Source code for yt.utilities.cosmology

"""
Cosmology calculator.
Cosmology calculator based originally on http://www.kempner.net/cosmic.php 
and featuring time and redshift conversion functions from Enzo..

"""
from __future__ import print_function

#-----------------------------------------------------------------------------
# Copyright (c) 2013-2014, yt Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------

import functools
import numpy as np

from yt.units import dimensions
from yt.units.unit_registry import \
     UnitRegistry
from yt.units.yt_array import \
     YTArray, \
     YTQuantity

from yt.utilities.physical_constants import \
    gravitational_constant_cgs as G, \
    speed_of_light_cgs

class Cosmology(object):
    r"""
    Create a cosmology calculator to compute cosmological distances and times.

    For an explanation of the various cosmological measures, see, for example 
    Hogg (1999, http://xxx.lanl.gov/abs/astro-ph/9905116).
    
    Parameters
    ----------
    hubble_constant : float
        The Hubble parameter at redshift zero in units of 100 km/s/Mpc.
        Default: 0.71.
    omega_matter : the fraction of the energy density of the Universe in 
        matter at redshift zero.
        Default: 0.27.
    omega_lambda : the fraction of the energy density of the Universe in 
        a cosmological constant.
        Default: 0.73.
    omega_curvature : the fraction of the energy density of the Universe in 
        curvature.
        Default: 0.0.

    Examples
    --------

    >>> from yt.utilities.cosmology import Cosmology
    >>> co = Cosmology()
    >>> print co.hubble_time(0.0).in_units("Gyr")
    
    """
    def __init__(self, hubble_constant = 0.71,
                 omega_matter = 0.27,
                 omega_lambda = 0.73,
                 omega_curvature = 0.0,
                 unit_registry = None):
        self.omega_matter = omega_matter
        self.omega_lambda = omega_lambda
        self.omega_curvature = omega_curvature
        if unit_registry is None:
            unit_registry = UnitRegistry()
            unit_registry.modify("h", hubble_constant)
            for my_unit in ["m", "pc", "AU", "au"]:
                new_unit = "%scm" % my_unit
                # technically not true, but distances here are actually comoving
                unit_registry.add(new_unit, unit_registry.lut[my_unit][0],
                                  dimensions.length, "\\rm{%s}/(1+z)" % my_unit)
        self.unit_registry = unit_registry
        self.hubble_constant = self.quan(hubble_constant, "100*km/s/Mpc")

    def hubble_distance(self):
        r"""
        The distance corresponding to c / h, where c is the speed of light 
        and h is the Hubble parameter in units of 1 / time.
        """
        return self.quan((speed_of_light_cgs / self.hubble_constant)).in_cgs()

    def comoving_radial_distance(self, z_i, z_f):
        r"""
        The comoving distance along the line of sight to on object at redshift, 
        z_f, viewed at a redshift, z_i.

        Parameters
        ----------
        z_i : float
            The redshift of the observer.
        z_f : float
            The redshift of the observed object.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.comoving_radial_distance(0., 1.).in_units("Mpccm")
        
        """
        return (self.hubble_distance() *
                trapzint(self.inverse_expansion_factor, z_i, z_f)).in_cgs()

    def comoving_transverse_distance(self, z_i, z_f):
        r"""
        When multiplied by some angle, the distance between two objects 
        observed at redshift, z_f, with an angular separation given by that 
        angle, viewed by an observer at redshift, z_i (Hogg 1999).

        Parameters
        ----------
        z_i : float
            The redshift of the observer.
        z_f : float
            The redshift of the observed object.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.comoving_transverse_distance(0., 1.).in_units("Mpccm")
        
        """
        if (self.omega_curvature > 0):
            return (self.hubble_distance() / np.sqrt(self.omega_curvature) * 
                    np.sinh(np.sqrt(self.omega_curvature) * 
                            self.comoving_radial_distance(z_i, z_f) /
                            self.hubble_distance())).in_cgs()
        elif (self.omega_curvature < 0):
            return (self.hubble_distance() /
                    np.sqrt(np.fabs(self.omega_curvature)) * 
                    np.sin(np.sqrt(np.fabs(self.omega_curvature)) * 
                           self.comoving_radial_distance(z_i, z_f) /
                           self.hubble_distance())).in_cgs()
        else:
            return self.comoving_radial_distance(z_i, z_f)

    def comoving_volume(self, z_i, z_f):
        r"""
        "The comoving volume is the volume measure in which number densities 
        of non-evolving objects locked into Hubble flow are constant with 
        redshift." -- Hogg (1999)
        
        Parameters
        ----------
        z_i : float
            The lower redshift of the interval.
        z_f : float
            The higher redshift of the interval.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.comoving_volume(0., 1.).in_units("Gpccm**3")

        """
        if (self.omega_curvature > 0):
             return (2 * np.pi * np.power(self.hubble_distance(), 3) /
                     self.omega_curvature * 
                     (self.comoving_transverse_distance(z_i, z_f) /
                      self.hubble_distance() * 
                      np.sqrt(1 + self.omega_curvature * 
                           sqr(self.comoving_transverse_distance(z_i, z_f) /
                               self.hubble_distance())) - 
                      np.sinh(np.fabs(self.omega_curvature) * 
                            self.comoving_transverse_distance(z_i, z_f) /
                            self.hubble_distance()) /
                            np.sqrt(self.omega_curvature))).in_cgs()
        elif (self.omega_curvature < 0):
             return (2 * np.pi * np.power(self.hubble_distance(), 3) /
                     np.fabs(self.omega_curvature) * 
                     (self.comoving_transverse_distance(z_i, z_f) /
                      self.hubble_distance() * 
                      np.sqrt(1 + self.omega_curvature * 
                           sqr(self.comoving_transverse_distance(z_i, z_f) /
                               self.hubble_distance())) - 
                      np.arcsin(np.fabs(self.omega_curvature) * 
                           self.comoving_transverse_distance(z_i, z_f) /
                           self.hubble_distance()) /
                      np.sqrt(np.fabs(self.omega_curvature)))).in_cgs()
        else:
             return (4 * np.pi *
                     np.power(self.comoving_transverse_distance(z_i, z_f), 3) /\
                     3).in_cgs()

    def angular_diameter_distance(self, z_i, z_f):
        r"""
        Following Hogg (1999), the angular diameter distance is 'the ratio of 
        an object's physical transverse size to its angular size in radians.'

        Parameters
        ----------
        z_i : float
            The redshift of the observer.
        z_f : float
            The redshift of the observed object.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.angular_diameter_distance(0., 1.).in_units("Mpc")
        
        """
        
        return (self.comoving_transverse_distance(0, z_f) / (1 + z_f) - 
                self.comoving_transverse_distance(0, z_i) / (1 + z_i)).in_cgs()

    def angular_scale(self, z_i, z_f):
        r"""
        The proper transverse distance between two points at redshift z_f 
        observed at redshift z_i per unit of angular separation.

        Parameters
        ----------
        z_i : float
            The redshift of the observer.
        z_f : float
            The redshift of the observed object.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.angular_scale(0., 1.).in_units("kpc / arcsec")
        
        """

        return self.angular_diameter_distance(z_i, z_f) / \
          self.quan(1, "radian")

    def luminosity_distance(self, z_i, z_f):
        r"""
        The distance that would be inferred from the inverse-square law of 
        light and the measured flux and luminosity of the observed object.

        Parameters
        ----------
        z_i : float
            The redshift of the observer.
        z_f : float
            The redshift of the observed object.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.luminosity_distance(0., 1.).in_units("Mpc")
        
        """

        return (self.comoving_transverse_distance(0, z_f) * (1 + z_f) - 
                self.comoving_transverse_distance(0, z_i) * (1 + z_i)).in_cgs()

    def lookback_time(self, z_i, z_f):
        r"""
        The difference in the age of the Universe between the redshift interval 
        z_i to z_f.

        Parameters
        ----------
        z_i : float
            The lower redshift of the interval.
        z_f : float
            The higher redshift of the interval.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.lookback_time(0., 1.).in_units("Gyr")

        """
        return (trapzint(self.age_integrand, z_i, z_f) / \
                self.hubble_constant).in_cgs()
    
    def hubble_time(self, z, z_inf=1e6):
        r"""
        The age of the Universe at a given redshift.

        Parameters
        ----------
        z : float
            Redshift.
        z_inf : float
            The upper bound of the integral of the age integrand.
            Default: 1e6.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.hubble_time(0.).in_units("Gyr")

        See Also
        --------

        t_from_z

        """
        return (trapzint(self.age_integrand, z, z_inf) /
                self.hubble_constant).in_cgs()

    def critical_density(self, z):
        r"""
        The density required for closure of the Universe at a given 
        redshift in the proper frame.

        Parameters
        ----------
        z : float
            Redshift.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.critical_density(0.).in_units("g/cm**3")
        >>> print co.critical_density(0).in_units("Msun/Mpc**3")
        
        """
        return (3.0 / 8.0 / np.pi * 
                self.hubble_constant**2 / G *
                ((1 + z)**3.0 * self.omega_matter + 
                 self.omega_lambda)).in_cgs()

    def hubble_parameter(self, z):
        r"""
        The value of the Hubble parameter at a given redshift.

        Parameters
        ----------
        z: float
            Redshift.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.hubble_parameter(1.0).in_units("km/s/Mpc")

        """
        return self.hubble_constant * self.expansion_factor(z)

    def age_integrand(self, z):
        return (1 / (z + 1) / self.expansion_factor(z))

    def expansion_factor(self, z):
        r"""
        The ratio between the Hubble parameter at a given redshift and 
        redshift zero.

        This is also the primary function integrated to calculate the 
        cosmological distances.
        
        """
        return np.sqrt(self.omega_matter * ((1 + z)**3.0) + 
                       self.omega_curvature * ((1 + z)**2.0) + 
                       self.omega_lambda)

    def inverse_expansion_factor(self, z):
        return 1 / self.expansion_factor(z)

    def path_length_function(self, z):
        return ((1 + z)**2) * self.inverse_expansion_factor(z)

    def path_length(self, z_i, z_f):
        return trapzint(self.path_length_function, z_i, z_f)

    def z_from_t(self, my_time):
        """
        Compute the redshift from time after the big bang.  This is based on
        Enzo's CosmologyComputeExpansionFactor.C, but altered to use physical
        units.

        Parameters
        ----------
        my_time : float
            Age of the Universe in seconds.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.t_from_z(4.e17)

        """

        omega_curvature = 1.0 - self.omega_matter - self.omega_lambda

        OMEGA_TOLERANCE = 1e-5
        ETA_TOLERANCE = 1.0e-10

        # Convert the time to Time * H0.

        if not isinstance(my_time, YTArray):
            my_time = self.quan(my_time, "s")

        t0 = (my_time.in_units("s") *
              self.hubble_constant.in_units("1/s")).to_ndarray()
 
        # 1) For a flat universe with omega_matter = 1, it's easy.
 
        if ((np.fabs(self.omega_matter-1) < OMEGA_TOLERANCE) and
            (self.omega_lambda < OMEGA_TOLERANCE)):
            a = np.power(my_time/self.initial_time, 2.0/3.0)
 
        # 2) For omega_matter < 1 and omega_lambda == 0 see
        #    Peebles 1993, eq. 13-3, 13-10.
        #    Actually, this is a little tricky since we must solve an equation
        #    of the form eta - np.sinh(eta) + x = 0..
 
        if ((self.omega_matter < 1) and 
            (self.omega_lambda < OMEGA_TOLERANCE)):
            x = 2*t0*np.power(1.0 - self.omega_matter, 1.5) / \
                self.omega_matter;
 
            # Compute eta in a three step process, first from a third-order
            # Taylor expansion of the formula above, then use that in a fifth-order
            # approximation.  Then finally, iterate on the formula itself, solving for
            # eta.  This works well because parts 1 & 2 are an excellent approximation
            # when x is small and part 3 converges quickly when x is large. 
 
            eta = np.power(6*x, 1.0/3.0)                # part 1
            eta = np.power(120*x/(20+eta*eta), 1.0/3.0) # part 2
            for i in range(40):                      # part 3
                eta_old = eta
                eta = np.arcsinh(eta + x)
                if (np.fabs(eta-eta_old) < ETA_TOLERANCE): 
                    break
                if (i == 39):
                    print("No convergence after %d iterations." % i)
 
            # Now use eta to compute the expansion factor (eq. 13-10, part 2).
 
            a = self.omega_matter/(2.0*(1.0 - self.omega_matter))*\
                (np.cosh(eta) - 1.0)

        # 3) For omega_matter > 1 and omega_lambda == 0, use sin/cos.
        #    Easy, but skip it for now.
 
        if ((self.omega_matter > 1) and 
            (self.omega_lambda < OMEGA_TOLERANCE)):
            print("Never implemented in Enzo, not implemented here.")
            return 0
 
        # 4) For flat universe, with non-zero omega_lambda, see eq. 13-20.
 
        if ((np.fabs(omega_curvature) < OMEGA_TOLERANCE) and
            (self.omega_lambda > OMEGA_TOLERANCE)):
            a = np.power(self.omega_matter / 
                         (1 - self.omega_matter), 1.0/3.0) * \
                np.power(np.sinh(1.5 * np.sqrt(1.0 - self.omega_matter)*\
                                     t0), 2.0/3.0)


        redshift = (1.0/a) - 1.0

        return redshift

    def t_from_z(self, z):
        """
        Compute the age of the Universe from redshift.  This is based on Enzo's
        CosmologyComputeTimeFromRedshift.C, but altered to use physical units.  
        Similar to hubble_time, but using an analytical function.

        Parameters
        ----------
        z : float
            Redshift.

        Examples
        --------

        >>> co = Cosmology()
        >>> print co.t_from_z(0.).in_units("Gyr")

        See Also
        --------

        hubble_time
        
        """
        omega_curvature = 1.0 - self.omega_matter - self.omega_lambda
 
        # 1) For a flat universe with omega_matter = 1, things are easy.
 
        if ((self.omega_matter == 1.0) and (self.omega_lambda == 0.0)):
            t0 = 2.0/3.0/np.power(1+z, 1.5)
 
        # 2) For omega_matter < 1 and omega_lambda == 0 see
        #    Peebles 1993, eq. 13-3, 13-10.
 
        if ((self.omega_matter < 1) and (self.omega_lambda == 0)):
            eta = np.arccosh(1 + 
                             2*(1-self.omega_matter)/self.omega_matter/(1+z))
            t0 = self.omega_matter/ \
              (2*np.power(1.0-self.omega_matter, 1.5))*\
              (np.sinh(eta) - eta)
 
        # 3) For omega_matter > 1 and omega_lambda == 0, use sin/cos.
 
        if ((self.omega_matter > 1) and (self.omega_lambda == 0)):
            eta = np.arccos(1 - 2*(1-self.omega_matter)/self.omega_matter/(1+z))
            t0 = self.omega_matter/(2*np.power(1.0-self.omega_matter, 1.5))*\
                (eta - np.sin(eta))
 
        # 4) For flat universe, with non-zero omega_lambda, see eq. 13-20.
 
        if ((np.fabs(omega_curvature) < 1.0e-3) and (self.omega_lambda != 0)):
            t0 = 2.0/3.0/np.sqrt(1-self.omega_matter)*\
                np.arcsinh(np.sqrt((1-self.omega_matter)/self.omega_matter)/ \
                               np.power(1+z, 1.5))
  
        # Now convert from Time * H0 to time.
  
        my_time = t0 / self.hubble_constant
    
        return my_time.in_cgs()

    _arr = None
    @property
    def arr(self):
        if self._arr is not None:
            return self._arr
        self._arr = functools.partial(YTArray, registry = self.unit_registry)
        return self._arr
    
    _quan = None
    @property
    def quan(self):
        if self._quan is not None:
            return self._quan
        self._quan = functools.partial(YTQuantity,
                registry = self.unit_registry)
        return self._quan

def trapzint(f, a, b, bins=10000):
    zbins = np.logspace(np.log10(a + 1), np.log10(b + 1), bins) - 1
    return np.trapz(f(zbins[:-1]), x=zbins[:-1], dx=np.diff(zbins))