PyTrilinos Users Guide

Bill Spotz
wfspotz @sandia.gov
Sandia National Laboratories

31 December 2010

Copyright: Sandia Corporation, 2010
Abstract

PyTrilinos is a python interface to selected Trilinos packages. The Trili-
nos Project is a collection of over 30 software packages written primarily
in C++ that provide linear, nonlinear, and eigen solvers, along with pre-
conditioners and supporting utilities, that are object-oriented, parallel and
serial, for sparse and dense problems. PyTrilinos is one of those packages,
and provides python interfaces to the most popular and important Trilinos
packages. This Guide provides information for users just getting started
with PyTrilinos.

Contents

Prereqresites 1

Building and Installing 2
Trilinos Packages 2
Pythonand SWIG 2
Installation Path Lo 3
BuildTime 3

3

Prereqresites

To build and execute PyTrilinos, you must have python installed. PyTrilinos is not yet
ported to python 3, so you need python 2.X, where X is 5 or greater.

In addition, you need to have numpy installed relative to the same python instal-
lation. NumPy is numerical python, a python module for handling homogenous, con-
tiguous arrays of data. Currently, version 1.0 or greater is required.

Finally, you need SWIG, the Simple Wrapper Interface Generator, a tool that reads
C/C++ code and automatically generates python wrapper code. This is the workhorse
for building PyTrilinos code. Version 2.0 or greater is required.

http://www.python.org
http://numpy.scipy.org
http://www.swig.org

Building and Installing

PyTrilinos is a Trilinos package, and so is built by building Trilinos in the normal way
and enabling the PyTrilinos package. Trilinos uses the CMake build system, which
requires a build directory separate from the source directory. Trilinos builds tend to be
complex enough that it is recommended that you write a short script to invoke cmake
to configure the build. See the Trilinos documentation for more details.

PyTrilinos is not enabled by default. To enable PyTrilinos, use the cmake option:

-D Trilinos_ENABLE_PyTrilinos:BOOL=0N

PyTrilinos requires that all of Trilinos be built as shared libraries. This is not the
default, nor does enabling PyTrilinos set this flag. You must therefore explicitly turn
on shared libraries:

-D BUILD_SHARED_LIBS:BOOL=0ON

If you enable PyTrilinos but forget to turn on shared libraries, cmake will exit and
give you a gentle reminder to set this option.

Trilinos Packages

PyTrilinos will build python interfaces only for those Trilinos packages that are en-
abled. Some of the default packages have python wrappers, some do not. Some Trili-
nos packages with python wrappers are not in the default set. So not specifically en-
abling any other Trilinos packages (i.e., using the default set of packages) will build an
incomplete PyTrilinos.

The simplest way to enable every Trilinos package that has a python interface is to
use:

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=0ON

All packages with python wrappers are seen as optional packages to PyTrilinos, so
they all get enabled. But this directive is recursive, so those packages that are optional
to PyTrilinos also have optional packages, and they get enabled as well. This approach
will build several more packages than you need.

For complete control, you can use the option:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=0OFF
and then individually enable every package you want using:
-D Trilinos_ENABLE_<PACKAGE>:BOOL=0ON

where <PACKAGE> is the name of a Trilinos package. The Trilinos packages with
python interfaces are Teuchos, Epetra, Triutils, EpetraExt, AztecOO, Galeri, Amesos,
Ifpack, Komplex, Anasazi, ML and NOX.

Python and SWIG

You may specify the python interpreter (and thus the version of the Python/C API) with
the cmake option:

-D PYTHON_EXECUTABLE:FILEPATH=...

If you do not specify this option, cmake actually looks for an executable named
python2.7 (and then python?2. 6, etc., down to pythonl . 5, and then finally for
python).

The SWIG executable my be similarly specified with:

-D SWIG_EXECUTABLE:FILEPATH=...

If this option is not used, cmake will find the first occurence of swig in your
environment’s path.

Installation Path

Because PyTrilinos is imported into a running python interpreter, and that interpreter
will have specific places it looks for python modules, it is possible to set the PyTrilinos
installation path separately from the Trilinos installation path. Use:

-D PyTrilinos_INSTALL_PREFIX:PATH=...

If this option is not specified, then the PyTrilinos installation path prefix is defined
by the Trillinos installation path prefix:

-D CMAKE_INSTALL_PREFIX:PATH=...

If neither of these options is specified, then the PyTrilinos installation path is set to
be the location where the python executable expects to find python modules. Since
specifying the PyTrilinos installation location is more complex than for the rest of
Trilinos, the PyTrilinos installation path is written to the screen near the end of the
configuration process.

Build Time

Trilinos can take a long time to configure and build, depending on the number of pack-
ages that are enabled. A significant portion of this time can be taken up by building
tests and examples. You can save a considerable amount of time by turning these tests
and examples off:

-D Trilinos_ENABLE_TESTS:BOOL=0OFF
-D Trilinos_ENABLE_EXAMPLES:BOOL=0OFF

Configuring and Building

To configure Trilinos, run cmake with the desired options specified, followed by the
path to the top Trilinos source directory. This will generate the build system. On a
Unix machine, then run make to build all of the enabled Trilinos packages. Then
runmake install (or sudo make install, if installing to a path that requires
root privileges) to install the Trilinos libraries, header files and python modules to their
proper place.

	Contents
	Prereqresites
	Building and Installing
	Trilinos Packages
	Python and SWIG
	Installation Path
	Build Time
	Configuring and Building

