Actual source code: nepimpl.h

slepc-3.7.0 2016-05-16
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2016, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.

  8:    SLEPc is free software: you can redistribute it and/or modify it under  the
  9:    terms of version 3 of the GNU Lesser General Public License as published by
 10:    the Free Software Foundation.

 12:    SLEPc  is  distributed in the hope that it will be useful, but WITHOUT  ANY
 13:    WARRANTY;  without even the implied warranty of MERCHANTABILITY or  FITNESS
 14:    FOR  A  PARTICULAR PURPOSE. See the GNU Lesser General Public  License  for
 15:    more details.

 17:    You  should have received a copy of the GNU Lesser General  Public  License
 18:    along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
 19:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 20: */

 22: #if !defined(_NEPIMPL)
 23: #define _NEPIMPL

 25: #include <slepcnep.h>
 26: #include <slepc/private/slepcimpl.h>

 28: PETSC_EXTERN PetscBool NEPRegisterAllCalled;
 29: PETSC_EXTERN PetscErrorCode NEPRegisterAll(void);
 30: PETSC_EXTERN PetscLogEvent NEP_SetUp,NEP_Solve,NEP_Refine,NEP_FunctionEval,NEP_JacobianEval,NEP_DerivativesEval;

 32: typedef struct _NEPOps *NEPOps;

 34: struct _NEPOps {
 35:   PetscErrorCode (*solve)(NEP);
 36:   PetscErrorCode (*setup)(NEP);
 37:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,NEP);
 38:   PetscErrorCode (*publishoptions)(NEP);
 39:   PetscErrorCode (*destroy)(NEP);
 40:   PetscErrorCode (*reset)(NEP);
 41:   PetscErrorCode (*view)(NEP,PetscViewer);
 42:   PetscErrorCode (*computevectors)(NEP);
 43: };

 45: /*
 46:      Maximum number of monitors you can run with a single NEP
 47: */
 48: #define MAXNEPMONITORS 5

 50: typedef enum { NEP_STATE_INITIAL,
 51:                NEP_STATE_SETUP,
 52:                NEP_STATE_SOLVED,
 53:                NEP_STATE_EIGENVECTORS } NEPStateType;

 55: /*
 56:      How the problem function T(lambda) has been defined by the user
 57:      - Callback: one callback to build the function matrix, another one for the Jacobian
 58:      - Split: in split form sum_j(A_j*f_j(lambda))
 59:      - Derivatives: a single callback for all the derivatives (including the 0th derivative)
 60: */
 61: typedef enum { NEP_USER_INTERFACE_CALLBACK=1,
 62:                NEP_USER_INTERFACE_SPLIT,
 63:                NEP_USER_INTERFACE_DERIVATIVES } NEPUserInterface;

 65: /*
 66:    Defines the NEP data structure.
 67: */
 68: struct _p_NEP {
 69:   PETSCHEADER(struct _NEPOps);
 70:   /*------------------------- User parameters ---------------------------*/
 71:   PetscInt       max_it;           /* maximum number of iterations */
 72:   PetscInt       nev;              /* number of eigenvalues to compute */
 73:   PetscInt       ncv;              /* number of basis vectors */
 74:   PetscInt       mpd;              /* maximum dimension of projected problem */
 75:   PetscInt       nini;             /* number of initial vectors (negative means not copied yet) */
 76:   PetscScalar    target;           /* target value */
 77:   PetscReal      tol;              /* tolerance */
 78:   NEPConv        conv;             /* convergence test */
 79:   NEPStop        stop;             /* stopping test */
 80:   NEPWhich       which;            /* which part of the spectrum to be sought */
 81:   NEPRefine      refine;           /* type of refinement to be applied after solve */
 82:   PetscInt       npart;            /* number of partitions of the communicator */
 83:   PetscReal      rtol;             /* tolerance for refinement */
 84:   PetscInt       rits;             /* number of iterations of the refinement method */
 85:   NEPRefineScheme scheme;          /* scheme for solving linear systems within refinement */
 86:   PetscBool      trackall;         /* whether all the residuals must be computed */

 88:   /*-------------- User-provided functions and contexts -----------------*/
 89:   PetscErrorCode (*computefunction)(NEP,PetscScalar,Mat,Mat,void*);
 90:   PetscErrorCode (*computejacobian)(NEP,PetscScalar,Mat,void*);
 91:   void           *functionctx;
 92:   void           *jacobianctx;
 93:   PetscErrorCode (*computederivatives)(NEP,PetscScalar,PetscInt,Mat,void*);
 94:   void           *derivativesctx;
 95:   PetscErrorCode (*converged)(NEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 96:   PetscErrorCode (*convergeddestroy)(void*);
 97:   PetscErrorCode (*stopping)(NEP,PetscInt,PetscInt,PetscInt,PetscInt,NEPConvergedReason*,void*);
 98:   PetscErrorCode (*stoppingdestroy)(void*);
 99:   void           *convergedctx;
100:   void           *stoppingctx;
101:   PetscErrorCode (*monitor[MAXNEPMONITORS])(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
102:   PetscErrorCode (*monitordestroy[MAXNEPMONITORS])(void**);
103:   void           *monitorcontext[MAXNEPMONITORS];
104:   PetscInt       numbermonitors;

106:   /*----------------- Child objects and working data -------------------*/
107:   DS             ds;               /* direct solver object */
108:   BV             V;                /* set of basis vectors and computed eigenvectors */
109:   RG             rg;               /* optional region for filtering */
110:   SlepcSC        sc;               /* sorting criterion data */
111:   Mat            function;         /* function matrix */
112:   Mat            function_pre;     /* function matrix (preconditioner) */
113:   Mat            jacobian;         /* Jacobian matrix */
114:   Mat            derivatives;      /* derivatives matrix */
115:   Mat            *A;               /* matrix coefficients of split form */
116:   FN             *f;               /* matrix functions of split form */
117:   PetscInt       nt;               /* number of terms in split form */
118:   MatStructure   mstr;             /* pattern of split matrices */
119:   Vec            *IS;              /* references to user-provided initial space */
120:   PetscScalar    *eigr,*eigi;      /* real and imaginary parts of eigenvalues */
121:   PetscReal      *errest;          /* error estimates */
122:   PetscInt       *perm;            /* permutation for eigenvalue ordering */
123:   PetscInt       nwork;            /* number of work vectors */
124:   Vec            *work;            /* work vectors */
125:   KSP            refineksp;        /* ksp used in refinement */
126:   PetscSubcomm   refinesubc;       /* context for sub-communicators */
127:   void           *data;            /* placeholder for solver-specific stuff */

129:   /* ----------------------- Status variables --------------------------*/
130:   NEPStateType   state;            /* initial -> setup -> solved -> eigenvectors */
131:   PetscInt       nconv;            /* number of converged eigenvalues */
132:   PetscInt       its;              /* number of iterations so far computed */
133:   PetscInt       n,nloc;           /* problem dimensions (global, local) */
134:   PetscReal      *nrma;            /* computed matrix norms */
135:   NEPUserInterface fui;            /* how the user has defined the nonlinear operator */
136:   NEPConvergedReason reason;
137: };

139: /*
140:     Macros to test valid NEP arguments
141: */
142: #if !defined(PETSC_USE_DEBUG)

144: #define NEPCheckProblem(h,arg) do {} while (0)
145: #define NEPCheckCallback(h,arg) do {} while (0)
146: #define NEPCheckSplit(h,arg) do {} while (0)
147: #define NEPCheckDerivatives(h,arg) do {} while (0)
148: #define NEPCheckSolved(h,arg) do {} while (0)

150: #else

152: #define NEPCheckProblem(h,arg) \
153:   do { \
154:     if (!(h->fui)) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"The nonlinear eigenproblem has not been specified yet. Parameter #%d",arg); \
155:   } while (0)

157: #define NEPCheckCallback(h,arg) \
158:   do { \
159:     if (h->fui!=NEP_USER_INTERFACE_CALLBACK) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"This operation requires the nonlinear eigenproblem specified with callbacks. Parameter #%d",arg); \
160:   } while (0)

162: #define NEPCheckSplit(h,arg) \
163:   do { \
164:     if (h->fui!=NEP_USER_INTERFACE_SPLIT) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"This operation requires the nonlinear eigenproblem in split form. Parameter #%d",arg); \
165:   } while (0)

167: #define NEPCheckDerivatives(h,arg) \
168:   do { \
169:     if (h->fui!=NEP_USER_INTERFACE_DERIVATIVES) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"This operation requires the nonlinear eigenproblem specified with derivatives callback. Parameter #%d",arg); \
170:   } while (0)

172: #define NEPCheckSolved(h,arg) \
173:   do { \
174:     if (h->state<NEP_STATE_SOLVED) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"Must call NEPSolve() first: Parameter #%d",arg); \
175:   } while (0)

177: #endif

179: PETSC_INTERN PetscErrorCode NEPSetDimensions_Default(NEP,PetscInt,PetscInt*,PetscInt*);
180: PETSC_INTERN PetscErrorCode NEPComputeVectors(NEP);
181: PETSC_INTERN PetscErrorCode NEPReset_Problem(NEP);
182: PETSC_INTERN PetscErrorCode NEPGetDefaultShift(NEP,PetscScalar*);
183: PETSC_INTERN PetscErrorCode NEPComputeVectors_Schur(NEP);
184: PETSC_INTERN PetscErrorCode NEPComputeResidualNorm_Private(NEP,PetscScalar,Vec,Vec*,PetscReal*);
185: PETSC_INTERN PetscErrorCode NEPNewtonRefinementSimple(NEP,PetscInt*,PetscReal,PetscInt);

187: #endif