
Documentation including DITA
papers

[vertical list of authors]
[Don R. Day]

[Michael Priestley]
[Dave A Schell]

[Michael Priestley; IBM Corporation; Toronto, Canada; mpriestl@ca.ibm.com; Michael
Priestley is an information developer for the IBM Toronto Software Development

Laboratory. He has written numerous papers on subjects such as hypertext navigation,
singlesourcing, and interfaces to dynamic documents. He is currently working on XML

and XSL for help and documentation management.]
[Erik Hennum; IBM Corporation; ehennum@us.ibm.com. Erik Hennum works on the

design and implementation of User Assistance for the IBM Storage Systems Group.]
© Copyright ,.

[cover art/text goes here]

Contents
Introduction to the Darwin Information Typing Architecture ... 3

Executive summary ...3
DITA overview ..6
DITA delivery contexts ..7
DITA typed topic specializations (infotyped topics) .. 7
DITA vocabulary specialization (domains) ... 7
DITA common structures ..8
Elements designed for specialization ... 9
The values of specialization ...9
Specializing topic types in DITA .. 11

Architectural context ... 11
Specializing information types.. 12
Specialization example: Reference topic.. 13
Specialization example: API description... 15
Working with specialization... 17
Specializing with schemas.. 20
Summary... 20
Appendix: Rules for specialization.. 21

Specializing domains in DITA .. 24
Introducing domain specialization... 24
Understanding the base domains... 25
Combining an existing topic and domain.. 26
Creating a domain specialization.. 28
Considerations for domain specialization... 32
Generalizing a domain.. 32
Summary... 33

How to define a formal information architecture with DITA map domains34
Formal information architecture.. 34
Specializing topics and maps.. 35
The how-to collection.. 35
Map specialization.. 36
Implementing a map domain... 36
Declaring the map domain entities.. 36
Defining the map domain module... 36
Assembling the shell DTD... 38
Creating a collection with the domain... 38
Summary... 39

Documentation including DITA papers

i

Documentation including DITA papers

2

Introduction to the Darwin Information Typing Architecture
Search title: Pathway to the future

This document is a roadmap for the Darwin Information Typing Architecture: what it is
and how it applies to technical documentation. It is also a product of the architecture,
having been written entirely in XML and produced using the principles described here...

Executive summary
The Darwin Information Typing Architecture (DITA) is an XML-based, end-to-end
architecture for authoring, producing, and delivering technical information. This
architecture consists of a set of design principles for creating "information-typed" modules
at a topic level and for using that content in delivery modes such as online help and
product support portals on the Web.

At the heart of DITA (Darwin Information Typing Architecture), representing the generic
building block of a topic-oriented information architecture, is an XML document type
definition (DTD) called "the topic DTD." The extensible architecture, however, is the
defining part of this design for technical information; the topic DTD, or any schema based
on it, is just an instantiation of the design principles of the architecture.

Background

This architecture and DTD were designed by a cross-company workgroup representing
user assistance teams from across IBM. After an initial investigation in late 1999, the
workgroup developed the architecture collaboratively during 2000 through postings to a
database and weekly teleconferences. The architecture has been placed on IBM's
developerWorks Web site as an alternative XML-based documentation system, designed
to exploit XML as its encoding format. With the delivery of these signficant updates
contains enhancements for consistency and flexibility, we consider the DITA design to be
past its prototype stage.

Information interchange, tools management, and extensibility

IBM, with millions of pages of documentation for its products, has its own very complex
SGML DTD, IBMIDDoc, which has supported this documentation since the early 1990s.
The workgroup had to consider from the outset, "Why not just convert IBMIDDoc or use
an existing XML DTD such as DocBook, or TEI, or XHTML?" The answer requires some
reflection about the nature of technical information.

First, both SGML and XML are recognized as meta languages that allow communities of
data owners to describe their information assets in ways that reflect how they develop,
store, and process that information. Because knowledge representation is so strongly
related to corporate cultures and community jargon, most attempts to define a universal
DTD have ended up either unused or unfinished. The ideal for information interchange
is to share the semantics and the transformational rules for this information with other
data-owning communities.

Second, most companies rely on many delivery systems, or process their information in
ways that differ widely from company to company. Therefore any attempt at a universal
tool set also proves futile. The ideal for tools management is to base a processing
architecture on standards, to leverage the contributed experience of many others, and to
solve common problems in a broad community.

Third, most attempts to formalize a document description vocabulary (DTD or schema)
have been done as information modelling exercises to capture the current business
practices of data owners. This approach tends to encode legacy practices into the
resulting DTDs or vocabularies. The ideal for future extensibility in DTDs for technical

Documentation including DITA papers

3

information (or any information that is continually exploited at the leading edge of
technology) is to build the fewest presumptions about the "top-down" processing system
into the design of the DTD.

In the beginning, the workgroup tried to understand the role of XML in this leading edge
of information technology. As the work progressed, the team became aware that any
DTD design effort would have to account for a plurality of vocabularies, a tools-agnostic
processing paradigm, and a legacy-free view of information structures. Many current
DTDs incorporate ways to deal with some of these issues, but the breadth of the issues
lead to more than just a DTD. To support many products, brands, companies, styles, and
delivery methods, the entire authoring-to-delivery process had to be considered. What
resulted was a range of recommendations that required us to represent our design, not
just as a DTD, but as an information architecture.

Main features of the DITA architecture

As the "Architecture" part of DITA's name suggests, DITA has unifying features that serve
to organize and integrate information:

• Topic orientation. The highest standard structure in DITA is the topic. Any higher
structure than a topic is usually part of the processing context for a topic, such as a
print-organizing structure or the helpset-like navigation for a set of topics. Also,
topics have no internal hierarchical nesting; for internal organization, they rely on
sections that define or directly support the topic.

• Reuse. A principal goal for DITA has been to reduce the practice of copying content
from one place to another as a way of reusing content. Reuse within DITA occurs
on two levels:

• Topic reuse. Because of the non-nesting structure of topics, a topic can be
reused in any topic-like context. Information designers know that when they
reuse a topic in a new information model, the architecture will process it
consistently in its new context.

• Content reuse. The SGML method of declaring reusable external entities is
available for XML users, but this has several practical limitations in XML. DITA
instead leans toward a different SGML reuse technique and provides each
element with a conref attribute that can point to any other equivalent element
in the same or any other topic. This referencing mechanism starts with a base
element, thus assuring that a fail-safe structure is always part of the calling
topic (the topic that contains the element with the conref attribute). The new
content is always functionally equivalent to the element that it replaces.

• Specialization. The class mechanism in CSS indicates a common formatting
semantic for any element that has a matching class value. In the same way, any
DITA element can be extended into a new element whose identifier gets added to
the class attribute through its DTD. Therefore, a new element is always associated
to its base, or to any element in its specialization sequence.

• Topic specialization. Applied to topic structures, specialization is a natural way
to extend the generic topic into new information types (or infotypes), which in
turn can be extended into more specific instantiations of information
structures. For example, a recipe, a material safety data sheet, and an
encyclopedia article are all potential derivations from a common reference
topic.

• Domain specialization. Using the same specialization principle, the element
vocabulary within a generic topic (or set of infotyped topics) can be extended
by introducing elements that reflect a particular information domain served by
those topics. For example, a keyword can be extended as a unit of weight in a
recipe, as a part name in a hardware reference or as a variable in a
programming reference. A specialized domain, such as programming phrases,
can be introduced by substitution anywhere that the root elements are
allowed. This makes the entire vocabulary available throughout all the
infotyped topics used within a discipline. Also, a domain can be replaced
within existing infotyped topics, in effect hiding the jargon of one discipline

Documentation including DITA papers

4

from writers dealing with the content of another. Yet both sets of topics can be
appropriate for the same user roles of performing tasks or getting reference
information.

• Property-based processing. The DITA model provides metadata and attributes that
can be used to associate or filter the content of DITA topics with applications such
as content management systems, search engines, processing filters, and so on.

• Extensive metadata to make topics easier to find. The DITA model for
metadata supports the standard categories for the Dublin Core Metadata
Initiative. In addition, the DITA metadata enables many different content
management approaches to be applied to its content.

• Universal properties. Most elements in the topic DTD contain a set of universal
attributes that enable the elements to be used as selectors, filters, content
referencing infrastructure, and multi-language support. In addition, some
elements, whose attributes can serve a range of specialized roles, have been
analyzed to make sure that their enumerated values provide a rich basis for
specialization (which usually constrains values and never adds to them).

• Taking advantage of existing tags and tools. Rather than being a radical departure
from the familiar, DITA builds on well-accepted sets of tags and can be used with
standard XML tools.

• Leveraging popular language subsets. The core elements in DITA's topic DTD
borrow from HTML and XHTML, using familiar element names like p, ol, ul, dl
within an HTML-like topic structure. In fact, DITA topics can be written, like
HTML, for rendering directly in a browser. In more ambitious designs, DITA
topics can be written, like SGML, to be normalized through processing into a
deliverable, say XHTML or a well-formed XML format targeted for a particular
browser's ability to handle XML. Also, DITA makes use of the popular OASIS
(formerly CALS) table model.

• Leveraging popular and well-supported tools. The XML processing model is
widely supported by a number of vendors. The class-based extension
mechanism in DITA translates well to the design features of the XSLT and
CSS stylesheet languages defined by the World Wide Web Consortium and
supported in many transformation tools, editors and browsers. DITA topics can
be processed by a spectrum of tools ranging from shareware to custom
tailored products, on almost any operating platform.

Topic as the basic architectural unit

The various information architectures for online deliverables all tend to focus on the idea
of topics as the main design point for such information. A topic is a unit of information that
describes a single task, concept, or reference item. The information category (concept,
task, or reference) is its information type (or infotype). A new information type can be
introduced by specialization from the structures in the base topic DTD. Typed topics are
easily managed within content management systems as reusable, stand-alone units of
information. For example, selected topics can be gathered, arranged, and processed
within a delivery context to provide a variety of deliverables. These deliverables might
be groups of recently updated topics for review, helpsets for building into a user
assistance application, or even chapters or sections in a booklet that are printed from
user-selected search results or "shopping lists."

Benefits of the DITA architecture

Through topic granularity and topic type specialization, DITA brings the following benefits
of the object-oriented model to information sets:

• Encapsulation. The designer of the topic type only needs to address a specific,
manageable problem domain. The author only needs to learn the elements that are
specific to the topic type. The implementer of the processing for the topic type only
needs to process elements that are special.

• Polymorphism. Special topic types can be treated as more generic topic types for
common processing.

• Message passing. The class attribute preserves at all times the derivation hierarchy

Documentation including DITA papers

5

of an element. At any time, a topic may be generalized back to any earlier form, and
if the class attributes are preserved, these topics may be re-specialized. One use of
this capability would be to allow two separate disciplines to merge data at an earlier
common part of the specialization hierarchy, after which they can be transformed
into one, the other, or a brand new domain and set of infotyped topics.

DITA can be considered object-oriented in that:

• Data and processors are separated from their environment and can be chunked to
provide behaviors similar to object-orientation (such as override transforms that
modify or redefine earlier behaviors).

• Classification of elements through a sequence of derivations that are progressively
more specific, possibly more constrained, and always rigidly tied to a consistent
processing or rendering model.

• Inheritance of behaviors, to the extent that new elements either fall through to
behaviors for ancestors in their derivation hierarchy, or can be mapped to modified
processors that extend previous behaviors.

With discipline and ingenuity, some of the benefits of topic information sets can be
provided through a book DTD. In particular, techniques for chunking can generate topics
out of a book DTD. In DITA, the converse approach is possible: a book can be
assembled from a set of DITA topics. In both cases, however, the adaptation is
secondary to the primary purpose of the DTD. That is, if you are primarily authoring
books, it makes the most sense to use a DTD that is designed for books. If you are
primarily authoring topics, it makes sense to use a DTD that is designed for topics and
can scale to large, processable collections of topics.

DITA overview
The Darwin Information Typing Architecture defines a set of relationships between the
document parts, processors, and communities of users of the information.

The Darwin Information Typing Architecture has the following layers that relate to specific
design points expressed in its core DTD, topic.

Figure1. Layers in the Darwin Information Typing Architecture

Delivery contexts

helpset aggregate printing Web site; information portal

Typed topic structures

topic concept task reference

Specialized vocabularies (domains) across information types

Typed topic: concept task reference

Included domains:

highlighting
software

programming
user interface

Documentation including DITA papers

6

Common structures

metadata OASIS (CALS) table

A typed topic, whether concept, task, or reference, is a stand-alone unit of
ready-to-be-published information. Above it are any processing applications that may be
driven by a superset DTD; below it are the two types of content models that form the
basis of all specialized DTDs within the architecture. We will look at each of these layers
in more detail.

DITA delivery contexts
This domain represents the processing layer for topical information. Topics can be
processed singly or within a delivery context that relates multiple topics to a defined
deliverable. Delivery contexts also include document management systems, authoring
units, packages for translation, and more.

delivery contexts

helpset aggregate printing Web site; information portal

DITA typed topic specializations (infotyped topics)
The typed topics represent the fundamental structuring layer for DITA topic-oriented
content. The basis of the architecture is the topic structure, from which the concept, task,
and reference structures are specialized. Extensibility to other typed topics is possible by
further specialization.

typed topic structures

topic concept task reference

The four information types (topic, concept, task, and reference) represent the primary
content categories used in the technical documentation community. Moreover,
specialized, information types, based on the original four, can be defined as required.

As a notable feature of this architecture, communities can define or extend additional
information types that represent their own data. Examples of such content include
product support information, programming message descriptions, and GUI definitions.
Besides the ability to type topics and define specific content models therein, DITA also
provides the ability to extend tag vocabularies that pertain to a domain. Domain
specialization takes the place of what had been called "shared structures" in DITA's
original design.

DITA vocabulary specialization (domains)

Commonly, when a set of infotyped topics are used within a domain of knowledge, such
as computer software or hardware, a common vocabulary is shared across the infotyped
topics. However, the same infotyped topic can be used across domains that have
different vocabularies and semantics. For example, a hardware reference topic might
refer to diagnostic codes while a software reference topic might refer to error message
numbers, with neither domain necessarily needing to expose the other domain's unique
vocabulary to its own writers.

Documentation including DITA papers

7

Using the same technique as specialization for topics, DITA allows the definition of
domains of special vocabulary that can be shared among infotyped topics. Domains can
even be elided entirely, to produce typed topics that have only the core elements
In the original design of DITA, all of the shared vocabulary had been made global to all information types by
being defined in the topic DTD, which had two undesirable effects:

• new vocabulary could not be added without increasing the size of the core DTD
• certain domain-specific vocabulary could not be prohibited for DTDs specialized for a different domain.

. The vocabulary of a domain can take the form of phrases, special paragraphs, and
lists--basically anything allowed within a section, the smallest organizing part of a topic.

specialized vocabularies (domains) across information types

Typed topic: concept task reference

Included domains:

highlighting
software

programming
user interface

The basic domains defined as examples for DITA include:

Domain Elements

highlighting b, u, i, tt, sup, sub

software msgph, msgblock, msgnum, cmdname, varname,
filepath, userinput, systemoutput

programming codeph, codeblock, option, var, parmname, synph, oper,
delim, sep, apiname, parml, plentry, pt, pd,
syntaxdiagram, synblk, groupseq, groupchoice,
groupcomp, fragment, fragref, synnote, synnoteref,
repsep, kwd

user interface uicontrol, wintitle, menucascade, shortcut

By following the rules for specializing a new domain of content, you can extend, replace,
or remove these domains. Moreover, content specialization enables you to name and
extend any content element in the scope of DITA infotyped topics for a more semantically
significant role in a new domain.

To enable specialized vocabulary, you declare a parameter entity equivalent for every
element used in a DTD (such as topic or one of its specializations), and then use the
parameter entities instead of literal element tokens within the content models of that DTD.
Later, after entity substitution, because an element's parameter entity is redefined to
include both the original element and the domain elements derived from that element,
anywhere the original element is allowed, the other derived domain elements are also
allowed. In effect, a domain-agnostic topic can be easily extended for different domains
by simply changing the scope of entity set inclusions in a front-end DTD "shell" that
formalizes the vocabulary extensions within that typed topic or family of typed topics

DITA common structures
One of the design points of DITA has been to exploit the reuse of common substructures
within the world of XML. Accordingly, the topic DTD incorporates the OASIS table model
(known originally as the CALS table model). It also has a defined set of metadata that

Documentation including DITA papers

8

might be shared directly with the metadata models of quite different DTDs or schemas.

common structures

metadata OASIS (CALS) table

The metadata structure defines document control information for individual topics,
higher-level processing DTDs, or HTML documents that are associated to the metadata
as side files or as database records.

The table structure provides presentational semantics for body-level content. The
OASIS/CALS table display model is supported in many popular XML editors.

Elements designed for specialization

DITA provides a rich base for specialization because of the general design of elements
used in its archetype-like topic DTD.

For example, a section in the base topic DTD can contain both text and element data.
However, a section can be specialized to eliminate PCDATA, yielding an element-only
content model similar to the body level of most DTDs. Specialized another way, a section
can eliminate most block-like elements and thus be characterized as a description for
definitions, field labels, parts, and so forth.

In DITA, an effort has been made to select element names that are popular or that are
common with HTML. Some semantic names have been borrowed from industry DTDs
that support large SGML libraries, such as IBMIDDoc and DocBook.

The attribute lists within the topic DTD reflect this design philosophy. For example, one of
the "universal attributes" (they appear on most elements) is importance, which defines
values for weightings or appraisals that are often used as properties in specialized
elements. This attribute shows up in several elements of the task topic specialization with
only two allowed values out of the original set, "optional' and "required." In other domains,
the elements are more appropriately ranked as "high" or "low," again values that are
provided at the topic level.

The values of specialization
A company that has specific information needs can define specialized topic types. For
example, a product group might identify three main types of reference topic: messages,
utilities, and APIs. By creating a specialized topic type for each type of content, the
product architect can be assured that each type of topic has the appropriate content. In
addition, the specialized topics make XML-aware search more useful because users can
make fine-grained distinctions. For example, a user could search for "xyz" only in
messages or only in APIs, as well as search for "xyz" across reference topics in general.

There are rules for how to specialize safely: each new information type must map to an
existing one and must be more restrictive in the content that it allows. With such
specialization, new information types can use generic processing streams for translation,
print, and Web publishing. Although a product group can override or extend these
processes, they get the full range of existing processes by default without any extra work
or maintenance.

A corporation can have a series of DTDs that represent a consistent set of information

Documentation including DITA papers

9

descriptions, each of which emphasizes the value of specialization for those new
information types.

Role of content communities in the Darwin Information Typing Architecture

The technical documentation community that designed this architecture defined the basic
architecture and shared resources. The content owned by specified communities (within
or outside of the defining community) can reuse processors, styles, and other features
already defined. But, those communities are responsible for their unique business
processes based on the data that they manage. They can manage data by creating a
further specialization from one of the base types.

The following figure represents how communities, as "content owners at the topic level,"
can specialize their content based on the core architecture.

Figure2. Relationship of specialized communities to the base architecture

In this figure, the overlap represents the common architecture and tools shared between
content-owning communities that use this information architecture. New communities that
define typed documents according to the architecture can then use the same tools at the
outset, and refine their content-specific tools as needed.

Notices

© Copyright International Business Machines Corp., 2002, 2003. All rights
reserved.

Documentation including DITA papers

10

The information provided in this document has not been submitted to any
formal IBM test and is distributed "AS IS," without warranty of any kind,
either express or implied. The use of this information or the implementation
of any of these techniques described in this document is the reader's
responsibility and depends on the reader's ability to evaluate and integrate
them into their operating environment. Readers attempting to adapt these
techniques to their own environments do so at their own risk.

Specializing topic types in DITA
The Darwin Information Typing Architecture (DITA) provides a way for documentation
authors and architects to create collections of typed topics that can be easily assembled
into various delivery contexts. Topic specialization is the process by which authors and
architects can define topic types, while maintaining compatibility with existing style
sheets, transforms, and processes. The new topic types are defined as an extension, or
delta, relative to an existing topic type, thereby reducing the work necessary to define
and maintain the new type.

The point of the XML-based Darwin Information Typing Architecture (DITA) is to create
modular technical documents that are easy to reuse with varied display and delivery
mechanisms, such as helpsets, manuals, hierarchical summaries for small-screen
devices, and so on. This article explains how to put the DITA principles into practice with
regards to the creation of a DTD and transforms that will support your particular
information types, rather than just using the base DITA set of concept, task, and
reference.

Topic specialization is the process by which authors and architects define new topic
types, while maintaining compatibility with existing style sheets, transforms, and
processes. The new topic types are defined as an extension, or delta, relative to an
existing topic type, thereby reducing the work necessary to define and maintain the new
type.

The examples used in this paper use XML DTD syntax and XSLT; if you need
background on these subjects, see Resources.

Architectural context

In SGML, architectural forms are a classic way to provide mappings from one document
type to another. Specialization is an architectural-forms-like solution to a more
constrained problem: providing mappings from a more specific topic type to a more
general topic type. Because the specific topic type is developed with the general topic
type in mind, specialization can ignore many of the thornier problems that architectural
forms address. This constrained domain makes specialization processes relatively easy
to implement and maintain. Specialization also provides support for multi-level or
hierarchical specializations, which allow more general topic types to serve as the
common denominator for different specialized types.

The specialization process was created to work with DITA, although its principles and
processes apply to other domains as well. This will make more sense if you consider an
example: Given specialization and a generic DTD such as HTML, you can create a new
document type (call it MyHTML). In MyHTML you could enforce site standards for your
company, including specific rules about forms layout, heading levels, and use of font and
blink tags. In addition, you could provide more specific structures for product and ordering
information, to enable search engines and other applications to use the data more
effectively.

Documentation including DITA papers

11

Specialization lets MyHTML be defined as an extension of the HTML DTD, declaring new
element types only as necessary and referencing HTML's DTD for shared elements.
Wherever MyHTML declares a new element, it includes a mapping back to an existing
HTML element. This mapping allows the creation of style sheets and transforms for
HTML that operate equally well on MyHTML documents. When you want to handle a
structure differently (for example, to format product information in a particular way), you
can define a new style sheet or transform that holds the extending behavior, and then
import the standard style sheet or transform to handle the rest. In other words, new
behavior is added as extensions to the original style sheet, in the same way that new
constraints were added as extensions to the original DTD or schema.

Specializing information types

The Darwin Information Typing Architecture is less about document types than
information types. A document is considered to be made up of a number of topics, each
with its own information type. A topic is, simply, a chunk of information consisting of a
heading and some text, optionally divided into sections. The information type describes
the content of the topic: for example, the type of a given topic might be "concept" or
"task."

DITA has three types of topic: a generic topic, or information-typed concept, task, and
reference topics. Concept, task, and reference topics can all be considered
specializations of topic:

Additional information types can be added to the architecture as specializations of any of
these three basic types, or as a peer specialization directly off of topic; and any of these
additional specializations can in turn be specialized:

Each new information type is defined as an extension of an existing information type: the
specializing type inherits, without duplication, any common structures; and the
specializing type provides a mapping between its new elements and the general type's
existing elements. Each information type is defined in its own DTD module, which defines
only the new elements for that type. A document that consists of exactly one information

Documentation including DITA papers

12

type (for example, a task document in a help web) has a document type defined by all the
modules in the information type's specialization hierarchy (for example, task.mod and
topic.mod). A document type with multiple information types (for example, a book
consisting of concepts, tasks, and reference topics) includes the modules for each of the
information types used, as well as the modules for their ancestors (concept.mod,
task.mod, reference.mod, plus their ancestor topic.mod).

Because of the separation of information types into modules, you can define new
information types without affecting ancestor types. This separation gives you the
following benefits:

• Reduces maintenance costs: each authoring group maintains only the elements that
it uniquely requires

• Increases compatibility: the core information types can be centrally maintained, and
changes to the core types are reflected in all specializing types

• Distributes control: reusability is controlled by the reuser, instead of by the author;
adding a new type does not affect the maintenance of the core type, and does not
affect other users of different types

Any information-typed topic belongs to multiple types. For example, an API description is,
in more general terms, a reference topic.

Specialization example: Reference topic

Consider the specialization hierarchy for a reference topic:

Table 1 expresses the relationship between the general elements in topic and the specific
elements in reference. Within the table, the columns, rows, and cells indicate information
types, element mappings, and elements. Table 2 explains the relationships in detail to
help you interpret Table 1.

Table1. Relationships between topic and a specialization based on it

Topic Reference

(topic.mod) (reference.mod)

topic reference

title '

body refbody

simpletable properties

'

section refsyn

'

Structure
Associations

Columns
The Topic column shows basic topic structure, which comprises a title and body
with optional sections, as declared in a DTD module called topic.mod . The

Documentation including DITA papers

13

Reference column shows a more specialized structure, with reference replacing
topic, refbody replacing body, and refsyn replacing section; these new
elements are declared in a DTD module called reference.mod .

Rows
Each row represents a mapping between the elements in that row. The elements in
the Reference column specialize the elements in the Topic column. Each general
element also serves as a category for more specialized elements in the same row.
For example, reference's refsyn is a kind of section.

Cells
Each cell in a column represents the following possibilities in relation to the cell to its
left:

• A blank cell: The element in the cell to the left is reused as-is. For example, a
reference title is the same as a topic title, and topic's declaration of
the title element can be used by reference.

• A full cell: An element that is specific to the current type replaces the more
general element to the left. For example, in reference , refbody replaces the
more general body.

• A split row with a blank cell: The new specializations are in addition to the more
general element, which remains available in the specialized type. For example,
reference adds properties as a special type of simpletable (dl), but the
general kind of simpletable remains available in reference.

The reference type module

Listing 1 illustrates not the actual reference.mod content, but a simplified version
based on Table 1. The use of entities in the content models support domain
specialization, as described in the domain specialization article.

Listing 1. reference.mod

<!ELEMENT reference ((%title;), (%prolog;)?, (%refbody;),(%info-types;)*
)>
<!ELEMENT refbody (%section; | refsyn | %simpletable; | properties)*>
<!ELEMENT properties ((%sthead;)?, (%strow;)+) >
<!ELEMENT refsyn (%section;)* >

Most of the content models declared here depend on elements or entities declared in
topic.mod. Therefore, if topic's structure is enhanced or changed, most of the
changes will be picked up by reference automatically. Also the definition of
reference remains simple: it doesn't have to redeclare any of the content that it shares
with topic.

Adding specialization attributes

To expose the element mappings, we add an attribute to each element that shows its
mappings to more general types.

Listing 2. reference.mod (part 2)

<!ATTLIST reference class CDATA "- topic/topic reference/reference ">
<!ATTLIST refbody class CDATA "- topic/body reference/refbody ">
<!ATTLIST properties class CDATA "- topic/simpletable
reference/properties ">
<!ATTLIST refsyn class CDATA "- topic/section reference/refsyn ">

Later on, we'll talk about how to take advantage of these attributes when you write an
XSL transform. See the appendix for a more in-depth description of the class attribute.

Creating an authoring DTD

Now that we've defined the type module (which declares the newly typed elements and
their attributes) and added specialization attributes (which map the new type to its
ancestors), we can assemble an authoring DTD.

Documentation including DITA papers

14

Listing 3. reference.dtd

<!--Redefine the infotype entity to exclude other topic types-->
<!ENTITY % info-types "reftopic">
<!--Embed topic to get generic elements -->
<!ENTITY % topic-type SYSTEM "topic.mod">
%topic-type;
<!--Embed reference to get specific elements -->
<!ENTITY % reference-type SYSTEM "reference.mod">
%reference-type;

Specialization example: API description

Now let's create a more specialized information type: API descriptions, which are a kind
of (and therefore specialization of) reference topic:

Figure3. A more specialized information type, API description

Table 3 shows part of the specialization for an information type called APIdesc, for API
description. As before, each column represents an information type, with specialization
occurring from left to right. That is, each information type is a specialization of its
neighbor to the left. Each row represents a set of mapped elements, with more specific
elements to the right mapping to more general equivalents to the left.

As before, each cell specializes the contents of the cell to its left:

• A blank cell: The element to the left is picked up by the new type unchanged. For
example, simpletable and refsyn are available in an API description.

• A full cell: The element to the left is replaced by a more specific one. For example,
APIname replaces title.

• A split row with a blank cell: New elements are added to the elements on the left.
For example, the API description adds a usage section as a peer of the refsyn
and section elements.

Table2. Summary of APIdesc specialization

Topic Reference APIdesc

(topic.mod) (reference.mod) (APIdesc.mod)

topic reference APIdesc

title ' APIname

body refbody APIbody

Documentation including DITA papers

15

Topic Reference APIdesc

simpletable properties parameters

' '

section refsyn '

' '

usage

The APIdesc module

Here you can see that the content for an API description is actually much more restricted
than the content of a general reference topic. The sequence of syntax, then usage,
then parameters is now imposed, followed by optional additional sections. This
sequence is a subset of the allowable structures in a reference topic, which allows any
sequence of syntax, properties, and sections. In addition, the label for the usage section
is now fixed as Usage, taking advantage of the spectitle attribute of section (which is
there for exactly this kind of usage): with the spectitle attribute providing the section title,
we can also get rid of the title element in usage's content model, making use of the
predefined section.notitle.cnt entity.

APIdesc.mod

<!ELEMENT APIdesc (APIname, (%prolog;)?, APIbody,(%info-types;)*)>
<!ELEMENT APIname (%title.cnt;)*>
<!ELEMENT APIbody (refsyn,usage,parameters,(%section;)*)>
<!ELEMENT usage (%section.notitle.cnt;)* >
<!ATTLIST usage spectitle CDATA #FIXED "Usage">
<!ELEMENT parameters ((%sthead;)?, (%strow;)+)>

Adding specialization attributes

Every new element now has a mapping to all its ancestor elements.

APIdesc.mod (part 2)

<!ATTLIST APIdesc class CDATA "- topic/topic reference/reference
APIdesc/APIdesc " >
<!ATTLIST APIname spec CDATA "- topic/title reference/title
APIdesc/APIname " >
<!ATTLIST APIbody spec CDATA "- topic/body reference/refbody
APIdesc/APIbody" >
<!ATTLIST parameters spec CDATA "- topic/simpletable reference/properties
APIdesc/parameters ">
<!ATTLIST usage spec CDATA "- topic/section reference/section
APIdesc/usage ">

Note that APIname explicitly identifies its equivalent in both reference and topic, even
though they are the same (title) in both cases. In the same way, usage explicitly maps to
section in both reference and topic. This explicit identification makes it easier for
processes to keep track of complex mappings. Even if you had a specialization hierarchy
10 levels deep or more, the attributes would still allow unambiguous mappings to each
ancestor information type.

Authoring DTDs

Now that we've defined the type module (which declares the newly typed elements and
their attributes) and added specialization attributes (which map the new type to its
ancestors), we can assemble an authoring DTD.

APIdesc.dtd

Documentation including DITA papers

16

<!--Redefine the infotype entity to exclude other topic types-->
<!ENTITY % info-types "APIdesc">
<!--Embed topic to get generic elements -->
<!ENTITY % topic-type SYSTEM "topic.mod">
%topic-type;
<!--Embed reference to get more specific elements -->
<!ENTITY % reference-type SYSTEM "reference.mod">
%reftopic-type;
<!--Embed APIdesc to get most specific elements -->
<!ENTITY % APIdesc-type SYSTEM "APIdesc.mod">
%APIdesc-type;

Working with specialization

After a specialized type has been defined the necessary attributes have been declared,
they can provide the basis for the following operations:

• Applying a general style sheet or transform to a specialized topic type
• Generalizing a topic of a specialized type (transforming it into a more generic topic

type)
• Specializing a topic of a general type (transforming it into a more specific topic type

- to be used only when a topic was originally authored in specialized form, and has
gone through a general stage without breaking the constraints of its original form)

Applying general style sheets or transforms

Because content written in a new information type (such as APIdesc) has mappings to
equivalent or less restrictive structures in preexisting information types (such as
reference and topic), the preexisting transforms and processes can be safely applied
to the new content. By default, each specialized element in the new information type will
be treated as an instance of its general equivalent. For example, in APIdesc the
<usage> element will be treated as a topic <section> element that happens to have
the fixed label "Usage".

To override this default behavior, an author can simply create a new, more specific rule
for that element type, and then import the default style sheet or transform, thus extending
the behavior without directly editing the original style sheet or transform. This reuse by
reference reduces maintenance costs (each site maintains only the rules it uniquely
requires) and increases consistency (because the core transform rules can be centrally
maintained, and changes to the core rules will be reflected in all other tranforms that
import them). Control over reuse has moved from the author of the transform to the
reuser of the transform.

The rest of this section assumes knowledge of XSLT, the XSL Transformations language.

Requirements:

This process works only if the general transforms have been enabled to handle
specialized elements, and if the specialized elements include enough information for the
general transform to handle them.

Requirement 1: mapping attributes

To provide the specialization information, you need to add specialization attributes, as
outlined previously. After you include the attributes in your documents, they are ready to
be processed by specialization-aware transforms.

Requirement 2: specialization-aware transforms

For the transform, you need template rules that check for a match against both the
element name and the attribute value.

The specialization-aware interface

Documentation including DITA papers

17

<xsl:template match="*[contains(@class," topic/simpletable "]">
<!--matches any element that has a class attribute that mentions

topic/simpletable-->
<!--do something-->
</xsl:template>

Example: overriding a transform:

To override the general transform for a specific element, the author of a new information
type can create a transform that declares the new behavior for the specific element and
imports the general transform to provide default behavior for the other elements.

For example, an APIdesc specialized transform could allow default handling for all
specialized elements except parameters:

A specialized transformation for APIdesc

<xsl:import href="general-transform.xsl"/>
<xsl:template match="*[contains(@class," APIdesc/parameters "]">
<!--do something-->
<xsl:apply-templates/>
</xsl:template>

Both the preexisting reference properties template rule and the new parameters
template rule match when they encounter a parameters element (because the
parameters element is a specialized type of reference properties element), and
its class attribute contains both values). However, because the parameters template is
in the importing style sheet, the new template takes precedence.

Generalizing a topic

Because a specialized information type is also an instance of its ancestor types (an
APIdesc is a reference topic is a topic), you can safely transform a specialized
topic to one of its more generic ancestors. This upward compatibility is useful when you
want to combine sets of documentation from two sources, each of which has specialized
differently. The ancestor type provides a common denominator that both can be safely
transformed to. This compatibility may also be useful when you have to feed topics
through processes that are not specialization-aware. For example, a publication center
that charges per document type or uses non-DTD-aware processes could be sent a
generalized set of documents, so that they only support one document type or set of
markup. However, wherever possible, you should use specialization-aware processes
and transforms, so that you can avoid generalizing and process your documents in their
more descriptive, specialized form.

To safely generalize a topic, you need a way to map from your information type to the
target information type. You also need a way to preserve the original type in case you
need round-tripping later.

The class attribute that was introduced previously serves two purposes. It provices:

• The information needed to map.
• A way to preserve the information to allow round-tripping.

Each level of specialization has its own set of class attributes, which in the end provide
the full specialization hierarchy for all specialized elements.

Consider the APIdesc topic in Listing 11:

A sample topic from APIdesc

<APIdesc>
<APIname>AnAPI</APIname>

Documentation including DITA papers

18

<APIbody>
<refsyn>AnAPI (parm1, parm2)</refsyn>
<usage spectitle="Usage">Use AnAPI to pass parameters to your process.
</usage>
<parameters >
...
</parameters>

</APIbody>
</APIdesc>

With the class attributes exposed (all values are provided as defaults by the DTD):

The same sample topic from APIdesc, including the class attributes

<APIdesc class="- topic/topic reference/reference APIdesc/APIdesc ">
<APIname class="- topic/title reference/title APIdesc/APIname ">AnAPI
</APIname>
<APIbody class="- topic/body reference/refbody APIdesc/APIbody ">
<refsyn class="- topic/section reference/refsyn ">AnAPI(parm1,
parm2)</refsyn>
<usage class="- topic/section reference/section APIdesc/usage "
spectitle="Usage">
<p class="- topic/p ">Use AnAPI to pass parameters to your

process.</p>
</usage>
<parameters class="topic/simpletable reference/properties

APIdesc/parameters ">
...
</parameters>

</APIbody>
</APIdesc>

From here, a single template rule can transform the entire APIdesc topic to either a
reference or a generic topic. The template rule simply looks in the class attribute
for the ancestor element name, and renames the current element to match.

After a transform to topic, it should look something like Listing 13:

A transformed topic from APIdesc

<topic class="- topic/topic reference/reference APIdesc/APIdesc ">
<title class="- topic/title reference/title APIdesc/APIname ">AnAPI
</title>
<body class="- topic/body reference/refbody APIdesc/APIbody ">
<section class="- topic/section reference/refsyn ">AnAPI(parm1,
parm2)</section>
<section class="- topic/section reference/section APIdesc/usage "
spectitle="Usage">
<p class="- topic/p ">Use AnAPI to pass parameters to your

process.</p>
</section>
<simpletable class="topic/simpletable reference/properties

APIdesc/parameters ">
...
</simpletable>

</body>
</topic>

Even after generalization, specialization-aware transforms can continue to treat the topic
as an APIdesc, because the transforms can look in the class attribute for information
about the element type hierarchy.

From here, it is possible to round-trip by reversing the transformation (looking in the
class attribute for the specializing element name, and renaming the current element to
match). Whenever the class attribute doesn't list the target (the first section has no
APIdesc value), the element is changed to the last value listed (so the first section
becomes, accurately, a refsyn).

However, if anyone changes the structure of the content while it is a generic topic (as
by changing the order of sections), the result might not be valid anymore under the

Documentation including DITA papers

19

specialized information type (which in the APIdesc case enforces a particular sequence
of information in the APIbody). So although mapping to a more general type is always
safe, mapping back to a specialized type can be problematic: The specialized type has
more rules, which make the content specialized. But those rules aren't enforced while the
content is encoded more generally.

Specializing a topic

It is relatively trivial to specialize a general topic if the content was originally authored as
a specialized type. However, a more complex case can result if you have authored
content at a general level that you now want to type more precisely.

For example, suppose that you create a set of reference topics. Then, having analyzed
your content, you realize that you have a consistent pattern. Now you want to enforce this
pattern and describe it with a specialized information type (for example, API
descriptions). In order to specialize, you need to first create the target DTD and then add
enough information to your content to allow it to be migrated.

You can put the specializing information in either of two places:

• Add it to the class attribute. You need to be careful to get the order correct, and
include all ancestor type values.

• Or give the name of the target element in an outputclass attribute, migrate
based on that value, and add the class attribute values afterward.

In either case, before migration you can run a validation transform that looks for the
appropriate attribute, then checks that the content of the element will be valid under the
specialized content model. You can use a tool like Schematron to generate both the
validating transform and the migrating transform, or you can migrate first and use the
specialized DTD to validate that the migration was successful.

Specializing with schemas

Like the XML DTD syntax, the XML Schema language is a way of defining a vocabulary
(elements and attributes) and a set of constraints on that vocabulary (such as content
models, or fixed vs. implied attributes). It has a built-in specialization mechanism, which
includes the capability to restrict allowable specializations. Using the XML Schema
language instead of DTDs would make it much easier to validate that specialized
information types represent valid subsets of generic types, which ensures smooth
processing by generic translation and publishing transforms.

Unlike DTDs, XML schemas are expressed as XML documents. As a result, they can be
processed in ways that DTDs cannot. For example, we can maintain a single XML
schema and then use XSL to generate two versions:

• An authoring version of it that eliminates any fixed attributes and any overridden
elements

• A processor-ready version of it that includes the class attributes that drive the
translation and publishing transforms

However, XML schemas are not yet popular enough to adopt wholeheartedly. The main
problems are a lack of authoring tools, and incompatibilities between the implementations
of an evolving standard. These problems should be remedied by the industry over the
next year or so, as the standard is finalized and schemas become more widely adopted
and supported.

Summary

You can create a specialized information type by using this general procedure:

1. Identify the elements that you need.
2. Identify the mapping to elements of a more general type.

Documentation including DITA papers

20

3. Verify that the content models of specialized elements are more restrictive than their
general equivalents.

4. Create a type module file that holds your specialized element and attribute
declarations (including the class attribute).

5. Create an authoring DTD file that imports the appropriate type modules.

You can create specialized XSL transforms by using this general procedure:

1. Create a new transform for your information type.
2. Import the existing transform that you want to extend.
3. Identify the elements that you need to treat specially.
4. Add template rules that match those elements, based on their class attribute

content.

Appendix: Rules for specialization

Although you could create a new element equivalent for any tag in a general DTD, this
work is useless to you as an author unless the content models that would include the tag
are also specialized. In the APIdesc example, the parameters element is not valid
content anywhere in topic or reference. For it to be used, you need to create valid
contexts for parameters, all the way up to the topic-level container. To expose the
parameters element to your authors, you need to specialize the following parts:

• A body element, to allow parameters as valid content (giving us APIbody)
• A topic element, to allow the specialized body (giving us APIdesc)

This domino effect can be avoided by using domain specialization. If you truly just want to
add some new variant structures to an existing information type, use domain
specialization instead of topic specialization (see Specializing domains in DITA on page 24
).

To ensure that the specialized elements are more constrained than their general
equivalents (that is, that they allow a proper subset of the structures that the general
equivalent allows), you need to look at the content model of the general element. You
can safely change the content model of your specialized element as shown in Table A:

Table3. Summary of specialization rules

Content type Allowed specialization Example (Special specializing General)

Required Rename only

<!ELEMENT General(a)>

<!ELEMENT Special(a.1)>

Optional (?) Rename, make
required, or delete

<!ELEMENT General(a?)>

<!ELEMENT Special(a.1?)>
<!ELEMENT Special(a.1)>
<!ELEMENT Special EMPTY>

One or more
(+)

Rename, make
required, split into a
required element plus
others, split into one or
more elements plus
others.

<!ELEMENT General(a+)>

<!ELEMENT Special(a.1+)>
<!ELEMENT Special(a.1)>
<!ELEMENT Special(a.1,a.2,a.3+,a.4*)>
<!ELEMENT Special(a.1+,a.2,a.3*)>

Documentation including DITA papers

21

Content type Allowed specialization Example (Special specializing General)

Zero or more
(*)

Rename, make
required, make
optional, split into a
required element plus
others, split into an
optional element plus
others, split into
one-or-more plus
others, split into
zero-or-more plus
others, or delete

<!ELEMENT General(a*)>

<!ELEMENT Special(a.1*)>
<!ELEMENT Special(a.1)>
<!ELEMENT Special(a.1?)>
<!ELEMENT Special(a.1,a.2,a.3+,a.4*)>
<!ELEMENT Special(a.1?,a.2,a.3+,a.4*)>
<!ELEMENT Special(a.1+,a.2,a.3*)>
<!ELEMENT Special(a.1*,a.2?,a.3*)>
<!ELEMENT Special EMPTY>

Either-or Rename, or choose one

<!ELEMENT General (a|b)>

<!ELEMENT Special (a.1|b.1)>
<!ELEMENT Special (a.1)>

Extended example

You have a general element General, with the content model (a,b?,(c|d+)). This
definition means that a General always contains element a, optionally followed by
element b, and always ends with either c or one or more d's.

The content model for the general element General

<!ELEMENT General (a,b?,(c|d+))>

When you specialize General to create Special, its content model must be the same
or more restrictive: It cannot allow more things than General did, or you will not be able
to map upward, or guarantee the correct behavior of general processes, transforms, or
style sheets.

Leaving aside renaming (which is always allowed, and simply means that you are also
specializing some of the elements that Special can contain), here are some valid
changes that you could make to the content model of Special, resulting in the same or
more restrictive content rules:

A valid change to the model Special, making b mandatory

<!ELEMENT Special (a,b,(c|d))>

Special now requires b to be present, instead of optional, and allows only one d. It
safely maps to General.

A valid change to the model Special, making c mandatory and disallowing d

<!ELEMENT Special (a,b?,c)>

Special now requires c to be present, and no longer allows d. It safely maps to
General.

A valid change to the model Special, making three specializations of d mandatory

<!ELEMENT Special (a,b?,d1,d2,d3)>

Documentation including DITA papers

22

Special now requires three specializations of d to be present, and does not allow c. It
safely maps to General.

Details of the class attribute

Every element must have a class attribute. The class attribute starts and ends with white
space, and contains a list of blank-delimited values. Each value has two parts: the first
part identifies a topic type, and the second part (after a /) identifies an element type. The
class attribute value should be declared as a default attribute value in the DTD.
Generally, it should not be modified by the author.

Example:

<appstep class="- topic/li task:step bctask/appstep ">A specialized
step</appstep>

When a specialized type declares new elements, it must provide a class attribute for the
new element. The class attribute must include a mapping for every topic type in the
specialized type's ancestry, even those in which no element renaming occurred. The
mapping should start with topic, and finish with the current element type.

Example:

<appname class="- topic/kwd task/kwd bctask/appname ">

This is necessary so that generalizing and specializing transforms can map values simply
and accurately. For example, if task/kwd was missing as a value, and I decided to map
this bctask up to a task topic, then the transform would have to guess whether to map to
kwd (appropriate if task is more general, which it is) or leave as appname (appropriate if
task were more specialized, which it isn't). By always providing mappings for more
general values, we can then apply the simple rule that missing mappings must by default
be to more specialized values, which means the last value in the list is appropriate. While
this example is trivial, more complicated hierarchies (say, five levels deep, with renaming
occurring at two and four only) make this kind of mapping essential.

A specialized type does not need to change the class attribute for elements that it does
not specialize, but simply reuses by reference from more generic levels. For example,
since task and bctask use the p element without specializing it, they don't need to declare
mappings for it.

A specialized type only declares class attributes for the elements that it uniquely
declares. It does not need to declare class attributes for elements that it reuses or
inherits.

Using the class attribute

Applying an XSLT template based on class attribute values allows a transform to be
applied to whole branches of element types, instead of just a single element type.

Wherever you would check for element name (any XPath statement that contains an
element name value), you need to enhance this to instead check the contents of the
element's class attribute. Even if the element is unrecognized, the class attribute can let
the transform know that the element belongs to a class of known elements, and can be
safely treated according to their rules.

Example:

Documentation including DITA papers

23

<xsl:template match="*[contains(@class,' topic/li ')]">
This match statement will work on any li element it encounters. It will
also work on step and appstep elements, even though it doesn't know what
they are specifically, because the class attribute tells the template
what they are generally.
<xsl:template match="*[contains(@class,' task/step ')]">

This match statement won't work on generic li elements, but it will work on both step
elements and appstep elements; even though it doesn't know what an appstep is, it
knows to treat it like a step.

Be sure to include a leading and trailing blank in your class attribute string check.
Otherwise you could get false matches (without the blanks, 'task/step' would match on
'notatask/stepaway', when it shouldn't).

The class attribute in domains specialization

When you create a domains specialization, the new elements still need a class attribute,
but should start with a "+" instead of a "-". This signals any generalization transforms to
treat the element differently: a domains-aware generalization transform may have
different logic for handling domains than for handling topic specializations.

Domain specializations should be derived either from topic (the root topic type), or from
another domain specialization. Do not create a domain by specializing an already
specialized topic type: this can result in unpredictable generalization behavior, and is not
currently supported by the architecture.

Notices

© Copyright International Business Machines Corp., 2002, 2003. All rights
reserved.

The information provided in this document has not been submitted to any
formal IBM test and is distributed "AS IS," without warranty of any kind,
either express or implied. The use of this information or the implementation
of any of these techniques described in this document is the reader's
responsibility and depends on the reader's ability to evaluate and integrate
them into their operating environment. Readers attempting to adapt these
techniques to their own environments do so at their own risk.

Specializing domains in DITA
In current approaches, DTDs are static. As a result, DTD designers try to cover every
contingency and, when this effort fails, users have to force their information to fit existing
types. DITA changes this situation by giving information architects and developers the
power to extend a base DTD to cover their domains.

The Darwin Information Typing Architecture (DITA) is an XML architecture for extensible
technical information. A domain extends DITA with a set of elements whose names and
content models are unique to an organization or field of knowledge. Architects and
authors can combine elements from any number of domains, leading to great flexibility
and precision in capturing the semantics and structure of their information. In this
overview, you learn how to define your own domains.

Introducing domain specialization

Documentation including DITA papers

24

In DITA, the topic is the basic unit of processable content. The topic provides the title,
metadata, and structure for the content. Some topic types provide very simple content
structures. For example, the concept topic has a single concept body for all of the
concept content. By contrast, a task topic articulates a structure that distinguishes
pieces of the task content, such as the prerequisites, steps, and results.

In most cases, these topic structures contain content elements that are not specific to the
topic type. For example, both the concept body and the task prerequisites permit
common block elements such as p paragraphs and ul unordered lists.

Domain specialization lets you define new types of content elements independently of
topic type. That is, you can derive new phrase or block elements from the existing phrase
and block elements. You can use a specialized content element within any topic structure
where its base element is allowed. For instance, because a p paragraph can appear
within a concept body or task prerequisite, a specialized paragraph could appear there,
too.

Here's an analogy from the kitchen. You might think of topics as types of containers for
preparing food in different ways, such as a basic frying pan, blender, and baking dish.
The content elements are like the ingredients that go into these containers, such as
spices, flour, and eggs. The domain resembles a specialty grocer who provides
ingredients for a particular cuisine. Your pot might contain chorizo from the carnicería
when you're cooking TexMex or risotto when you're cooking Italian. Similarly, your topics
can contain elements from the programming domain when you're writing about a
programming language or elements from the UI domain when you're writing about a GUI
application.

DITA has broad tastes, so you can mix domains as needed. If you're describing how to
program GUI applications, your topics can draw on elements from both the programming
and UI domains. You can also create new domains for your content. For instance, a new
domain could provide elements for describing hardware devices. You can also reuse new
domains created by others, expanding the variety of what you can cook up.

In a more formal definition, topic specialization starts with the containing element and
works from the top down. Domain specialization, on the other hand, starts with the
contained element and works from the bottom up.

Understanding the base domains

A DITA domain collects a set of specialized content elements for some purpose. In effect,
a domain provides a specialized vocabulary. With the base DITA package, you receive
the following domains:

In most domains, a specialized element adds semantics to the base element. For

Documentation including DITA papers

25

example, the apiname element of the programming domain extends the basic keyword
element with the semantic of a name within an API.

The highlight domain is a special case. The elements in this domain provide styled
presentation instead of semantic or structural markup. The highlight styles give authors a
practical way to mark up phrases for which a semantic has not been defined.

Providing such highlight styles through a domain resolves a long-standing dispute for
publication DTDs. Purists can omit the highlight domain to enforce documents that should
be strictly semantic. Pragmatists can include the highlight domain to provide expressive
flexibility for real-world authoring. A semipragmatist could even include the highlight
domain in conceptual documents to support expressive authoring but omit the highlight
domain from reference documents to enforce strict semantic tagging.

More generally, you can define documents with any combination of domains and topics.
As we'll see in Generalizing a domain on page 32 , the resulting documents can still be
exchanged.

Combining an existing topic and domain

The DITA package provides a DTD for each topic type and an omnibus DTD (
ditabase.dtd) that defines all of the topic types. Each of these DTDs includes all of
the predefined DITA domains. Thus, topics written against one of the supplied DTDs can
use all of the predefined domain specializations.

Behind the scenes, a DITA DTD is just a shell. Elements are actually defined in other
modules, which are included in the DTD. Through these modules, DITA provides you with
the building blocks to create new combinations of topic types and domains.

When you add a domain to your DITA installation, the new domain provides you with
additional modules. You can use the additional modules to incorporate the domain into
the existing DTDs or to create new DTDs.

In particular, each domain is implemented with two files:

•
A file that declares the entities for the domain. This file has the .ent extension.

•
A file that declares the elements for the domain. This file has the .mod extension.

As an example, let's say we're authoring the reference topics for a programming
language. We're purists about presentation, so we want to exclude the highlight domain.
We also have no need for the software or UI domains in this reference. We could address
this scenario by defining a new shell DTD that combines the reference topic with the
programming domain, excluding the other domains.

A shell DTD has a consistent design pattern with a few well-defined sections. The
instructions in these sections perform the following actions:

1.
Declare the entities for the domains.

In the scenario, this section would include the programming domain entities:

<!ENTITY % pr-d-dec PUBLIC "-//IBM//ENTITIES DITA Programming
Domain//EN" "programming-domain.ent">

%pr-d-dec;

2.
Redefine the entities for the base content elements to add the specialized content

Documentation including DITA papers

26

elements from the domains.

This section is crucial for domain specialization. Here, the design pattern makes use
of two kinds of entities. Each base content element has an element entity to identify
itself and its specializations. Each domain provides a separate domain
specialization entity to list the specializations that it provides for a base element. By
combining the two kinds of entities, the shell DTD allows the specialized content
elements to be used in the same contexts as the base element.

In the scenario, the pre element entity identifies the pre element (which, as in
HTML, contains preformatted text) and its specializations. The programming domain
provides the pr-d-pre domain specialization entity to list the specializations for
the pre base element. The same pattern is used for the other base elements
specialized by the programming domain:

<!ENTITY % pre "pre | %pr-d-pre;">
<!ENTITY % keyword "keyword | %pr-d-keyword;">
<!ENTITY % ph "ph | %pr-d-ph;">
<!ENTITY % fig "fig | %pr-d-fig;">
<!ENTITY % dl "dl | %pr-d-dl;">

To learn which content elements are specialized by a domain, you can look at the
entity declaration file for the domain.

3.
Define the domains attribute of the topic elements to declare the domains
represented in the document.

Like the class attribute, the domains attribute identifies dependencies. Where the
class attribute identifies base elements, the domains attribute identifies the
domains available within a topic. Each domain provides a domain identification
entity to identify itself in the domains attribute.

In the scenario, the only topic is the reference topic. The only domain is the
programming domain, which is identified by the pr-d-att domain identification
entity:

<!ATTLIST reference domains CDATA "&pr-d-att;">

4.
Redefine the infotypes entity to specify the topic types that can be nested within a
topic.

In the scenario, this section would declare the reference topic:

<!ENTITY % info-types "reference">

5.
Define the elements for the topic type, including the base topics.

In the scenario, this section would include the base topic and reference topic
modules:

<!ENTITY % topic-type PUBLIC "-//IBM//ELEMENTS DITA Topic//EN"
"topic.mod">

%topic-type;
<!ENTITY % reference-typemod PUBLIC "-//IBM//ELEMENTS DITA
Reference//EN" "reference.mod">

%reference-typemod;

6.

Documentation including DITA papers

27

Define the elements for the domains.

In the scenario, this section would include the programming domain definition
module:

<!ENTITY % pr-d-def PUBLIC "-//IBM//ELEMENTS DITA Programming
Domain//EN" "programming-domain.mod">

%pr-d-def;

Often, it would be easiest to work by copying an existing DTD and adding or removing
topics or domains. In the scenario, it would be easiest to start with reference.dtd and
remove the highlight, software, and UI domains as shown with the underlined text below.

<!--vocabulary declarations-->

<!ENTITY % ui-d-dec PUBLIC "-//IBM//ENTITIES DITA User Interface
Domain//EN" "ui-domain.ent">

%ui-d-dec;
<!ENTITY % hi-d-dec PUBLIC "-//IBM//ENTITIES DITA Highlight Domain//EN"
"highlight-domain.ent">

%hi-d-dec;
<!ENTITY % pr-d-dec PUBLIC "-//IBM//ENTITIES DITA Programming Domain//EN"
"programming-domain.ent">

%pr-d-dec;

<!ENTITY % sw-d-dec PUBLIC "-//IBM//ENTITIES DITA Software Domain//EN"
"software-domain.ent">

%sw-d-dec;

<!--vocabulary substitution-->
<!ENTITY % pre "pre | %pr-d-pre;
| %sw-d-pre;">
<!ENTITY % keyword "keyword | %pr-d-keyword;
| %sw-d-keyword; | %ui-d-keyword;">
<!ENTITY % ph "ph | %pr-d-ph;
| %sw-d-ph; | %hi-d-ph; | %ui-d-ph;">
<!ENTITY % fig "fig | %pr-d-fig;">
<!ENTITY % dl "dl | %pr-d-dl;">

<!--vocabulary attributes-->
<!ATTLIST reference domains CDATA "
&ui-d-att; &hi-d-att; &pr-d-att;
&sw-d-att;">

<!--Redefine the infotype entity to exclude other topic types-->
<!ENTITY % info-types "reference">

<!--Embed topic to get generic elements -->
<!ENTITY % topic-type PUBLIC "-//IBM//ELEMENTS DITA Topic//EN"
"topic.mod">

%topic-type;

<!--Embed reference to get specific elements -->
<!ENTITY % reference-typemod PUBLIC "-//IBM//ELEMENTS DITA Reference//EN"
"reference.mod">

%reference-typemod;

<!--vocabulary definitions-->

<!ENTITY % ui-d-def PUBLIC "-//IBM//ELEMENTS DITA User Interface
Domain//EN" "ui-domain.mod">

%ui-d-def;
<!ENTITY % hi-d-def PUBLIC "-//IBM//ELEMENTS DITA Highlight Domain//EN"
"highlight-domain.mod">

%hi-d-def;
<!ENTITY % pr-d-def PUBLIC "-//IBM//ELEMENTS DITA Programming Domain//EN"
"programming-domain.mod">

%pr-d-def;

<!ENTITY % sw-d-def PUBLIC "-//IBM//ELEMENTS DITA Software Domain//EN"
"software-domain.mod">

%sw-d-def;

Creating a domain specialization

For some documents, you may need new types of content elements. In a common

Documentation including DITA papers

28

scenario, you need to mark up phrases that have special semantics. You can handle
such requirements by creating new specializations of existing content elements and
providing a domain to reuse the new content elements within topic structures.

As an example, let's say we're writing the documentation for a class library. We intend to
write processes that will index the documentation by class, field, and method. To support
this processing, we need to mark up the names of classes, fields, and methods within the
topic content, as in the following sample:

<p>The <classname>String</classname> class provides
the <fieldname>length</fieldname> field and
the <methodname>concatenate()</methodname> method.
</p>

We must define new content elements for these names. Because the names are special
types of names within an API, we can specialize the new elements from the apiname
element provided by the programming domain.

The design pattern for a domain requires an abbreviation to represent the domain. A
sensible abbreviation for the class library domain might be cl. The identifier for a domain
consists of the abbreviation followed by -d (for domain).

As noted in Combining an existing topic and domain on page 26 , the domain requires an
entity declaration file and an element definition file.

Writing the entity declaration file

The entity declaration file has sections that perform the following actions:

1.
Define the domain specialization entities.

A domain specialization entity lists the specialized elements provided by the domain
for a base element. For clarity, the entity name is composed of the domain identifier
and the base element name. The domain provides domain specialization entities for
ancestor elements as well as base elements.

In the scenario, the domain defines a domain specialization entity for the apiname
base element as well as the keyword ancestor element (which is the base element
for apiname):

<!ENTITY % cl-d-apiname "classname | fieldname | methodname">
<!ENTITY % cl-d-keyword "classname | fieldname | methodname">

2.
Define the domain identification entity.

The domain identification entity lists the topic type as well as the domain and other
domains for which the current domain has dependencies. Each domain is identified
by its domain identifier. The list is enclosed in parentheses. For clarity, the entity
name is composed of the domain identifier and -att.

In the scenario, the class library domain has a dependency on the programming
domain, which provides the apiname element:

<!ENTITY cl-d-att "(topic pr-d cl-d)">

The complete entity declaration file would look as follows:

Documentation including DITA papers

29

<!ENTITY % cl-d-apiname "classname | fieldname | methodname">
<!ENTITY % cl-d-keyword "classname | fieldname | methodname">

<!ENTITY cl-d-att "(topic pr-d cl-d)">

Writing the element definition file

The element definition file has sections that perform the following actions:

1.
Define the content element entities for the elements introduced by the domain.

These entities permit other domains to specialize from the elements of the current
domain.

In the scenario, the class library domain follows this practice so that additional
domains can be added in the future. The domain defines entities for the three new
elements:

<!ENTITY % classname "classname">
<!ENTITY % fieldname "fieldname">
<!ENTITY % methodname "methodname">

2.
Define the elements.

The specialized content model must be consistent with the content model for the
base element. That is, any possible contents of the specialized element must be
generalizable to valid contents for the base element. Within that limitation,
considerable variation is possible. Specialized elements can be substituted for
elements in the base content model. Optional elements can be omitted or required.
An element with multiple occurrences can be replaced with a list of specializations
of that element, and so on.

The specialized content model should always identify elements through the element
entity rather than directly by name. This practice lets other domains merge their
specializations into the current domain.

In the scenario, the elements have simple character content:

<!ELEMENT classname (#PCDATA)>
<!ELEMENT fieldname (#PCDATA)>
<!ELEMENT methodname (#PCDATA)>

3.
Define the specialization hierarchy for the element with class attribute.

For a domain element, the value of the attribute must start with a plus sign.
Elements provided by domains should be qualified by the domain identifier.

In the scenario, specialization hierarchies include the keyword ancestor element
provided by the base topic and the apiname element provided by the programming
domain:

<!ATTLIST classname class CDATA "+ topic/keyword pr-d/apiname
cl-d/classname ">
<!ATTLIST fieldname class CDATA "+ topic/keyword pr-d/apiname
cl-d/fieldname ">
<!ATTLIST methodname class CDATA "+ topic/keyword pr-d/apiname
cl-d/methodname ">

Documentation including DITA papers

30

The complete element definition file would look as follows:

<!ENTITY % classname "classname">
<!ENTITY % fieldname "fieldname">
<!ENTITY % methodname "methodname">

<!ELEMENT classname (#PCDATA)>
<!ELEMENT fieldname (#PCDATA)>
<!ELEMENT methodname (#PCDATA)>

<!ATTLIST classname class CDATA "+ topic/keyword pr-d/apiname
cl-d/classname ">
<!ATTLIST fieldname class CDATA "+ topic/keyword pr-d/apiname
cl-d/fieldname ">
<!ATTLIST methodname class CDATA "+ topic/keyword pr-d/apiname
cl-d/methodname ">

Writing the shell DTD

After creating the domain files, you can write shell DTDs to combine the domain with
topics and other domains. The shell DTD must include all domain dependencies.

In the scenario, the shell DTD combines the class library domain with the concept,
reference, and task topics and the programming domain. The portions specific to the
class library domain are highlighted below in bold:

<!--vocabulary declarations-->
<!ENTITY % pr-d-dec PUBLIC "-//IBM//ENTITIES DITA Programming Domain//EN"
"programming-domain.ent">

%pr-d-dec;

<!ENTITY % cl-d-dec SYSTEM "classlib-domain.ent"> %cl-d-dec;

<!--vocabulary substitution-->
<!ENTITY % pre "pre | %pr-d-pre;">
<!ENTITY % keyword "keyword | %pr-d-keyword;
| %cl-d-apiname;">
<!ENTITY % ph "ph | %pr-d-ph;">
<!ENTITY % fig "fig | %pr-d-fig;">
<!ENTITY % dl "dl | %pr-d-dl;">

<!ENTITY % apiname "apiname | %cl-d-apiname;">

<!--vocabulary attributes-->
<!ATTLIST concept domains CDATA "&pr-d-att;
&cl-d-att;">
<!ATTLIST reference domains CDATA "&pr-d-att;
&cl-d-att;">
<!ATTLIST task domains CDATA "&pr-d-att;
&cl-d-att;">

<!--Redefine the infotype entity to exclude other topic types-->
<!ENTITY % info-types "concept | reference | task">

<!--Embed topic to get generic elements -->
<!ENTITY % topic-type PUBLIC "-//IBM//ELEMENTS DITA Topic//EN"
"topic.mod">

%topic-type;

<!--Embed topic types to get specific topic structures-->
<!ENTITY % concept-typemod PUBLIC "-//IBM//ELEMENTS DITA Concept//EN"
"concept.mod">

%concept-typemod;
<!ENTITY % reference-typemod PUBLIC "-//IBM//ELEMENTS DITA Reference//EN"
"reference.mod">

%reference-typemod;
<!ENTITY % task-typemod PUBLIC "-//IBM//ELEMENTS DITA Task//EN"
"task.mod">

%task-typemod;

<!--vocabulary definitions-->
<!ENTITY % pr-d-def PUBLIC "-//IBM//ELEMENTS DITA Programming Domain//EN"
"programming-domain.mod">

%pr-d-def;

<!ENTITY % cl-d-def SYSTEM "classlib-domain.mod"> %cl-d-def;

Documentation including DITA papers

31

Notice that the class library phrases are added to the element entity for keyword as well
as for apiname. This addition makes the class library phrases available within topic
structures that allow keywords and not just in topic structures that explicitly allow API
names. In fact, the structures of the reference topic specify only keywords, but it's
good practice to add the domain specialization entities to all ancestor elements.

Considerations for domain specialization

When you define new types of topics or domain elements, remember that the hierarchies
for topic specialization and domain specialization must be distinct. A specialized topic
cannot use a domain element in a content model. Similarly, a domain element can
specialize only from an element in the base topic or in another domain. That is, a topic
and domain cannot have dependencies. To combine topics and domains, use a shell
DTD.

When specializing elements with internal structure including the ul, ol, and dl lists as
well as table and simpletable, you should specialize the entire content element.
Creating special types of pieces of the internal structure independently of the whole
content structure usually doesn't make much sense. For example, you usually want to
create a special type of list instead of a special type of li list item for ordinary ul and ol
lists.

You should never specialize from the elements of the highlight domain. These style
elements do not have a specific semantic. Although the formatting of the highlight styles
might seem convenient, you might find you need to change the formatting later.

As noted previously, you should use element entities instead of literal element names in
content models. The element entities are necessary to permit domain specialization.

The content model should allow for the possibility that the element entity might expand to
a list. When applying a modifier to the element entity, you should enclose the element
entity in parentheses. Otherwise, the modifier will apply only to the last element if the
entity expands to a list. Similar issues affect an element entity in a sequence:

..., (%classname;), ...

... (%classname;)? ...

... (%classname;)* ...

... (%classname;)+ ...

... | %classname; | ...

The parentheses aren't needed if the element entity is already in a list.

Generalizing a domain

As with topics, a specialized content element can be generalized to one of its ancestor
elements. In the previous scenario, a classname can generalize to apiname or even
keyword. As a result, documents using different domains but the same topics can be
exchanged or merged without having to generalize the topics.

To return to the highlight style controversy mentioned in Understanding the base domains
on page 25 , a pragmatic document authored with highlight domain will contain phrases
like the following:

... the important point is ...

When the document is generalized to the same topic but without the highlight domain, the

Documentation including DITA papers

32

pragmatic b element becomes a purist ph element, indicating that the phrase is special
without introducing presentation:

... the <ph class="+ topic/ph hi-d/b ">important</ph> point is ...

In the previous scenario, the class library authors could send their topics to another DITA
shop without the class library domain. The recipients would generalize the class library
topics, converting the classname elements to apiname base elements. After
generalization, the recipients could edit and process the class, field, and method names
in the same way as any other API names. That is, the situation would be the same as if
the senders had decided not to distinguish class, field, and method names and, instead,
had marked up these names as generic API names.

As an alternative, the recipients could decide to add the class library domain to their
definitions. In this approach, the senders would provide not only their topics but also the
entity declaration and element definition files for the domain. The recipients would add
the class library domain to their shell DTD. The recipients could then work with
classname elements without having to generalize.

The recipients can use additional domains with no impact on interoperability. That is, the
shell DTD for the recipients could use more domains than the shell DTD for the senders
without creating any need to modify the topics.

Note: When defining specializations, you should avoid introducing a dependency on
special processing that lacks a graceful fallback to the processing for the base element.
In the scenario, special processing for the classname element might generate a literal “
class” label in the output to save some typing and produce consistent labels. After
automated generalization, however, the label would not be supplied by the base
processing for the apiname element. Thus, the dependency would require a special
generalization transform to append the literal “ class” label to classname elements in the
source file.

Summary

Through topic specialization and domains, DITA provides the following benefits:

•
Simpler topic design.

The document designer can focus on the structure of the topic without having to
foresee every variety of content used within the structure.

•
Simpler topic hierarchies.

The document designer can add new types of content without having to add new
types of topics.

•
Extensible content for existing topics.

The document designer can reuse existing types of topics with new types of
content.

•
Semantic precision.

Content elements with more specific semantics can be derived from existing
elements and used freely within documents.

•
Simpler element lists for authors.

Documentation including DITA papers

33

The document designer can select domains to minimize the element set. Authors
can learn the elements that are appropriate for the document instead of learning to
disregard unneeded elements.

In short, the DITA domain feature provides for great flexibility in extending and reusing
information types. The highlight, programming, and UI domains provided with the base
DITA release are only the beginning of what can be accomplished.

Notices

© Copyright International Business Machines Corp., 2002, 2003. All rights
reserved.

The information provided in this document has not been submitted to any
formal IBM test and is distributed "AS IS," without warranty of any kind,
either express or implied. The use of this information or the implementation
of any of these techniques described in this document is the reader's
responsibility and depends on the reader's ability to evaluate and integrate
them into their operating environment. Readers attempting to adapt these
techniques to their own environments do so at their own risk.

How to define a formal information architecture with DITA map
domains

The benefits of formal information typing are well known for the content of topics, but
collections of topics also benefit from formal organizing structure. Such formal structures
guide authors while they assemble collections of topics and ensure consistent large-scale
patterns of information for the user. Using DITA map domains, a designer can define a
formal information architecture that can be reused in many deliverables.

This article explains the design technique for creating DITA map domains. As an
example, the article walks through the definition for assembling a set of topics as a
how-to. Such a how-to could be one reusable design component within an information
architecture.

Formal information architecture

Information architecture can be summarized as the design discipline that organizes
information and its navigation so an audience can acquire knowledge easily and
efficiently. For instance, the information architecture of a web site often provides a
hierarchy of web pages for drilling down from general to detailed information, different
types of web pages for different purposes such as news and documentation, and so on.

An information architecture is subliminal when it works well. The lack of information
architecture is glaring when it works poorly. The user cannot find information or, even
worse, cannot recognize or assimilate information when by chance it is encountered. You
probably have experience with websites that are poorly organized or uneven in their
approach, so that conventions learned in part of the website have no application
elsewhere. Extracting knowledge from such information resources is exhausting, and you
quickly abandon the effort and seek the information elsewhere.

Currently, information architects work by defining the architecture through guidelines and
instructions to the writer. A better approach is to formalize the architecture through an
XML design that is validated by the XML editor or parser. This formal approach has the
following benefits:

Documentation including DITA papers

34

• Authors receive guidance from the markup while working.
• Information with the same purpose is consistent across deliverables.
• Information for a purpose is complete.
• Processing can rely on the structure of the information and operate on the declared

semantics of the information.

The following drawings illustrate the gain in clarity and consistency by applying a design
to produce a formal information architecture:

In short, the formal design acts as a kind of blueprint to be fullfilled by the writer.

Specializing topics and maps

DITA supports the definition of a formal information architecture through topics and map
types. The topic type defines the information architecture within topics (the micro level)
while the map type defines the information architecture across topics (the macro level).

The base topic and map types are general and flexible so they can accomodate a wide
variety of readable information. You specialize these general types to define the
restricted types required for your information architecture.

Topic
The topic type mandates the structure for the content of a topic. For instance, the
DITA distribution includes a task type that mandates a list of steps as part of the topic
content. This specialized topic type provides guidance to the author and ensures the
consistency of all task topics. Processing can rely on this consistency and semantic
precision. For instance, the processing for the task type could format the task steps
as checkable boxes.

Map
The map type mandates the structure for a collection of topics. A map can define the
navigation hierarchy for a help system or the sequence and nesting of topics in a
book. For instance, the DITA distribution includes a bookmap demo that mandates a
sequence of preface, chapter, and appendix roles for the top-level topics. This
specialized map type ensures that the collection of topics conforms to a basic book
structure.

Without formal types, the information architecture is defined only through editorial
guidelines. Different authors may interpret or conform to the guidelines in varying
degrees, resulting in inconsistency and impredictability. By contrast, the formal types
ensure that the design that can be repeated for many deliverables.

The how-to collection

One typical purpose for a collection of topics is explain how to accomplish a specific goal.
A how-to assembles the relevant topics and arranges them in a typical sequence for one
way to reach that goal. A standard design pattern for the how-to collection might consist
of an introduction topic, some background concepts, some task and example topics, and
a summary.

A help system or book might have several how-tos, for instance, on setting up web
authentication, reading a database from a web application, and so on. Or, a web provider
might publish an ongoing series of how-to articles on technical subjects. Thus, designing
a formal how-to pattern would be useful so that all how-tos are consistent regardless of
the writer.

Note that formalizing a collection doesn't prevent topic reuse but, instead, guides topic
reuse so that appropriate types of topics are used at positions within the collection. For
example, in the how-to, concept topics will appear only as background before the tasks
rather than in the middle of the how-to.

Documentation including DITA papers

35

Map specialization

Among the many capabilities added to maps by DITA 1.3 is specialization through map
domains. Instead of packaging specializations of elements for topic content, however,
you specialize elements for map content, typically the topicref. The specialized
topicrefelement lets authors specify semantics or constraints on collections of topics.
By packaging the topicref specializations as a map domain rather than as a map type,
you can reuse the formal collection design in many different map types.

A specialized topicrefcan be used for the following purposes:

• To restrict the references to topics of a specialized type. For instance, a
conceptref refers only to concept topics (including specialized concepts).

• To assign a topic a topic to a role within a collection. For instance, the topic
identified by a summaryref could provide the concluding explanation for a
collection.

• To restrict the contents of the collection, requiring specific topic types or requiring
topics to act in specific roles at specified positions within the collection.

Drawing on all of these capabilities, we can define a formal structure for a how-to
collection.

Implementing a map domain

A map domain uses the same DTD design pattern as a topic domain. See specializing
domains for the details on the domain design pattern, which aren't repeated here.
Instead, this article summarizes the application of the domain DTD design pattern to
maps.

1. Create a domain entities file to declare the elements extending the topicref
element.

2. Create a domain definition module to define the elements including their element
entities, content and attribute definitions, and the architectural class attribute.

3. Create a shell DTD that assembles the base map module and the domain entities
file and definition module.

4. Create map collections from the shell DTD.

Declaring the map domain entities

The entities file for the how-to domain defines the howto, conceptref, taskref, and
exampleref extensions for the topicref element and defines the how-to domain
declaration for the domain attributes entity:

<!ENTITY % howto-d-topicref "howto">
<!ENTITY howto-d-att "(map howto-d)">

Defining the map domain module

The definition module for the how-to domain starts with the element entities so the new
elements could, in turn, be extended by subsequent specializations. Of these new
elements, only howto has been declared in the entities file because the other new
elements should only appear in the child list of the howto element. (In fact, reference
typing elements such as conceptref and taskref might also be defined in the entities
file for reuse in other specialized child lists.)

<!ENTITY % howto "howto">
<!ENTITY % conceptref "conceptref">
<!ENTITY % taskref "taskref">

Documentation including DITA papers

36

http://www-106.ibm.com/developerworks/xml/library/x-dita5/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita5/index.html

<!ENTITY % exampleref "exampleref">
<!ENTITY % summaryref "summaryref">

The definition module goes on to define the elements. The definition for the howto
element restricts the content list for the collection to the metadata for the topic,
references to any number of concept topics, references to task topics and optional
example topics, and a topic acting in the role of a concluding summary. In addition, the
howto element refers to the topic that provides an overview of the contents.

<!ELEMENT howto ((%topicmeta;)?, (%conceptref;)*, ((%taskref;),
(%exampleref;)?)+,

(%summaryref;))>
<!ATTLIST howto

navtitle CDATA #IMPLIED
id ID #IMPLIED
href CDATA #IMPLIED
keyref CDATA #IMPLIED
query CDATA #IMPLIED
conref CDATA #IMPLIED
copy-to CDATA #IMPLIED
%topicref-atts;
%select-atts;>

The conceptref and taskref elements have a restricted type, meaning that validating
processing is obligated to report an error if the referenced topic doesn't have the declared
type (or a specialization from the declared type):

<!ELEMENT conceptref ((%topicmeta;)?, (%conceptref;)*)>
<!ATTLIST conceptref

href CDATA #IMPLIED
type CDATA "concept"
...>

<!ELEMENT taskref ((%topicmeta;)?, (%taskref;)*)>
<!ATTLIST taskref

href CDATA #IMPLIED
type CDATA "task"
...>

The exampleref and summaryref elements don't restrict the type but, instead, assign
roles to the referenced topics. Because the content list of the howto collection topic
allows a topic to act as an example and requires a topic to act as a summary, the author
is prompted to create topics in those roles, and the roles can be used in processing, for
instance, to add a lead-in word to the emitted topic titles.

<!ELEMENT exampleref ((%topicmeta;)?, (%exampleref;)*)>
<!ATTLIST exampleref

...>
<!ELEMENT summaryref ((%topicmeta;)?)>
<!ATTLIST summaryref

...>

On closer investigation, either or both of these particular roles may turn out to reflect a
persistent topic structure or semantic, in which case it would be appropriate to define
topic types and limit the corresponding topicref specialization to topics of those types.
The general technique, however, of assigning a role to a topic in the context of a
collection remains valid.

Finally, the definition module sets the class attribute to declare that the new elements
derive from topicref and are provided by the howto package:

<!ATTLIST howto %global-atts;
class CDATA "- map/topicref howto/howto ">

<!ATTLIST conceptref %global-atts;
class CDATA "- map/topicref howto/conceptref ">

Documentation including DITA papers

37

...

Assembling the shell DTD

As with topic domains, a shell DTD assembles the base map module with the entities file
and definition module for the how-to domain:

<!--vocabulary declarations-->
<!ENTITY % howto-d-dec PUBLIC "-//IBM//ENTITIES DITA How To Map
Domain//EN" "howto.ent">

%howto-d-dec;
...

<!--vocabulary substitution (one for each extended base element,
with the names of the domains in which the extension was declared)-->

<!ENTITY % topicref "topicref | %mapgroup-d-topicref; |
%howto-d-topicref;">

<!--vocabulary attributes (must be declared ahead of the default
definition) -->
<!ENTITY included-domains "&mapgroup-d-att; &howto-d-att;">

<!--Embed map to get generic elements -->
<!ENTITY % map-type PUBLIC "-//IBM//Elements DITA Map//EN"
"../../dtd/map.mod">

%map-type;

<!--vocabulary definitions-->
...

<!ENTITY % howto-d-def PUBLIC "-//IBM//ELEMENTS DITA How To Map
Domain//EN" "howto.mod">

%howto-d-def;

Creating a collection with the domain

Using the shell DTD, a map could include one or more how-to collections, as in the
following example:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE map PUBLIC "-//IBM//DTD DITA How To Map//EN"

"howtomap.dtd">
<map>

<!-- how-to clusters can appear anywhere in a map hierarchy but always
follow a consistent information pattern within the how to -->

<howto href="dita-mapdomains.xml">
<conceptref href="informationArchitecture.xml"/>
<conceptref href="mapBackground.xml"/>
<conceptref href="formalCollection.xml"/>
<conceptref href="mapSpecialization.xml"/>
<taskref href="implementDomain.xml"/>
<exampleref href="declareEntities.xml"/>
<exampleref href="domainModule.xml"/>
<exampleref href="assembleDTD.xml"/>
<exampleref href="domainInstance.xml"/>
<summaryref href="summary.xml"/>

</howto>
</map>

In fact, this example is the map for the article that you're reading right now. That is, as
you may well have noticed, this article conforms to the formal pattern for a how-to
collection. Here's the list of topics in this how-to article but with the addition of the topic
type or role and title:

• howto: How to define a formal information architecture with DITA map domains
• concept: Formal information architecture
• concept: Specializing topics and maps
• concept: The how-to collection
• concept: Map specialization
• task: Implementing a map domain

Documentation including DITA papers

38

• example: Declaring the map domain entities
• example: Defining the map domain module
• example: Assembling the shell DTD
• example: Creating a collection with the domain (this topic)
• summary: Summary

While this article contains only a how-to collection, a how-to collection could be part of a
larger deliverable. For instance, a help system could include multiple how-tos as part of a
navigation hierarchy. Similarly, how-to collections could be used in books by creating a
new shell DTD that combines the bookmap map type with the how-to map domain.

As you explore collection types, you'll find that, in addition to topics, a collection can
aggregate smaller collections. For instance, you could create domains for a how-to
collection, a case study collection, and a reference set collection. A product information
collection could then require a product summary topic and at least one of each of these
subordinate collections in that order.

You'll also find that, to represent a high-level relationship with a collection, you can create
a relationship to the root topic for the collection branch. As the introduction and entry
point for the collection, the root topic should provide the most statement of the content of
the collection. That is, you can treat the set of topics as a collective content object, using
the root topic to represent the collection as a whole for navigation and cross references.

Summary

In this article, you've learned how to specialize the topicref element to mandate a
specific collection of topics. For complete, single-purpose collections such as functional
specifications and quick reference guides, you might package these specialized
topicref elements with a new map type. For building-block collections (such as
how-tos or case studies) that can appear within a large deliverable, especially when
different designers might create different collection types, you might want to package the
specialized topicref elements as a map domain.

By specializing a DITA map in this way, you can implement a formal information
architecture not just at the micro level within topics but at the macro level across topics.
By defining such large-scale collective content objects, you can provide guidance to
authors and declare semantics for processors with the end result that users have
consistent and complete information deliverables.

Documentation including DITA papers

39

	
 Introduction to the Darwin Information Typing Architecture
	
Executive summary
	
DITA overview
	
DITA delivery contexts
	
DITA typed topic specializations (infotyped topics)
	
DITA vocabulary specialization (domains)
	
DITA common structures
	
Elements designed for specialization
	
The values of specialization
	
Specializing topic types in DITA
	
Architectural context
	
Specializing information types
	
Specialization example: Reference topic
	
Specialization example: API description
	
Working with specialization
	
Applying general style sheets or transforms
	
Requirements
	
Example: overriding a transform

	
Generalizing a topic
	
Specializing a topic

	
Specializing with schemas
	
Summary
	
Appendix: Rules for specialization

	
Specializing domains in DITA
	
Introducing domain specialization
	
Understanding the base domains
	
Combining an existing topic and domain
	
Creating a domain specialization
	
Considerations for domain specialization
	
Generalizing a domain
	
Summary

	
How to define a formal information architecture with DITA map domains
	
Formal information architecture
	
Specializing topics and maps
	
The how-to collection
	
Map specialization
	
Implementing a map domain
	
Declaring the map domain entities
	
Defining the map domain module
	
Assembling the shell DTD
	
Creating a collection with the domain
	
Summary

