-end/></indexterm>. This spans 4 pages on the paper, as
illustrated in the following example.

DITA, 46-49

Note: If you generate HTMLHelp, JavaHelp, and XHTML outputs, the page-range
indexing elements are ignored.

Supporting ICU in index sorting

With enabled ICU interface, DITA Open Toolkit 1.3 helps you get correctly sorted index
output for different languages.

During normal transformation, the toolkit tries to find if there are ICU classes inside the
classpath element. If ICU exists, the toolkit uses ICU's Collator class to do the
comparing and sorting work. If no ICU is found, the toolkit will use JDK's Collator class to
do the comparing and sorting work. ICU is packed in the big package in DITA OT 1.3

DITA Readme map

9

New element <abstract>
You can now use a new element <abstract> in DITA topics. The <abstract> element can
include complex markups besides the <shortdesc> element. You can put the
<shortdesc> element inside the <abstract> element, together with many other elements.
The following examples illustrate how you can use the <abstract> element..

If you use several <shortdesc> elements inside the <abstract> element, they will be
concatenated when pulled for hover help. After you format the source files, the content
inside the <abstract> element will be transformed into normal text.
Note:

• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA
OT 1.3, the functionality described here should be considered a preview capability.

• The specification and the defined functions that need to be supported can change
by the time OASIS formally approves DITA 1.1.

Examples

Example 1

In DITA 1.0, you can only use the <shortdesc> element that cannot contain the <p>
element.

<shortdesc>This is a short description in DITA 1.0. It cannot
contain paragraphs.</shortdesc>

Example 2

This example illustrates how you can use different elements besides <shortdesc> inside
the <abstract> element, and apply different styles to the text inside the <abstract>
element.

<abstract>
<shortdesc>This is the short description</shortdesc>

This is a <i>list</i>.

<p>This is a paragraph.</p>
<codeblock>Here are some codes.</codeblock>
<filepath>This is the file path.</filepath>

</abstract>

Example 3

This example illustrates how you can use both the <shortdesc> element and plain text
inside the <abstract> element.

DITA Readme map

10

<abstract><shortdesc>This topic is about short description.</shortdesc>.
Short description is very important, so read more.</abstract>

DITA Readme map

11

New element <data>
In DITA 1.1, you can use new element, <data>. This element and the content inside it is
ignored in the transformation process of DITA files.
Note:

• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA
OT 1.3, the functionality described here should be considered a preview capability.

• The specification and the defined functions that need to be supported can change
by the time OASIS formally approves DITA 1.1.

As an author, when you create DITA files, you can add the <data> element, and put
content inside it. When you transform the DITA files to the output that you want, the
transformation ignores the <data> element and any content inside.

As a specializer, when you specialize the <data> element, and put information inside the
specialized element, you can create a transform override to use the information.

DITA Readme map

12

Supporting two file extensions in one DITA map
DITA Open Toolkit supports two different file extensions, ".dita" and ".xml". Previous
releases of DITA Open Toolkit do not support the transformation of DITA maps
containing inconsistent file types, such as one DITA map containing both .dita and .xml
files. Though you can create either .dita or .xml files, you cannot include both kinds of
files in one DITA map. This makes file reuse difficult, because you have to change the file
extensions manually make them consistent in one DITA map.

In DITA OT 1.3, you can include both .xml and .dita as the file extensions in one DITA
map and transform the DITA map into your desired output without manually changing the
file extensions.

If you include both .xml and .dita files in one DITA map, and specify /ditaext:.dita in Java
command, the .xml files are transferred to .dita files and put in the temp directory together
with the .dita files. If you specify /ditaext:.xml in Java command, all the .dita files are
transferred to .xml files under the temp directory. The default process option is changing
all files into .xml files.

Note:
• It is not suggested that you include files with the same root name but different

extensions in the same directory because this might cause unexpected problems.
• Error messages and warning messages in the console might not reflect the real

extension. For example, if there is an incorrect usage in a.dita, the warning
message in the console might refer to a.xml, because a.dita was changed into a.xml
in the temp directory.

You might use other file extensions together with .dita and .xml in one ditamap as well,
such as .dit, but they are not tested in DITA OT 1.3 and thus you might take the risk of
transformation failure.

DITA Readme map

13

Supporting foreign content vocabulary
In DITA 1.1, you can use the <unknown> element to incorporate existing standard
vocabularies for special content, like MathML and SVG, as inline objects.
Note:

• Because OASIS DITA 1.1 is not yet an approved standard as of the release of DITA
OT 1.3, the functionality described here should be considered a preview capability.

• The specification and the defined functions that need to be supported can change
by the time OASIS formally approves DITA 1.1.

As an author, when you create DITA files, you can add the <unknown> element, and put
content inside it. The <unknown> element and any content inside it is ignored when you
transform the DITA files to your desired output.

As a specializer, when you specialize the <unknown> element, and then put information
inside the specialized element, you can create a transform override that allows the
information to appear correctly in the output.

DITA Readme map

14

Refactored ANT tasks
The ANT tasks are refactored so that developers can easily find the targets they need
and make their own extensions. Developers can still use Java Command Line as before.
Ant Build Script " conductor.xml" is marked as deprecated, but developers can still
use it as before. " build.xml" is the renamed version of " conductor.xml", and
developers can use it as what they do with " conductor.xml". New users are
suggested to use those separated build scripts like " build_dita2*.xml". The original
demo ant script " build.xml" is renamed to " build_demo.xml". "
build_demo.xml" should be used to verify the functions of the toolkit after this release.

DITA Readme map

15

Standard XML catalog resolver
In the previous releases of DITA Open Toolkit, a simple XML catalog resolver is enabled.
You do not need to update the reference to dtd in DITA files when the file paths are
changed; however, this simple implementation cannot be redistributed because it does
not support standard XML catalogs.

In DITA OT 1.3, a standard XML catalog resolver is enabled so that the reference to dtd
in DITA files does not need to be updated each time when you change the file paths on
your workstation or use another workstation.

With this enhanced feature, when a developer makes a new specialization, the developer
only needs to update the mapping between the new dtd file's system id (location relative
to the catalog file) and public id (the id assigned by the developer in the head of the DITA
or xml file which identifies the corresponding dtd file) in the catalog file
(catalog-dita_template.xml), for example, <public publicId="-//IBM//DTD DITA
ABC//EN" uri="dtd/abc.dtd"></public>.

This enhanced feature does not change the normal behavior of the toolkit.

DITA Readme map

16

Topic merge
The topic merge feature improves the build speed of DITA files and reduces the
possibility of meeting the out of memory exception in the build process. As illustrated in
the following figure, when you run the build in previous releases of DITA Open Toolkit,
the build speed is slow and you are likely to get out of memory exception.

With this enhanced topic merge feature, you will be less likely to meet the out of memory
exception error when you build output through DITA files. The intermediate merged file
will keep the structure information in the DITA map, and the structured toc will be
reflected in the output.

To know more about this topic feature, you can write a script file first. DITA OT 1.3 offers
a module, TopicMerge, that helps you implement this feature. You can use this module
to generate the merged files. A sample usage of this module is as follows.

sample.xml:

<project name="sample">
<property name="dita.dir" value="${basedir}"/>
<import file="${dita.dir}${file.separator}build.xml"/>

<target name="premerge">
<antcall target="preprocess">
<param name="args.input" value="${input}"/>

<param name="output.dir"
value="${dita.dir}${file.separator}output"/>

</antcall>
</target>
<target name="merge" description="Merge topics"

depends="premerge">
<basename property="temp.base" file="${input}"

suffix=".ditamap"/>
<property name="temp.input"

value="${basedir}${file.separator}${dita.temp.dir}${file.separator}${temp.base}"/>
<dirname property="temp.dir" file="${temp.input}"/>

DITA Readme map

17

<pipeline message="topicmerge" module="TopicMerge"
inputmap="${temp.dir}${file.separator}${temp.base}.ditamap"
extparam="output=${dita.dir}${file.separator}output${file.separator}${temp.base}_merged.xml;

style=${dita.dir}${file.separator}xsl${file.separator}pretty.xsl"
/>

</target>
</project>

Then, you need to type ant -f sample.xml merge
-Dinput="C:\DITA-OT1.3\test.ditamap" in the command window.
Note: The path for -Dinput must be an absolute path

DITA Readme map

18

Working with documentation plug-in
You can use a template to develop documentation plug-in with DITA in Eclipse PDE and
use DITA OT 1.3 to build and pack the final plug-in. When you want to develop a
documentation plug-in with DITA in Eclipse, you cannot use the previous releases of
DITA OT in Eclipse to transform DITA to HTML. Though previous releases of DITA OT
support the feature to transform DITA files to Eclipse documentation plug-in, they are not
integrated with Eclipse. With DITA OT 1.3 integrated with WPT, you can develop
document plug-ins with DITA in Eclipse PDE and build and pack the final plug-in by
taking the following steps.

1. Create a new PDE project in Eclipse, and apply the DITA template to the project by
following the wizard.

2. Set the source directory, the main ditamap file, the output directory (default value is
root directory of project), css storage directory (used to contain common.css,
commonltr.css, and commonrtl.css), user customized .css file name, and
conditional processing ditaval file in the wizard. Use root as output directory is
selected as the default.

You can also clear Use root as output directory and specify another output
directory.

DITA Readme map

19

DITA Readme map

20

3. Create DITA files in the source directory and a ditamap to include the topic files that
you created.

4. Import the DITA files into the src directory of the DITA plug-in project you just
created.

#. Right-click a directory that you want to put the imported files and select Import,
and then File system.

DITA Readme map

21

#. Select the directory under which you put the DITA files.

DITA Readme map

22

#. Click Finish after you selected the DITA files under the specified directory. The
DITA files are then imported to your DITA project.

5. Right click build.xml, select Run As, and then ANT Build.

Note: If you're using SUN JDK, please download and use the latest Xalan. The
Xalan shipped with SUN JDK has some issue that will cause the build failure. You
can use the latest Xalan by selecting ANT Build ... and include the all of Xalan's jar
files in Classpath.

After the transformation, the output is in the output directory set in build.xml.
Refresh the project after the build is successful.

DITA Readme map

23

DITA Readme map

24

6. Edit the plug-in description of the property file MANITEST.MF in the plug-in editor
after you run the ANT build successfully.

#. Click MANITEST.MF to go to the Overview page.

DITA Readme map

25

#. Edit Dependencies to include org.eclipse.help.

#. Edit Extensions to add org.eclipse.help.toc; right click the added
prgeclipse.help.toc, and select New, and then toc.

DITA Readme map

26

#. Edit the Build Configuration to include the out directory or the directory you
specified in Step 2 on page .

#. Save the changes you made to the property file MANITEST.MF.
7. Export the output to a documentation plug-in.

Note: build.xml can be customized to meet the requirement of headless build.

DITA Readme map

27

#. Select File --> Export ; select Deployable plug-ins and fragments and click
Next.

#. Select the plug-in you want to export and specify a directory under which you
want to put the plug-in package.

DITA Readme map

28

#. Click Finish to export the plug-in package.

DITA Readme map

29

Building DITA output with Java command line
The DITA Open Toolkit release 1.0.2 or above provides a command line interface as an
alternative for users with little knowledge of Ant to use the toolkit easily.

Running example
1. Change into the DITA Open Toolkit installation directory.
2. On the command line, enter the following command:

java -jar lib/dost.jar /i:samples/sequence.ditamap /outdir:out
/transtype:xhtml

This particular example creates a properties file, and then calls Ant using this properties
to build the sample sequence.ditamap file and outputs the xhtml results to the out
directory. You can add other parameters to this properties file. See the following Table 1
on page 30for details.

Note:
1. In this example, the ' /' symbol preceded by a space is the separator for each

parameter.
2. Currently, the parameters /filter, /ftr, /hdr, and /hdf require an absolute path.

Supported parameters

Table 1 on page 30lists the supported parameters (their Ant names are within the braces)
that you can set with this tool.

Table1. Table of supported parameters

Parameter Description

/i:{args.input} The path and name of the input file. It is in the
same upper or lower case with the filename on file
system.

/outdir:{output.dir} The path of the output directory.

/tempdir:{dita.temp.dir} The directory of the temporary file. The default is
"temp".

/ditaext:{dita.extname} The file extension name to be used in the temp
directory.

/transtype:{transtype} The transformation type. The supported values
include xhtml, pdf, javahelp, eclipsehelp, htmlhelp,
eclipsecontent, troff, wordrtf, and docbook.

/filter:{dita.input.valfile} The absolute file path and the name of the file that
contains the filter/flagging/revision information.

/draft:{args.draft} The default "hide draft & cleanup content"
processing parameter (“ no” = hide them). Only “
no” and “ yes” are valid values; non- “ yes” value is
ignored.

/artlbl:{args.artlbl} The default "output artwork filenames" processing
parameter. Only “ no” and “ yes” are valid values;
non- “ yes” value is ignored. The default is “ no” .

/ftr:{args.ftr} The absolute file path and the name of the file that
contains XHTML to be placed in the BODY
running-footing area.

/hdr:{args.hdr} The absolute file path and the name of the file that
contains XHTML to be placed in the BODY

DITA Readme map

30

Parameter Description

running-heading area.

/hdf:{args.hdf} The absolute file path and the name of the file that
contains XHTML to be placed in the HEAD area.

/csspath:{args.csspath} The path for css reference. It can be a URL start
with 'http://' or 'https://'; it also can be a local
absolute directory. The default is output directory.
Note: The args.csspath parameter should end
with '/' if it is a URL or file separator for local path.

/css:{args.css} User specified css file. It can be a local file or
remote file in the web.
Note: It is a filepath relative to URL or local root dir
based on the type of the args.csspath
parameter.

/cssroot:{args.cssroot} The root directory of user specified css file.
Note: If this parameter is set, the ${args.css}
should be a filepath relative to args.cssroot.

/copycss:{args.copycss} The parameter to specify whether to copy user
specified css files to the directory specified by the
args.csspath parameter. Only “ no” and “ yes”
are valid values. The default is “ no” .

/indexshow:{args.indexshow} The parameter to specify whether each index entry
needs to display in the body of the text itself. Only “
no” and “ yes” are valid values. The default is “ no”
.

/outext:{args.outext} The output file extension name for generated xhtml
files. You can use ".html" or ".htm" as the
extension name for the generated xhtml files. You
can also specify other extension name. The default
is ".html".

/xsl:{args.xsl} The xsl file to replace the default xsl file. It replaces
dita2docbook.xsl in docbook transformation,
dita2fo-shell.xsl in pdf transformation,
dita2xhtml.xsl in xhtml/eclipsehelp transformation,
dita2rtfImpl.xsl in word transformation, and
dita2html.xsl in javahelp/htmlhelp transformation.

/cleantemp:{clean.temp} The parameter to specify whether to clean the
temporary directory before each build. Only “ no”
and “ yes” are valid values. The default is “ yes” .

/foimgext:{args.fo.img.ext} The extension name of image file in pdf
transformation. Only ".jpg", ".gif" are valid value.
The default is ".jpg".
Note: Only one extension supported in the same
transformation. The image files with other
extensions are renamed to the specified extension.

/javahelptoc:{args.javahelp.toc} The root file name of the output javahelp toc file in
javahelp transformation. The default is the name of
input ditamap file.

/javahelpmap:{args.javahelp.map} The root file name of the output javahelp map file
in javahelp transformation. The default is the name
of input ditamap file.

/eclipsehelptoc:{args.eclipsehelp.toc} The root file name of the output eclipsehelp toc file
in eclipsehelp transformation. The default is the

DITA Readme map

31

Parameter Description

name of the input ditamap file.

/eclipsecontenttoc:{args.eclipsecontent.toc} The root file name of the output Eclipse content
provider toc file in eclipsecontent transformation.
The default is the name of the input ditamap file.

/xhtmltoc:{args.xhtml.toc} The root file name of the output xhtml toc file in
xhtml transformation. The default is "index".

DITA Readme map

32

DITA Open Toolkit
Navigation title: DITA Toolkit Introduction

The DITA Open Toolkit is a reference implementation of the OASIS DITA Technical
Committee's specification for DITA DTDs and Schemas. The Toolkit transforms DITA
content (maps and topics) into deliverable formats, including: XHTML, Eclipse Help,
HTML Help, and JavaHelp.

DITA release notes
DITA OT release 1.4

Release 1.4 is a major release to add new functions, fulfill new requirements, make some
function enhancements and fix bugs over release 1.3.1. Available since August 1, 2007

The DITA-OT Release 1.4 contains full support for the OASIS DITA 1.1 standard. This
completes the preliminary support added in the 1.3 and 1.3.1 versions of the toolkit. New
and improved items for 1.1 are listed under [Improvements] below. Support for the new
bookmap standard is available in the latest version of the FO plug-in, which uses the
"pdf2" transform type; it will be released together with or soon after the release of
DITA-OT 1.4. The deprecated "pdf" transform type has not been updated for the new
bookmap. Together with DITA 1.1 support, the toolkit development team has improved
error reporting so that build failures are more accurately reported at the end of the build.
Error handling will continue to improve in future releases. Release 1.4 comes in two
versions. The full version contains several external packages that are useful or critical to
running the toolkit, such as Xalan and the XML Catalog resolver. The smaller package
contains only core toolkit code. NOTE ABOUT DEPRECATED CODE: changes for the
new DITAVAL standard required a change to code in dita2htmlImpl.xsl. The "flagit"
named template is deprecated and will not work with the new ditaval format. Overrides to
this step should be updated to use "start-flagit" and "end-flagit". The flagit template will
continue to work with the old ditaval but will generate a warning for each call.

Changes:
1.

Release 1.4 improves the processing of DITA documents using XML Schemas. One
was able to process these type of documents in Release 1.3.1 but it meant that the
schema location had to have the ablsolute location of the schema in order for the
Toolkit properly.

DITA 1.1 introduces the use of URNs to normatively identify the schemas used for
validation. The URNs have the following desing pattern
"urn:oasis:names:tc:dita:xsd:<schemaDocument>:1.1". You should use these in as
the value for the attribute xsi:noNamespaceSchemaLocation.

[13 Improvements]

1. Support <title> in map
2. Ignore Index-base in default processing
3. Retrieve the link text from abstract element.
4. Format shortdesc in abstract appropriately
5. Add standard code to allow overrides to easily process generalized version of

unknown and foreign element
6. Support @dir on every element
7. Refactor mapref resolution
8. Support generalization and re-specialization of unknown/foreign elements
9. Replace Move Index module with new Move Metadata module

10. New DITAVAL standard support
11. New chunk attribute support

DITA Readme map

33

12. Support XML Schema validated instance document processing using XML Catalogs

[17 SF Bugs Fixed]

1. 1700561 Null Pointer Exception on Missing domain= Attribute
2. 1733264 pretty.xsl is broken
3. 1619074 table in step screws up following steps for HTML generation
4. 1728700 GenMapAndTopicList keeps filtering when called a second time
5. 1732562 DitaWriter.java can duplicate @xtrf and @xtrc
6. 1733108 Update Bookmap sample files to DITA 1.1
7. 1706263 Conrefing from a map to topic is not working properly
8. 1677620 Non-DITA file is treated as DITA in pre-process
9. 1717471 Links show up more than once

10. 1712543 gen-list-without-flagging : NullPointerException
11. 1652892 Invalid hdr/ftr arg value causes build failure
12. 1647950 PIs in DITA source are dropped in the processing pipeline
13. 1644559 Force Toolkit to use private catalog to allow schemas to work properly
14. 1642138 Move javamerge target out of build_template.xml
15. 1643155 Map TOC is HTML even for transtype="xhtml"
16. 1637564 topicpull breaks specializations of xref
17. 1676968 Plugins adding to classpath break when basedir != dita.dir
Note: SourceForge bugs, patches, and RFEs listed above can be found in SourceForge
Bugs, Patches, and RFE tracker pages:

• Bugs tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725074

• Patches tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725076

• RFE tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725077

DITA release history
This document lists major changes and new features by release.

DITA OT release 1.4

Release 1.4 is a major release to add new functions, fulfill new requirements, make some
function enhancements and fix bugs over release 1.3.1. Available since August 1, 2007

The DITA-OT Release 1.4 contains full support for the OASIS DITA 1.1 standard. This
completes the preliminary support added in the 1.3 and 1.3.1 versions of the toolkit. New
and improved items for 1.1 are listed under [Improvements] below. Support for the new
bookmap standard is available in the latest version of the FO plug-in, which uses the
"pdf2" transform type; it will be released together with or soon after the release of
DITA-OT 1.4. The deprecated "pdf" transform type has not been updated for the new
bookmap. Together with DITA 1.1 support, the toolkit development team has improved
error reporting so that build failures are more accurately reported at the end of the build.
Error handling will continue to improve in future releases. Release 1.4 comes in two
versions. The full version contains several external packages that are useful or critical to
running the toolkit, such as Xalan and the XML Catalog resolver. The smaller package
contains only core toolkit code. NOTE ABOUT DEPRECATED CODE: changes for the
new DITAVAL standard required a change to code in dita2htmlImpl.xsl. The "flagit"
named template is deprecated and will not work with the new ditaval format. Overrides to

DITA Readme map

34

this step should be updated to use "start-flagit" and "end-flagit". The flagit template will
continue to work with the old ditaval but will generate a warning for each call.

Changes:
1.

Release 1.4 improves the processing of DITA documents using XML Schemas. One
was able to process these type of documents in Release 1.3.1 but it meant that the
schema location had to have the ablsolute location of the schema in order for the
Toolkit properly.

DITA 1.1 introduces the use of URNs to normatively identify the schemas used for
validation. The URNs have the following desing pattern
"urn:oasis:names:tc:dita:xsd:<schemaDocument>:1.1". You should use these in as
the value for the attribute xsi:noNamespaceSchemaLocation.

[13 Improvements]

1. Support <title> in map
2. Ignore Index-base in default processing
3. Retrieve the link text from abstract element.
4. Format shortdesc in abstract appropriately
5. Add standard code to allow overrides to easily process generalized version of

unknown and foreign element
6. Support @dir on every element
7. Refactor mapref resolution
8. Support generalization and re-specialization of unknown/foreign elements
9. Replace Move Index module with new Move Metadata module

10. New DITAVAL standard support
11. New chunk attribute support
12. Support XML Schema validated instance document processing using XML Catalogs

[17 SF Bugs Fixed]

1. 1700561 Null Pointer Exception on Missing domain= Attribute
2. 1733264 pretty.xsl is broken
3. 1619074 table in step screws up following steps for HTML generation
4. 1728700 GenMapAndTopicList keeps filtering when called a second time
5. 1732562 DitaWriter.java can duplicate @xtrf and @xtrc
6. 1733108 Update Bookmap sample files to DITA 1.1
7. 1706263 Conrefing from a map to topic is not working properly
8. 1677620 Non-DITA file is treated as DITA in pre-process
9. 1717471 Links show up more than once

10. 1712543 gen-list-without-flagging : NullPointerException
11. 1652892 Invalid hdr/ftr arg value causes build failure
12. 1647950 PIs in DITA source are dropped in the processing pipeline
13. 1644559 Force Toolkit to use private catalog to allow schemas to work properly
14. 1642138 Move javamerge target out of build_template.xml
15. 1643155 Map TOC is HTML even for transtype="xhtml"
16. 1637564 topicpull breaks specializations of xref
17. 1676968 Plugins adding to classpath break when basedir != dita.dir
Note: SourceForge bugs, patches, and RFEs listed above can be found in SourceForge
Bugs, Patches, and RFE tracker pages:

• Bugs tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725074

• Patches tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725076

DITA Readme map

35

• RFE tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725077

DITA OT release 1.3.1

Release 1.3.1 is a maintenance release to fix defects and make patches based on
release 1.3.

[15 SF Bugs Fixed]

1. SF Bug 1385642 docbook/topic2db.xsl - shortdesc
2. SF Bug 1528638 wordrtf does not correctly number steps
3. SF Bug 1562518 Flag is confusing when a list is mixed with text
4. SF Bug 1563665 Should use CSS to honor rowsep and colsep in table entries
5. SF Bug 1567117 Xref to footnote is not resolved correctly
6. SF Bug 1569671 <reltable> in nested map creates bogus TOC entries
7. SF Bug 1573996 Plugins do not work in plugins directory
8. SF Bug 1574011 Spaces in a file name prevent XHTML output
9. SF Bug 1584186 Bookmap 1.1: <title> element duplicated in mappull

10. SF Bug 1588039 Conref domain checking is sub-par
11. SF Bug 1588624 OT v1.3 map2hhc.xsl error
12. SF Bug 1597444 Java topicmerge breaks when text contains less-than
13. SF Bug 1597473 Nothing references common.css
14. SF Bug 1598109 Java topicmerge does not rewrite image/@href
15. SF Bug 1598230 jhindexer of JavaHelp breaks Search Index for DITAOT content
Note: SourceForge bugs, patches, and RFEs listed above can be found in SourceForge
Bugs, Patches, and RFE tracker pages:

• Bugs tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725074

• Patches tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725076

• RFE tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725077

DITA OT release 1.3

OASIS DITA 1.1 support

Things to know about OASIS DITA 1.1 support in this release:

1. DITA-OT 1.3 provides preliminary processing support for the upcoming OASIS
DITA 1.1 specification (see
http://wiki.oasis-open.org/dita/Roadmap_for_DITA_development). Because the
proposed OASIS DITA 1.1 DTDs and Schemas are fully backwards compatible with
the latest DITA 1.0.1 DTDs and Schemas, the 1.3 Toolkit provides the proposed 1.1
materials as the default DTDs for processing. The XML Catalog resolution maps
any references for DITA 1.0 doctypes to the 1.1 DTDs, for example. All processing
ordinarily dependent on the 1.0 definition continues to work as usual, and any
documents that make use of the newer 1.1-based elements or attributes will be
supported with specific new processing function (such as base support for the new
<data> element). Documents created with the proposed OASIS DITA 1.1 DTDs are

DITA Readme map

36

http://wiki.oasis-open.org/dita/Roadmap_for_DITA_development

the only ones ever likely to have features that invoke the specific new 1.1-based
processing support.
> Important: Because this support is based on a yet-to-be-approved version of the
proposed OASIS DITA 1.1 specification, if you choose to investigate any1.1-based
function, be aware that the 1.1 implementation in this version of the Toolkit is
preliminary and very much forward-looking. Upon final approval of the DITA 1.1
standard, Toolkit developers will, of course, review our implementation to make
certain that it conforms to the defined level of reference implementation.

2. Related to the DITA 1.1 preliminary implementation, the much-discussed bookmap
updates for DITA 1.1 will be provided as override capabilities for the FO plugin
(Idiom's donation). Note that:

• The FO demo transform code at the 1.2.2 level is still included in the DITA 1.3
package, but is now deprecated.

• To get the FO updates for 1.3, grab the FO plug-in at its next update, which
should be shortly after the 1.3 core Toolkit code is released.

• The updated FO plug-in will be usable with FOP as well as with XEP.

Changes

The DITA Open Toolkit team understands the need for stability in essential APIs in the
Toolit. This verson of the toolkit provides some strategic updates that correct some
long-overdue faults in the original implementation. Necessarily, there are some changes
to note:

1. Change to build.xml: To make the DITA processing environment more like other
Ant-driven build environments, the original build.xml has been renamed as
build_demo.xml. The current build.xml in this release is now the normal ANT script
entrance for starting a transformation. If you have created Ant tasks that tried to
work around the former build.xml architecture, those might need to be revised to
take advantage of the separated function.

2. Change to command line invocations: The "Ant refactoring" exercise for this release
has changed some previously documented Ant calls for running demos. This
change enables better use of the Ant modules for power users who need to
integrate the Toolkit into programming build environments such as Eclipse, but the
change affects some documentation. This is a permanent change that should
remain stable from now on. Wherever you see an older instruction like
"c:\dita-ot>ant all", you now need to indicate the component that contains the
demos, so you would type "c:\dita-ot>ant all -f build_demo.xml".

3. Separation of demo targets from formal component targets: Another effect of the
Ant refactoring is that the internal programming targets will now be displayed when
you type "ant -p". To see both those programmings targets and the demos that are
part of this component, type "c:\dita-ot>ant -p -f build_demo.xml". To run just one of
the demos that you see in the resulting list, dita.faq for example, type "c:\dita-ot>ant
dita.faq -f build_demo.xml".

4. Classpath update to enable catalog resolver: This release now includes the Apache
catalog resolver for improved lookup of DTDs by any of the Toolkit components.
The fullpackage version of the Toolkit sets up these variables for each session. For
the regular (smaller) version of the Toolkit, you need to include lib and
lib\resource\resolver.jar into your classpath. For example if your CLASSPATH is
like:

c:\dita-ot\lib\dost.jar

you need to change it to:

c:\dita-ot\lib;c:\dita-ot\lib\dost.jar;c:\dita-ot\lib\resolver.jar

At any time, the full version can be used like a normal installation as long as you
update the system variables either in the evironment settings or in a batch file that

DITA Readme map

37

sets up the shell environment.

5. License bundling: To reduce the duplication of builds on Sourceforge in which the
only difference was the license provided in each, both the Apache and CPL licenses
are included in root directory of the Toolkit. Use the one that applies to your
situation.

6. Two install options: Two download versions are now offered. The smaller one is for
updating existing installations or for reuse in embedded applications that already
provide the other processing components--business as usual. A new package with
"fullpackage" in the name now incorporates the essential processing modules to
create a processing environment for new users and evaluators that requires nothing
more than to unzip the file into an appropriate directory and then click on a "start"
batch file. A new document in its root directory (an output of doc/EvaluateOT.dita, “
Evaluating the DITA Open Toolkit (fullpackage version)”) informs new users how to
install and use the Toolkit for the first time.

7. Other enhancements: The public design discussions that fed into the final selection
and architectures for this release are documented at the DITA Focus Area in a topic
called “ DITA OT 1.3 Issues tracking” (http://dita.xml.org/node/1282).

[7 Improvements]

1. Preliminary support for OASIS DITA 1.1
2. Support ICU in index sorting
3. Integrate with Eclipse
4. Refactor Ant script for easy override
5. Topicmerge reimplementation in JAVA
6. Enable XML Catalog Resolver
7. Full package distribution (was GUI/usability)

[21 SF Bugs Fixed]

1. SF Bug 1582506 Docbook cannot handle <author>
2. SF Bug 1548189 Sections should not jump to <h4> for Accessibility reasons
3. SF Bug 1548180 Spaces dropped from index terms
4. SF Bug 1548154 XHTML index links should go to the topic
5. SF Bug 1545038 CommandLineInvoker is unfriendly towards spaces
6. SF Bug 1541055 topicref @id incorrectly uses NMTOKEN type
7. SF Bug 1530443 dost.jar relies on the incorrect behavior of Xerces
8. SF Bug 1473029 Syntax code makes overrides difficult
9. SF Bug 1470101 Metadata in topics is left out of XHTML headers

10. SF Bug 1470077 Choicetable headers create attribute inside attribute
11. SF Bug 1470057 Step template creates attributes after creating tags
12. SF Bug 1465947 <topichead> without children the whole branch to disappear
13. SF Bug 1465941 Keywords defined in map are ignored if <topicref> contains t
14. SF Bug 1465866 Problems in catalog-dita.txt
15. SF Bug 1460447 <morerows> not well supported in pdf tranformation.
16. SF Bug 1457187 'copy-to' doesn't actually copy files
17. SF Bug 1454835 OT renders files referenced via conref only
18. SF Bug 1427808 Should be easier to modify link attributes in XHTML
19. SF Bug 1422182 @colname renaming needs to apply to @namest and @nameend
20. SF Bug 1417820 fo and docbook outputs can\'t handle deep topic dirs
21. SF Bug 1368997 PDF Vertical list of author redundancy

[1 SF Patch Added]

1. SF Patch 1503296 Refactor of HTMLHelp inifiles creation

[1 SF RFE Added]

1. SF RFE 1160960 Enh: Toolkit should work with both both *.dita and *.xml
Note: SourceForge bugs, patches, and RFEs listed above can be found in SourceForge
Bugs, Patches, and RFE tracker pages:

• Bugs tracker:

DITA Readme map

38

http://dita.xml.org/node/1282

http://sourceforge.net/tracker/?group_id=132728&atid=725074

• Patches tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725076

• RFE tracker:

http://sourceforge.net/tracker/?group_id=132728&atid=725077

DITA OT release 1.2.2

Release 1.2.2 is a maintenance release to fix defects and make patches based on
release 1.2.1.

Improvements
1. Chinese support in WORD RTF
2. Improve plug-in architecture in plug-in dependency handling

SF Changes
1. SF Bug 1461642 Relative paths in toolkit.
2. SF Bug 1463756 TROFF output is not usable
3. SF Bug 1459527 Properties elements should generate default headings
4. SF Bug 1457552 FO gen-toc does not work right for ditamaps and bookmaps
5. SF Bug 1430983 Specialized indexterm does not generate entries in index
6. SF Bug 1363055 Shortdesc disappears when optional body is removed
7. SF Bug 1368403 The dita2docbook transformation lacks support for args.xsl
8. SF Bug 1405184 Note template for XHTML should be easier to override
9. SF Bug 1407646 Map titles are not used in print outputs

10. SF Bug 1409960 No page numbers in PDF toc
11. SF Bug 1459790 Related Links omitted when map references file#topicid
12. SF Bug 1428015 Topicmerge.xsl should leave indentation alone
13. SF Bug 1429400 FO output should allow more external links
14. SF Bug 1405169 Space inside XHTML note title affects CSS presentation
15. SF Bug 1402377 Updated translations for Icelandic
16. SF Bug 1366845 XRefs do not generate page numbers
17. SF Patch 1326450 Make ${basedir} mine
18. SF Patch 1328264 FOP task userconfig file
19. SF Patch 1385636 Tweaks to docbook/topic2db.xsl
20. SF Patch 1435584 Recognize more image extensions
21. SF Patch 1444900 Add template for getting input file URI
22. SF Patch 1460419 Add a new parameter /cssroot:{args.cssroot}
23. SF Patch 1460441 map2hhp [FILES] include
24. SF RFE 1400140 Add a new parameter /cssroot:{args.cssroot}

DITA OT release 1.2.1

Release 1.2.1 is a maintenance release to fix defects and make patches based on
release 1.2.

Improvements
1. Corrupt table generated in WORD RTF is fixed
2. Pictures are merged into the WORD RTF instead of creating links to them
3. lq element is supported in WORD RTF
4. Generated text can be translated to different languages in WORD RTF
5. In WORD RTF, if no <choptionhd> given, head will be generated in table

SF Changes

DITA Readme map

39

1. SF Bug 1460451 Spaces preserving methods are different among tags.
2. SF Bug 1460449 Nested list can not be well supported.
3. SF Bug 1460445 h2d stylesheet cannot handle HTML files within namespace.
4. SF Bug 1431229 hardcoded path in MessageUtils.java
5. SF Bug 1408477 <desc> element is not handled inside xref for XHTML
6. SF Bug 1398867 ampersands in hrefs (on xref and link) cause build to fail
7. SF Bug 1326439 filtered-out indexterms leak into index through dita.list
8. SF Bug 1408487 Short description is not retrieved for <xref> element
9. SF Bug 1407454 XHTML processing for <alt> is incomplete

10. SF Bug 1405221 Some table frames ignored in dita->xhtml
11. SF Bug 1414398 Cannot set provider for Eclipse help transformation
12. SF RFE 1448712 add support for /plugins directory in plug-in architecture

DITA OT release 1.2

DITA open toolkit Release 1.2 is a major release to add new functions, fulfill new
requirements, make some function enhancements and fix bugs over release 1.1.2.1.

Important Change DITA-OT 1.2 offers new error handling and logging system. If you
invoke your transformation by using java command line where new error handling and
logging system is mandatory, you need to set the CLASSPATH Environment Variable on
page for dost.jar. If you invoke your transformation by using an ant script, you need
to do one more step after the setting above. That is adding a parameter in your command
to invoke an ant script. For example, use ant -f ant\sample_xhtml.xml -logger
org.dita.dost.log.DITAOTBuildLogger instead of ant -f
ant\sample_xhtml.xml to start a transformation defined in ant script file
ant\sample_xhtml.xml.

New Functions
1. New plugin archiecture

DITA Open Toolkit 1.2 provides a new function to help users to download, install
and use plug-ins and help developers create new plug-ins for DITA Open Toolkit.

2. Transformation to wordrtf

DITA Open Toolkit 1.2 provides DITA to Word transforming function to transform
DITA source files to output in Microsoft(R) Word RTF file.

3. HTML to DITA migration tool

DITA Open Toolkit 1.2 provides a HTML to DITA migration tool, which migrates
HTML files to DITA files. This migration tool originally comes from the
developerWorks publication of Robert D. Anderson's how-to articles with the original
h2d code.

4. Problem determination and log analysis

In DITA Open Toolkit 1.2, a new logging method is supported to log messages both
on the screen and into the log file. The messages on the screen present user with
the status information, warning, error, and fatal error messages. The messages in
the log file present user with more detailed information about the transformation
process. By analyzing these messages, user can know what cause the problem and
how to solve it.

5. Open DITA User Guide for conditional processing

In DITA Open Toolkit 1.2, a new user guide which can help users to use conditional
processing is added to toolkit document.

6. Include the OASIS version langref

In DITA Open Toolkit 1.2, a new OASIS version of language reference for DITA
standard is added to toolkit document.

7. Document adapt to OASIS DITA 1.0.1 DTDs

DITA Readme map

40

DITA DTD files are updated to 1.0.1 version in DITA Open Toolkit 1.2.

Other Changes
1. SF Bug 1304545 Some folders were copied to DITA-OT's root directory
2. SF Bug 1328689 Stylesheet links in HTML emitted with local filesystem paths
3. SF Bug 1333481 Mapref function does not work for maps in another directory
4. SF Bug 1343963 Blank index.html generated for ditamap contains only reltabe
5. SF Bug 1344486 java.io.EOFException thrown out when reading ditaval file
6. SF Bug 1347669 Path Spec. in nested DITA maps
7. SF Bug 1357139 filtering behavior doesn't conform to spec
8. SF Bug 1358619 The property.temp file gets cleaned out by default
9. SF Bug 1366843 XRefs do not generate proper links in FO/PDF

10. SF Bug 1367636 dita2fo-elems.xsl has strange line breaks
11. SF RFE 1296133 Enable related-links in PDF output
12. SF RFE 1326377 Add a /dbg or /debug flag for diagnostic info
13. SF RFE 1331727 Toolkit need to run on JDK 1.5.x(only support to run under Sun

JDK 1.5 with saxon in normal case)
14. SF RFE 1357054 Be more friendly towards relative directories
15. SF RFE 1357906 Provide a default output directory
16. SF RFE 1368073 Enable plugins for DITA open toolkit
17. SF RFE 1379518 Clearer error messages and improved exception handling
18. SF RFE 1379523 DITA to Rich Text Format (.rtf) file
19. SF RFE 1382482 plugin architecture of DITA-OT

DITA OT release 1.1.2.1

Release 1.1.2.1 is a full build to provide an urgent fix to fix the following critical problem
which users found in release 1.1.2.

• SF Bug 1345600 The build process failed when run "Ant all" in release 1.1.2

For this fix, we have restored all the source DITA files in 'doc' and directories in the binary
packages.

Note that the original parameter "args.eclipse.toc" in "Ant tasks and script" was separated
to "args.eclipsehelp.toc" for DITA-to-Eclipse help transformation, and
"args.eclipsecontent.toc" for DITA-to-dynamic Eclipse content transformation.

Another issue is that we found there is a mismatch in the document and the toolkit
behavior when you are trying to use the following command

ant -f conductor.xml -propertyfile ${dita.temp.dir}/property.temp.

Now we have updated the documentation. Please refer to the topic 'Building DITA output
with Java command line' on our website for more details.

These updates do not affect standard operation of the toolkit. The main goal of this minor
release to enable new users of the toolkit to run the installation verification tests without
failure.

DITA OT release 1.1.2

Release 1.1.2 is a maintenance release to fix defects and make patches based on
release 1.1.1.

But there are certain limitations and unfixed bugs in this release, such as,
• Bug 1343963 Blank index.html generated for ditamap contains only reltabe
• Bug 1344486 java.io.EOFException thrown out when reading ditaval file

Please check the current 'open' bugs on the SourceForge bugs tracker.

Changes

DITA Readme map

41

1. SF Bug 1297355: Multilevel HTML Help popup shows filenames
2. SF Bug 1297657: Update for Supported Parameters page
3. SF Bug 1304859: Toolkit disallows repetition of topic ID within map
4. SF Bug 1306361: Fatal error in published ditamap example
5. SF Bug 1306363: common.css not compiled with htmlhelp
6. SF Bug 1311788: DTD references not resolved
7. SF Bug 1314081: Fix catalog entries in catalag-ant.xml for OASIS DTDs
8. SF Bug 1323435: wrong system id for html output used in validation
9. SF Bug 1323486: HTML Help subterm indexes not sorted

10. SF Bug 1325290: JavaHelp output does not work for Russian
11. SF Bug 1325277: File missing from the map causes abend
12. SF Patch 1253783: dita2fo-links relative hrefs
13. SF Patch 1324387: In xslfo, groupchoice var prints extra | delimiter
14. SF RFE 1324990: Installation Guide

Parameter Changes
1. The original parameter "args.eclipse.toc" in "Ant tasks and script" was separated to

"args.eclipsehelp.toc" for dita2eclipsehelp transformation, and
"args.eclipsecontent.toc" for dita2eclipsecontent transformation.

2. Several parameters were added to the java command line interface, including
"/javahelptoc","/javahelpmap","/eclipsehelptoc","/eclipsecontenttoc","/xhtmltoc".

Other Changes
Change to the "doc" directory, except "doc\langref" directory:

1. The source dita files and the generated HTML, CHM, and PDF files were separated
into separate downloads.

2. The source package contains the source dita files.
3. The binary package contains the generated HTML, CHM, and PDF files.

DITA OT release 1.1.1

Release 1.1.1 is a maintenance release to fix defects and make patches based on
release 1.1.

For patch 1284023, we are changing the name of the jar lib file from dost1.0.jar back to
dost.jar because we believe we need to keep the jar file name consistent through various
releases.

Changes
1. SF Bug 1196409: HTMLHelp output does not reference CSS
2. SF Bug 1272687: extra "../" link generated by topicgroup
3. SF Bug 1273751: revision flag using unavailable pictures
4. SF Bug 1273816: Index generation doesn't cope with multilevel well
5. SF Bug 1281900: Unnecessary comment and href typo
6. SF Bug 1283600: unecessary space in document cause invalid parameter of Ant
7. SF Bug 1283644: multipul document($FILTERFILE,/) doesn't work (XALAN)
8. SF Patch 1251609: pretargets xsl directory needs to use ${dita.script.dir}
9. SF Patch 1252441: Files in temp directory not deleted before build

10. SF Patch 1253785: Inline images in dita2fo-elems
11. SF Patch 1284023: change the name of jar file and remove the version name

DITA OT release 1.1

Release 1.1 is a major release to add new functions, fulfill new requirements, make some
function enhancements and fix bugs over release 1.0.2.

1. Adaptation to the new OASIS DITA standard

Release 1.1 implements the new OASIS DITA 1.0 standard for DITA DTDs and
Schemas.

DTDs of the previous release locate in the directory dtd/dita132 and schemas of

DITA Readme map

42

the previous release locate in the directory schema/dita132.

2. Transformation to troff

Release 1.1 supports new troff output. Troff output looks like Linux man page
output.

3. XML catalog support

An XML catalog, which can consist of several catalog entry files, is a logical
structure that describes mapping information between public IDs and URLs of DTD
files. A catalog entry file is an XML file that includes a group of catalog entries. If
you want to know more about XML catalog, please refer XML Catalog on page .

A catalog entry can be used to locate a unified resource identifier (URI) reference
for a certain resource such as a DTD file. An external entity's public identifier is
used for mapping to the URI reference. The URI of any system identifier can be
ignored.

4. Topicref referring to a nested topic

The href attribute of the topicref is extended to quote a nested topic in a dita file.

For example, in previous releases, href attribute is set like: href = "xxx.dita"; in
release 1.1, href attribute can be set like: href = "xxx.dita#abc.dita".

5. Globalization support

Release 1.1 supports over 20 popular languages within the content of dita files. And
it also provides translation function for DITA keywords to over 20 languages.
Currently this globalization support fully applies to Eclipse Help and XHTML
transformations, and partially applies to other transformations.

6. Accessibility support

Accessibility support is now partially applies to PDF and XHTML transformations.

7. Eclipse Content Provider Support

Please refer to Eclipse Content Provider on page for detail information.

8. Index information in output

The output of HTML Help and Java Help transformations contain index information
now.

9. Mapref function

Mapref refers to a special usage of the <topicref> element as a reference to
another ditamap file. This allows you to manage the overall ditamap file more easily.
A large ditamap file can thus be broken down into several ditamap files, making it
easier for the user to manage the overall logical structure. On the other hand, this
mechanism also increases the reusability of those ditamap files. If you want to know
more about mapref, please refer Mapref on page .

10. TOC generation for Eclipse Help transformation

TOC generation now supported in transformation to Eclipse Help. Eclipse.

11. Helpset generation for Java Help transformation

Helpset generation now supported in transformation to Java Help.

12. New parameters supported in Java commands

In Java commands: /indexshow, /outext, /copycss, /xsl, /tempdir.

13. New parameters supported in Ant scripts

In Ant scripts: args.indexshow, args.outext, args.copycss, args.xsl, dita.temp.dir

DITA Readme map

43

Other Changes
1. SF bug 1220569: Add XML Schema processing to DITA-OT
2. SF bug 1220644: Prompted ant--image does not link for single topic to PDF
3. SF bug 1229058: Add schema validation loading file for processing
4. SF RFE 1176855: Ant must be run from toolkit directory
5. SF RFE 1183482: Copy pre-existing html to output dir
6. SF RFE 1183490: Provide argument to specify the location of temp dir
7. SF RFE 1201242: override capability

DITA OT release 1.0.2

Release 1.0.2 is a maintenance release to fix defects and adds some minor
enhancements in release 1.0.1.

Changes
1. SF Bug 1181950: format attribute should be set to 'dita' for dita topic
2. SF RFE 1183487: Document the usage of footer property
3. SF RFE 1198847: command line interface support
4. SF RFE 1198850: architecture document update
5. SF RFE 1200410: need explanation for dita.list
6. SF RFE 1201175: XML catalog support
7. SF Patch 1176909: Add template for getting image URI

DITA OT release 1.0.1

Release 1.0.1 is a maintenance release to fix defects and adds some minor
enhancements in release 1.0.

Changes
1. Committer: maplink.xsl doesn't generate related links for second level referred topic
2. Committer: avoid infinite loop of conref
3. SF Bug 1160964: Can't point above the directory which contains the map file
4. SF Bug 1163523: Broken XPath expression in mappull.xsl
5. SF Bug 1168974: useless DRAFT param in FO transformation
6. SF Bug 1173162: generate null internal link destination in fo transformation
7. SF Bug 1173164: Not correctly use document() in dita2fo-links.xsl
8. SF Bug 1173663: All base directories are DITA-OT 1.0
9. SF Patch 1163561: XLST match patterns test for element names

10. SF Patch 1165068: FO hyperlinks and FOP-generated PDF bookmarks
11. SF Patch 1174012: Modification to sequence.ditamap

DITA OT release 1.0

The initial release of the Open Sourced DITA Toolkit introduces major architectural
changes from the previous, developerWorks version of the Toolkit.

New features
1. A new, Java-based processing architecture that supports single-threaded execution

throughout.
2. Ant-based orchestration of the processing environment, from preprocessing to

transformation to any required post-processing.
3. A pre-processor core that supports conditional processing and conref resolution.
4. Map-driven processing that generates links for transformed topics.
5. A new DITA to HTML transform that replaces the previous topic2html_Impl.xsl core

transform. This new core is based on requirements for high-volume usage within
IBM for the past several years.

Ant-driven processing means that you can integrate the DITA processing tools into a
seamless pipeline within supportive environments such as Eclipse.

The DTDs and Schemas in this version are based on those in the previous dita132

DITA Readme map

44

package with bug fixes. The DITA OS Toolkit will later support the OASIS 1.0
specification in its public review form.

DITA history on developerWorks (pre-Open Source)

Versions of the toolkit prior to Open Source are in the developerWorks XML Zone at this
address: DITA Downloads Change logs for those versions are within the Readme files in
each distribution.

DITA futures
Activity on the DITA Open Toolkit project will revolve around maintenance (bug fixes),
enhancements (new function based on prioritized requests), demos and experimentation
(sandbox activity), and community support (forums, etc.).

DITA Open Toolkit 1.0 is a major upgrade from its predecessor, the developerWorks
version known as "dita132." Because this is a new project with a new name. a new home,
and largely new code, and because it is considered production-level code for XHTML
output, the project numbering has been initiated at 1.0 for the first built release. The 1.0
version of code is still based on the dita132 DTDs and Schemas.

Major improvements from dita132 include:
• A new processing architecture that includes a new preprocessing stage
• Full conref resolution in the preprocessor
• Full conditional resolution (filtering and flagging) in the preprocessor
• Second pass transformation into final output formats
• Use of Ant and Java for the processing sequence and utility code
• A high-quality transform for XHTML output based on code that IBM has tested and

used for the past 5 years
• Translated libraries for generated text in 47 languages (accessed by region and

country code)

Future plans:
Future development activity of the DITA Open Toolkit is based on the end goal of
providing a complete reference implementation for all core output transforms. The
anticipated order of work based on current prioritizations (post 1.0) will be:

• 1.1: Develop the currently demo-level FO transforms to support production-level,
book-like functionality with a generic format that can be easily interfaced for
particular corporate styles and branding. This will involve working with the OASIS
DITA Technical Committee to validate and endorse the bookmap specialization of
DITA map. (roughly matching the DITA TC 1.1 plan, based on the OASIS DITA
1.0-level DTDs and Schemas, expected to be a Spec in this timeframe). This
version will be based on the OASIS DITA 1.0 level of DTDs and Schemas.

• 1.2 (roughly): Develop the remaining demo-level help tools to support
production-level output for these output formats: Eclipse help with plugin support,
HTML Help, and JavaHelp. Also other new help formats as prioritized for this
release (such as manpage, QT Assistant, etc.). (roughly the 1.2 plan, based on
OASIS DITA 1.0-level DTDs and Schemas with any fixes known at that point)

• 1.3 (roughly): Develop migrators for OASIS updates that might impact existing DITA
source. Other requirements as identified, such as styling layers, custom package
building from the project, interfaces to translation standards such as XLIFF, and so
forth.

The project will use the SourceForge RFE tool to accept new requirements. These will be
prioritized for placement into plan according to the process in the Development Process
document.

Tested platforms and tools

DITA Readme map

45

http://www-106.ibm.com/developerworks/xml/library/x-dita6/x-dita_downloads.html

Navigation title: Tested Platforms and tools

See which tools and platforms have been used in testing the DITA processing system.

The DITA processing system has been tested against the following platforms and tools:

Tested OS: Windows, RedHat Linux 9

Tested XSLT processor: Xalan-J 2.6, Saxon 6.5
Note: XSLT 2.0 standard is not supported yet, don't use
XSLT 2.0 engines. For example: Saxon 8.x.

Tested JDK: IBM 1.4.2, SUN 1.4.2

Tested Ant: Ant 1.6.5

Using DITA transforms
The core transforms of the DITA Toolkit represent the “ Reference Implementation” for
processing the standard DITA specification as maintained by OASIS Open.

Pre-process

A pre-process is done before the main transformation. The input of Pre-process is dita
files and the output of Pre-process is also dita files. But the output is in temp directory.
Pre-process is the basic for the main transformation, it handles several different
processing before the main transformation. Without pre-process, dita topics and map can
still be transformed into different outputs, but the features in pre-process such as
resolving conref attribute are not available.

Available core transforms
A core DITA transform is the basic set of templates that support all the elements of a
topic. This set is the basis for the following processing of any specialized element. Core
transforms handle one topic instance, or nested set of topics, at a time. The DITA Toolkit
provides these core transforms:
dita2xhtml.xsl

DITA topic to HTML page transform.
dita2fo-shell.xsl

DITA topic to XSL Formatting Object page transform.

Available special output formats
Additional map-driven tools support transforming sets of topics into special output
formats, including:
Web page (map2htmtoc.xsl)

This transform generates a set of web pages with an index page that is ready to place
on a Web site.

map2htmlhelp (map2hhc.xsl map2hhp.xsl)
This transform generates hhc and hhp file for the compilation of Html Help.

map2javahelp (map2JavaHelpToc.xsl map2JavaHelpMap.xsl)
This transform generates table of content and jhm file for Java Help.

map2eclipsehelp (map2elipse.xsl)
This transform generates table of content for help contents in Eclipse.

map2printout
Calls topicmerge to consolidate a set of topics into a single entity that is transformed
into Formatting Objects (FO), which can be compiled into PDF.

Invoke the complete transformation

DITA Readme map

46

The complete transformation including pre-process can be excuted by the ant script.
There are some examples of simple ant script in directory /ant. The ant target for the
transformation which can be called is listed at Running Ant on page 48

Building DITA output with Ant
Ant is an open tool that uses the DITA processes to make producing DITA output easier.

Introduction of Ant

DITA provides a set of XSLT scripts for producing different types of documentations such
as: help output in Eclipse, Java Help and HTML Help, web HTML pages and PDF file.

To make it easier to call these scripts, the DITA distribution now provides an
experimental Ant tool to automatically build the DITA documentations, demos, and
samples.

Ant is a Java-based, open source tool provided by the Apache Foundation to declare a
sequence of build actions. Meanwhile, Ant is well suited for development builds as well
as document builds.

It is unnecessary for Ant to set up a build environment to run the DITA XSLT scripts. To
run the DITA scripts directly, see the DITA Readme on page 33 document.

Note: The following instructions and the associated build.xml and ditatargets.xml files are
for the Java 1.4.2, Ant 1.6.5, FOP 0.20.5, and Saxon 6.5.3 releases. These instructions
are likely to need some adjustment for other versions of these components and for
specific environments.

Setting up Ant
Navigation title: Setting up Ant

This topic guides you how to set up Ant environment properly.

Assume that you have already installed the Java Development Kit (JDK) on page and
the XSLT processor on page before setting up the Ant.

Set up the Ant
1. Download and extract the Ant package file (available on

http://ant.apache.org/bindownload.cgi) into a directory of your choice.
2. Set up environment variable.

If you use Windows, follow these steps.
• Set the JAVA_HOME. set

JAVA_HOME=<jdk_dir>
• Set the ANT_HOME. set

ANT_HOME=<ant_dir>
• Set the PATH. set

PATH=%PATH%;<ant_dir>\bin

If you use Linux, follow these steps.
• Set JAVA_HOME export

JAVA_HOME=<jdk_dir>
• Set the ANT_HOME export

ANT_HOME=<ant_dir>
• Set the PATH (export

PATH=$PATH:<ant_dir>\bin

3. If you have installed optional output FOP to generate PDF output, see Installing the

DITA Readme map

47

http://ant.apache.org/bindownload.cgi

DITA Toolkit on page for detail information of setting up.

Running Ant
Navigation title: Running Ant

After setting up the Ant environment, you can build the DITA output by running ant
command.

Here are some samples to explain how to use Ant to build sample output in the DITA
directory.
Note: To run the Ant demo properly, you should switch to the DITA installation
directory under the command prompt.

• You can build all demos in the DITA directory.

Input ant all

The building process will create an /out/ directory and puts the output files in
subdirectories that parallel the source directory.

• You can also rebuild specific part of output of the DITA sample files.

You need to remove part of the output first by specifying a " clean" target, and
then rebuild the output. For example: To rebuild FAQ demo, input

ant clean.demo.faq

ant demo.faq

Note: To find out the complete list of targets you can clean and build, check the
name attributes for the target elements within the build.xml file. Or, input ant
-projecthelp for information.

• You can also build assigned input to output in a default and easy way.

Input ant

Ant will prompt you for the input and output, and you need to input the directories of
input files and output with correctly upper or lower case.

You can reuse the targets provided by the conductor.xml file in builds for your own DITA
content by coping the build.xml, conductor.xml, pretargets.xml, ditatargets.xml and
catalog-ant.xml files into a new directory and edit the build.xml to specify your DITA files.
Refer to Ant tasks and tweaks on page 48 for more information of those functions.

Note: To troubleshoot problems in setting up Java, Ant, Saxon, or FOP, you will get
better information from the communities for those components rather than the
communities for the DITA. Of course, if you find issues relevant to the DITA XSLT scripts
(or have ideas for improving them), you are encouraged to engage the DITA community.

Ant tasks and script

This topic lists detailed Ant tasks and script.

The build process including pre-process can be called by using Ant script. There are four
major Ant script files:

conductor.xml, pretargets.xml, ditatargets.xml and catalog-ant.xml.

conductor.xml
The main Ant script file includes the other three ant scripts and provides main targets
for every output style.
Table2. General Parameter Table

DITA Readme map

48

Parameter Description Required

basedir The path of the working directory for transformations, it will be the
base of relative paths specified by other parameters.
Note:

• If input is relative, it will be set relative to the current directory.
• In Ant scripts, the default is that specified in the Ant buildfile.
• In Java command line, the default is current directory.

No

dita.dir The absolute path of the toolkit's home directory. No

args.input The path and name of the input file. This argument should be in the
same upper or lower case with the filename on file system.
Note: This parameter must be provided if dita.input and
dita.input.dirname not be provided.

No

dita.input The name of the input file .
Note: This parameter must be provided if args.input not be
provided. And this parameter must be used together with the
dita.input.dirname parameter. The result of this combination is
equivalent to use only the args.input parameter. It is an
alternative way to specify the path and name of the input file.
DEPRECATED - use args.input instead.

No

dita.input.dirnameThe input directory which contains the input file.
Note: This parameter must be provided if args.input not be
provided. And this parameter must be used together with the
dita.input parameter. The result of this combination is equivalent
to use only the args.input parameter. It is an alternative way to
specify the path and name of the input file. DEPRECATED - use
args.input instead.

No

dita.temp.dir The directory of the temporary files. The default is 'temp'. No

output.dir The path of the output directory. Yes

dita.extname The file extension name of the input topic files, for example, '.xml' or
'.dita'. The default is '.xml'.

No

args.xsl The xsl file to replace the default xsl file. It will replace
dita2docbook.xsl in docbook transformation, dita2fo-shell.xsl in pdf
transformation, dita2xhtml.xsl in xhtml/eclipsehelp transformation,
dita2rtfImpl.xsl in word transformation and dita2html.xsl in
javahelp/htmlhelp transformation.

No

dita.input.valfile The name of the file containing filter/flagging/revision information. No

args.draft Default "hide draft & required-cleanup content" processing
parameter (“ no” = hide them); “ no” and “ yes” are valid values; non-
“ yes” is ignored.

No

args.artlbl Default "output artwork filenames" processing parameter; “ no” and “
yes” are valid values; non- “ yes” is ignored.

No

clean.temp The parameter to specify whether to clean the temp directory before
each build. Only "no" and "yes" are valid values. The default is yes.

No

args.logdir The directory used to keep generated log files. Default will be output
directory.
Note: If several transforms running batchly, e.g., ant all:

• If the user has specified a common logdir for all
transformations, it will be used as log directory.

• If the user hasn't specified a common dir for all transformations:
• If all transformations have same output directory, the

common output direcory will be used as log directory.
• If there is no same output directory for all transformations,

No

DITA Readme map

49

Parameter Description Required

the basedir will be used as default log directory.

Table3. General Parameter Table for
Tasks(dita2xhtml,dita2htmlhelp,dita2javahelp,dita2eclipsehelp)

Parameter Description Required

args.indexshow The parameter to specify whether each index entry should display
within the body of the text itself. Only "no" and "yes" are valid values.

No

args.copycss The parameter to specify whether copy user specified css files to the
directory specified by {args.outdir}${args.csspath}. "no"
and "yes" are valid values. Default is "no".

No

args.outext The output file extension name for generated xhtml files. Typically,
'.html' or '.htm' can be used as the extension name for the generated
xhtml files. You can also specify other extension name. The default
is '.html'.

No

args.css User specified css file, it can be a local file or remote file from
website.
Note: If ${args.csspath} is an URL, the ${args.css} should
be a filepath relative to the URL.

No

args.cssroot The root directory of user specified css file.
Note: If this parameter is set, the ${args.css} should be a filepath
relative to args.cssroot.

No

args.csspath The path for css reference. Default is no path.
Note:

• If ${args.csspath} is an URL like path, it should starts with
http:// or https://. For example:
http://www.ibm.com/css.

• Local absolute paths is not supported for ${args.csspath}.
• Use ' /' as the path separator and don't append separator at

last. For example: css/mycss.

No

args.hdf The name of the file containing XHTML to be placed in the HEAD
area.

No

args.hdr The name of the file containing XHTML to be placed in the BODY
running-heading area.

No

args.ftr The name of the file containing XHTML to be placed in the BODY
running-footing area.

No

targets in conductor.xml

The following targets in conductor.xml will call the complete processing of DITA files
which can be loaded by users.

dita2docbook
Transform DITA topic or DITA map into docbook output.

dita2eclipsehelp
Transform DITA topic or DITA map into Eclipse help plugin based on xhtml.
Table4. Parameter Table of dita2eclipsehelp

Parameter Description Required

args.eclipsehelp.tocThe root file name of the output eclipsehelp toc file in eclipsehelp
transformation. The default is the name of input ditamap file.

No

args.eclipse.providerThe provider name of the eclipse help output. The default value is
DITA.

No

DITA Readme map

50

Parameter Description Required

args.eclipse.versionThe version number of the eclipse help output. The default value is
1.0

No

dita2eclipsecontent
Transform DITA topic or DITA map into Eclipse help plugin for Eclipse dynamic
content provider based on xhtml.
Table5. Parameter Table of dita2eclipsecontent

Parameter Description Required

args.eclipsecontent.tocThe root file name of the output Eclipse content provider toc file in
eclipsecontent transformation. The default is the name of input
ditamap file.

No

args.eclipse.providerThe provider name of the eclipse help output. The default value is
DITA.

No

args.eclipse.versionThe version number of the eclipse help output. The default value is
1.0

No

dita2htmlhelp
Transform DITA topic or DITA map into html help output based on html.
Table6. Parameter Table of dita2javahelp

Parameter Description Required

args.dita.locale The locale used for sorting indexterms. If no locale specified, the first
occurrence of "xml-lang" will be used as default locale; If no
"xml-lang" found, "en-us" will be used by default.

No

args.htmlhelp.includefileThe parameter to specify the file that need to be included by the
HTMLHelp output.

No

dita2javahelp
Transform DITA topic or DITA map into java help output based on html.
Table7. Parameter Table of dita2javahelp

Parameter Description Required

args.javahelp.toc The root file name of the output javahelp toc file in javahelp
transformation. The default is the name of input ditamap file.

No

args.javahelp.mapThe root file name of the output javahelp map file in javahelp
transformation. The default is the name of input ditamap file.

No

args.dita.locale The locale used for sorting indexterms. If no locale specified, the first
occurrence of "xml-lang" will be used as default locale; If no
"xml-lang" found, "en-us" will be used by default.

No

dita2xhtml
Transform DITA topic or DITA map into xhtml web output.
Table8. Parameter Table of dita2xhtml

Parameter Description Required

args.xhtml.toc The root file name of the output xhtml toc file in xhtml transformation.
The default is 'index'.

No

dita2pdf
Transform DITA topic or DITA map into pdf.

DITA Readme map

51

Table9. Parameter Table of dita2pdf

Parameter Description Required

args.fo.img.ext The extension name of image file in pdf transformation. Only '.jpg',
'.gif' are valid value. The default is '.jpg'.
Note: Only one extension supported in the same transformation,
image files with other extensions will be renamed to the specified
extension.

No

args.fo.output.rel.linksThe parameter to specify whether output related links in pdf
transformation. "yes" and "no" are valid values. Default is "no".
Note: Any value that is not "yes" is regarded as "no".

No

args.fo.userconfigThe parameter to specify the user configuration file for FOP. No

dita2troff
Transform DITA map into troff, which is the system menu style in UNIX system.

dita2wordrtf
Transform DITA topic or DITA map into Word rtf. The args.artlbl parameter of
the general parameters is not supported.

pretargets.xml
The Ant script file which contains all targets for pre-process.

ditatargets.xml
The Ant script file which contains all targets for main transformation.

catalog-ant.xml
The xml catalog information which is used by Ant.

Sample ant script

These ant scripts are in ant directory. They are simple and easy to learn. From these
files, you can learn how to write your own Ant script to build your own process.

Here is a sample template for writing an Ant script that executes transformation to xhtml
in ant directory

<?xml version="1.0" encoding="UTF-8" ?>
<project name="sample_xhtml" default="all" basedir="..">

<import file="${basedir}${file.separator}conductor.xml"/>
<property name="dita.extname" value=".xml"/>
<target name="all" depends="sample2xhtml"> </target>
<!-- revise below here -->
<target name="sample2xhtml" depends="use-init">

<antcall target="dita2xhtml">
<param name="args.input" value="@DITA.INPUT@"/>
<param name="output.dir" value="@OUTPUT.DIR@"/>

</antcall>
</target>

</project>

After you write the input file and output directory to overwrite @DITA.INPUT@ and
@OUTPUT.DIR@, the script can execute the transformation from your input to xhtml by
this command. The property of dita.extname is a global variable with which you can set
the file extension name of the topic file. The default dita.extname is “ .xml” . You can also
set it to “ .dita” according to OASIS DITA recommendation.

ant -f ant/template_xhtml.xml

All of targets we use here are defined in conductor.xml. Therefore, you need to import
that file before calling the target.

Building DITA output with Java command line
The DITA Open Toolkit release 1.0.2 or above provides a command line interface as an
alternative for users with little knowledge of Ant to use the toolkit easily.

DITA Readme map

52

Running example
1. Change into the DITA Open Toolkit installation directory.
2. On the command line, enter the following command:

java -jar lib/dost.jar /i:samples/sequence.ditamap /outdir:out
/transtype:xhtml

This particular example creates a properties file, and then calls Ant using this properties
to build the sample sequence.ditamap file and outputs the xhtml results to the out
directory. You can add other parameters to this properties file. See the following Table 1
on page 53for details.

Note:
1. In this example, the character slash preceded by a space is the separator for each

parameter.
2. Currently, the parameters /filter, /ftr, /hdr, and /hdf require an absolute

path.
3. The properties file is saved in the ${args.logdir} directory. The following

command provides an example using this properties file:

ant -f conductor.xml -propertyfile ${args.logdir}/property.temp

Supported parameters

Table 1 on page 53lists the supported parameters (their Ant names are within the braces)
that you can set with this tool.

Table10. Table of supported parameters

Parameter Description

/basedir:{basedir} The path of the working directory for
transformations, it will be the base of relative paths
specified by other parameters.
Note:

• If input is relative, it will be set relative to the
current directory.

• In Ant scripts, the default is that specified in
the Ant buildfile.

• In Java command line, the default is current
directory.

/ditadir:{dita.dir} The absolute path of the toolkit's home directory.

/i:{args.input} The path and name of the input file. This argument
should be in the same upper or lower case with the
filename on file system.
Note: This parameter must be provided if
dita.input and dita.input.dirname not be
provided.

/if:{dita.input} The name of the input file .
Note: This parameter must be provided if
args.input not be provided. And this parameter
must be used together with the
dita.input.dirname parameter. The result of
this combination is equivalent to use only the
args.input parameter. It is an alternative way to
specify the path and name of the input file.
DEPRECATED - use args.input instead.

/id:{dita.input.dirname} The input directory which contains the input file.

DITA Readme map

53

Parameter Description

Note: This parameter must be provided if
args.input not be provided. And this parameter
must be used together with the dita.input
parameter. The result of this combination is
equivalent to use only the args.input
parameter. It is an alternative way to specify the
path and name of the input file. DEPRECATED -
use args.input instead.

/outdir:{output.dir} The path of the output directory.

/tempdir:{dita.temp.dir} The directory of the temporary files. The default is
'temp'.

/ditaext:{dita.extname} The file extension name of the input topic files, for
example, '.xml' or '.dita'. The default is '.xml'.

/transtype:{transtype} The transformation type. Currently, the supported
values include xhtml, pdf, javahelp, eclipsehelp,
htmlhelp, eclipsecontent, troff, wordrtf and
docbook.

/filter:{dita.input.valfile} The name of the file containing
filter/flagging/revision information.

/draft:{args.draft} Default "hide draft & required-cleanup content"
processing parameter (“ no” = hide them); “ no”
and “ yes” are valid values; non- “ yes” is ignored.

/artlbl:{args.artlbl} Default "output artwork filenames" processing
parameter; “ no” and “ yes” are valid values; non- “
yes” is ignored.

/ftr:{args.ftr} The name of the file containing XHTML to be
placed in the BODY running-footing area.

/hdr:{args.hdr} The name of the file containing XHTML to be
placed in the BODY running-heading area.

/hdf:{args.hdf} The name of the file containing XHTML to be
placed in the HEAD area.

/csspath:{args.csspath} The path for css reference. Default is no path.
Note:

• If ${args.csspath} is an URL like path, it
should starts with http:// or https://.
For example: http://www.ibm.com/css.

• Local absolute paths is not supported for
${args.csspath}.

• Use ' /' as the path separator and don't
append separator at last. For example:
css/mycss.

/css:{args.css} User specified css file, it can be a local file or
remote file from website.
Note: If ${args.csspath} is an URL, the
${args.css} should be a filepath relative to the
URL.

/cssroot:{args.cssroot} The root directory of user specified css file.
Note: If this parameter is set, the ${args.css}
should be a filepath relative to args.cssroot.

/copycss:{args.copycss} The parameter to specify whether copy user
specified css files to the directory specified by
{args.outdir}${args.csspath}. "no" and

DITA Readme map

54

Parameter Description

"yes" are valid values. Default is "no".

/indexshow:{args.indexshow} The parameter to specify whether each index entry
should display within the body of the text itself.
Only "no" and "yes" are valid values.

/outext:{args.outext} The output file extension name for generated xhtml
files. Typically, '.html' or '.htm' can be used as the
extension name for the generated xhtml files. You
can also specify other extension name. The default
is '.html'.

/xsl:{args.xsl} The xsl file to replace the default xsl file. It will
replace dita2docbook.xsl in docbook
transformation, dita2fo-shell.xsl in pdf
transformation, dita2xhtml.xsl in xhtml/eclipsehelp
transformation, dita2rtfImpl.xsl in word
transformation and dita2html.xsl in
javahelp/htmlhelp transformation.

/cleantemp:{clean.temp} The parameter to specify whether to clean the
temp directory before each build. Only "no" and
"yes" are valid values. The default is yes.

/foimgext:{args.fo.img.ext} The extension name of image file in pdf
transformation. Only '.jpg', '.gif' are valid value. The
default is '.jpg'.
Note: Only one extension supported in the same
transformation, image files with other extensions
will be renamed to the specified extension.

/javahelptoc:{args.javahelp.toc} The root file name of the output javahelp toc file in
javahelp transformation. The default is the name of
input ditamap file.

/javahelpmap:{args.javahelp.map} The root file name of the output javahelp map file
in javahelp transformation. The default is the name
of input ditamap file.

/eclipsehelptoc:{args.eclipsehelp.toc} The root file name of the output eclipsehelp toc file
in eclipsehelp transformation. The default is the
name of input ditamap file.

/eclipsecontenttoc:{args.eclipsecontent.toc} The root file name of the output Eclipse content
provider toc file in eclipsecontent transformation.
The default is the name of input ditamap file.

/provider:{args.eclipse.provider} The provider name of the eclipse help output. The
default value is DITA.

/version:{args.eclipse.version} The version number of the eclipse help output. The
default value is 1.0

/xhtmltoc:{args.xhtml.toc} The root file name of the output xhtml toc file in
xhtml transformation. The default is 'index'.

/logdir:{args.logdir} The directory used to keep generated log files.
Default will be output directory.
Note: If several transforms running batchly, e.g.,
ant all:

• If the user has specified a common logdir for
all transformations, it will be used as log
directory.

• If the user hasn't specified a common dir for
all transformations:

DITA Readme map

55

Parameter Description

• If all transformations have same output
directory, the common output direcory
will be used as log directory.

• If there is no same output directory for
all transformations, the basedir will be
used as default log directory.

/ditalocale:{args.dita.locale} The locale used for sorting indexterms. If no locale
specified, the first occurrence of "xml-lang" will be
used as default locale; If no "xml-lang" found,
"en-us" will be used by default.

/fooutputrellinks:{args.fo.output.rel.links} The parameter to specify whether output related
links in pdf transformation. "yes" and "no" are valid
values. Default is "no".
Note: Any value that is not "yes" is regarded as
"no".

/fouserconfig:{args.fo.userconfig} The parameter to specify the user configuration file
for FOP.

/htmlhelpincludefile:{args.htmlhelp.includefile} The parameter to specify the file that need to be
included by the HTMLHelp output.

Problem determination and log analysis
Introduction

In the DITA Open Toolkit 1.2 or above, a new logging method is supported to log
messages both on the screen and into the log file. The messages on the screen present
user with the status information, warning, error, and fatal error messages. The messages
in the log file present user with more detailed information about the transformation
process. By analyzing these messages, user can know what cause the problem and how
to solve it.

The logging method is based on Ant's Logger & Listener interface. By default, this
logging method is disabled, and all the messages occur on the screen just like previous
releases.

To start this new logging method, you need to follow the usage below:
• In Ant command, specify the logger by appendding -logger

org.dita.dost.log.DITAOTBuildLogger in the command parameters, for
example:

ant sample.web -logger org.dita.dost.log.DITAOTBuildLogger

• In Java command, the logger is specified internally, so you do not need to specify it
again.

Analyze messages on the screen
During the building process, some information or messages occur on the screen to tell
you about the status, warnings, errors, or fatal errors. You need to analyze the messages
to solve the problems.

• If the build succeeded with some warning messages on the screen, it means that
there are something incorrect within the user input parameters or source DITA files;
but you can still get the correct output.

• If the build succeeded with some error messages on the screen, it means that there
are something incorrect within the user input parameters or source DITA files; the
output maybe not correct.

DITA Readme map

56

• If the build failed with fatal error message on the screen, it means that there are
something illegal or invalid within the user input parameters or source DITA files;
you may get no output, or wrong output.

Analyze messages in the log file

A log file in plain text format is generated in the log directory, which has a name
combined with both input file name and transform type. You can open it and find more
detailed information, which are helpful for solving problems. You can use the same way
introduced above to analyze the messages and solve the problems.

The log directory can be specified by using the parameter /logdir:{args.logdir}
for the output options.

Note: In some cases, there would be no log file generated:
• You have entered an invalid Ant command or Java command to start the toolkit.
• The log file with the same name in the same directory exists and can not be

deleted.

Turn on debug mode

Debug mode is supported along with the new logging method. Under debug mode,
diagnostic information, such as: environment variables, stack trace, will be logged into
the log file. These information can help the user or developer to go deep into the
problems and find the root cause.

By default, the debug mode is disabled. To turn on the debug mode, you need to follow
the usage below:

• Append -d or -debug in Ant command.
• Append /d or /debug in Java command.

About message file

The message file is used to store the detailed log messages, these messages are read
dynamically from this file. To ensure those messages can be read correctly during the
transform process, the message file should be located properly. In some situations, the
toolkit may fails to load the message file due to some exceptions thrown. Please refer to
Troubleshooting on page 62 for detailed information.

For high level users and developers, there is a propery args.message.file in the
toolkit's ant script, it is used to config the message file, you can overide it in your ant
script.

Note: Due to the difference of underly implemetation between Java, And, and XSL, the
property args.message.file is only useful for Java and Ant; To keep the normal
function of log handling, you still need to ensure there are files 'resource/messages.xml'
and 'resource/messages.dtd' both in the toolkit's root directory and in the directory that
you run the toolkit.

Migrating HTML to DITA
The DITA Open Toolkit release 1.2 or above provides a HTML to DITA migration tool,
which migrates HTML files to DITA files. This migration tool originally comes from the
developerWorks publication of Robert D. Anderson's how-to articles with the original h2d
code. This migration tool is under "demo\h2d" directory. You can use it separately
because it is not integrated into the main transformation of toolkit. The version in the
toolkit is more recent, but the articles should be referenced for information on details of
the program, as well as for information on how to extend it. There are links to the articles
at the bottom of this page.

Preconditions

DITA Readme map

57

The preconditions to be considered before using the migration tool are listed below:

• The HTML file content must be divided among concepts, tasks, and reference
articles. If not, the HTML files should be reworked before migrating.

• This migration tool is intended for topics. The HTML page should contain a single
section without any nested sections.

• DITA architecture is focused on topics, information that is written for books needs to
be redesigned in order to fit into a topic-based archiecture.

• This migration utility only works with valid XHTML files, HTML files must be cleaned
up using HTML Tidy or other utility before processing.

Running examples

You can use the Ant script to migrate only one HTML file or all the HTML files in same
directory each time. See Migrating HTML to DITA with Ant script on page for more
details.

You can also use the Java command for migration. See Migrating HTML to DITA with
Java command on page for more details.

Post conditions

There are also some post conditions to consider after processing:

• In some case, the tool cannot determine the correct way to migrate, it places the
contents in a <required-cleanup> element, you should fix such elements in the
output DITA files.

• Check the output DITA files. Compare them with the source HTML files and check if
both contents are equivalent.

Known limitations

There are some known limitations within the current release, please refer to Known
Limitations on page 61 for detailed information.

Extension points

The HTML2DITA migration tool helps extension in the following listed ways:

• The genidattridbute template can be overridden to change the method for
creating the topic ID.

• The gentitlealts template can be overridden to change the ways of title
generation.

• Override respond section in the tool to preserve the semantic of source, in case if
the <div> or element is used in regular structures.

• You can also migrate to another specialized DTD by overriding the original template
base on the specific DTD and your required output.

Additional information

You can find the here original developerWorks publication via links below:

• Migrating HTML to DITA, Part 1: Simple steps to move from HTML to DITA
• Migrating HTML to DITA, Part 2: Extend the migration for more robust results

Controls, parameters, tweaks, and gizmos for dita2htmlImpl.xsl
If the available methods can not fully match your own output requirements, DITA Toolkit
supports other ways to customize or enhance the transforms without having to modify
core transforms directly.

The dita2htmlImpl.xsl file is the main XHTML processor to produce the output. You can
work with the following variables and parameters to change the way of processing.

DITA Readme map

58

http://www-128.ibm.com/developerworks/xml/library/x-dita8a
http://www-128.ibm.com/developerworks/xml/library/x-dita8b

If you need to make code changes to dita2htmlImpl.xsl to change a variable value, the
preferred mechanism is to create an override transform and place your changed code in
the new transform.

Here is an example of an override transform:
1. In the /xsl/ directory, make a copy of the dita2xhtml.xsl file and change the

filename of the copy.
2. Add your XSLT changes within the new file.

Note:
• Making editing changes to XSLT transforms is not included in this document; refer

to another XSLT reference for guidance.
• It is not recommended to edit any of the DITA distribution files, because your

modification might be erased by package updates.
• You are responsible for any change you make to DITA transforms. If you need help,

the DITA forum on developerWorks may be a useful resource.

Global variable declarations

If you want to change the values of the following global variable declarations to meet your
output requirements, copy the appropriate XSL directive into an override stylesheet that
imports the dita2htmlImpl.xsl file and make your editing changes in the stylesheet.

Variable name Explanation Default Value

afill Filler for A-name anchors (link-to points that have no
data content in and of themselves; some browsers fail to
link if a named anchor has no text)

null string (could be a space
character, , , etc.)

For example, copy the afill variable declaration into your override stylesheet and change
the content to represent the actual copyright owner of your content (this string will be
copied into the result HTML document as a comment):

<xsl:variable
name="afill"> </xsl:variable>

Default values for externally modifiable parameters

This topic lists the default values for externally modifiable parameters.

These default values can be changed at run time by using the parameter-passing syntax
of your XSLT processor (if it supports command-line parameters). If your processor does
not support parameter-passing on the command line, copy the XSL directives you wish to
change into an override XSLT stylesheet, change the values as needed, and import
dita2htmlImpl.xsl at the top of this new stylesheet. dita2xhtml.xsl is an example of an
override stylesheet that you can copy and modify as needed.

Parameter name Explanation Default value

dita-css Default CSS filename parameter, usually the name of your site's
overall stylesheet.

commonltr.css

bidi-dita-css Default CSS filename parameter for bi-direction language, usually
the name of your site's overall stylesheet.

commonrtl.css

CSS User's CSS filename parameter. null

DITA Readme map

59

news://news.software.ibm.com/ibm.software.developerworks.xml.xml

This can be the name of a stylesheet used by one or more
topics within an overall group. This stylesheet can use the
CSS cascade effect to modify existing properties or it can
override or define new properties.

CSSPATH Default CSS path parameter.

This specifies a path for the cascading style sheet (CSS).
This allows you to place the CSS in one place and have
several different topics point to it. If no CSSPATH is specified,
the CSS is assumed to be in the same directory as the
XHTML.

null

HDF The name of the file which contains XHTML codes to be placed in
the HEAD area.

null

HDR The name of the file which contains XHTML codes to be placed in
the BODY running-heading area.

null

FTR The name of the file which contains XHTML codes to be placed in
the BODY running-footing area.

null

ARTLBL Default output artwork filenames processing parameter; no and
yes are valid values; any other value is ignored.

no

DRAFT Default hide draft & cleanup content processing parameter (no=
hide them); no and yes are valid values; any other value is ignored.

no

INDEXSHOW Default hide index entries processing parameter (no = hide
them); no and yes are valid values; any other value is ignored.

no

YEAR The year for the copyright. 2005l

OUTEXT Default output extension processing parameter; htm and html are
valid values.

html

WORKDIR The working directory, relative to the stylesheet, that contains the
document being transformed. Needed as a directory prefix for the
@conref and @href document() function calls.

./

PATH2PROJ The path back to the project. Used for c.gif, delta.gif, and .css files to
allow users to have these files in 1 location.

null

FILENAME The file name (file name and extension only - no path) of the
document being transformed. Needed to help form debugging
messages.
Note: This value is not inherent to the XSLT processor; typically,
when the transform starts, the input filename will be passed to the
processor's command line as a parameter. Any resulting debugging
messages will echo the file name.

null

FILTERFILE The name of the file that contains filter/flagging/revision information. null

DBG Debug mode which enables XSL debugging XSL messages.
Needed to help form debugging messages. no and yes are valid
values; any other value is ignored.

no

DITAEXT DITAEXT file extension name of dita topic file. null

For example, the following sample invocation shows how to turn on draft mode using the
Saxon XSLT processor:

c:pkg\dita12\doc>java -jar <saxon_dir>/saxon.jar abc.htm
dita-tweaks.xml ..\xsl\dita2htmlImpl.xsl DRAFT=yes

DITA Readme map

60

The effect of this parameter will be to show the content of all <draft-comment> and
<required-cleanup> elements with highly visible styling for use by reviewers.

Note: To invoke a process using parameters, please check the documentation for your
XSLT processor. Most current XSLT 1.0 processors support a non-standard command
line interface for parameters.
Note: Parametric tweaks cannot be applied from internal stylesheet links (that is, the
<?xml-stylesheet ...?> processing instruction) as such associations do not provide
a way to pass parameters, even if a browser-specific renderer is capable of using such
data. To cause a browser-based view to show something ordinarily affected by a
command-line parameter, such as the DRAFT="yes" effect, embed the alternative value
directly in the override stylesheet that is named in the stylesheet processing instruction:

<xsl:param name="DRAFT"
select="'yes'"/>

Stubs for user-provided override extensions

The dita2htmlImpl.xsl stylesheet provides code stubs that extend the appearance of your
HTML result document. If you copy these stubs into your override stylesheet and provide
your own code within them, the result content will be pasted into appropriate parts of the
overall HTML page.

Regions that can be modified by these stubs include header, footer, topic-top blurbs (a
common location for mini-contents boxes), self-contained scripts (such as JavaScript
used commonly for DHTML support), self-contained styles, flagging based on property
value matches, panel titles and prefixes for panel titles (to auto-generate explicit
bookmarks for your users). See the section of dita2htmlImpl.xsl called start of override
stubs for the examples of mostly empty stubs that you can modify.

For example, copy the following template rule into an override file, such as a copy of
dita2xhtml.xsl, to generate a mini table of contents at the top of a topic that directly nests
child topics:

<!-- override for main stub --> <xsl:template
name="gen-user-sidetoc"> <!-- if there are nested
topics... --> <xsl:if
test="descendant::*[contains(@class,' topic/topic
')]"> <p> <table width="150"
align="right" border="1" frame="box"
rules="none"> <tr><td height="5"
bgcolor="#0033CC" align="center">
Contents:</td>
</tr> <xsl:for-each
select="descendant::*[contains(@class,' topic/topic
')]"> <xsl:variable
name="ttext"><xsl:value-of
select="*[contains(@class,' topic/title
')]"/></xsl:variable> <tr><td
class="toc">- <xsl:value-of
select="$ttext"/> <!--recursive call for
subtopics here"/--> </td></tr>
</xsl:for-each> </table> </p> </xsl:if>
</xsl:template>

Remember: Do your modifications on the copies of stylesheets so that you can turn back
on the original!

Known Limitations
Below are some known limitations categoried by module within the current release of the
DITA Open Toolkit.

Transformation to PDF and Word RTF
1. You can change the styles of the output file by using tools in Microsoft(R) Word

rather than specifying the styles before transforming.

DITA Readme map

61

2. If there is a cross reference referring to an URL in the DITA source file, the link
should be completed defined with the proper internet protocol. For example, specify
http://www.ibm.com instead of www.ibm.com.

3. Flagging, revision bar and filtering are not supported in PDF and Word RTF output.
4. Morerows attribute of the table element used to generating vertically merged cell is

not supported in PDF output.
5. Style attributes for table are not supported in Word RTF output.
6. Complex cases dealing with table in list are not supported in Word RTF.
7. There might be no output style applied on contents of some tags in Word RTF

output compared with other output.

HTML to DITA migration
1. Since Xalan doesn't allow to set the public and system IDs dynamically using a

variable, when Xalan is used as the default XSLT processor, the output will contain:

<!DOCTYPE topic PUBLIC "{$publicid}" "{$systemid}">

Suggest to use Saxon as the processor to fix this problem. For other information on
this problem, see the section "Other general migration notes" in the first
developerWorks article.

2. Currently, the stylesheet can't handle HTML files within namespace like below:

<html xmlns="http://www.w3.org/1999/xhtml">

Note: This limitation has been fixed in release 1.2.1, please refer to the Migrating
HTML to DITA on page 57 for detail information.

Troubleshooting
This section is used for identifying problems when installing and executing the DITA
Open Toolkit.

1. Out of Memory Error

In some cases, you might receive a message stating the build has failed due to an "Out
of Memory" error. Please follow the steps below to fix this problem:

1.
For Windows, type set ANT_OPTS=%ANT_OPTS% -Xmx256M in the command
prompt, you can also choose to add a new opition -Xmx256M to the ANT_OPTS
environment variable.

For Linux, type export ANT_OPTS=${ANT_OPTS} -Xmx256M in the command
prompt.

2. Run the transformation again.

2. java.io.IOException: Can't store Document

In some cases, when you run the JavaHelp transformation, you might receive the
exception above. This problem is caused by some HTML files unrelated with the current
JavaHelp transformation were found under the output directory. Please follow the steps
below to fix this problem:

1. Change into the output directory.
2. Clean the output directory.
3. Run the JavaHelp transformation again.

3. Failed to load message file

In some situations, the toolkit may fails to load the message file due to some exceptions
thrown.

DITA Readme map

62

To fix this problem, you need to check if there are files 'resource/messages.xml' and
'resource/messages.dtd' in the directory that you run the toolkit. If not, please copy them
from the toolkit's root directory.

4. Spaces in file names

Spaces in file names will cause trouble during the processing because Ant use space as
the delimiter when processing batch files in a list. Please prevent using spaces in the
name of dita files.

DITA Readme map

63

	
Installing DITA OT 1.3
	
Enhanced command line help
	
Extensible metadata attributes
	
Graphic scaling improvement
	
Indexing
	
New element <abstract>
	
New element <data>
	
Supporting two file extensions in one DITA map
	
Supporting foreign content vocabulary
	
Refactored ANT tasks
	
Standard XML catalog resolver
	
Topic merge
	
Working with documentation plug-in
	
Building DITA output with Java command line
	
DITA Toolkit Introduction
	
DITA release notes
	
DITA release history
	
DITA futures
	
Tested Platforms and tools
	
Using DITA transforms
	
Building DITA output with Ant
	
Setting up Ant
	
Running Ant
	
Ant tasks and script

	
Building DITA output with Java command line
	
Problem determination and log analysis
	
Migrating HTML to DITA
	
Controls, parameters, tweaks, and gizmos for
dita2htmlImpl.xsl
	
Global variable declarations
	
Default values for externally modifiable parameters
	
Stubs for user-provided override extensions

	
Known Limitations
	
Troubleshooting

