
10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 1 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

Quick and Portable Random Number Generators

By Jerry Dwyer
June 01, 1995
URL:http://drdobbs.com/184403024

Jerry Dwyer is a Professor of Economics at Clemson University with a Ph.D. from the University of Chicago. He primarily writes programs for statistical
analyses and for real-time experiments. He has been programming for 20 years, and he has been writing in C for 10 years. He can be reached at
dwyerg@clemson.edu.

Introduction

A computer-generated random number is a contradiction in terms. Random numbers are unpredictable and computers are perfectly predictable. Computers
must do the same thing whenever they are in the same state. Typical random-number generators iterate a function to get a sequence of numbers. No matter
how seemingly arbitrary, a sequence of numbers produced by a computer is perfectly predictable; it is not random. Hence the common term "pseudo-
random numbers" arises for what I for brevity will call "random numbers."

In addition to not being random, random-number generators on computers are not trivial to implement correctly. In the process of doing some simulations,
I spent quite a bit of time reading fairly technical material. In this article, I will explain the most common random-number generators. You will see some
32-bit random number generators that you can easily and comfortably include in your own code for any ANSI C compiler. The routines only assume that
the maximum signed integer is at least 231-1, which is required by ANSI C. Along the way, you will see how to use approximate factoring to avoid
overflow in modular arithmetic.

Lehmer Generators

The most commonly used random-number generator is what I will call the "Lehmer generator." Suggested by D.H. Lehmer in 1951, the "multiplicative
congruential random-number generator" is based on the recursion:

x(t+1) = (a*x(t)) mod m

where x(t) is the value at iteration t used to generate the next value x(t+1), a is a multiplier, and mod is the modulo function. If a*x is positive or zero and
m is positive, the modulo function generates the same value as the remainder operator (%) in C. If m is positive, the modulo function is the residue

a*x - RES(a*x/m)*m

where RES(a*x/m) is notation representing the largest integer less than or equal to a*x/m.

For evaluating random-number generators, the relationship between consecutive values is sometimes informative. Figure 1 shows graphs of x(t+1) against
x(t) for integers, where x(t) can be any integer from one to six. Figure 1(a) shows the graph for a series of random numbers. It makes sense to think of a
series of true random numbers as being able to take on any possible set of values. In other words, true random numbers fill up the space. In addition, it
makes sense to require that the values occur with equal probability. In other words, true random numbers have a uniform distribution.

The Lehmer generator produces a nonrandom structure in two or more dimensions. For example, suppose the generator is:

x(t+1) = (5 * x(t)) mod 7

The full set of values in order is 1, 5, 4, 6, 2, 3, 1, ... This sequence generates all of the values from 1 to 6. This sequence does not, however, begin to fill
up a two-dimensional space. Figure 1(b) shows the values of x(t) and x(t+1) that occur. Only a few combinations actually occur, and they fall on a couple
of lines. When triplets of consecutive values are plotted instead of just pairs as in Figure 1, the combinations of values fall on planes. In higher
dimensions, the values continue to fall on higher-dimensional planes.

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 2 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

This particular structure is an inevitable consequence of the Lehmer generator. The structure does not mean that the Lehmer generator is worthless — but
it is suspect for an application sensitive to correlations between consecutive pseudo-random numbers. Other random-number generators have different, but
discoverable, structures. For this random-number generator, the values of the multiplier and the modulus determine the number and location of the planes.
The issue becomes: what values of the multiplier and the modulus generate reasonably good random numbers for a given purpose?

In addition to this particular structure of Lehmer generators, they (and any others on a computer) are repetitive. With a multiplier of 5 and a modulus of 7,
the Lehmer generator has a period of 6: the sequence repeats after 6 iterations. Repetition is not peculiar to Lehmer generators. No matter what iterative
function is used, a computer has a finite number of states. Sooner or later a sequence must repeat because the function iterates into a state that it has seen
before.

It is fairly common to soup up the Lehmer generator by adding an increment to the product a*x(t). This increased complexity has one advantage. The
Lehmer generator cannot produce a random number equal to zero. If it did, every succeeding number also would equal zero. Adding an increment makes
it possible to get a random number equal to zero, thereby increasing the maximum possible period by one. This is not a compelling reason for the
additional complexity, however.

Good Lehmer Generators

Even though random-number generators eventually repeat and have some discoverable structure of sequential values, there are better and worse
generators. All other things being equal, longer periods are better than shorter ones. As I mentioned above, the generator:

x(t+1) = (5*x(t)) mod 7

has only 6 possible values of the random numbers, and a period of 6, which is too short for most purposes. Periods on the order of 215 or 32,768, are too
short for marginally serious computations, and at least some compiler vendors seem to agree. For example, Borland C++3.1 and Microsoft Visual C 1.0
both have 32-bit random-number generators with longer periods. (However, I still consider these generators unappealing, as their periods are shorter than
those in this article. Besides, these compilers do not use the best known multipliers and they rely on non-portable integer overflow.)

The period before repetition is not the only consideration. In any application, you use only a small fraction of the total period. As a result, the seeming
randomness of partial sequences of the random numbers is important. You know that the "random numbers" aren't random! It is important, though, that
the numbers appear to be random from the viewpoint of what you're doing with them. For example, the predictability of new values of the random
numbers given part of the sequence but not the multiplier or the modulus is important for cryptography. Lehmer generators are not good for this purpose
because they are predictable by algorithms that know the numbers are produced by a Lehmer generator.

In order to get long periods, I consider only generators of 32-bit integers. There are many possible values for the multiplier and modulus. What are some
good values? The modulus has a big impact on the calculations, so it is a natural place to start limiting the search.

One natural value for the modulus is 232. Why? Assume that multiplication is defined for 32-bit signed integers. Consider the line of pseudocode

x <- a *x

The maximum possible value of x is 231—1. If signed integer overflow ignores the high bits (a standard fixup) and the sign bit is masked, this code can
implement a Lehmer generator with a modulus of 232. Signed integer overflow need not have this standard fixup, however. In ANSI C, integer overflow is
an exception and the behavior of the program is undefined. [You can used unsigned integer arithmetic, but often at a notable cost in performance. — pjp]
Furthermore, the effect of this code depends on a machine's representation of integers. You can lose portability across machines, languages, possibly
compilers, and even versions of a compiler. It is easy to spend more time cleaning up such incompatibilities than ever is saved by the faster function.

Another common value of the modulus is 231—1, or 2147483647. Why this seemingly odd value? It is prime, which affects the maximum period. In
addition, it is the maximum value of signed integers on many machines in languages with only signed integers, such as BASIC, FORTRAN, and Pascal.

At first glance surprisingly, the generator with the larger modulus has about half the period. For the modulus 232, if the initial value is odd, then the period
can be as long as 230. For the modulus 231—1, the period can be as long as 231—2. All of the multipliers in this article for this modulus have the
maximum period, and the program that combines generators has a period not less than about 261. No need to settle for a shorter period when there are lots
of long-period Lehmer generators.

What are some good values for multipliers? It might seem desirable to check on your own for good multipliers, but there is no point if you are simply
writing a program that uses a random-number generator. Others have exhaustively studied both of these multipliers and others have worked on ways to
write portable 32-bit generators on machines with 32-bit signed integers.

Portable Generators

It is easy to write a 32-bit routine with a modulus of 231—1 that does not generate integer overflow and is portable. The basic problem is integer overflow:
the product of the multiplier and the last value of the random number can be larger than a 32-bit integer. As the sidebar on approximate factoring
indicates, Linus Schrage has worked out a fast way to take the modulus of a product by approximately factoring the modulus.

George Fishman and Louis Moore [1] have thoroughly studied Lehmer generators with a modulus of 231—1. All of their best multipliers are too large for

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 3 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

approximate factoring. Nonetheless, several multipliers are small enough and are almost as good by the same criteria. Table 1 shows, in rough order of
preference, four good multipliers for this modulus. Among the values is the multiplier 16,807, used by many people over the last 25 years.

How can you check whether you have written the algorithm correctly? Testing the apparent randomness of the numbers from the viewpoint of your
application is important for being sure that the generator is suitable. This does not check your program though. The most straightforward way to check
your program is to see whether you get the correct values. In Table 1, I provide the values that I get in Mathematica and Borland C in DOS and OS/2 for
the generators on the 10,000th draw starting from an initial value of one.

If there is an error in your program, the probability that the same seed will generate the correct value on the 10,000th draw is virtually zero. Because of the
nonlinear relationship between consecutive values, as illustrated in Figure 1, by the 10,000th iteration of your incorrect function the likelihood that you
will get the correct value probably is on the order of one over the modulus. Listing 1 shows the file rand.ma, which is a program in Mathematica that
generates the 10,000th value. For me, this is a convenient check on the results from C code at the bottom of Listing 2.

Listing 2, the file rand_por.c, is an implementation in C of this portable routine for a particular multiplier. The initialization code may overflow in some
compilers, but the rest of the code is portable. Whenever there is a choice between readability and speed in this code, I opt for readability. The most
important consequence of emphasizing readability is the implementation of the generator as a function: genr_ rand_port.

The routines have four basic external functions. Two functions, init_rand and rand_port, are similar to the Standard C functions srand and rand. They
behave as you would expect. The additional routines are get_init_rand and rand_rect_port. You can call get_init_rand to get a seed to pass to init_rand.

If you call init_rand with an incorrect value, say 0 or —1 (accidentally or on purpose), init_rand_port calls get_init_rand_port to get a seed. The return
from init_rand_port provides the user with the actual seed used, important information for rerunning the generator and getting the same sequence of
random numbers. Because a common correct seed is the value one, the routine throws away some initial values to get a more arbitrary first random
number than the result of the first few calls after this seed: the multiplier and powers of it. Throwing away exactly 16 values is arbitrary.

The routine rand_rect_port in Listing 2 correctly generates a value between zero and one that has a uniform (also known as rectangular) distribution
between zero and one. Because many uses of uniformly distributed values assume that the value is not exactly zero, the routine does not generate either
zero or one.

Often it is desirable to generate non-overlapping sequences of random numbers, for example in Monte Carlo studies. Listing 2 includes the routine
skip_ahead to calculate the random number that is skip values ahead of the value init_rand. From an initial random number of say 3, you can calculate the
value of the random number that is generated by rand_port 4,000 or 1,000,000 iterations later.

This routine is quite a bit faster than computing the intermediate values. Doing this computation without overflow requires care because the desired output
is:

(a^skip * init_rand) mod m

for all values of skip less than the modulus m. The routine skip_ahead and the called routine mult_mod use the Russian-peasant algorithm [4] and
approximate factoring to avoid overflow.

Economists have a standard saying, "There's no such thing as a free lunch," and that's true here. The benefits of portability and a longer period have a cost
in speed. From my point of view, the cost is not huge. The routine rand_port is not exactly sluggish. It takes about 0.23 seconds to get 100,000 random
numbers on my 66 MHz 486 under OS/2, which can be compared to 0.09 seconds using Borland's overflow routine. The performance hit is harder in 16-
bit DOS: the portable routine takes 1.7 seconds versus 0.22 seconds for Borland's routine. Even at that price, I prefer the portable routine, which has twice
the period and lends itself to skipping ahead.

Combining Generators and Shuffling

While a period of 231—2, which is about 2.15 billion, is not exactly short for many purposes, it is not necessarily long enough for extensive computations.
Furthermore, a Lehmer generator can produce a particular value only once in a complete cycle, and the planes illustrated in Figure 1 can be a problem for
some uses of the random numbers. Two techniques for mitigating these problems and lengthening the period are combining numbers from Lehmer
generators and shuffling the numbers from a generator.

Obvious combinations of the numbers from Lehmer generators are the sum and the difference. L'Écuyer [2, 3] suggests a difference between two numbers
that effectively obliterates planes such as those in Figure 1. The difference between numbers from Lehmer generators in Listing 3 has a period of about
2.31x1018, or 2.31 billion billion.

Shuffling the output of a random-number generator is another way to mitigate problems and lengthen the period. The basic idea is simple. Rather than
take the numbers in sequence from the Lehmer generator, several values are stored and one of them is picked at "random" using the most recent random
number. For a particular multiplier and modulus, the actual increase in the period from shuffling the generator is difficult to determine analytically, but
this technique cannot worsen the generator. (Oddly enough, using a second Lehmer generator to pick the next value can worsen a generator, one of many
pitfalls of random numbers.)

The sequence of numbers is more apparently random because it is not the set of consecutive values. Shuffling is especially useful if you are going to use
the random numbers in another routine that can have unfortunate interactions with a Lehmer generator, which some transformations of consecutive values
can.

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 4 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

Listing 3, the file rand_com.c, is a set of routines that combines the results of two generators and shuffles the output. Table 1 gives you the values of the
10,000th draws for the two underlying generators and for the combined generator.

There are no routines for skipping ahead in Listing 3. If the results of a random-number generator are shuffled, there is no known way to skip ahead
without computing intermediate values. If you are happy with a period of about 2.31 billion billion, though, you can easily modify Listing 3 to use the
routines for skipping ahead in Listing 2. Just delete shuffling from the routines in Listing 3 and use the routines for skipping ahead in Listing 2 for the two
underlying Lehmer generators in Listing 3.

In summary, if you want a well-behaved and reasonably quick routine to calculate random numbers and simply want values with equal probabilities, I
recommend rand_port. If you want a routine with a longer period and more apparently random numbers even though it is slower, I recommend
rand_comb with or without shuffling.

References

[1] George S. Fishman and Louis R. Moore III. "An Exhaustive Analysis of Multiplicative Congruential Random-Number Generators with Modulus
231—1," SIAM Journal on Scientific and Statistical Computing January: 1986.

[2] Pierre L'Écuyer. "Efficient and Portable Combined Random-Number Generators," Communications of the ACM June: 1988.

[3] Pierre L'Écuyer. "Random Numbers for Simulation," Communications of the ACM October: 1990.

[4] Donald Knuth. The Art of Computer Programming, Vol. 2, "Seminumerical Algorithms," Second Edition (Reading MA: Addison Wesley, 1981), pp
441-443.

Further Reading

If you want to read more about random-number generators, you will want to begin with Chapter 3 of Donald Knuth's classic (listed above). But "classic"
is a double-edged sword. Some of his discussion is dated. Bratley, Fox, and Schrage provide a nice overview of the issues. James provides a nice
overview of alternative generators. Some references in a rough order of accessibility, are:

Bratley, Paul, Bennett L. Fox and Linus E. Schrage. A Guide to Simulation, Second Edition. New York NY: Springer Verlag, 1987.

James, F. "A Review of Pseudorandom-Number Generators," Computer Physics Communications. October 1990.

Press, William H., et al. Numerical Recipes in C, Second Edition. Cambridge: Cambridge University Press, 1992.

Park, Stephen K., and Keith W. Miller. "Random-Number Generators: Good Ones Are Hard to Find," Communications of the ACM. October 1988.

L'Écuyer, Pierre, and Serge Ct. "Implementing a Random-Number Package with Splitting Facilities," ACM Transactions on Mathematical Software.
March 1991.

Fishman, George S. "Multiplicative Congruential Random-Number Generators with Modulus 2b: An Exhaustive Analysis for b=32 and a Partial Analysis
for b=48," Mathematics of Computation. January 1990.

Figure 1 Random numbers and the Lehmer Generator

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 5 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

Listing 1 A couple of lines of Mathematica code that execute a Lehmer generator. Print the 10,000th value after initializing at one

Rand[x_]:=Mod[41358*x, 2147483647]
x=1; Do[x=Rand[x], {i,10000}];Print[x];

Listing 2 A portable and reasonably fast multiplicative random number generator

/* Listing 2
 rand_por[t].c
 see
 L'Ecuyer - Comm. of the ACM, Oct. 1990, vol. 33.
 Numerical Recipes in C, 2nd edition, pp. 278-86
 L'Ecuyer and Cote, ACM Transactions on Mathematical
 Software, March 1991
 Russian peasant algorithm -- Knuth, vol. II, pp. 442-43
 Copyright (c) 1994, 1995 by Gerald P. Dwyer, Jr. */

#include <time.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>

#define TESTING

#define TRUE (-1)
#define FALSE 0

long init_rand_port(long seed) ;
long get_init_rand_port(void);
long genr_rand_port(long init_rand) ;
long rand_port(void) ;
double rand_rect_port(void) ;
long skip_ahead(long a, long init_rand, long modulus, long skip) ;
long mult_mod(long a, long x, long modulus) ;

#define MOD 2147483647L /* modulus for generator */
#define MULT 41358L /* multiplier */
 /* modulus = mult*quotient +
 remainder */
#define Q 51924L /* int(modulus / multiplier) */
#define R 10855L /* remainder */
#define MAX_VALUE (MOD-1)

#define EXP_VAL 1285562981L /* value for 10,000th draw */

#define IMPOSSIBLE_RAND (-1)
#define STARTUP_RANDS 16 /* throw away this number of
 initial random numbers */

static long rand_num = IMPOSSIBLE_RAND ;

/* initialize random number generator with seed */
long init_rand_port(long seed)
{
 extern long rand_num ;
 int i ;

 if (seed < 1 || seed > MAX_VALUE) /* if seed out of range */
 seed = get_init_rand_port() ; /* get seed */

 rand_num = seed ;
 for (i = 0; i < STARTUP_RANDS; i++) /* and throw away */
 rand_num = genr_rand_port(rand_num) ; /* some initial
 ones */

 return seed ;
}

/* get a long initial seed for gererator
 assumes that rand returns a short integer */
long get_init_rand_port(void)
{
 long seed ;

 srand((unsigned int)time(NULL)); /* initialize system generator */
 do {
 seed = ((long)rand())*rand() ;

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 6 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

 seed += ((long)rand())*rand() ;
 } while (seed > MAX_VALUE) ;

 assert (seed > 0) ;

 return seed ;
}

/* generate the next value in sequence from generator
 uses approximate factoring
 residue = (a * x) mod modulus
 = a*x - [(a*x)/modulus]*modulus
 where
 [(a*x)/modulus] = integer less than or equal to (a*x)/modulus
 approximate factoring avoids overflow associated with a*x and
 uses equivalence of above with
 residue = a * (x - q * k) - r* k + (k-k1) * modulus
 where
 modulus = a * q + r
 q = [modulus/a]
 k = [x/q] (= [ax/aq])
 k1 = [a*x/modulus]
 assumes
 a, m > 0
 0 < init_rand < modulus
 a * a <= modulus
 [a*x/a*q]-[a*x/modulus] <= 1
 (for only one addition of modulus below) */
long genr_rand_port(long init_rand)
{
 long k, residue ;

 k = init_rand / Q ;
 residue = MULT * (init_rand - Q * k) - R * k ;
 if (residue < 0)
 residue += MOD ;

 assert(residue >= 1 && residue <= MAX_VALUE) ;
 return residue;
}

/* get a random number */
long rand_port(void)
{
 extern long rand_num;

 /* if not initialized, do it now */
 if (rand_num == IMPOSSIBLE_RAND) {
 rand_num = 1 ;
 init_rand_port(rand_num) ;
 }

 rand_num = genr_rand_port(rand_num) ;

 return rand_num;
}

/* generates a value on (0,1) with mean of .5
 range of values is [1/(MAX_VALUE+1), MAX_VALUE/(MAX_VALUE+1)]
 to get [0,1], use (double)(rand_port()-1)/(double)(MAX_VALUE-1) */
double rand_rect_port(void)
{
 return (double)rand_port()/(double)(MAX_VALUE+1) ;
}

/* skip ahead in recursion
 residue = (a^skip * init) mod modulus
 Use Russian peasant algorithm */
long skip_ahead(long a, long init_rand, long modulus, long skip)
{
 long residue = 1 ;

 if (init_rand < 1 || init_rand > modulus-1 || skip < 0)
 return -1 ;
 while (skip > 0) {

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 7 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

 if (skip % 2)
 residue = mult_mod(a, residue, modulus) ;
 a = mult_mod(a, a, modulus) ;
 skip >>= 1 ;
 }
 residue = mult_mod(residue, init_rand, modulus) ;

 assert(residue >= 1 && residue <= modulus-1) ;

 return residue ;

}

/* calculate residue = (a * x) mod modulus for arbitrary a and x
 without overflow assume 0 < a < modulus and 0 < x < modulus
 use Russian peasant algorithm followed by approximate factoring */
long mult_mod(long a, long x, long modulus)
{

 long q, r, k, residue;

 residue = -modulus ; /* to avoid overflow on addition */

 while (a > SHRT_MAX) { /* use Russian Peasant to reduce a */
 if (a % 2) {
 residue += x;
 if (residue > 0)
 residue -= modulus ;
 }
 x += (x - modulus) ;
 if (x < 0)
 x += modulus ;
 a >>=1;
 }
 /* now apply approximate factoring to a
 and compute (a * x) mod modulus */
 q = modulus / a ;
 r = modulus - a * q ;
 k = x / q ;
 x = a * (x - q * k) - r * k ;
 while (x < 0)
 x += modulus ;
 /* add result to residue and take mod */
 residue += x ;
 if (residue < 0) /* undo initial subtraction if necessary */
 residue += modulus ;

 assert(residue >= 1 && residue <= modulus-1) ;

 return residue ;
}

#if defined(TESTING)
/* Test the generator */
#include <stdio.h>
void main(void)
{
 long seed ;
 int i ;
 seed = init_rand_port(1);
 printf("Seed for random number generator is %ld\n", seed) ;
 i = STARTUP_RANDS ; /* threw away STARTUP_RANDS */
 do {
 rand_port() ;
 1++;
 } while (i < 9999) ;

 printf("On draw 10000, random number should be %ld\n",
 EXP_VAL) ;
 printf("On draw %d, random number is %ld\n", i+1,
 rand_port()) ;
}
#endif /* TESTING */
/* End of File */

Listing 3 Combination multiplicative random number generator

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 8 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

/* rand_com[b].c
 subtract two random numbers modulo moduli1-1 and shuffle
 see
 L'Ecuyer, Comm. of the ACM 1988 vol. 31
 Numerical Recipes in C, 2nd edition, pp. 278-86
 shuffling -- Knuth, vol. II
 Copyright (c) 1994, 1995 by Gerald P. Dwyer, Jr.
*/

#include <time.h>
#include <stdlib.h>
#include <float.h>
#include <assert.h>

#define TESTING

#define TRUE (-1)
#define FALSE 0

void init_rand_comb(long *seed1, long *seed2) ;
long get_init_rand(int) ;
long rand_comb(void);
long genr_rand_diff(void);
long genr_rand(long a, long x, long modulus, long q, long r) ;

 /* first generator */
#define MOD1 2147483563L /* modulus */
#define MULT1 40014L /* multiplier */
 /* modulus=multiplier*quotient+remainder */
#define Q1 53668L /* quotient =[modulus/multiplier] */
#define R1 12211L /* remainder */

 /* second generator */
#define MOD2 2147483399L
#define MULT2 40692L
#define Q2 52774L
#define R2 3791L

#define MOD_COMB (MOD1-1)

#define MIN_VALUE1 1
#define MAX_VALUE1 (MOD1-1)
#define MIN_VALUE2 1
#define MAX_VALUE2 (MOD2-1)
#define MAX_VALUE ((MOD1<MOD2) ? MAX_VALUE1 : MAX_VALUE2)
#define EXP_VAL 804307721L

#define GENR1(init_rand) genr_rand(MULT1, init_rand, MOD1, Q1, R1)
#define GENR2(init_rand) genr_rand(MULT2, init_rand, MOD2, Q2, R2)

#define IMPOSSIBLE_RAND (-1)
#define STARTUP_RANDS 16 /* throw away initial draws */
#define DIM_RAND 150 /* size of array shuffled */

static long rand1, rand2 ;
static long rand_num = IMPOSSIBLE_RAND ;
static long rands[DIM_RAND];

/* initialize generators with seeds
 fill rands[] with initial values */
void init_rand_comb(long *seed1, long *seed2)
{
 extern long rand1, rand2 ;
 extern long rand_num;
 extern long rands[] ;
 int i ;

 if (*seed1 <= 0 || *seed1 > MAX_VALUE1)
 *seed1 = get_init_rand(MAX_VALUE1);
 if (*seed2 <= 0 || *seed2 > MAX_VALUE2)
 *seed2 = get_init_rand(MAX_VALUE2);

 /* seed the routine */
 rand1 = *seed1;
 rand2 = *seed2;
 genr_rand_diff() ;

 for (i = 1; i < STARTUP_RANDS; i++) /* throw some away */

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 9 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

 genr_rand_diff() ;
 /* fill the array of randum number values */
 for (i = 0; i < DIM_RAND; i++)
 rands[i] = genr_rand_diff() ;
 /* initialize rand_num for shuffling */
 rand_num = rands[DIM_RAND-1] ;
}

/* get a long initial seed for generator
 assumes that rand returns a short integer */
long get_init_rand(int max_value)
{
 long seed;

 srand((unsigned int)time(NULL)) ; /* initialize system generator */
 do {
 seed = ((long)rand())*rand() ;
 seed += ((long)rand())*rand() ;
 } while (seed > max_value);

 assert(seed > 0) ;
 return seed ;
}

/* generate the difference between random numbers
 assumes 0 < rand1 < MOD1
 0 < rand2 < MOD2
 output 1 <= rand_num <= MOD_COMB */
long genr_rand_diff(void)
{
 extern long rand1, rand2;
 long rand_new ;

 rand1 = GENR1(rand1) ;
 rand2 = GENR2(rand2) ;
 rand_new = rand1 - rand2 ;
 if (rand_new <= 0)
 rand_new += MOD_COMB ;

 assert(rand_new >= 1 && rand_new <= MOD_COMB) ;

 return rand_new ;
}

/* generate the next value in sequence from generator
 uses approximate factoring
 residue = (a * x) mod modulus
 = a*x - [(a*x)/modulus]*modulus

 where
 [(a*x)/modulus] = integer less than or equal to (a*x)/modulus
 approximate factoring avoids overflow associated with a*x and
 uses equivalence of above with
 residue = a * (x - q * k) - r * k + (k-k1) * modulus
 where
 modulus = a * q + r
 q = [modulus/a]
 k = [x/q] (=[ax/aq])
 k1 = [a*x/m]
 assumes
 a, m > 0
 0 < init_rand < modulus
 a * a <= modulus
 [a*x/a*q]-[a*x/modulus] <= 1
 (for only one addition of modulus below) */
long genr_rand(long a, long x, long modulus, long q, long r)
{
 long k, residue ;

 k = x / q ;
 residue = a * (x - q * k) - r * k ;
 if (residue < 0)
 residue += modulus ;

 assert(residue >= 1 && residue <= modulus-1);

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 10 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

 return residue ;
}

/* get a random number from rands[] and replace it*/
long rand_comb(void)
{
 extern long rand_num ;
 extern long rands[] ;
 int i ;
 /* if not initialized, do it now */
 if (rand_num == IMPOSSIBLE_RAND) {
 rand_num = 1 ;
 init_rand_comb(&rand_num, &rand_num) ;
 }

 /* rand_num from previous call determines next rand_num from
 rands[] */
 i = (int) (((double)DIM_RAND*rand_num)/(double)(MAX_VALUE)) ;
 rand_num = rands[i] ;

 /* replace random number used */
 rands[i] = genr_rand_diff();

 return rand_num ;
}

#if defined(TESTING)
/* Test the generator */
#include <stdio.h>
void main(void)
{
 long seed1=1, seed2=1 ;
 int i ;

 init_rand_comb(&seed1, &seed2);
 printf("Seeds for random number generator are %ld %ld\n",
 seed1, seed2) ;
 i = STARTUP_RANDS + DIM_RAND ;
 do {
 rand_comb();
 i++ ;
 } while (i < 9999) ;

 printf("On draw 10000, random number should be %ld\n", EXP_VAL) ;
 printf("On draw %d, random number is %ld\n", i+1, rand_comb()) ;
}
#endif TESTING
/* End of File */

Approximate Factoring

Suppose you want to compute (a*x) mod m where a and x are positive and less than the modulus m. If integer overflow is not an issue, you can do this by
computing k1 = a*x/m*m where, a*x/m signifies the largest integer less than or equal to a*x/m, and then computing the result k1*m, called the residue.
Suppose, however, that the intermediate value a*x would overflow. The modulus m can always be approximately factored into m = a*q + r with q = m/a. Now
calculate k=ax/aq. Note that k is x/q, thereby avoiding this overflow of a*x. Using the fact that m = a*q+r, you can see that the residue is:

a*x- k1*m

or

a*(x - k*q) - k*r + (k-k1)*m

If a*a is less than m, k-k1 is either zero or one, and x is positive and less than m, the following code fragment using signed integers computes the residue
correctly without overflow:

k = x / q;
residue = a* (x - k * q) - k * r;
if (residue < 0)
residue += m;

The check against only negative values can be used in computing the residue if zero values are impossible, as they are if m is prime.

Table 1 Good multipliers for a Lehmer Generator using approximate factoring Good multipliers for a Lehmer Generator using approximate factoring

Modulus Multiplier q r 10,000th Draw

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 11 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

Alone
231-1 41,358 51,924 10,855 1,285,562,981
231-1 48,271 44,488 3,399 399,268,537
231-1 69,621 30,845 23,902 190,055,451
231-1 16,807 127,773 2,836 1,043,618,065

In combination generator
2,147,483,563 40,014 53,668 12,211 1,919,456,777
2,147,483,399 40,692 52,774 3,791 2,006,618,587

Combination generator with shuffling 804,307,721
Sources: Park and Miller [5]; L'Écuyer [2, 3].

Copyright © 2010 United Business Media LLC

10/5/11 9:17 AMDr. Dobb's | Quick and Portable Random Number Generators | June 01, 1995

Page 12 of 12http://drdobbs.com/article/print?articleId=184403024&siteSectionName=

