yt.analysis_modules.halo_finding.rockstar.rockstar.
RockstarHaloFinder
(ts, num_readers=1, num_writers=None, outbase='rockstar_halos', particle_type='all', force_res=None, total_particles=None, dm_only=False, particle_mass=None, min_halo_size=25)[source]¶Spawns the Rockstar Halo finder, distributes dark matter particles and finds halos.
The halo finder requires dark matter particles of a fixed size. Rockstar has three main processes: reader, writer, and the server which coordinates reader/writer processes.
Parameters: | ts : DatasetSeries, Dataset
num_readers: int :
num_writers: int :
outbase: str :
particle_type: str :
force_res: float :
total_particles : int
particle_mass : float
|
---|---|
Returns: | None : |
Examples
To use the script below you must run it using MPI: mpirun -np 4 python run_rockstar.py –parallel
>>> import yt
>>> from yt.analysis_modules.halo_finding.rockstar.api import \
... RockstarHaloFinder
>>> from yt.data_objects.particle_filters import \
... particle_filter
>>> # create a particle filter to remove star particles
>>> @yt.particle_filter("dark_matter", requires=["creation_time"])
... def _dm_filter(pfilter, data):
... return data["creation_time"] <= 0.0
>>> def setup_ds(ds):
... ds.add_particle_filter("dark_matter")
>>> es = yt.simulation("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
>>> es.get_time_series(setup_function=setup_ds, redshift_data=False)
>>> rh = RockstarHaloFinder(es, num_readers=1, num_writers=2,
... particle_type="dark_matter")
>>> rh.run()
Attributes
Methods