ROM
LEX

AKX =R

The Komplex Solver Package
Reterence Manual

Version 1.0

Written by Michael A. Heroux

March 2000
(©Sandia National Laboratories 2000

Contents

1 Overview of the Komplex Solver Package

1.1 Introduction e
1.2 Imstallation

1.3 Overview of Using Komplex

Komplex File Index
2.1 Komplex File List

Komplex File Documentation

3.1 azk_create_linsys.c File Reference
3.2 azk_create_matrix.c File Reference
3.3 azk_create_precon.c File Reference
3.4 azk_create_vector.c File Reference
3.5 azk_destroy_linsys.c File Reference
3.6 azk_destroy_matrix.c File Reference
3.7 azk_destroy_precon.c File Reference
3.8 azk_destroy_vector.c File Reference
3.9 azk_extract_solution.c File Reference

3.10 azk_permute_ri.c File Reference

11
11

Chapter 1

Overview of the Komplex
Solver Package

1.1 Introduction

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Az = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix A;) * (z, +ixx;) = (b +ixDb;)
or by separating into real and imaginary equations we have

(5 () =(h)

which is a real-valued system of twice the size. If we find x, and z;, we can
form the solution to the original system as z = x, + i * ;.

1.2 Installation

Installation and use of Komplex assumes a good working knowledge of Aztec
2.1. To install Komplex 1.0, you must:

1. Follow the Aztec 2.1 installation procedure to install Aztec.

Overview of the Komplex Solver Package

2. Compile.

(a) Edit the files ’komplex_lib/Makefile.template’ and ’komplex_-
app/Makefile.template’. Set the Makefile variables MPI_INCLUDE_-
DIR and MPI_LIB to the appropriate directories and libraries (if
using MPI). For example
MPIINCLUDE_DIR = -I/Net/local/mpi/include MPI.LIB = -
L/Net/local/mpi -lmpich

(b) TYPE ===> set_komplex_makefiles xxxx yyyy
where xxxx specifies a machine (SOLARIS, SUN4, SGI, SGIM4, S-
GI10K, 1860, DEC, HP, SUNMOS, NCUBE, SP2, T3E, LINUX, or
TFLOP) and yyyy specifies a messaging system (MPI, SERIAL, 1860,
SUNMOS, or NCUBE).

Example: set_komplex_makefiles SUN4 MPI
This creates 'Makefile.xxxx.yyyy’ which is linked to Makefile.

(¢) TYPE ===> cd komplex_lib; make; cd ../komplex_app; make
’gmake’ works on all machines except the Cray T3E where it appears
necessary to uncomment Makefile lines refering to implicit compila-
tion.

Other applications can be compiled by switching OBJ lines in app/Makefile.

NOTE: On some machines it is necessary to switch the linker 'LD_%’ when the
main program is Fortran.

When porting to other machines, the following issues are the most difficult:

1. Linking between Fortran and C differs between machines. ’lib/az_aztec.h’
contains macros corresponding to CFORT in the Makefiles.

2. Timing routines are different between machines. With any luck, one of the
following should work: md_timer_sun.c, md_timer_generic.c, md_timer_-
mpi.c.

1.3 Overview of Using Komplex

1.3.1 Possible Formulations

KOMPLEX accept user linear systems in three forms:

1. The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus,
the values array is of type double that is twice as long as the number of
complex values. Each complex entry is stored with real part followed by
imaginary part (as in Fortran). See AZK _create_linsys_c2k.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

1.3 Overview of Using Komplex

2. The second form stores real and imaginary parts separately, but the pat-
tern for each is identical. Thus only the values of the imaginary part are
passed to the creation routines. See AZK create_linsys_ri2k.

3. The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form. See AZK _create_linsys_-
g2k.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform). Note that for Form
1 above, indices can be local or global but you cannot use AZ_transform if to
create local indices since AZ_transform does not support complex matrices.

All input matrices are formed as AZ_MATRIX structs (see the Aztec 2.1 User
Manual). Before using Komplex, you should become very familiar with Aztec.

1.3.2 Step-by-step use of Komplex

1. Create input matrices, initial guess and right hand side. Create
the required input matrices in one of the three forms described in Section
1.3.1. See Section 1.3.4 for an example.

2. Select solver options. Set Aztec input options and parameters. All
Aztec parameters and options are valid for Komplex.

3. Create linear system. Create the Komplex form of the linear system
via a call to

e AZK create_linsys_c2k - Convert from complex to komplex.
o AZK create_linsys_ri2k - Convert from real/imaginary to komplex.
o AZK _create linsys_g2k - Convert, from general to komplex.

4. Compute initial residual (if desired). Call AZK residual norm.

5. Create preconditioner. Create the Komplex preconditioner via a call
to AZK create_precon. Note that the Aztec options and parameters you
set will determine the preconditioner.

6. Solve problem. Call AZ iterate using the matrix, initial guess, RHS,
and preconditioner created in the above steps. AZ_iterate is an Aztec 2.1
function.

7. Verify final residual (if desired). Call AZK residual norm.
8. Extract the solution. Call one of the following:

e AZK extract_solution_k2c - recovers solution in complex form.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Overview of the Komplex Solver Package

o AZK _extract_solution_k2ri - recovers solution in real /imaginary form.
o AZK _extract_solution_k2g - recovers solution in real/imaginary form

(same functionality as AZK_extract_solution_k2ri).

9. Destroy preconditioner. Destroy the preconditioner and all associated
memory.

10. Destroy the linear system. Destroy the matrix, initial guess/solution
vector and RHS vector allocated by AZK _create_linsys_xxx.

1.3.3 Calling Komplex to Solve Multiple Related Systems

Komplex has a very flexible create/destroy framework. Although the steps in
Section 1.3.2 refer to creating an entire linear system at one time, it is possible
to create and destroy the matrix, initial guess and right hand side in separate
steps. The matrix is created (destroyed) by calling AZK_matrix_create_xxx
(AZK matrix_destroy xxx) where xxx refers to the type of input problem as
described in Section 1.3.1. Similarly, the initial guess and RHS can also be built
separately. All Komplex objects are created from completely separate storage
than what the user provides. As such they remain viable until destroyed.

A few scenarios:

1. Same matrix, new RHS.

e Solve 1:

AZK create_linsys_xxx(matrix,x,rhs)
AZK create_precon

AZ_iterate - solve problem

AZK extract_solution_xxx

AZK _destroy_vector(rhs)
— AZK _destroy_vector(solution)

e Solve 2:

K _create_vector xxx(new_x . o
A7 _iterate - solve Eroblem using same matrix and preconditioner
K_extract_solufion_xxx

AZK_create_vector_XXXEnew-rhs)

K_destroy_precon .
AZK _destroy_linsys(matrix,x,rhs)

2. Different matrices using the same preconditioner (where matri-
ces may be related by being different time steps of the same
problem).

e Solve 1:

— AZK _create_lingys_xxx(matrix,x,rhs)
— AZK create_precon

A7 _iterate - solve problem

— AZK _extract_solution_xxx

— AZK _destroy_linsys(matrix,x,rhs)

e Solve 2:

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

1.3 Overview of Using Komplex

— AZK create_linsys_xxx(new_matrix,new_x,new_rhs .

— AZ_iterate - solve problem using same matrix and preconditioner
— AZK _extract_solution_xxx

— AZK _destroy_precon .

— AZK _destroy_linsys(matrix,x,rhs)

1.3.4 Example Codes

The following example code generates a simple diagonal matrix of dimension "n”
where ”n” is passed in as an argument. The diagonal entries are constructed in
a way that exactly 20 unpreconditioned GMRES iteration should be required
for convergence, independent of problem size and number of processors used.

The point of this example is to illustrate the flow of calls when using KOMPLEX.
This example program can be found in the file komplex_app/simple.c.

A more elaborate sample test program can be found in the file komplex_-
app/main.c. Note that it relies on service routines from SPARSKIT2. S-
PARSKIT?2 is available at

http://www.cs.umn.edu/Research/arpa/SPARSKIT /sparskit.html

/s ke sk sk ks s ok sk ok ks sk s o ks ok sk ok ks ok sk s ok sk sk ok sk o sk sk s o ks s ok ks s o ks o ok sk sk sk o sk sk ok sk ok ek sk ok o ok ok
* Copyright 2000, Sandia Corporation. The United States Government retains a *
* nonexclusive license in this software as prescribed in AL 88-1 and AL 91-7. *
* Export of this program may require a license from the United States *
* Government. *
st e ks ok s o ks o ok sk o ok ks ks s ok sk o ks o ks ok sk sk ok ks e ok sk sk ks sk ke ks sk ks ok ok sk sk ok ks ok ok sk ok ok sk ok ok sk ok ok /

int main(int argc, char *argv([])

{
int proc_config[AZ_PROC_SIZE];/* Processor information. */
int options[AZ_OPTIONS_SIZE]; /* Array used to select solver options. */
double params[AZ_PARAMS_SIZE]; /* User selected solver paramters. x/

double status[AZ_STATUS_SIZE]; /* Information returned from AZ_solve(). */

int *bindx_real; /* index and values arrays for MSR matrices */
double *val_real, *val_imag;

int * update; /* List of global eqs owned by the processor */
double *x_real, *b_real; /* initial guess/solution, RHS */
double *x_imag, *b_imag;

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Overview of the Komplex Solver Package

int N_local; /* Number of equations on this node */
double residual; /* Used for computing residual */

double *xx_real, *xx_imag, *xx; /* Known exact solution */
int myPID, nprocs;

AZ_MATRIX *Amat_real; /* Real matrix structure */
AZ_MATRIX *Amat; /* Komplex matrix to be solved. */
AZ_PRECOND #*Prec; /* Komplex preconditioner x/

double *x, *b; /* Komplex Initial guess and RHS */
int i;

/******************************/

/* First executable statement */
[k sk sk ok sk sk sk ok ok ok sk ok sk ok ok sk ok ok ok /

MPI_Init (&argc,&argv);

/* Get number of processors and the name of this processor */
AZ_set_proc_config(proc_config,MPI_COMM_WORLD) ;

nprocs = proc_config[AZ_N_procs];

myPID = proc_config[AZ_node];

printf ("proc %d of %d is alive\n",myPID, nprocs);

/* Define two real diagonal matrices. Will use as real and imaginary parts */

/* Get the number of local equations from the command line */
N_local = atoi(argv[1]);

/* Need N_local+l elements for val/bindx arrays */
val_real = malloc((N_local+1l)*sizeof (double));
val_imag = malloc((N_local+l)*sizeof (double));

/* bindx_imag is not needed since real/imag have same pattern */
bindx_real = malloc((N_local+l)*sizeof(int));

update = malloc(N_localx*sizeof (int)); /* Malloc equation update list */
b_real = malloc(N_localx*sizeof (double)); /* Malloc x and b arrays */
b_imag = malloc(N_local*sizeof (double));

x_real = malloc(N_local*sizeof (double));

x_imag = malloc(N_local*sizeof (double));

xx_real = malloc(N_local*sizeof (double));

xx_imag = malloc(N_local*sizeof (double));

for (i=0; i<N_local; i++)
{
val_real[i] = 10 + i/(N_local/10); /* Some very fake diagonals */

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

1.3 Overview of Using Komplex

val_imag[i] = 10 - i/(N_local/10); /* Should take exactly 20 GMRES steps */

x_reall[i] = 0.0; /* Zero initial guess */
x_imag[i] = 0.0;

xx_reall[i] = 1.0; /* Let exact solution = 1 %/
xx_imag[i] = 0.0;

/* Generate RHS to match exact solution */
b_real[i] = val_real[i]*xx_real[i] - val_imag[i]*xx_imag[i];
b_imag[i] = val_imag[i]*xx_real[i] + val_real[i]*xx_imag[i];

/* All bindx[i] have same value since no off-diag terms */
bindx_real[i] = N_local + 1;

/* each processor owns equations

myPID*N_local through myPID*N_local + N_local - 1 */
update[i] = myPID#N_local + ij;

bindx_real[N_local] = N_local+l; /* Need this last index */

/* Register Aztec Matrix for Real Part, only imaginary values are neededx/
Amat_real = AZ_matrix_create(N_local);

AZ_set_MSR(Amat_real, bindx_real, val_real, NULL, N_local, update, AZ_GLOBAL);
/* initialize AZTEC options */

AZ_defaults(options, params);
options[AZ_solver]

AZ_gmres; /* Use CG with no preconditioning */
options[AZ_precond] = AZ_none;

options[AZ_kspace] = 21;

options[AZ_max_iter] = 21;

params[AZ_tol] = 1.e-14;

/**/

/* Construct linear system. Form depends on input parameters */
[F Rk ok ook ok ok koo ok ok ok ok sk oko ok ok ok ok ko sk ok ko sk sk ok o ok ok sk ok ok sk ok ok /

[k sk sk sk ok ok o ok sk sk ok ok sk ok sk o ok sk ok sk sk sk sk sk sk o sk sk sk ok sk ok skok ok ok sk ok o oksk ok ok sk o/
/* Method 1: Construct A, x, and b in one call. */

/* Useful if using A,x,b only one time. Equivalent to Method 2%/
[HFAAEFA A A A A A A KA KA A KA KA A K F A KA KA KA A KA A KA KK A A A A KA A KA KA F A KKK [

AZK_create_linsys_ri2k (x_real, x_imag, b_real, b_imag,
options, params, proc_config,

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Overview of the Komplex Solver Package

Amat_real, val_imag, &x, &b, &Amat);

/**/

/* Method 2: Construct A, x, and b in separate calls. */
/* Useful for having more control over the constructiomn. */
/* Note that the matrix must be constructed first. */

[k ko ko ok ok ok ok ok ok ok ok s ko o sk sk skookok sk ok sk sk ok ok oKk K ok ok ok ok ok ok ok ok /
/* Uncomment these three calls and comment out the above call

AZK_create_matrix_ri2k (options, params, proc_config,
Amat_real, val_imag, &Amat);

AZK_create_vector_ri2k(options, params, proc_config, Amat,
x_real, x_imag, &x);

AZK_create_vector_riQk(options, params, proc_config, Amat,
b_real, b_imag, &b);

*/
[HEkAR kR ok K kKR KK kKR Kk K kK ok K ok K kK ok kK ok
/* Build exact solution vector. */
/* Check residual of init guess and exact solution */

/**/

AZK_create_vector_riQk(options, params, proc_config, Amat,
xx_real, xx_imag, &xx) ;

residual = AZK_residual_norm(x, b, options, params, proc_config, Amat);
if (proc_config[AZ_node]==0)
printf ("\n\n\nNorm of residual using initial guess = %12.4g\n",residual);

residual = AZK_residual_norm(xx, b, options, params, proc_config, Amat);
if (proc_config[AZ_node]==0)
printf ("\n\n\nNorm of residual using exact solution = %12.4g\n",residual);

/**/

/* Create preconditioner */
[REEEEEFAAAAAA A A A K KA AAAA KA KK A KA KK KA KKK KK AAAA KK KK AAAAA KK [

AZK_create_precon(options, params, proc_config, x, b, Amat, &Prec);
/o ok ok ok ok ok ok ok ok ok ok ok ok ok skokok skokokskok ok ok ok kK K K ok K ok ok sk ko ok ok ok ok /

/* Solve linear system using Aztec. */
/s ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok Kok 3 ok ok K ok ok K K ok Kk ok ok Kok ok ok ok Kok sk ok ok Kok sk ok /

AZ_iterate(x, b, options, params, status, proc_config, Amat, Prec, NULL);

/s ks ok sk sk ok sk sk sk ok sk ok sk ok sk sk sk ok o ok sk o sk sk sk ok sk sk ok o sk ok o ok ok ok /
/* Extract solution. */

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

1.3 Overview of Using Komplex

/**/

AZK_extract_solution_k2ri(options, params, proc_config, Amat, Prec, x,
x_real, x_imag);
[k ko ko ko ko ok ok ok ok ok ok s ko s sk sk skokok sk ok sk kok ok K koK ok ok ko ok ko k ok /

/* Destroy Preconditioner. */
[RE AR A A AR KA AR KA KK A AR KA K KA AR K Aok KKK kKKK ok Kok Kok [

AZK_destroy_precon (options, params, proc_config, Amat, &Prec);
/s k sk sk ks ks sk sk ok sk ok sk ok ok ok ok sk sk sk sk ok sk ok sk sk ok ok sk sk sk ks sk sk sk ok ko ok sk ok ko ok sk ok ok ok ok /

/* Destroy linear system. */
/e k sk sk ks ks sk s ok sk ok sk ok ok ok ok sk sk sk sk sk ok sk sk ok ok sk sk sk ok sk sk sk ks ok ko ok sk o ko sk ok ok ok ok /

AZK_destroy_linsys (options, params, proc_config, &x, &b, &Amat);

if (proc_config[AZ_node]==0)

{
printf ("True residual norm squared = }22.16g\n",status[AZ_r]);
printf ("True scaled res norm squared = %22.16g\n",status[AZ_scaled_rl);
printf ("Computed res norm squared = /22.16g\n",status[AZ_rec_rl);

}

/* Print comparison between known exact and computed solution */
{double sum = 0.0;

for (i=0; i<N_local; i++) sum += fabs(x_reall[i]-xx_reallil);

for (i=0; i<N_local; i++) sum += fabs(x_imag[i]-xx_imag[i]);

printf(

"Processor }d: Difference between exact and computed solution = %12.4g\n",
proc_config[AZ_node] ,sum) ;

}

/* Free memory allocated */

free((void *) val_real);
free((void *) bindx_real);
free((void *) val_imag);
free((void *) update);
free((void *) b_real);
free((void *) b_imag);
free((void *) x_real);
free((void *) x_imag);
free((void *) xx_real);
free((void *) xx_imag);

MPI_Finalize();

return 0 ;

}

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

10

Overview of the Komplex Solver Package

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Chapter 2

Komplex File Index

2.1 Komplex File List

Here is a list of all documented files with brief descriptions:

azk_create_linsys.c (Creation routines for building Komplex systems) 13
azk_create_matrix.c (Creation routines for building Komplex matrices) 18
azk_create_precon.c (Creation routines for constructing a precondi-
tioner for a Komplex matrix) 22
azk_create_vector.c (Creation routines for building Komplex vectors) 24
azk_destroy_linsys.c (Destruction routine for deleting Komplex sys-

BEIMS) . .. e 28
azk_destroy_matrix.c (Destruction routine for deleting Komplex

matrices) 30
azk_destroy_precon.c (Destruction routine for deleting a precondi-

tioner for a Komplex matrix) 32
azk_destroy_vector.c (Destruction routine for deleting Komplex vec-

BOTS) o v o 34
azk_extract_solution.c (Extraction routine for getting the solution

of a Komplex system) 36

azk_permute_ri.c (Permutation routine that checks real and imagi-
nary parts and swaps if needed for better numerical stability) 40

12

Komplex File Index

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Chapter 3

Komplex File
Documentation

3.1 azk_create_linsys.c File Reference

Creation routines for building Komplex systems.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.1.1 Functions

e void AZK create_linsys_c2k (double *xc, double xbc, int *xoptions, dou-
ble #params, int xproc_config, AZ_ MATRIX xAmat_complex, double #xx,
double xxb, AZ_MATRIX xxAmat_komplex)

Create Komplex System from Compler System.

e void AZK create_linsys_g2k (double xxr, double *xi, double xbr, double
xbi, int *options, double *params, int *xproc_config, double cOr, double c0i,
AZ_MATRIX xAmat_mat0, double clr, double c1i, AZ_ MATRIX *Amat_-
mat1, double xxx, double #xb, AZ MATRIX #xAmat_komplex)

Create Komplex System from General System.

14

Komplex File Documentation

e void AZK _create_linsys_ri2k (double *xr, double #xi, double *br, dou-
ble xbi, int xoptions, double #params, int xproc_config, AZ_ MATRIX
xAmat_real, double xval.imag, double xxx, double xxb, AZ_MATRIX
xx Amat_komplex)

Create Komplex System from Real and Imaginary Parts.

3.1.2 Detailed Description

Creation routines for building Komplex systems.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix Ay) x (xp +ixx;) = (b +ixby)

or by separating into real and imaginary equations we have

(v) (m)=(%)

which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.1 azk _create_linsys.c File Reference 15

3.1.3 Function Documentation

3.1.3.1 void AZK _create_linsys_c2k (double x zc, double * be, int *
options, double * params, int * proc_config, AZ_ MATRIX =x
Amat_complex, double xx x, double xx b, AZ_MATRIX xx
Amat_komplex)

Initial value:

Create Komplex System from Complex System.
Transforms a complex-valued system
Amat_complex * xc = bc

where double precision arrays hold the complex values of Amat_complex, xc and
be in Fortran complex format, i.e., if dimension of complex system is N then xc
is of length 2%N and the first complex value is stored with the real part in xc[0]
and the imaginary part in xc[1] and so on.

Parameters:
zc¢ (In) Contains the complex initial guess/solution vector with the re-
al/imag parts interleaved as in Fortran complex format.

be (In) RHS in Fortran complex format.
options (In) Determines specific solution method and other parameters.
params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

Amat_complex (In) An AZ_MATRIX structure where Amat_complex-
>val contain the values of the complex matrix in Fortran complex
format.

Parameters:
x (Out) Komplex version of initial guess and solution.
b (Out) Komplex version of RHS.

Amat_komplex (Out) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

16

Komplex File Documentation

3.1.3.2 void AZK create_linsys_g2k (double *x zr, double * i,
double * br, double * bi, int * options, double x params,
int x proc_config, double cOr, double c0:, AZ_MATRIX
x Amat_-mat0, double c1r, double c1i:, AZ_ MATRIX =x
Amat_matl, double xx x, double *x b, AZ MATRIX xx
Amat_komplex)

Create Komplex System from General System.
Transforms a complex-valued system
(cOr+ixc0i)*A0 +(clr+ikxcli)*Al) x (xr+ixxi) = (br+ixbi)

to a Komplex system.

Parameters:
xzr (In) Real part of initial guess.

z¢ (In) Imaginary part of initial guess.

br (In) Real part of right hand side of linear system.

bi (In) Imaginary part of right hand side of linear system.

options (In) Determines specific solution method and other parameters.
params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

cOr (In) Real part of constant to be multiplied with first matrix.

c0i (In) Imaginary part of constant to be multiplied with first matrix.
c1r (In) Real part of constant to be multiplied with second matrix.

c1i (In) Imaginary part of constant to be multiplied with second matrix.
Amat_mat0 (In) AZ_ MATRIX object containing first real-valued matrix.

Amat_matl (In) AZ_MATRIX object containing second real-valued ma-
trix.

Parameters:
2 (Out) Komplex version of initial guess and solution.

b (Out) Komplex version of RHS.

Amat_komplexr (Out) Komplex version of matrix stored as an AZ_-
MATRIX structure.

3.1.3.3 void AZK create_linsys ri2k (double * zr, double * i,
double * br, double x bi, int x options, double x params, int
x proc_config, AZ_ MATRIX x Amat_real, double * val_imag,
double *x z, double xx b, AZ MATRIX *x Amat_komplex)

Create Komplex System from Real and Imaginary Parts.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.1 azk _create_linsys.c File Reference 17

Transforms a complex-valued system
(Ar +ixAi) x (xr + ixxi) = (br + ixbi)

where double precision arrays hold the real and imaginary parts separately. The
pattern of the imaginary part matches the real part. Thus no structure for the
imaginary part is passed in.

Parameters:
zr (In) Real part of initial guess.

z¢ (In) Imaginary part of initial guess.

br (In) Real part of right hand side of linear system.

bi (In) Imaginary part of right hand side of linear system.

options (In) Determines specific solution method and other parameters.
params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_real (In) AZ_ MATRIX object containing real matrix.

val_imag (In) Double arrya containing the values ONLY for imaginary
matrix.

Parameters:
x (Out) Komplex version of initial guess and solution.

b (Out) Komplex version of RHS.

Amat_komplex (Out) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

18

Komplex File Documentation

3.2 azk create matrix.c File Reference

Creation routines for building Komplex matrices.
#include <stdlib.h>

#include <stdio.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.2.1 Functions

e void AZK create_matrix_c2k (int options[], double params[], in-
t proc_config[], AZ_MATRIX sAmat_complex, AZ_ MATRIX sxAmat_-
komplex)

Create Kompler matriz from Compler matriz.

e void AZK create_matrix_c2k_fill entry (int nrow, int ncol, double
xcur_complex, double xcur_komplex)

e void AZK _create_matrix_g2k (int options[], double params[], int proc.-
config[], double cOr, double c0i, AZ_MATRIX *Amat_mat0, double clr,
double cli, AZ_MATRIX xAmat_matl, AZ MATRIX *xAmat_komplex)

Create Komplexr Matriz from General Matriz.

e void AZK _create_matrix_g2k fill_entry (int nrow, int ncol, double cOr,
double c0i, double xmatOv, double clr, double cli, double xmatlv, double
xkomplex)

e void AZK create_matrix_ri2k (int options[], double params[], int
proc_config[], AZ_MATRIX xAmat_real, double xval_imag, AZ_MATRIX
xx Amat_komplex)

Create Komplex Matriz from Real and Imaginary Parts.

e void AZK _create_matrix_ri2k fill_entry (int nrow, int ncol, double
xrealv, double ximagv, double xkomplex)

3.2.2 Detailed Description

Creation routines for building Komplex matrices.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.2 azk_create_matrix.c File Reference

(Ap +i% Ay) = (xp +ixx;) = (b +ixby)

or by separating into real and imaginary equations we have

A, —A; zr \ _ (by

A A i)\ bi
which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.2.3 Function Documentation

3.2.3.1 void AZK create_matrix_c2k (int options[], double
params[], int proc_config[], AZ_MATRIX x Amat_complez,
AZ MATRIX #x Amat_komplezr)

Create Komplex matrix from Complex matrix.

Transforms a complex-valued matrix where double precision array hold the com-
plex values of Amat_complex in Fortran complex format.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

20

Komplex File Documentation

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

Amat_complex (In) An AZ MATRIX structure where Amat_complex-
>val contain the values of the complex matrix in Fortran complex
format.

Parameters:

Amat_komplexr (Out) Komplex version of matrix stored as an AZ_-
MATRIX structure.

3.2.3.2 void AZK create_matrix_g2k (int options[], double
params[], int proc_config[], double cOr, double c0s,
AZ MATRIX x Amat_-mat0, double c1r, double
cli, AZMATRIX x Amat-matl, AZ_MATRIX xx
Amat_komplex)

Create Komplex Matrix from General Matrix.
Transforms a complex-valued Matrix
(cOr+ixc0i)*A0 +(clr+ixcli)*Al)

to a Komplex matrix.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

cOr (In) Real part of constant to be multiplied with first matrix.

c0i (In) Imaginary part of constant to be multiplied with first matrix.
Amat_mat0 (In) AZ_ MATRIX object containing first real-valued matrix.
c1r (In) Real part of constant to be multiplied with second matrix.

c1i (In) Imaginary part of constant to be multiplied with second matrix.

Amat_mat1 (In) AZ_MATRIX object containing second real-valued ma-
trix.

Parameters:

Amat_komplexr (Out) Komplex version of matrix stored as an AZ_-
MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.2 azk_create_matrix.c File Reference 21

3.2.3.3 void AZK create_matrix_ri2k (int options[], double
params|], int proc_config[], AZ_MATRIX % Amat_real,
double * val_imag, AZ MATRIX xx Amat_komplex)

Create Komplex Matrix from Real and Imaginary Parts.
Transforms a complex-valued matrix
(Ar +ixAi)

where double precision arrays hold the real and imaginary parts separately. The
pattern of the imaginary part matches the real part. Thus no structure for the
imaginary part is passed in.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

Amat_real (In) AZ_MATRIX object containing real matrix.

val_tmag (In) Double arrya containing the values ONLY for imaginary
matrix.

Parameters:
Amat_komplex (Out) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

22

Komplex File Documentation

3.3 azk_create_precon.c File Reference

Creation routines for constructing a preconditioner for a Komplex matrix.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.3.1 Functions

e void AZK _create_precon (int *options, double #params, int *proc_-
config,double *x, double xb, AZ MATRIX xAmat, AZ_PRECOND
xxPrec)

Create a Preconditioner for a Komplex matriz.

3.3.2 Detailed Description

Creation routines for constructing a preconditioner for a Komplex matrix.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems. As such, all Aztec preconditioners are available. To learn
how to set preconditioner options, please see the Aztec 2.1 User Guide.

3.3.3 Function Documentation

3.3.3.1 void AZK create_precon (int x options, double x params,
int x proc_config, double x x, double * b, AZ_ MATRIX x
Amat, AZ_ PRECOND xx Prec)

Create a Preconditioner for a Komplex matrix.

Constructs a preconditioner for a Komplex matrix Amat. All preconditioning
options available in Aztec are supported.

Parameters:
options (In) Determines specific preconditioner method and other param-
eters.

params (In) Drop tolerance and convergence tolerance info.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.3 azk _create_precon.c File Reference

23

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Parameters:
z (In/Out) Komplex version of initial guess and solution. May be modified
depending on preconditioner options.

b (In/Out) Komplex version of RHS. May be modified depending on pre-
conditioner options.

Parameters:
Amat (In) Komplex version of matrix stored as an AZ_MATRIX struc-
ture.

Parameters:
Prec (Out) Preconditioner for Amat stored as an AZ_ PRECOND struc-
ture.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

24

Komplex File Documentation

3.4 azk _create_vector.c File Reference

Creation routines for building Komplex vectors.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.4.1 Functions

e void AZK create_vector_c2k (int *options, double xparams, int *xproc_-
config, AZ_ MATRIX *Amat_komplex, double *vc, double xxvk)

Create Komplex vector from Complex vector.

e void AZK _create_vector_g2k (int xoptions, double xparams, int *xproc_-
config, AZ MATRIX xAmat_komplex, double *vr, double *vi, double
**vk)

Create Komplex vector from Real and Imaginary Parts.

e void AZK _create_vector_ri2k (int xoptions, double *xparams, int xproc_-
config, AZ MATRIX xAmat_komplex, double *vr, double *vi, double
*xvk)

Create Komplex vector from Real and Imaginary Parts.

3.4.2 Detailed Description

Creation routines for building Komplex vectors.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix A;) x (xp +ixx;) = (by +ixby)

or by separating into real and imaginary equations we have

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.4 azk_create_vector.c File Reference

25

AT —Ai Ty _ br

Ai A,- i - bl
which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.4.3 Function Documentation

3.4.3.1 void AZK create_vector_c2k (int * options, double x
params, int * proc_config, AZ_ MATRIX x Amat_komplex,
double * ve, double *x vk)

Create Komplex vector from Complex vector.

Transforms a complex-valued vector vc to a real vector where vc in Fortran
complex format, i.e., if dimension of complex system is N then vc is of length
2xN and the first complex value is stored with the real part in vc[0] and the
imaginary part in vc[1] and so on.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

26 Komplex File Documentation

Amat_komplex (In) Komplex version of matrix stored as an AZ._-
MATRIX structure.

ve (In) Contains a complex vector with the real/imag parts interleaved as
in Fortran complex format.

Parameters:
vk (Out) Komplex version of vc.

3.4.3.2 void AZK create_vector_g2k (int x options, double x
params, int x proc_config, AZ MATRIX x Amat_komplex,
double * vr, double % vi, double *x vk)

Create Komplex vector from Real and Imaginary Parts.

Transforms a complex vector where double precision arrays hold the real and
imaginary parts separately.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_komplex (Out) Komplex version of matrix stored as an AZ._-
MATRIX structure.

vr (In) Real part of input vector.

vi (In) Imaginary part of input vector.

Parameters:
vk (Out) Komplex version of input vector.

3.4.3.3 void AZK create_vector_ri2k (int * options, double x
params, int x proc_config, AZ MATRIX x Amat_komplex,
double * vr, double * vi, double *x vk)

Create Komplex vector from Real and Imaginary Parts.
Transforms a complex vector where double precision arrays hold the real and

imaginary parts separately.

Parameters:
options (In) Determines specific solution method and other parameters.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.4 azk_create_vector.c File Reference

27

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_komplexr (Out) Komplex version of matrix stored as an AZ._-
MATRIX structure.

vr (In) Real part of input vector.

vi (In) Imaginary part of input vector.

Parameters:
vk (Out) Komplex version of input vector.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

28

Komplex File Documentation

3.5 azk_destroy_linsys.c File Reference

Destruction routine for deleting Komplex systems.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.5.1 Functions

e void AZK _destroy_linsys (int *options, double xparams, int *proc_-
config, double xxx, double *xb, AZ_ MATRIX *xAmat_komplex)

Destroy a Komplex System.

3.5.2 Detailed Description

Destruction routine for deleting Komplex systems.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix A)) * (zr +ixx;) = (b +ixb;)

or by separating into real and imaginary equations we have

A, —A; zr \ _ [br

A A r)\ b
which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR, or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.5 azk_destroy_linsys.c File Reference 29

values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.5.3 Function Documentation

3.5.3.1 void AZK destroy_linsys (int * options, double * params,
int * proc_config, double xx x, double *x b, AZ_ MATRIX xx
Amat_kompler)

Destroy a Komplex System.

Destroys a komplex system created by any of the AZK_create_linsys functions.
Deletes any memory allocated by creation routine.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Parameters:
x (Out) Deleted komplex version of solution. Remember to call AZK -
extract_solution_[k2c,g2k,ri2k] before calling this routine.

b (Out) Deleted komplex version of RHS.

Amat_komplexr (Out) Deleted komplex version of matrix stored as an
AZ_MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

30

Komplex File Documentation

3.6 azk_destroy_matrix.c File Reference

Destruction routine for deleting Komplex matrices.
#include <stdlib.h>

#include <stdio.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.6.1 Functions

e void AZK_destroy_matrix (int options[], double params[], int proc.-
config[], AZ_ZMATRIX #xAmat_komplex)

Destroy a Komplex Matriz.

3.6.2 Detailed Description

Destruction routine for deleting Komplex matrices.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix Ay) x (xp +ixx;) = (b +ixby)

or by separating into real and imaginary equations we have

(v) (m)=(%)

which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.6 azk_destroy_matrix.c File Reference 31

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.6.3 Function Documentation

3.6.3.1 void AZK _destroy_matrix (int options|], double params|],
int proc_config[], AZ_MATRIX xx Amat_komplex)

Destroy a Komplex Matrix.

Destroys a komplex matrix created by any of the AZK_create_matrix functions.
Deletes any memory allocated by creation routine.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

Parameters:

Amat_komplex (Out) Deleted komplex version of matrix stored as an
AZ_MATRIX structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

32

Komplex File Documentation

3.7 azk_destroy_precon.c File Reference

Destruction routine for deleting a preconditioner for a Komplex matrix.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.7.1 Functions

e void AZK _destroy_precon (int *options, double *params, int *proc_-
config, AZ MATRIX *Amat, AZ PRECOND xxPrec)

Destroy a Komplez preconditioner.

3.7.2 Detailed Description

Destruction routine for deleting a preconditioner for a Komplex matrix.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems. As such, all Aztec preconditioners are available. To learn
how to set preconditioner options, please see the Aztec 2.1 User Guide.

3.7.3 Function Documentation

3.7.3.1 void AZK _destroy_precon (int x options, double * params,
int x proc_config, AZ MATRIX x Amat, AZ_ PRECOND xx
Prec)

Destroy a Komplex preconditioner.

Destroys a komplex preconditioner created by the AZK_create_preconditioner
function. Deletes any memory allocated by creation routine.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.7 azk_destroy_precon.c File Reference

33

Amat (In) Komplex version of matrix stored as an AZ_ MATRIX struc-
ture.

Prec (Out) Deleted komplex version of preconditioner stored as an AZ._-
PRECOND structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

34

Komplex File Documentation

3.8 azk_destroy_vector.c File Reference

Destruction routine for deleting Komplex vectors.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.8.1 Functions

e void AZK _destroy_vector (int xoptions, double *params, int *proc_-
config, AZ_MATRIX *Amat_komplex, double **vk)

Destroy a Komplex vector.

3.8.2 Detailed Description

Destruction routine for deleting Komplex vectors.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix A)) * (zr +ixx;) = (b +ixb;)

or by separating into real and imaginary equations we have

A, —A; zr \ _ [br

A A r)\ b
which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR, or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.8 azk_destroy_vector.c File Reference 35

values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.8.3 Function Documentation

3.8.3.1 void AZK destroy_vector (int * options, double * params,
int x proc_config, AZ_ MATRIX x Amat_komplex, double xx
vk)

Destroy a Komplex vector.

Destroys a komplex vector created by any of the AZK _create_vector functions.
Deletes any memory allocated by creation routine.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_komplex (In) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Parameters:
vk (Out) Deleted komplex version of a vector. Remember to call AZK -
extract_solution_[k2c,g2k,ri2k] before calling this routine.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

36

Komplex File Documentation

3.9 azk extract_solution.c File Reference

Extraction routine for getting the solution of a Komplex system.
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "az_aztec.h"

#include "azk komplex.h"

3.9.1 Functions

e void AZK _extract_solution k2c¢ (int *options, double *params, int
xproc_config, AZ_ MATRIX xAmat_komplex, AZ_ PRECOND xPrec, dou-
ble xvk, double *vc)

Extract a Complex vector from a Komplex vector.

e void AZK _extract_solution_k2g (int *options, double kparams, int
xproc_config, AZ_ MATRIX xAmat_komplex, AZ_ PRECOND xPrec, dou-
ble vk, double xvr, double *vi)

Eztract real/imaginary parts of a complex vector from a Komplez vector.

e void AZK_extract_solution k2ri (int xoptions, double xparams, int
xproc_config, AZ_ MATRIX xAmat_komplex, AZ_ PRECOND xPrec, dou-
ble vk, double xvr, double *vi)

Eztract real/imaginary parts of a complex vector from a Komplex vector.

3.9.2 Detailed Description

Extraction routine for getting the solution of a Komplex system.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(Ap +ix A)) x (zr +ixx;) = (b +ixb;)

or by separating into real and imaginary equations we have

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.9 azk_extract_solution.c File Reference

37

A, —A; zr \ _ { by
which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.9.3 Function Documentation

3.9.3.1 void AZK _extract_solution_k2c (int * options, double x
params, int x proc_config, AZ_ MATRIX x Amat_komplex,
AZ PRECOND x Prec, double % vk, double * vc)

Extract a Complex vector from a Komplex vector.

Transforms a komplex vector to a complex vector.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_komplex (In) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Prec (In) Preconditioner for Amat stored as an AZ_PRECOND structure.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

38

Komplex File Documentation

vk (In) Komplex version of vector.

Parameters:
ve (Out) Contains a complex vector with the real/imag parts interleaved
as in Fortran complex format. Note that the user must allocate suffi-
cient storage for results.

3.9.3.2 void AZK _extract_solution_k2g (int * options, double x
params, int * proc_config, AZ_ MATRIX x Amat_komplex,
AZ_PRECOND x Prec, double x vk, double x vr, double x
V1)

Extract real/imaginary parts of a complex vector from a Komplex vector.

Transforms a komplex vector to real and imaginary parts.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ N _procs] is the number of processors.

Amat_komplex (In) Komplex version of matrix stored as an AZ._-
MATRIX structure.

Prec (In) Preconditioner for Amat stored as an AZ_PRECOND structure.

vk (In) Komplex version of vector.

Parameters:
ve (Out) Contains a complex vector with the real/imag parts interleaved
as in Fortran complex format. Note that the user must allocate suffi-
cient storage for results.

3.9.3.3 void AZK _extract_solution_k2ri (int * options, double x
params, int x proc_config, AZ MATRIX x Amat_komplex,
AZ PRECOND x* Prec, double x vk, double * vr, double x
V1)

Extract real/imaginary parts of a complex vector from a Komplex vector.

Transforms a komplex vector to real and imaginary parts.

Parameters:
options (In) Determines specific solution method and other parameters.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.9 azk_extract_solution.c File Reference 39

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Amat_komplex (In) Komplex version of matrix stored as an AZ._-
MATRIX structure.
Prec (In) Preconditioner for Amat stored as an AZ_ PRECOND structure.

vk (In) Komplex version of vector.

Parameters:
ve (Out) Contains a complex vector with the real/imag parts interleaved
as in Fortran complex format. Note that the user must allocate suffi-
cient storage for results.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

40

Komplex File Documentation

3.10 azk_permute_ri.c File Reference

Permutation routine that checks real and imaginary parts and swaps if needed
for better numerical stability.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "az_aztec.h"

#include "azk komplex.h"

3.10.1 Functions

e void AZK _permute_ri (int *options, double *params, int *proc_config,
double xb, AZ_MATRIX xAmat_komplex)

Permute a Komplex system for better numerical stability.

3.10.2 Detailed Description

Permutation routine that checks real and imaginary parts and swaps if needed
for better numerical stability.

KOMPLEX is an add-on module to AZTEC that allows users to solve complex-
valued linear systems.

KOMPLEX solves a complex-valued linear system Ax = b by solving an equiv-
alent real-valued system of twice the dimension. Specifically, writing in terms
of real and imaginary parts, we have

(A +ix A)) x (zr +ixx;) = (b +ixb;)

or by separating into real and imaginary equations we have
A, —A; zr \ _ [by
A A z)\ b

which is a real-valued system of twice the size. If we find xr and xi, we can form
the solution to the original system as x = xr +ixxi.

KOMPLEX accept user linear systems in three forms with either global or local
index values.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

3.10 azk_permute_ri.c File Reference

41

1) The first form is true complex. The user passes in an MSR or VBR format
matrix where the values are stored like Fortran complex numbers. Thus, the
values array is of type double that is twice as long as the number of complex
values. Each complex entry is stored with real part followed by imaginary part
(as in Fortran).

2) The second form stores real and imaginary parts separately, but the pattern
for each is identical. Thus only the values of the imaginary part are passed to
the creation routines.

3) The third form accepts two real-valued matrices with no assumption about
the structure of the matrices. Each matrix is multiplied by a user-supplied
complex constant. This is the most general form.

Each of the above forms supports a global or local index set. By this we mean
that the index values (stored in bindx) refer to the global problem indices, or
the local indices (for example after calling AZ_transform).

3.10.3 Function Documentation

3.10.3.1 void AZK_permute_ri (int x options, double * params, int
* proc_config, double x b, AZ_ MATRIX x Amat_komplex)

Permute a Komplex system for better numerical stability.

An alternative to the standard Komplex formulation is to permute the block
rows so that the imaginary part is on the main diagonal. For example:

(4 ()= ()

This action may be desirable, or necessary in situations where the real part has
small or zero diagonal entries. This routine looks at each real/imaginary pair
and, based on a heuristic may swap the real and imaginary parts. This action
does not affect the sparsity pattern, but only the mapping from the complex (or
real /imaginary) mapping to the komplex mapping, and back.

Parameters:
options (In) Determines specific solution method and other parameters.

params (In) Drop tolerance and convergence tolerance info.

proc_config (In) Machine configuration. proc_config[AZ_node] is the node
number. proc_config[AZ_N_procs] is the number of processors.

Parameters:
b (Out) Komplex version of RHS, possibly permuted.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

42

Komplex File Documentation

Amat_komplexr (Out) Komplex version of matrix stored as an AZ_-
MATRIX structure, possibly permuted.

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

Index

azk_create_linsys.c, 13
AZK _create_linsys_c2k, 15
AZK _create_linsys_g2k, 15
AZK _create_linsys_ri2k, 16
AZK _create_linsys_c2k
azk_create_linsys.c, 15
AZK _create_linsys_g2k
azk_create_linsys.c, 15
AZK _create linsys_ri2k
azk_create_linsys.c, 16
azk_create_matrix.c, 18
AZK _create_matrix_c2k, 19
AZK create_matrix_c2k fill -
entry, 18
AZK create_matrix_g2k, 20
AZK create_matrix_g2k fill_-
entry, 18
AZK _create_matrix_ri2k, 20
AZK _create_matrix_ri2k_fill_-
entry, 18
AZK create_matrix_c2k
azk_create_matrix.c, 19
AZK _create_matrix_c2k_fill_entry
azk_create_matrix.c, 18
AZK create_matrix_g2k
azk_create_matrix.c, 20
AZK create_matrix_g2k_fill_entry
azk_create_matrix.c, 18
AZK _create_matrix_ri2k
azk_create_matrix.c, 20
AZK _create_matrix_ri2k_fill_entry
azk_create_matrix.c, 18
AZK _create_precon
azk_create_precon.c, 22
azk_create_precon.c, 22
AZK _create_precon, 22
azk_create_vector.c, 24

AZK _create_vector_c2k, 25
AZK create_vector_g2k, 26
AZK _create_vector_ri2k, 26
AZK create_vector_c2k
azk_create_vector.c, 25
AZK create_vector_g2k
azk_create_vector.c, 26
A7ZK create_vector_ri2k
azk_create_vector.c, 26
AZK _destroy_linsys
azk_destroy_linsys.c, 29
azk_destroy_linsys.c, 28
AZK _destroy_linsys, 29
AZK _destroy_matrix
azk_destroy_matrix.c, 31
azk_destroy_matrix.c, 30
AZK _destroy_matrix, 31
AZK _destroy_precon
azk_destroy_precon.c, 32
azk_destroy_precon.c, 32
AZK _destroy_precon, 32
A7ZK _destroy_vector
azk_destroy_vector.c, 35
azk_destroy_vector.c, 34
AZK _destroy_vector, 35
azk_extract_solution.c, 36
AZK _extract_solution_k2c, 37
A7ZK extract_solution_k2g, 38
AZK _extract_solution_k2ri, 38
A7ZK extract_solution_k2c
azk_extract_solution.c, 37
A7ZK extract_solution_k2g
azk_extract_solution.c, 38
AZK extract_solution_k2ri
azk_extract_solution.c, 38
AZK _permute_ri
azk_permute_ri.c, 41

44

INDEX

azk_permute._ri.c, 40
AZK _permute_ri, 41

Generated at Tue May 2 13:00:46 2000 for Komplex by Doxygen written by Dimitri van Heesch (c) 1997-2000

