CSRI Summer Proceedings 2010 1

OPTIKA: A GUI FRAMEWORK FOR PARAMETERIZED
APPLICATIONS

KURTIS L. NUSBAUM* AND DR. MIKE HEROUX'

Abstract. In the field of scientific computing there are many specialized programs designed for
specific applications in areas like biology, chemistry, and physics. These applications are often very
powerful and extraodinarily useful in their respective domains. However, many suffer from a common
problem: a non-intutive, poorly designed user interface. Many of these programs are homegrown,
and the concern of the designer was not ease of use but rather functionality. The purpose of Optika is
to address this problem and provide a simple, viable solution. Using only a list of parameters passed
to it, Optika can dynamically generate a GUI. This allows the user to specify parameter’s values in a
fashion that is much more intuitive than the traditional “input decks” used by many parameterized
scientific applications. By leverageing the power of Optika, these scientific applications will become
more accessible and thus allow their designers to reach a much wider audience while requiring minimal
extra development effort.

1. Introduction. In the world of scientific computing there is a problem: most
software developers are far more concerned with the functionality of their software
rather than their user interface. This is understandable given the limited time and
pressures of scientific computing environments. And in cases where there are only a
few users of a piece of software this type of development is tolerable. However, when
a piece of software starts to be used by a wider audience, poor user interface design
issues come to the forefront and can greatly hinder further adoption of a particular
piece of software. Optika' is an attempt to solve this problem in a generic fashion for
parameterized scientific applications.

Since developers of scientific applications don’t really care about user interfaces,
Optika needs to provide a minimal amount of hurdles for developers. Also, the end
result needs to be an intuitive user interface that can be easily navigated and utilized
regardless of the underlying computations being done.

The purpose of this paper is to discuss the development of the Optika package. In
doing so we hope to demonstrate how Optika solved some of the issues associated with
developing a generic user interface for scientific applications and provide justification
for why we chose particular solutions. We will proceed to discuss Optika development
in a semi-chronological fashion.

2. Initial Planning and Development. In Fall of 2008, Dr. Mike Heroux
identified a need for the Trilinos Framework? to include some sort of GUI package.
Dr. Heroux wanted to give users of the framework the ability to easily generate GUIs
for their programs, while still providing a good experience for the end-user. Based
on previous GUI work we’d done for the Tramonto project [6], a few initial problems
were identified:

e How would the GUI be laid out?

e What GUI framework would would be used to build the GUI?

e Different types of parameters require different methods of input. How would
the program decide how to obtain input for a particular parameter?

e How would the application developer specify parameters for the GUI to ob-
tain?

*St. John’s University, klnusbaum@csbsju.edu

fSandia National Laboratories, maherou@sandia.gov

IFor more information on Optika, please see its documentation [3]
20ptika is part of the Trilinos Project [7].



Optika GUI Framework
ParameterList

—— Parameter
—— Parameter
—— Parameter

—— ParameterList

Parameter

Parameter

FiG. 2.1. The hierarchical layout of the GUI

e How would the application developer specify dependencies between parame-
ters. This was a crucial problem/needed-feature that was identified in previ-
ous development of an unsuccessful Tramonto GUI.

After some deliberation, the following initial solutions were decided upon:

e The GUI would be laid out in a hierarchical fashion as shown in Figure 2.1.
Parameters would be organized into lists and sublists. This would allow for a
clear organization of the parameters as well as intrinsically demonstrate the
relationships between them.

e QT? was chosen as the GUI framework for several reasons:

— It is cross-platform.
It is mature and has a comprehensive set of development tools.
— It has a rich feature-set.
— It has been used by Sandia in the past.
— The Optika lead developer was familiar with it.
e It would be required that all parameters specify their type and the following
types would be accepted:

— int — string

— short — boolean

— float — arrays of int, short, double, and
— double string

The supported data type were chosen for two main reasons: (a) The number of
input widgets that need to be supported is a direct function of the supported
data types. By only supporting a small set of basic data types, we could
stick to supporting only a small number of input widgets, most of which were
already pre-built and part of Qt. (b) The development team felt that these
data types would be adequate for 95% of the developers who would be using
Optika.

For number types, a spin box (figure 2) would be used as input. If the valid
values for a string type were specified, a combo box (figure 2) would be used.
Otherwise a line edit (figure 2) would be used. For booleans, a combo box

3For documentation on all Qt classes please visit [2].



Kurtis Nusbaum Student and Dr. Mike Heroux Mentor 3

(firgure 2) would also be used. For arrays, a pop-up box containing numerous
input widgets would be used. The widget type would be determined by the
array type (e.g. for numerical types a series of spinboxes would be used).

QY o ) |
AAA

Spitigfinell
BokEmitH

F1G. 2.2. Some of the various widgets used for editing data [4]

e Initially it was decided that the application developer would specify parame-
ters via an XML file. A DTD would be created specifying the legal tags and
namespaces.

e Dependencies would be handled through special tags in the DTD.

3. Early Development. The first several months of development were spent
on creating and implementing the XML specification. The name of the XML specifi-
cation went through several revisions but was eventually called Dependent Parameter
Markup Language (DPML).

After several months of development we realized that creating an entirely new
way of specifying parameters might hinder adoption of Optika. We also realized
that Trilinos actually had a ParameterList class in the Teuchos [5] package. The
ParameterList seemed to be better than DPML for several reasons:

e It was already heavily adopted.
e It had the necessary hierarchical nature (like described in figure 2.1).
e [t was serializable to and from XML.

For these reasons, DPML was scrapped in favor of using Teucho’s ParameterLists.
Development moved forward with the goal of creating a GUI framework that, in
addition to meeting all the challenges outlined above, would also be compatible with
any existing program using Teuchos’s ParameterLists.

4. Heavy development. Starting in May 2009 a more heavy focus was put
on development of the Trilinos GUI package. With the back-end data-structure of
the Teuchos ParameterList already in place, attention was turned to developing the
actually GUI portions of the framework. A key technology provided by Qt was it’s
Model/View framework [1]. Using the Model/View paradigm, a wrapper class named
TreeModel was created around the ParameterList class by subclassing QAbstractItem-
Model.

However, in subclassing the QAbstractItemModel it was realized that the Param-
eterList class fell short in terms of providing certain features. The main issue was
that a given ParameterEntry located within a ParameterList or a given sublist located
within a ParameterList was not aware of it’s parent. This was an issue because Qt’s
Model/View framework requires items within a model to be aware of their parents.
In order to circumvent this issue the Treeltem class was created. Now the TreeModel
class became more than just a simple wrapper class. A TreeModel was created by
giving it a ParameterList. It would then read in the ParameterList and create a
structure of Treeltems. Each Treeltem then contained a pointer to it’s corresponding
ParameterEntry. This allowed parent-child relationship data to be maintained while
still using ParameterLists as the true backend data-structure.

Once the TreeModel and Treeltem class were complete, an appropriate delegate to
go between a view and the TreeModel was needed. A new class simply called Delegate



4 Optika GUI Framework

was created to fill this role by subclassing QItemDelegate. As specified above, the
delegate would return the appropriate editing widget based on the data type carried
within a given Treeltem.

With the model and delegate classes in place, an appropriate view could be ap-
plied. At first a simple QTreeView was applied to the model. Later, as additional
functionality was added the view class needed to perform more functions. To fill
these needs, the QTreeView class was subclassed, creating the TreeView class. Its
main duties were to show and hide parameters as needed and handle any bad pa-
rameter values that might come up during the course of the GUI execution. These
features were needed due to requirements that arose from dependencies (something
that will be discussed later).

Finally, the OptikaGUIT class was created. It had one static function, getInput. A
ParameterList is passed to this function, a GUI is generated, and all end-user input
is stored in the ParameterList that was passed to the function. When the end-user
hits the submit button the GUI closes and the ParameterList that was passed to
the getInput function now contains all of the end-user input. The end result was
something like that in figure 4.

Fic. 4.1. The end result of the initial Optika development

5. Advanced Features. With the basic framework in place, we were now able
to move on to more advanced features. As these advanced features were developed
various refactorings were made to the already existing code in order to support these
new features.

5.1. Validators. One of the goals of Optika is to make life easier for the end-
user. It’s not enough to simply give the end-user information, it must be conveyed in
a meaningful way. Validators are a great way of informing an end-user what the valid
set of values for a particular parameter are. Teuchos ParameterLists already came
with built in validator functionality, but the default validators that were available
were sorely lacking in capability. Three initial sets of validators were created to help
deal with the short comings of the available validator classes:
EnhancedNumberValidators allowed for validating various number types. En-

hancedNumberValidators have the following abilities:
e Set min and max.
e Set the step with which the number value is incremented.
e Set the precision with which the number value is displayed.
StringValidator allowed for a parameter to be designated as only accepting values
of type string and allowed for specifying a valid list of values.
ArrayValidators allowed for all validator types to be applied to an array of values.
The validator that is applied to each entry in the array is called the prototype
validator.
A fourth Validator type, a FileNameValidator, was added later. This validator desig-
nates a particular string parameter as containing a file path and allows the developer
to indicate whether or not the file must already exist. Since filenames are such an
important type of string, it made sense that they would have their own validator.

By interpreting these validators, Optika could either put certain restrictions on
the input widget for a parameter or entirely change the type of input widget used.
For instance: with EnhancedNumberValidators the min, max, step, and precision of



Kurtis Nusbaum Student and Dr. Mike Heroux Mentor 5

the EnhancedNumberValidator are all to directly set their corresponding values in
the QSpinBox class. But with the FileNameValidator a QFileDialog would appear
instead of the normal QComboBox or QTextEdit used for string validators.

5.2. Dependencies. Many times the state of one parameter depends on the
state of another. Common inter-parameter dependencies and their requirements in-
clude:

Visual Dependencies: One parameter may become meaningless when another pa-
rameter takes on a particular value. In this case the end-user no longer needs
to be aware of the meaningless parameter and it’s best to just remove it from
their view entirely so they don’t potentially become confused. Visual depen-
dencies should allow the developer to express that ”if parameter x takes on
a particular value, then don’t display parameter y to the end-user anymore.”

Validator Dependencies: Sometimes the valid set of values for one parameter
changes if another parameter takes on a particular value. Validator Depen-
dencies should allow the developer to express that ”if parameter x takes on
a particular value, change the validator on parameter y.”

Validator Aspect Dependencies: Sometimes the developer doesn’t want to changell
the validator on a particular parameter, but rather just a certain aspect of it.
Validator Aspect Dependencies should allow the developer to express that ”if
parameter x takes on a particular value, change this aspect of the validator
on parameter y based on the new value of parameter x”

Array Length Dependencies: Sometimes the length of an array in a parameter
changes based on the value of another parameter. Array Length Dependencies
should allow the developer to express that ”if parameter x changes its value,
change the length of the array in parameter y based on the new value of
parameter x.”

Coming up with a way for the developer to easily express these concepts was not
a simple task. The first problem that had to be solved was how to keep track of all
the dependencies. They couldn’t just be stored in a ParameterList as a class member
because of the recursive structure of ParameterLists. Eventually, it was decided that
a new data structure called a DependencySheet would hold all the dependencies used
for a certain ParameterList. Each Dependency would at minimum specify the depen-
dent parameter and the dependee parameter. However, a complication arose. Because
we wanted dependencies to be able to have arbitrary dependents and dependees, we
needed a way to uniquely identify the dependee and the dependent. As the Parame-
terEntry class stood, there was no way of doing this and we didn’t want to add this
cabaility to the ParameterEntry class. The Teuchos package is fundamental to the
Trilinos Project and before we started changing it for our purposes we wanted Optika
to have a solid footing and be absolutely sure that any changes made to Teuchos were
actually necessary. We needed to find another way to uniquely identify parameters
within a ParameterList.

We decided to use the name of the parameter as the identifier because the accessor
functions for a ParamaeterList usually use the parameters name to identify a particu-
lar parameter. While within a ParameterList names of parameters are unique, names
are not necessarily unique across a set of sublists. Therefore, in order to uniquely
identify a parameter and allow dependencies across sublists Optika would need to
know both the parameter name and the parent list containing it*.

4The astute reader will notice that if there are two sublists with different parent lists and each
sublist has a parameter with the same name, then Optika will not be able to uniquely identify the



6 Optika GUI Framework

So it became that every dependency, along with needing the names of the de-
pendee and dependent, also needed their respective parent lists. The Dependen-
cySheet also needed the root list which contained all of the dependees and dependents.
This was so Optika could recursively search for the parameters and their parent sub-
lists (the only way to find them using our method of identification). The following
Dependency classes were created to address the use cases above (shown as a hierarchy
of classes):

Dependency: Parent class for all Dependencies.
NumberArrayLengthDepednency: Changes an array’s length.
NumberValidatorAspectDependency<T>: Changes various aspects of

an EnhancedNumberValidator.
ValidatorDependency: Changes the validator used for particular parame-
ter.
BoolValidatorDependency: Changes the validator used for a partic-
ular parameter based on a boolean value.
RangeValidatorDependency<T>: Changes the validator used for a
particular parameter based on a number value.
StringValidatorDependency: Changes the validator used for a par-
ticular parameter based on a string value.
VisualDependency: Shows or hides a particular parameter.
BoolVisualDepedency: Shows or hides a particular parameter based
on a boolean value.
NumberVisualDependency<T>: Shows or hides a particular pa-
rameter based on a supported number type value.
StringVisualDependency: Shows or hides a particular parameter basedll
on a string value.

Some of these dependencies have fairly novel and robust capabilities. Namely, the
NumberArrayLengthDepednency, NumberValidator AspectDependency, and NumberVi-i
sualDependencies can all take a pointer to a function as an argument. In the case
of the NumberArrayLengthDepednency, this function can be applied to the value of
the dependee parameter. The return value of this function is then used as the length
of the array for the dependent parameter. For NumberValidator AspectDependen-
cies, the function is applied to the dependee value and used to calculate the value
of the chosen validator aspect. In the NumberVisualDepenency class, if the function
when applied to the dependee value returns a value greater than 0 the dependent is
displayed. Otherwise, the dependent is hidden.

The algorithm for expressing dependencies in the GUI is as follows:

1. A parameter’s value is changed by the end-user.

2. The Treemodel queries the associated dependency sheet to see whether or not
the parameter that changed has any dependents.

3. If the parameter does have dependents, the Treemodel requests a list of all
the dependencies in which the changed parameter is a dependee.

4. For each dependency, the evaluate function is called. The dependency makes
any necessary changes to the dependent parameter and the Treemodel up-
dates the Treeview with the new data.

5. If any dependents now have invalid values, focus is given to them and the
end-user is requested to change their value to something more appropriate.

dependent and the dependee. Since solving this problem would most likely require a lot of refactoring
of code not directly part of the Optika package, we decided to address it at a later date.



Kurtis Nusbaum Student and Dr. Mike Heroux Mentor 7

The order in which dependencies are evaluated is arbitrary. We have not tested
what happens under the conditions of conflicting dependencies or circular dependen-
cies yet. This is an area for further study.

5.3. Custom Functions. Normally, in Optika the end-user configures the Pa-
rameterList, hits submit, the GUI disappears, and the program continues with exe-
cution. However, an alternative to this work flow was desired. A persistent GUI was
needed. The development team added the ability to specify a pointer to a function
that would be executed whenever the end-user hit submit. The function was required
to have the signature foo(Teuchos::RCP<const ParameterList> userParameters).

5.4. Various Niceties. Various niceties were added to the GUI as well. The
ability to save and load ParameterLists was added. The Optika GUI class was ex-
panded to allow for customization of the window icon and use of Qt Style Sheets
to style the GUIL. Checks were also added to see if the end-user was trying to exit
the GUI without saving. In such a case they would be warned and given the option
to save their work. Tooltips were added so when ever the end-user hovered over a
parameter, it’s documentation string would be displayed. Also, the ability to search
for a parameter was added.

6. Waiting For Copyright. All of the above features were completed around
or shortly after the end of August 2009 and Optika was officially given its name.
Optika was then submitted for copyright. It took Optika a little over six months to
complete copyright. Since it was not yet copyrighted, it could not be included in the
Trilinos 10 release in October 2009. During the time Optika spend in copyright limbo,
little development on Optika was done. Most of development was cleaning up various
pieces of code, adding examples, and adding documentation. Finally, in March 2010
Optika completed copyright and was ready to be included in Trilinos. It was released
to the public with the Trilinos 10.2 release.

7. User Feedback. In the summer of 2010, Optika got it’s first user. Dr. Laurie
Frink began using Optika to create a GUI for Tramonto. There had been a previous
attempt to build a GUI for Tramonto, but it had been largely unsuccessful

Initial feedback was very positive. Dr. Frink was very impressed with the capa-
bilities of Optika and the ease at which should could construct a GUI. However, she
did have some small initial issues picking up Optika. But most of them arose from
the fact she is a C programer and Optika is C++ based. Her issues were always easily
and quickly addressed. Some of her more involved questions even lead to the creation
of some great examples.

For the most part Dr. Frink found Optika to be quite adequate for her purposes.
However, she did have one rather major feature request: she needed the ability to
specify multiple dependents and in some cases even multiple dependees. This was
quite a task and required a large reworking of the Dependency part of the framework.

Adding support for multiple dependents was fairly trivial. Instead of specifying
a single dependent to the constructor of a Dependency, a list of Parameters was now
passed. If the developer only needed one dependent then he/she could just pass a list
of length one. This simple list worked in the case of all the dependents having the
same parent list. If they had different parent lists, then a more complex data structure
which mapped parameters to parent lists would be used. Convenience constructors
were also made for simple cases where just one dependent was needed. The algorithm
used for evaluating dependencies changed very little with these modifications. The



8 Optika GUI Framework

only addition needed was an extra loop for evaluating each dependent in a dependency
for a given dependee.

Adding support for multiple dependents was much harder. There was actually
only one specific use case where multiple dependents were needed or even appropriate
for that matter. Dr. Frink needed the ability to test the condition of multiple param-
eters to determine whether or not a particular parameter should be displayed. So a
new VisualDependency class called ConditionVisualDependency was created. Condi-
tionVisualDependencies evaluated a condition object to determine the whether or not
a set of dependents should be hidden or shown. The set of condition classes created
are as follows (shown as a hierarchy of classes):

Condition : Parent class of all conditions.

ParameterCondition : examines the value of a particular parameter and
evaluates to true or false accordingly. Types of ParameterConditions
include:

BoolCondition: examines boolean parameters.
NumberCondition<T>: examines number parameters.
StringCondition: examines string parameters.

BinaryLogicalCondition: examines the value of two or more conditions
passed to it and evaluates to true or false accordingly. Types of Binary-
LogicalConditions include:

AndCondition: returns the equivalent of performing a logical AND on
all conditions passed to it.

EqualsCondition: returns the equivalent of performing a logical EQUALSH
on all conditions passed to it.

OrCondition: returns the equivalent of performing a logical OR on all
conditions passed to it.

NotCondition: examines the value of one condition passed to it and evalu-
ates to the opposite of what ever that condition evaluates.

Through the recursive use of BinaryLogicalConditions the developer can now chain
together an arbitrary amount of dependents.

ConditionVisualDependencies are the only dependencies which allow for multiple
dependents. So while support was added for multiple dependents at the Dependency
parent class level, ConditionVisualDependency is the only class which actually im-
plements the functionality. In the case of multiple dependents the algorithm for
evaluating dependencies didn’t need to change at all.

8. Serialization. The next step was to make Optika’s dependencies, conditions,
and validators serializable. In addition, we needed to make the parameter serializa-
tion more robust. The hope was that by doing this we would allow the application
developer to specify the majority of their application via XML, instead of the more
cumbersome source-code solution. After some consulting with Roscoe Bartlett, the
following model was decided on:

e Each different type of condition, dependency, parameter, and validator would
have it’s own associated XMLConverter. All the dependency converters would
sub-class a DepenencyXMLConverter super-class, all the condition converters
would sub-class a ConditionXMLConverter super-class, etc. These converters
would be able to convert back-and-forth from object and XML.

e A psuedo-database class would be created for each set of converters. All
converters would be obtained by calling a getConverter() function whose pa-
rameter would either be a object to convert, or and XML tag to convert.



Kurtis Nusbaum Student and Dr. Mike Heroux Mentor 9

The getConverter() function would then return an appropriate converter that

would allow the object to be converted to and from XML or vice versa.
This model has the benefit of being extendable. If new object types are created, or
even if the user desires to create their own types, this model will easily accomidate
such addtions. A new converter class just has to be created.

The summer of 2010 was spent developing the converters for the standard condi-
tions, dependencies, parameters, and validators. Also, we changed from the system
of using a parent ParameterList and Parameter name to identify specific parameters.
We now used pointers, which garunteed a unique identification of a specific parame-
ter. This was done for two reasons: it was the only good way to make serialization
possible, and we determined that it was asbolutely necessary for users to be able to
uniquely identify parameters. All these changes resulted in a rather large effort that
added a lot of new code. In addition, new tests had to be developed for this large
addition of functionality. By September we were bascially done with only a few loose
ends. These were taken care of over the next few months.

9. Future Development. There are several main development goals for Optika
in the near future.

e Dr. Frink has submitted several requests for new functionality. Most impor-
tantly she has identified the need for users to be able to edit two dimensional
arrays. We are currently in the process of adding this functionality. She
would also like to be able to specify a lable to use for each entry in an array
along with a few other nicities.

e We would like to develop a stand-alone version of Optika. The development
team believes that the potential audience for Optika is much larger than just
the user base of Trilinos. However, creating a stand-alone version presents
the problem of keeping source code consistent between the Optika that exists
in Trilinos and the stand-alone version. This is an issue that we will need to
make sure to address.

e We would like to create a single Optika based executable that acts as a generic
ParmaterList configurator. It would take in a ParameterList in XML format,
allow the user to configure the ParameterList, and then either output the
entire ParameterList again with the new settings or output a ParameterList
only containing the parameters that were changed. We think this will be
useful because it will enable end-users to utilize Opitka without requiring
the program their using to implement Optika support (just ParameterList
support).

e We need to further investigate what happens when dependencies conflict or
become circular. Right now the behavior of Optika under such conditions is
unknown.

10. Conclusions. It is difficult to tell if Optika has met it’s initial goals yet.
As of the writing of this paper, Optika only has one user. Hopefully, by continuing
to do further development and evangelization it’s user base can grow. This will then
allow us to see if we truly are meeting the needs of the scientific community. Based
on early use of Optika by Dr. Frink we believe that Optika is indeed robust enough
to meet most of the community’s needs but we can’t say for sure until we have more
user testing.

Appendix A. Nomenclature.



10 Optika GUI Framework

Dependency A relationship between two or more parameters in which the state or
value of one set of parameters depends on the state or value of another.

Dependee The parameter upon which another parameter’s state or value dependes.

Dependent A parameter whose state or value is determined by another parameter.

Parameter An input needed for a program.

ParameterList A class containing a list of parameters and other parameter lists.

ParameterEntry A class containing a parameter located in a ParameterList

RCP Refernce counted pointer. RCPs refered to in this document reference the RCP
class located in the Teuchos [5] package of Trilinos.

Sublist A parameter list contained within another parameter list.

Widget A GUI element, usually used to obtain user input.

Validator An object used to ensure a particular parameter’s value is valid.

REFERENCES

[1] Model/View Programming. http://doc.trolltech.com/4.6/model-view-programming.html.

[2] Online Reference Documentation. http://doc.trolltech.com.

(3] Optika:  Trilinos/packages/optika. http://trilinos.sandia.gov/packages/docs/r10.4/
packages/optika/doc/html/index.html.

[4] Qt Widget Gallery. http://doc.trolltech.com/4.6/gallery.html.

[5] Teuchos: The Trilinos Tools Package. http://trilinos.sandia.gov/packages/docs/r10.4/
packages/teuchos/doc/html/index.html.

[6] Tramonto Software. http://software.sandia.gov/DFTfluids.

[7] M. A. HEROUX, R. A. BARTLETT, V. E. HOWLE, R. J. HOEKSTRA, J. J. Hu, T. G. KOLDA,
R. B. Lenoucq, K. R. LonG, R. P. PAwLowski, E. T. Puipps, A. G. SALINGER, H. K.
THORNQUIST, R. S. TUMINARO, J. M. WILLENBRING, A. WILLIAMS, AND K. S. STANLEY, An
overview of the trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397-423.



