1: /*
3: SLEPc eigensolver: "krylovschur"
5: Method: Krylov-Schur
7: Algorithm:
9: Single-vector Krylov-Schur method for non-symmetric problems,
10: including harmonic extraction.
12: References:
14: [1] "Krylov-Schur Methods in SLEPc", SLEPc Technical Report STR-7,
15: available at http://slepc.upv.es.
17: [2] G.W. Stewart, "A Krylov-Schur Algorithm for Large Eigenproblems",
18: SIAM J. Matrix Anal. App. 23(3):601-614, 2001.
20: [3] "Practical Implementation of Harmonic Krylov-Schur", SLEPc Technical
21: Report STR-9, available at http://slepc.upv.es.
23: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
24: SLEPc - Scalable Library for Eigenvalue Problem Computations
25: Copyright (c) 2002-2016, Universitat Politecnica de Valencia, Spain
27: This file is part of SLEPc.
29: SLEPc is free software: you can redistribute it and/or modify it under the
30: terms of version 3 of the GNU Lesser General Public License as published by
31: the Free Software Foundation.
33: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
34: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
35: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
36: more details.
38: You should have received a copy of the GNU Lesser General Public License
39: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
40: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
41: */
43: #include <slepc/private/epsimpl.h> /*I "slepceps.h" I*/
44: #include krylovschur.h 48: PetscErrorCode EPSGetArbitraryValues(EPS eps,PetscScalar *rr,PetscScalar *ri) 49: {
51: PetscInt i,newi,ld,n,l;
52: Vec xr=eps->work[0],xi=eps->work[1];
53: PetscScalar re,im,*Zr,*Zi,*X;
56: DSGetLeadingDimension(eps->ds,&ld);
57: DSGetDimensions(eps->ds,&n,NULL,&l,NULL,NULL);
58: for (i=l;i<n;i++) {
59: re = eps->eigr[i];
60: im = eps->eigi[i];
61: STBackTransform(eps->st,1,&re,&im);
62: newi = i;
63: DSVectors(eps->ds,DS_MAT_X,&newi,NULL);
64: DSGetArray(eps->ds,DS_MAT_X,&X);
65: Zr = X+i*ld;
66: if (newi==i+1) Zi = X+newi*ld;
67: else Zi = NULL;
68: EPSComputeRitzVector(eps,Zr,Zi,eps->V,xr,xi);
69: DSRestoreArray(eps->ds,DS_MAT_X,&X);
70: (*eps->arbitrary)(re,im,xr,xi,rr+i,ri+i,eps->arbitraryctx);
71: }
72: return(0);
73: }
77: PetscErrorCode EPSSetUp_KrylovSchur(EPS eps) 78: {
79: PetscErrorCode ierr;
80: PetscReal eta;
81: BVOrthogType otype;
82: BVOrthogBlockType obtype;
83: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
84: enum { EPS_KS_DEFAULT,EPS_KS_SYMM,EPS_KS_SLICE,EPS_KS_INDEF } variant;
87: /* spectrum slicing requires special treatment of default values */
88: if (eps->which==EPS_ALL) {
89: EPSSetUp_KrylovSchur_Slice(eps);
90: } else {
91: EPSSetDimensions_Default(eps,eps->nev,&eps->ncv,&eps->mpd);
92: if (eps->ncv>eps->nev+eps->mpd) SETERRQ(PetscObjectComm((PetscObject)eps),1,"The value of ncv must not be larger than nev+mpd");
93: if (!eps->max_it) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
94: if (!eps->which) { EPSSetWhichEigenpairs_Default(eps); }
95: }
96: if (!ctx->lock && eps->mpd<eps->ncv) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Should not use mpd parameter in non-locking variant");
98: if (eps->isgeneralized && eps->ishermitian && !eps->ispositive && eps->arbitrary) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Arbitrary selection of eigenpairs not implemented for indefinite problems");
99: if (eps->ishermitian && eps->ispositive && (eps->which==EPS_LARGEST_IMAGINARY || eps->which==EPS_SMALLEST_IMAGINARY)) SETERRQ(PetscObjectComm((PetscObject)eps),1,"Wrong value of eps->which");
101: if (!eps->extraction) {
102: EPSSetExtraction(eps,EPS_RITZ);
103: } else if (eps->extraction!=EPS_RITZ && eps->extraction!=EPS_HARMONIC)
104: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
105: if (eps->extraction==EPS_HARMONIC && ctx->lock) { PetscInfo(eps,"Locking was requested but will be deactivated since is not supported with harmonic extraction\n"); }
107: if (!ctx->keep) ctx->keep = 0.5;
109: EPSAllocateSolution(eps,1);
110: EPS_SetInnerProduct(eps);
111: if (eps->arbitrary) {
112: EPSSetWorkVecs(eps,2);
113: } else if (eps->ishermitian && !eps->ispositive){
114: EPSSetWorkVecs(eps,1);
115: }
117: /* dispatch solve method */
118: if (eps->ishermitian) {
119: if (eps->which==EPS_ALL) {
120: if (eps->isgeneralized && !eps->ispositive) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectrum slicing not implemented for indefinite problems");
121: else variant = EPS_KS_SLICE;
122: } else if (eps->isgeneralized && !eps->ispositive) {
123: variant = EPS_KS_INDEF;
124: } else {
125: switch (eps->extraction) {
126: case EPS_RITZ: variant = EPS_KS_SYMM; break;
127: case EPS_HARMONIC: variant = EPS_KS_DEFAULT; break;
128: default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
129: }
130: }
131: } else {
132: switch (eps->extraction) {
133: case EPS_RITZ: variant = EPS_KS_DEFAULT; break;
134: case EPS_HARMONIC: variant = EPS_KS_DEFAULT; break;
135: default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
136: }
137: }
138: switch (variant) {
139: case EPS_KS_DEFAULT:
140: eps->ops->solve = EPSSolve_KrylovSchur_Default;
141: eps->ops->computevectors = EPSComputeVectors_Schur;
142: DSSetType(eps->ds,DSNHEP);
143: DSAllocate(eps->ds,eps->ncv+1);
144: break;
145: case EPS_KS_SYMM:
146: eps->ops->solve = EPSSolve_KrylovSchur_Symm;
147: eps->ops->computevectors = EPSComputeVectors_Hermitian;
148: DSSetType(eps->ds,DSHEP);
149: DSSetCompact(eps->ds,PETSC_TRUE);
150: DSSetExtraRow(eps->ds,PETSC_TRUE);
151: DSAllocate(eps->ds,eps->ncv+1);
152: break;
153: case EPS_KS_SLICE:
154: if (eps->stopping!=EPSStoppingBasic) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectrum slicing does not support user-defined stopping test");
155: eps->ops->solve = EPSSolve_KrylovSchur_Slice;
156: eps->ops->computevectors = EPSComputeVectors_Slice;
157: break;
158: case EPS_KS_INDEF:
159: eps->ops->solve = EPSSolve_KrylovSchur_Indefinite;
160: eps->ops->computevectors = EPSComputeVectors_Indefinite;
161: DSSetType(eps->ds,DSGHIEP);
162: DSSetCompact(eps->ds,PETSC_TRUE);
163: DSAllocate(eps->ds,eps->ncv+1);
164: /* force reorthogonalization for pseudo-Lanczos */
165: BVGetOrthogonalization(eps->V,&otype,NULL,&eta,&obtype);
166: BVSetOrthogonalization(eps->V,otype,BV_ORTHOG_REFINE_ALWAYS,eta,obtype);
167: break;
168: default: SETERRQ(PetscObjectComm((PetscObject)eps),1,"Unexpected error");
169: }
170: return(0);
171: }
175: PetscErrorCode EPSSolve_KrylovSchur_Default(EPS eps)176: {
177: PetscErrorCode ierr;
178: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
179: PetscInt i,j,*pj,k,l,nv,ld,nconv;
180: Mat U;
181: PetscScalar *S,*Q,*g;
182: PetscReal beta,gamma=1.0;
183: PetscBool breakdown,harmonic;
186: DSGetLeadingDimension(eps->ds,&ld);
187: harmonic = (eps->extraction==EPS_HARMONIC || eps->extraction==EPS_REFINED_HARMONIC)?PETSC_TRUE:PETSC_FALSE;
188: if (harmonic) { PetscMalloc1(ld,&g); }
189: if (eps->arbitrary) pj = &j;
190: else pj = NULL;
192: /* Get the starting Arnoldi vector */
193: EPSGetStartVector(eps,0,NULL);
194: l = 0;
196: /* Restart loop */
197: while (eps->reason == EPS_CONVERGED_ITERATING) {
198: eps->its++;
200: /* Compute an nv-step Arnoldi factorization */
201: nv = PetscMin(eps->nconv+eps->mpd,eps->ncv);
202: DSGetArray(eps->ds,DS_MAT_A,&S);
203: EPSBasicArnoldi(eps,PETSC_FALSE,S,ld,eps->nconv+l,&nv,&beta,&breakdown);
204: DSRestoreArray(eps->ds,DS_MAT_A,&S);
205: DSSetDimensions(eps->ds,nv,0,eps->nconv,eps->nconv+l);
206: if (l==0) {
207: DSSetState(eps->ds,DS_STATE_INTERMEDIATE);
208: } else {
209: DSSetState(eps->ds,DS_STATE_RAW);
210: }
211: BVSetActiveColumns(eps->V,eps->nconv,nv);
213: /* Compute translation of Krylov decomposition if harmonic extraction used */
214: if (harmonic) {
215: DSTranslateHarmonic(eps->ds,eps->target,beta,PETSC_FALSE,g,&gamma);
216: }
218: /* Solve projected problem */
219: DSSolve(eps->ds,eps->eigr,eps->eigi);
220: if (eps->arbitrary) {
221: EPSGetArbitraryValues(eps,eps->rr,eps->ri);
222: j=1;
223: }
224: DSSort(eps->ds,eps->eigr,eps->eigi,eps->rr,eps->ri,pj);
226: /* Check convergence */
227: EPSKrylovConvergence(eps,PETSC_FALSE,eps->nconv,nv-eps->nconv,beta,gamma,&k);
228: (*eps->stopping)(eps,eps->its,eps->max_it,k,eps->nev,&eps->reason,eps->stoppingctx);
229: nconv = k;
231: /* Update l */
232: if (eps->reason != EPS_CONVERGED_ITERATING || breakdown) l = 0;
233: else {
234: l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
235: #if !defined(PETSC_USE_COMPLEX)
236: DSGetArray(eps->ds,DS_MAT_A,&S);
237: if (S[k+l+(k+l-1)*ld] != 0.0) {
238: if (k+l<nv-1) l = l+1;
239: else l = l-1;
240: }
241: DSRestoreArray(eps->ds,DS_MAT_A,&S);
242: #endif
243: }
244: if ((!ctx->lock || harmonic) && l>0) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */
246: if (eps->reason == EPS_CONVERGED_ITERATING) {
247: if (breakdown) {
248: /* Start a new Arnoldi factorization */
249: PetscInfo2(eps,"Breakdown in Krylov-Schur method (it=%D norm=%g)\n",eps->its,(double)beta);
250: if (k<eps->nev) {
251: EPSGetStartVector(eps,k,&breakdown);
252: if (breakdown) {
253: eps->reason = EPS_DIVERGED_BREAKDOWN;
254: PetscInfo(eps,"Unable to generate more start vectors\n");
255: }
256: }
257: } else {
258: /* Undo translation of Krylov decomposition */
259: if (harmonic) {
260: DSSetDimensions(eps->ds,nv,0,k,l);
261: DSTranslateHarmonic(eps->ds,0.0,beta,PETSC_TRUE,g,&gamma);
262: /* gamma u^ = u - U*g~ */
263: BVMultColumn(eps->V,-1.0,1.0,nv,g);
264: BVScaleColumn(eps->V,nv,1.0/gamma);
265: }
266: /* Prepare the Rayleigh quotient for restart */
267: DSGetArray(eps->ds,DS_MAT_A,&S);
268: DSGetArray(eps->ds,DS_MAT_Q,&Q);
269: for (i=k;i<k+l;i++) {
270: S[k+l+i*ld] = Q[nv-1+i*ld]*beta*gamma;
271: }
272: DSRestoreArray(eps->ds,DS_MAT_A,&S);
273: DSRestoreArray(eps->ds,DS_MAT_Q,&Q);
274: }
275: }
276: /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
277: DSGetMat(eps->ds,DS_MAT_Q,&U);
278: BVMultInPlace(eps->V,U,eps->nconv,k+l);
279: MatDestroy(&U);
281: if (eps->reason == EPS_CONVERGED_ITERATING && !breakdown) {
282: BVCopyColumn(eps->V,nv,k+l);
283: }
284: eps->nconv = k;
285: EPSMonitor(eps,eps->its,nconv,eps->eigr,eps->eigi,eps->errest,nv);
286: }
288: if (harmonic) { PetscFree(g); }
289: /* truncate Schur decomposition and change the state to raw so that
290: DSVectors() computes eigenvectors from scratch */
291: DSSetDimensions(eps->ds,eps->nconv,0,0,0);
292: DSSetState(eps->ds,DS_STATE_RAW);
293: return(0);
294: }
298: static PetscErrorCode EPSKrylovSchurSetRestart_KrylovSchur(EPS eps,PetscReal keep)299: {
300: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
303: if (keep==PETSC_DEFAULT) ctx->keep = 0.5;
304: else {
305: if (keep<0.1 || keep>0.9) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The keep argument must be in the range [0.1,0.9]");
306: ctx->keep = keep;
307: }
308: return(0);
309: }
313: /*@
314: EPSKrylovSchurSetRestart - Sets the restart parameter for the Krylov-Schur
315: method, in particular the proportion of basis vectors that must be kept
316: after restart.
318: Logically Collective on EPS320: Input Parameters:
321: + eps - the eigenproblem solver context
322: - keep - the number of vectors to be kept at restart
324: Options Database Key:
325: . -eps_krylovschur_restart - Sets the restart parameter
327: Notes:
328: Allowed values are in the range [0.1,0.9]. The default is 0.5.
330: Level: advanced
332: .seealso: EPSKrylovSchurGetRestart()
333: @*/
334: PetscErrorCode EPSKrylovSchurSetRestart(EPS eps,PetscReal keep)335: {
341: PetscTryMethod(eps,"EPSKrylovSchurSetRestart_C",(EPS,PetscReal),(eps,keep));
342: return(0);
343: }
347: static PetscErrorCode EPSKrylovSchurGetRestart_KrylovSchur(EPS eps,PetscReal *keep)348: {
349: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
352: *keep = ctx->keep;
353: return(0);
354: }
358: /*@
359: EPSKrylovSchurGetRestart - Gets the restart parameter used in the
360: Krylov-Schur method.
362: Not Collective
364: Input Parameter:
365: . eps - the eigenproblem solver context
367: Output Parameter:
368: . keep - the restart parameter
370: Level: advanced
372: .seealso: EPSKrylovSchurSetRestart()
373: @*/
374: PetscErrorCode EPSKrylovSchurGetRestart(EPS eps,PetscReal *keep)375: {
381: PetscUseMethod(eps,"EPSKrylovSchurGetRestart_C",(EPS,PetscReal*),(eps,keep));
382: return(0);
383: }
387: static PetscErrorCode EPSKrylovSchurSetLocking_KrylovSchur(EPS eps,PetscBool lock)388: {
389: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
392: ctx->lock = lock;
393: return(0);
394: }
398: /*@
399: EPSKrylovSchurSetLocking - Choose between locking and non-locking variants of
400: the Krylov-Schur method.
402: Logically Collective on EPS404: Input Parameters:
405: + eps - the eigenproblem solver context
406: - lock - true if the locking variant must be selected
408: Options Database Key:
409: . -eps_krylovschur_locking - Sets the locking flag
411: Notes:
412: The default is to lock converged eigenpairs when the method restarts.
413: This behaviour can be changed so that all directions are kept in the
414: working subspace even if already converged to working accuracy (the
415: non-locking variant).
417: Level: advanced
419: .seealso: EPSKrylovSchurGetLocking()
420: @*/
421: PetscErrorCode EPSKrylovSchurSetLocking(EPS eps,PetscBool lock)422: {
428: PetscTryMethod(eps,"EPSKrylovSchurSetLocking_C",(EPS,PetscBool),(eps,lock));
429: return(0);
430: }
434: static PetscErrorCode EPSKrylovSchurGetLocking_KrylovSchur(EPS eps,PetscBool *lock)435: {
436: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
439: *lock = ctx->lock;
440: return(0);
441: }
445: /*@
446: EPSKrylovSchurGetLocking - Gets the locking flag used in the Krylov-Schur
447: method.
449: Not Collective
451: Input Parameter:
452: . eps - the eigenproblem solver context
454: Output Parameter:
455: . lock - the locking flag
457: Level: advanced
459: .seealso: EPSKrylovSchurSetLocking()
460: @*/
461: PetscErrorCode EPSKrylovSchurGetLocking(EPS eps,PetscBool *lock)462: {
468: PetscUseMethod(eps,"EPSKrylovSchurGetLocking_C",(EPS,PetscBool*),(eps,lock));
469: return(0);
470: }
474: static PetscErrorCode EPSKrylovSchurSetPartitions_KrylovSchur(EPS eps,PetscInt npart)475: {
476: PetscErrorCode ierr;
477: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
478: PetscMPIInt size;
481: if (ctx->npart!=npart) {
482: if (ctx->commset) { PetscSubcommDestroy(&ctx->subc); }
483: if (ctx->eps) { EPSDestroy(&ctx->eps); }
484: }
485: if (npart == PETSC_DEFAULT || npart == PETSC_DECIDE) {
486: ctx->npart = 1;
487: } else {
488: MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size);
489: if (npart<1 || npart>size) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
490: ctx->npart = npart;
491: }
492: eps->state = EPS_STATE_INITIAL;
493: return(0);
494: }
498: /*@
499: EPSKrylovSchurSetPartitions - Sets the number of partitions for the
500: case of doing spectrum slicing for a computational interval with the
501: communicator split in several sub-communicators.
503: Logically Collective on EPS505: Input Parameters:
506: + eps - the eigenproblem solver context
507: - npart - number of partitions
509: Options Database Key:
510: . -eps_krylovschur_partitions <npart> - Sets the number of partitions
512: Notes:
513: By default, npart=1 so all processes in the communicator participate in
514: the processing of the whole interval. If npart>1 then the interval is
515: divided into npart subintervals, each of them being processed by a
516: subset of processes.
518: The interval is split proportionally unless the separation points are
519: specified with EPSKrylovSchurSetSubintervals().
521: Level: advanced
523: .seealso: EPSKrylovSchurSetSubintervals(), EPSSetInterval()
524: @*/
525: PetscErrorCode EPSKrylovSchurSetPartitions(EPS eps,PetscInt npart)526: {
532: PetscTryMethod(eps,"EPSKrylovSchurSetPartitions_C",(EPS,PetscInt),(eps,npart));
533: return(0);
534: }
538: static PetscErrorCode EPSKrylovSchurGetPartitions_KrylovSchur(EPS eps,PetscInt *npart)539: {
540: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
543: *npart = ctx->npart;
544: return(0);
545: }
549: /*@
550: EPSKrylovSchurGetPartitions - Gets the number of partitions of the
551: communicator in case of spectrum slicing.
553: Not Collective
555: Input Parameter:
556: . eps - the eigenproblem solver context
558: Output Parameter:
559: . npart - number of partitions
561: Level: advanced
563: .seealso: EPSKrylovSchurSetPartitions()
564: @*/
565: PetscErrorCode EPSKrylovSchurGetPartitions(EPS eps,PetscInt *npart)566: {
572: PetscUseMethod(eps,"EPSKrylovSchurGetPartitions_C",(EPS,PetscInt*),(eps,npart));
573: return(0);
574: }
578: static PetscErrorCode EPSKrylovSchurSetDetectZeros_KrylovSchur(EPS eps,PetscBool detect)579: {
580: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
583: ctx->detect = detect;
584: eps->state = EPS_STATE_INITIAL;
585: return(0);
586: }
590: /*@
591: EPSKrylovSchurSetDetectZeros - Sets a flag to enforce detection of
592: zeros during the factorizations throughout the spectrum slicing computation.
594: Logically Collective on EPS596: Input Parameters:
597: + eps - the eigenproblem solver context
598: - detect - check for zeros
600: Options Database Key:
601: . -eps_krylovschur_detect_zeros - Check for zeros; this takes an optional
602: bool value (0/1/no/yes/true/false)
604: Notes:
605: A zero in the factorization indicates that a shift coincides with an eigenvalue.
607: This flag is turned off by default, and may be necessary in some cases,
608: especially when several partitions are being used. This feature currently
609: requires an external package for factorizations with support for zero
610: detection, e.g. MUMPS.
612: Level: advanced
614: .seealso: EPSKrylovSchurSetPartitions(), EPSSetInterval()
615: @*/
616: PetscErrorCode EPSKrylovSchurSetDetectZeros(EPS eps,PetscBool detect)617: {
623: PetscTryMethod(eps,"EPSKrylovSchurSetDetectZeros_C",(EPS,PetscBool),(eps,detect));
624: return(0);
625: }
629: static PetscErrorCode EPSKrylovSchurGetDetectZeros_KrylovSchur(EPS eps,PetscBool *detect)630: {
631: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
634: *detect = ctx->detect;
635: return(0);
636: }
640: /*@
641: EPSKrylovSchurGetDetectZeros - Gets the flag that enforces zero detection
642: in spectrum slicing.
644: Not Collective
646: Input Parameter:
647: . eps - the eigenproblem solver context
649: Output Parameter:
650: . detect - whether zeros detection is enforced during factorizations
652: Level: advanced
654: .seealso: EPSKrylovSchurSetDetectZeros()
655: @*/
656: PetscErrorCode EPSKrylovSchurGetDetectZeros(EPS eps,PetscBool *detect)657: {
663: PetscUseMethod(eps,"EPSKrylovSchurGetDetectZeros_C",(EPS,PetscBool*),(eps,detect));
664: return(0);
665: }
669: static PetscErrorCode EPSKrylovSchurSetDimensions_KrylovSchur(EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd)670: {
671: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
674: if (nev<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
675: ctx->nev = nev;
676: if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
677: ctx->ncv = 0;
678: } else {
679: if (ncv<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
680: ctx->ncv = ncv;
681: }
682: if (mpd == PETSC_DECIDE || mpd == PETSC_DEFAULT) {
683: ctx->mpd = 0;
684: } else {
685: if (mpd<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
686: ctx->mpd = mpd;
687: }
688: eps->state = EPS_STATE_INITIAL;
689: return(0);
690: }
694: /*@
695: EPSKrylovSchurSetDimensions - Sets the dimensions used for each subsolve
696: step in case of doing spectrum slicing for a computational interval.
697: The meaning of the parameters is the same as in EPSSetDimensions().
699: Logically Collective on EPS701: Input Parameters:
702: + eps - the eigenproblem solver context
703: . nev - number of eigenvalues to compute
704: . ncv - the maximum dimension of the subspace to be used by the subsolve
705: - mpd - the maximum dimension allowed for the projected problem
707: Options Database Key:
708: + -eps_krylovschur_nev <nev> - Sets the number of eigenvalues
709: . -eps_krylovschur_ncv <ncv> - Sets the dimension of the subspace
710: - -eps_krylovschur_mpd <mpd> - Sets the maximum projected dimension
712: Level: advanced
714: .seealso: EPSKrylovSchurGetDimensions(), EPSSetDimensions(), EPSSetInterval()
715: @*/
716: PetscErrorCode EPSKrylovSchurSetDimensions(EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd)717: {
725: PetscTryMethod(eps,"EPSKrylovSchurSetDimensions_C",(EPS,PetscInt,PetscInt,PetscInt),(eps,nev,ncv,mpd));
726: return(0);
727: }
731: static PetscErrorCode EPSKrylovSchurGetDimensions_KrylovSchur(EPS eps,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)732: {
733: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
736: if (nev) *nev = ctx->nev;
737: if (ncv) *ncv = ctx->ncv;
738: if (mpd) *mpd = ctx->mpd;
739: return(0);
740: }
744: /*@
745: EPSKrylovSchurGetDimensions - Gets the dimensions used for each subsolve
746: step in case of doing spectrum slicing for a computational interval.
748: Not Collective
750: Input Parameter:
751: . eps - the eigenproblem solver context
753: Output Parameters:
754: + nev - number of eigenvalues to compute
755: . ncv - the maximum dimension of the subspace to be used by the subsolve
756: - mpd - the maximum dimension allowed for the projected problem
758: Level: advanced
760: .seealso: EPSKrylovSchurSetDimensions()
761: @*/
762: PetscErrorCode EPSKrylovSchurGetDimensions(EPS eps,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)763: {
768: PetscUseMethod(eps,"EPSKrylovSchurGetDimensions_C",(EPS,PetscInt*,PetscInt*,PetscInt*),(eps,nev,ncv,mpd));
769: return(0);
770: }
774: static PetscErrorCode EPSKrylovSchurSetSubintervals_KrylovSchur(EPS eps,PetscReal* subint)775: {
776: PetscErrorCode ierr;
777: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
778: PetscInt i;
781: if (subint[0]!=eps->inta || subint[ctx->npart]!=eps->intb) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"First and last values must match the endpoints of EPSSetInterval()");
782: for (i=0;i<ctx->npart;i++) if (subint[i]>=subint[i+1]) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Array must contain values in ascending order");
783: if (ctx->subintervals) { PetscFree(ctx->subintervals); }
784: PetscMalloc1(ctx->npart+1,&ctx->subintervals);
785: for (i=0;i<ctx->npart+1;i++) ctx->subintervals[i] = subint[i];
786: ctx->subintset = PETSC_TRUE;
787: eps->state = EPS_STATE_INITIAL;
788: return(0);
789: }
793: /*@C
794: EPSKrylovSchurSetSubintervals - Sets the points that delimit the
795: subintervals to be used in spectrum slicing with several partitions.
797: Logically Collective on EPS799: Input Parameters:
800: + eps - the eigenproblem solver context
801: - subint - array of real values specifying subintervals
803: Notes:
804: This function must be called after EPSKrylovSchurSetPartitions(). For npart
805: partitions, the argument subint must contain npart+1 real values sorted in
806: ascending order: subint_0, subint_1, ..., subint_npart, where the first
807: and last values must coincide with the interval endpoints set with
808: EPSSetInterval().
810: The subintervals are then defined by two consecutive points: [subint_0,subint_1],
811: [subint_1,subint_2], and so on.
813: Level: advanced
815: .seealso: EPSKrylovSchurSetPartitions(), EPSKrylovSchurGetSubintervals(), EPSSetInterval()
816: @*/
817: PetscErrorCode EPSKrylovSchurSetSubintervals(EPS eps,PetscReal *subint)818: {
823: PetscTryMethod(eps,"EPSKrylovSchurSetSubintervals_C",(EPS,PetscReal*),(eps,subint));
824: return(0);
825: }
829: static PetscErrorCode EPSKrylovSchurGetSubintervals_KrylovSchur(EPS eps,PetscReal **subint)830: {
831: PetscErrorCode ierr;
832: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
833: PetscInt i;
836: if (!ctx->subintset) {
837: if (!eps->state) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
838: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
839: }
840: PetscMalloc1(ctx->npart+1,subint);
841: for (i=0;i<=ctx->npart;i++) (*subint)[i] = ctx->subintervals[i];
842: return(0);
843: }
847: /*@C
848: EPSKrylovSchurGetSubintervals - Returns the points that delimit the
849: subintervals used in spectrum slicing with several partitions.
851: Logically Collective on EPS853: Input Parameter:
854: . eps - the eigenproblem solver context
856: Output Parameter:
857: . subint - array of real values specifying subintervals
859: Notes:
860: If the user passed values with EPSKrylovSchurSetSubintervals(), then the
861: same values are returned. Otherwise, the values computed internally are
862: obtained.
864: This function is only available for spectrum slicing runs.
866: The returned array has length npart+1 (see EPSKrylovSchurGetPartitions())
867: and should be freed by the user.
869: Level: advanced
871: .seealso: EPSKrylovSchurSetSubintervals(), EPSKrylovSchurGetPartitions(), EPSSetInterval()
872: @*/
873: PetscErrorCode EPSKrylovSchurGetSubintervals(EPS eps,PetscReal** subint)874: {
880: PetscUseMethod(eps,"EPSKrylovSchurGetSubintervals_C",(EPS,PetscReal**),(eps,subint));
881: return(0);
882: }
886: static PetscErrorCode EPSKrylovSchurGetInertias_KrylovSchur(EPS eps,PetscInt *n,PetscReal **shifts,PetscInt **inertias)887: {
888: PetscErrorCode ierr;
889: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
890: PetscInt i;
891: EPS_SR sr = ctx->sr;
894: if (!eps->state) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
895: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
896: switch (eps->state) {
897: case EPS_STATE_INITIAL:
898: break;
899: case EPS_STATE_SETUP:
900: *n = ctx->npart+1;
901: PetscMalloc1(*n,shifts);
902: PetscMalloc1(*n,inertias);
903: (*shifts)[0] = eps->inta;
904: (*inertias)[0] = (sr->dir==1)?sr->inertia0:sr->inertia1;
905: if (ctx->npart==1) {
906: (*shifts)[1] = eps->intb;
907: (*inertias)[1] = (sr->dir==1)?sr->inertia1:sr->inertia0;
908: } else {
909: for (i=1;i<*n;i++) {
910: (*shifts)[i] = ctx->subintervals[i];
911: (*inertias)[i] = (*inertias)[i-1]+ctx->nconv_loc[i-1];
912: }
913: }
914: break;
915: case EPS_STATE_SOLVED:
916: case EPS_STATE_EIGENVECTORS:
917: *n = ctx->nshifts;
918: PetscMalloc1(*n,shifts);
919: PetscMalloc1(*n,inertias);
920: for (i=0;i<*n;i++) {
921: (*shifts)[i] = ctx->shifts[i];
922: (*inertias)[i] = ctx->inertias[i];
923: }
924: break;
925: }
926: return(0);
927: }
931: /*@C
932: EPSKrylovSchurGetInertias - Gets the values of the shifts and their
933: corresponding inertias in case of doing spectrum slicing for a
934: computational interval.
936: Not Collective
938: Input Parameter:
939: . eps - the eigenproblem solver context
941: Output Parameters:
942: + n - number of shifts, including the endpoints of the interval
943: . shifts - the values of the shifts used internally in the solver
944: - inertias - the values of the inertia in each shift
946: Notes:
947: If called after EPSSolve(), all shifts used internally by the solver are
948: returned (including both endpoints and any intermediate ones). If called
949: before EPSSolve() and after EPSSetUp() then only the information of the
950: endpoints of subintervals is available.
952: This function is only available for spectrum slicing runs.
954: The returned arrays should be freed by the user.
956: Level: advanced
958: .seealso: EPSSetInterval(), EPSKrylovSchurSetSubintervals()
959: @*/
960: PetscErrorCode EPSKrylovSchurGetInertias(EPS eps,PetscInt *n,PetscReal **shifts,PetscInt **inertias)961: {
967: PetscUseMethod(eps,"EPSKrylovSchurGetInertias_C",(EPS,PetscInt*,PetscReal**,PetscInt**),(eps,n,shifts,inertias));
968: return(0);
969: }
973: static PetscErrorCode EPSKrylovSchurGetSubcommInfo_KrylovSchur(EPS eps,PetscInt *k,PetscInt *n,Vec *v)974: {
975: PetscErrorCode ierr;
976: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
977: EPS_SR sr = ((EPS_KRYLOVSCHUR*)ctx->eps->data)->sr;
980: if (!eps->state) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
981: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
982: if (k) *k = (ctx->npart==1)? 0: ctx->subc->color;
983: if (n) *n = sr->numEigs;
984: if (v) {
985: BVCreateVec(sr->V,v);
986: }
987: return(0);
988: }
992: /*@C
993: EPSKrylovSchurGetSubcommInfo - Gets information related to the case of
994: doing spectrum slicing for a computational interval with multiple
995: communicators.
997: Collective on the subcommunicator (if v is given)
999: Input Parameter:
1000: . eps - the eigenproblem solver context
1002: Output Parameters:
1003: + k - index of the subinterval for the calling process
1004: . n - number of eigenvalues found in the k-th subinterval
1005: - v - a vector owned by processes in the subcommunicator with dimensions
1006: compatible for locally computed eigenvectors (or NULL)
1008: Notes:
1009: This function is only available for spectrum slicing runs.
1011: The returned Vec should be destroyed by the user.
1013: Level: advanced
1015: .seealso: EPSSetInterval(), EPSKrylovSchurSetPartitions(), EPSKrylovSchurGetSubcommPairs()
1016: @*/
1017: PetscErrorCode EPSKrylovSchurGetSubcommInfo(EPS eps,PetscInt *k,PetscInt *n,Vec *v)1018: {
1023: PetscUseMethod(eps,"EPSKrylovSchurGetSubcommInfo_C",(EPS,PetscInt*,PetscInt*,Vec*),(eps,k,n,v));
1024: return(0);
1025: }
1029: static PetscErrorCode EPSKrylovSchurGetSubcommPairs_KrylovSchur(EPS eps,PetscInt i,PetscScalar *eig,Vec v)1030: {
1031: PetscErrorCode ierr;
1032: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
1033: EPS_SR sr = ((EPS_KRYLOVSCHUR*)ctx->eps->data)->sr;
1036: EPSCheckSolved(eps,1);
1037: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
1038: if (i<0 || i>=sr->numEigs) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Argument 2 out of range");
1039: if (eig) *eig = sr->eigr[sr->perm[i]];
1040: BVCopyVec(sr->V,sr->perm[i],v);
1041: return(0);
1042: }
1046: /*@C
1047: EPSKrylovSchurGetSubcommPairs - Gets the i-th eigenpair stored
1048: internally in the subcommunicator to which the calling process belongs.
1050: Collective on the subcommunicator (if v is given)
1052: Input Parameter:
1053: + eps - the eigenproblem solver context
1054: - i - index of the solution
1056: Output Parameters:
1057: + eig - the eigenvalue
1058: - v - the eigenvector
1060: Notes:
1061: It is allowed to pass NULL for v if the eigenvector is not required.
1062: Otherwise, the caller must provide a valid Vec objects, i.e.,
1063: it must be created by the calling program with EPSKrylovSchurGetSubcommInfo().
1065: The index i should be a value between 0 and n-1, where n is the number of
1066: vectors in the local subinterval, see EPSKrylovSchurGetSubcommInfo().
1068: Level: advanced
1070: .seealso: EPSSetInterval(), EPSKrylovSchurSetPartitions(), EPSKrylovSchurGetSubcommInfo(), EPSKrylovSchurGetSubcommMats()
1071: @*/
1072: PetscErrorCode EPSKrylovSchurGetSubcommPairs(EPS eps,PetscInt i,PetscScalar *eig,Vec v)1073: {
1079: PetscUseMethod(eps,"EPSKrylovSchurGetSubcommPairs_C",(EPS,PetscInt,PetscScalar*,Vec),(eps,i,eig,v));
1080: return(0);
1081: }
1085: static PetscErrorCode EPSKrylovSchurGetSubcommMats_KrylovSchur(EPS eps,Mat *A,Mat *B)1086: {
1087: PetscErrorCode ierr;
1088: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
1091: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
1092: if (!eps->state) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
1093: EPSGetOperators(ctx->eps,A,B);
1094: return(0);
1095: }
1099: /*@C
1100: EPSKrylovSchurGetSubcommMats - Gets the eigenproblem matrices stored
1101: internally in the subcommunicator to which the calling process belongs.
1103: Collective on the subcommunicator
1105: Input Parameter:
1106: . eps - the eigenproblem solver context
1108: Output Parameters:
1109: + A - the matrix associated with the eigensystem
1110: - B - the second matrix in the case of generalized eigenproblems
1112: Notes:
1113: This is the analog of EPSGetOperators(), but returns the matrices distributed
1114: differently (in the subcommunicator rather than in the parent communicator).
1116: These matrices should not be modified by the user.
1118: Level: advanced
1120: .seealso: EPSSetInterval(), EPSKrylovSchurSetPartitions(), EPSKrylovSchurGetSubcommInfo()
1121: @*/
1122: PetscErrorCode EPSKrylovSchurGetSubcommMats(EPS eps,Mat *A,Mat *B)1123: {
1128: PetscTryMethod(eps,"EPSKrylovSchurGetSubcommMats_C",(EPS,Mat*,Mat*),(eps,A,B));
1129: return(0);
1130: }
1134: static PetscErrorCode EPSKrylovSchurUpdateSubcommMats_KrylovSchur(EPS eps,PetscScalar a,PetscScalar ap,Mat Au,PetscScalar b,PetscScalar bp, Mat Bu,MatStructure str,PetscBool globalup)1135: {
1136: PetscErrorCode ierr;
1137: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data,*subctx;
1138: Mat A,B=NULL,Ag,Bg=NULL;
1139: PetscBool reuse=PETSC_TRUE;
1140: 1142: if (!ctx->sr) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
1143: if (!eps->state) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
1144: EPSGetOperators(eps,&Ag,&Bg);
1145: EPSGetOperators(ctx->eps,&A,&B);
1146: 1147: MatScale(A,a);
1148: if (Au) {
1149: MatAXPY(A,ap,Au,str);
1150: }
1151: if (B) MatScale(B,b);
1152: if (Bu) {
1153: MatAXPY(B,bp,Bu,str);
1154: }
1155: EPSSetOperators(ctx->eps,A,B);
1157: /* Update stored matrix state */
1158: subctx = (EPS_KRYLOVSCHUR*)ctx->eps->data;
1159: PetscObjectStateGet((PetscObject)A,&subctx->Astate);
1160: if (B) { PetscObjectStateGet((PetscObject)B,&subctx->Bstate); }
1162: /* Update matrices in the parent communicator if requested by user */
1163: if (globalup) {
1164: if (ctx->npart>1) {
1165: if (!ctx->isrow) {
1166: MatGetOwnershipIS(Ag,&ctx->isrow,&ctx->iscol);
1167: reuse = PETSC_FALSE;
1168: }
1169: if (str==DIFFERENT_NONZERO_PATTERN) reuse = PETSC_FALSE;
1170: if (ctx->submata && !reuse) {
1171: MatDestroyMatrices(1,&ctx->submata);
1172: }
1173: MatGetSubMatrices(A,1,&ctx->isrow,&ctx->iscol,(reuse)?MAT_REUSE_MATRIX:MAT_INITIAL_MATRIX,&ctx->submata);
1174: MatCreateMPIMatConcatenateSeqMat(((PetscObject)Ag)->comm,ctx->submata[0],PETSC_DECIDE,MAT_REUSE_MATRIX,&Ag);
1175: if (B) {
1176: if (ctx->submatb && !reuse) {
1177: MatDestroyMatrices(1,&ctx->submatb);
1178: }
1179: MatGetSubMatrices(B,1,&ctx->isrow,&ctx->iscol,(reuse)?MAT_REUSE_MATRIX:MAT_INITIAL_MATRIX,&ctx->submatb);
1180: MatCreateMPIMatConcatenateSeqMat(((PetscObject)Bg)->comm,ctx->submatb[0],PETSC_DECIDE,MAT_REUSE_MATRIX,&Bg);
1181: }
1182: }
1183: PetscObjectStateGet((PetscObject)Ag,&ctx->Astate);
1184: if (Bg) { PetscObjectStateGet((PetscObject)Bg,&ctx->Bstate); }
1185: }
1186: EPSSetOperators(eps,Ag,Bg);
1187: return(0);
1188: }
1192: /*@C
1193: EPSKrylovSchurUpdateSubcommMats - Update the eigenproblem matrices stored
1194: internally in the subcommunicator to which the calling process belongs.
1196: Collective on EPS1198: Input Parameters:
1199: + eps - the eigenproblem solver context
1200: . s - scalar that multiplies the existing A matrix
1201: . a - scalar used in the axpy operation on A
1202: . Au - matrix used in the axpy operation on A
1203: . t - scalar that multiplies the existing B matrix
1204: . b - scalar used in the axpy operation on B
1205: . Bu - matrix used in the axpy operation on B
1206: . str - structure flag
1207: - globalup - flag indicating if global matrices must be updated
1209: Notes:
1210: This function modifies the eigenproblem matrices at the subcommunicator level,
1211: and optionally updates the global matrices in the parent communicator. The updates
1212: are expressed as A <-- s*A + a*Au, B <-- t*B + b*Bu.
1214: It is possible to update one of the matrices, or both.
1216: The matrices Au and Bu must be equal in all subcommunicators.
1218: The str flag is passed to the MatAXPY() operations to perform the updates.
1220: If globalup is true, communication is carried out to reconstruct the updated
1221: matrices in the parent communicator. The user must be warned that if global
1222: matrices are not in sync with subcommunicator matrices, the errors computed
1223: by EPSComputeError() will be wrong even if the computed solution is correct
1224: (the synchronization may be done only once at the end).
1226: Level: advanced
1228: .seealso: EPSSetInterval(), EPSKrylovSchurSetPartitions(), EPSKrylovSchurGetSubcommMats()
1229: @*/
1230: PetscErrorCode EPSKrylovSchurUpdateSubcommMats(EPS eps,PetscScalar s,PetscScalar a,Mat Au,PetscScalar t,PetscScalar b, Mat Bu,MatStructure str,PetscBool globalup)1231: {
1244: PetscTryMethod(eps,"EPSKrylovSchurUpdateSubcommMats_C",(EPS,PetscScalar,PetscScalar,Mat,PetscScalar,PetscScalar,Mat,MatStructure,PetscBool),(eps,s,a,Au,t,b,Bu,str,globalup));
1245: return(0);
1246: }
1250: PetscErrorCode EPSSetFromOptions_KrylovSchur(PetscOptionItems *PetscOptionsObject,EPS eps)1251: {
1252: PetscErrorCode ierr;
1253: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
1254: PetscBool flg,lock,b,f1,f2,f3;
1255: PetscReal keep;
1256: PetscInt i,j,k;
1259: PetscOptionsHead(PetscOptionsObject,"EPS Krylov-Schur Options");
1260: PetscOptionsReal("-eps_krylovschur_restart","Proportion of vectors kept after restart","EPSKrylovSchurSetRestart",0.5,&keep,&flg);
1261: if (flg) {
1262: EPSKrylovSchurSetRestart(eps,keep);
1263: }
1264: PetscOptionsBool("-eps_krylovschur_locking","Choose between locking and non-locking variants","EPSKrylovSchurSetLocking",PETSC_TRUE,&lock,&flg);
1265: if (flg) {
1266: EPSKrylovSchurSetLocking(eps,lock);
1267: }
1268: i = ctx->npart;
1269: PetscOptionsInt("-eps_krylovschur_partitions","Number of partitions of the communicator for spectrum slicing","EPSKrylovSchurSetPartitions",ctx->npart,&i,&flg);
1270: if (flg) {
1271: EPSKrylovSchurSetPartitions(eps,i);
1272: }
1273: b = ctx->detect;
1274: PetscOptionsBool("-eps_krylovschur_detect_zeros","Check zeros during factorizations at subinterval boundaries","EPSKrylovSchurSetDetectZeros",ctx->detect,&b,&flg);
1275: if (flg) {
1276: EPSKrylovSchurSetDetectZeros(eps,b);
1277: }
1278: i = 1;
1279: j = k = PETSC_DECIDE;
1280: PetscOptionsInt("-eps_krylovschur_nev","Number of eigenvalues to compute in each subsolve (only for spectrum slicing)","EPSKrylovSchurSetDimensions",40,&i,&f1);
1281: PetscOptionsInt("-eps_krylovschur_ncv","Number of basis vectors in each subsolve (only for spectrum slicing)","EPSKrylovSchurSetDimensions",80,&j,&f2);
1282: PetscOptionsInt("-eps_krylovschur_mpd","Maximum dimension of projected problem in each subsolve (only for spectrum slicing)","EPSKrylovSchurSetDimensions",80,&k,&f3);
1283: if (f1 || f2 || f3) {
1284: EPSKrylovSchurSetDimensions(eps,i,j,k);
1285: }
1286: PetscOptionsTail();
1287: return(0);
1288: }
1292: PetscErrorCode EPSView_KrylovSchur(EPS eps,PetscViewer viewer)1293: {
1294: PetscErrorCode ierr;
1295: EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
1296: PetscBool isascii;
1299: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
1300: if (isascii) {
1301: PetscViewerASCIIPrintf(viewer," Krylov-Schur: %d%% of basis vectors kept after restart\n",(int)(100*ctx->keep));
1302: PetscViewerASCIIPrintf(viewer," Krylov-Schur: using the %slocking variant\n",ctx->lock?"":"non-");
1303: if (eps->which==EPS_ALL) {
1304: PetscViewerASCIIPrintf(viewer," Krylov-Schur: doing spectrum slicing with nev=%D, ncv=%D, mpd=%D\n",ctx->nev,ctx->ncv,ctx->mpd);
1305: if (ctx->npart>1) {
1306: PetscViewerASCIIPrintf(viewer," Krylov-Schur: multi-communicator spectrum slicing with %D partitions\n",ctx->npart);
1307: if (ctx->detect) { PetscViewerASCIIPrintf(viewer," Krylov-Schur: detecting zeros when factorizing at subinterval boundaries\n"); }
1308: }
1309: }
1310: }
1311: return(0);
1312: }
1316: PetscErrorCode EPSDestroy_KrylovSchur(EPS eps)1317: {
1321: PetscFree(eps->data);
1322: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetRestart_C",NULL);
1323: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetRestart_C",NULL);
1324: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetLocking_C",NULL);
1325: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetLocking_C",NULL);
1326: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetPartitions_C",NULL);
1327: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetPartitions_C",NULL);
1328: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetDetectZeros_C",NULL);
1329: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetDetectZeros_C",NULL);
1330: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetDimensions_C",NULL);
1331: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetDimensions_C",NULL);
1332: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetSubintervals_C",NULL);
1333: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubintervals_C",NULL);
1334: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetInertias_C",NULL);
1335: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommInfo_C",NULL);
1336: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommPairs_C",NULL);
1337: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommMats_C",NULL);
1338: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurUpdateSubcommMats_C",NULL);
1339: return(0);
1340: }
1344: PetscErrorCode EPSReset_KrylovSchur(EPS eps)1345: {
1348: if (eps->which==EPS_ALL) {
1349: EPSReset_KrylovSchur_Slice(eps);
1350: }
1351: return(0);
1352: }
1356: PETSC_EXTERN PetscErrorCode EPSCreate_KrylovSchur(EPS eps)1357: {
1358: EPS_KRYLOVSCHUR *ctx;
1359: PetscErrorCode ierr;
1362: PetscNewLog(eps,&ctx);
1363: eps->data = (void*)ctx;
1364: ctx->lock = PETSC_TRUE;
1365: ctx->nev = 1;
1366: ctx->npart = 1;
1367: ctx->detect = PETSC_FALSE;
1368: ctx->global = PETSC_TRUE;
1370: eps->ops->setup = EPSSetUp_KrylovSchur;
1371: eps->ops->setfromoptions = EPSSetFromOptions_KrylovSchur;
1372: eps->ops->destroy = EPSDestroy_KrylovSchur;
1373: eps->ops->reset = EPSReset_KrylovSchur;
1374: eps->ops->view = EPSView_KrylovSchur;
1375: eps->ops->backtransform = EPSBackTransform_Default;
1376: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetRestart_C",EPSKrylovSchurSetRestart_KrylovSchur);
1377: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetRestart_C",EPSKrylovSchurGetRestart_KrylovSchur);
1378: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetLocking_C",EPSKrylovSchurSetLocking_KrylovSchur);
1379: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetLocking_C",EPSKrylovSchurGetLocking_KrylovSchur);
1380: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetPartitions_C",EPSKrylovSchurSetPartitions_KrylovSchur);
1381: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetPartitions_C",EPSKrylovSchurGetPartitions_KrylovSchur);
1382: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetDetectZeros_C",EPSKrylovSchurSetDetectZeros_KrylovSchur);
1383: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetDetectZeros_C",EPSKrylovSchurGetDetectZeros_KrylovSchur);
1384: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetDimensions_C",EPSKrylovSchurSetDimensions_KrylovSchur);
1385: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetDimensions_C",EPSKrylovSchurGetDimensions_KrylovSchur);
1386: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurSetSubintervals_C",EPSKrylovSchurSetSubintervals_KrylovSchur);
1387: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubintervals_C",EPSKrylovSchurGetSubintervals_KrylovSchur);
1388: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetInertias_C",EPSKrylovSchurGetInertias_KrylovSchur);
1389: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommInfo_C",EPSKrylovSchurGetSubcommInfo_KrylovSchur);
1390: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommPairs_C",EPSKrylovSchurGetSubcommPairs_KrylovSchur);
1391: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurGetSubcommMats_C",EPSKrylovSchurGetSubcommMats_KrylovSchur);
1392: PetscObjectComposeFunction((PetscObject)eps,"EPSKrylovSchurUpdateSubcommMats_C",EPSKrylovSchurUpdateSubcommMats_KrylovSchur);
1393: return(0);
1394: }