
FITSIO User’s Guide

A Subroutine Interface to FITS Format Files

for Fortran Programmers

Version 3.0

HEASARC
Code 662

Goddard Space Flight Center
Greenbelt, MD 20771

USA

May 2011

ii

Contents

1 Introduction 1

2 Creating FITSIO/CFITSIO 3

2.1 Building the Library . 3

2.2 Testing the Library . 6

2.3 Linking Programs with FITSIO . 8

2.4 Getting Started with FITSIO . 8

2.5 Example Program . 8

2.6 Legal Stuff . 10

2.7 Acknowledgments . 10

3 A FITS Primer 13

4 FITSIO Conventions and Guidelines 15

4.1 CFITSIO Size Limitations . 15

4.2 Multiple Access to the Same FITS File . 16

4.3 Current Header Data Unit (CHDU) . 16

4.4 Subroutine Names . 16

4.5 Subroutine Families and Datatypes . 17

4.6 Implicit Data Type Conversion . 17

4.7 Data Scaling . 18

4.8 Error Status Values and the Error Message Stack . 18

4.9 Variable-Length Array Facility in Binary Tables . 19

4.10 Support for IEEE Special Values . 20

4.11 When the Final Size of the FITS HDU is Unknown 21

4.12 Local FITS Conventions supported by FITSIO . 21

iii

iv CONTENTS

4.12.1 Support for Long String Keyword Values. 21

4.12.2 Arrays of Fixed-Length Strings in Binary Tables 22

4.12.3 Keyword Units Strings . 23

4.12.4 HIERARCH Convention for Extended Keyword Names 23

4.13 Optimizing Code for Maximum Processing Speed . 24

4.13.1 Background Information: How CFITSIO Manages Data I/O 25

5 Basic Interface Routines 29

5.1 FITSIO Error Status Routines . 29

5.2 File I/O Routines . 30

5.3 Keyword I/O Routines . 32

5.4 Data I/O Routines . 33

6 Advanced Interface Subroutines 35

6.1 FITS File Open and Close Subroutines: . 35

6.2 HDU-Level Operations . 38

6.3 Define or Redefine the structure of the CHDU . 41

6.4 FITS Header I/O Subroutines . 43

6.4.1 Header Space and Position Routines . 43

6.4.2 Read or Write Standard Header Routines . 43

6.4.3 Write Keyword Subroutines . 45

6.4.4 Insert Keyword Subroutines . 47

6.4.5 Read Keyword Subroutines . 47

6.4.6 Modify Keyword Subroutines . 49

6.4.7 Update Keyword Subroutines . 50

6.4.8 Delete Keyword Subroutines . 50

6.5 Data Scaling and Undefined Pixel Parameters . 51

6.6 FITS Primary Array or IMAGE Extension I/O Subroutines 52

6.7 FITS ASCII and Binary Table Data I/O Subroutines 55

6.7.1 Column Information Subroutines . 55

6.7.2 Low-Level Table Access Subroutines . 58

6.7.3 Edit Rows or Columns . 58

6.7.4 Read and Write Column Data Routines . 60

6.8 Row Selection and Calculator Routines . 64

CONTENTS v

6.9 Celestial Coordinate System Subroutines . 65

6.10 File Checksum Subroutines . 67

6.11 Date and Time Utility Routines . 68

6.12 General Utility Subroutines . 69

7 The CFITSIO Iterator Function 75

8 Extended File Name Syntax 77

8.1 Overview . 77

8.2 Filetype . 80

8.2.1 Notes about HTTP proxy servers . 80

8.2.2 Notes about the stream filetype driver . 81

8.2.3 Notes about the gsiftp filetype . 82

8.2.4 Notes about the root filetype . 82

8.2.5 Notes about the shmem filetype: . 84

8.3 Base Filename . 84

8.4 Output File Name when Opening an Existing File 86

8.5 Template File Name when Creating a New File . 88

8.6 Image Tile-Compression Specification . 88

8.7 HDU Location Specification . 88

8.8 Image Section . 89

8.9 Image Transform Filters . 90

8.10 Column and Keyword Filtering Specification . 92

8.11 Row Filtering Specification . 94

8.11.1 General Syntax . 94

8.11.2 Bit Masks . 97

8.11.3 Vector Columns . 98

8.11.4 Good Time Interval Filtering . 99

8.11.5 Spatial Region Filtering . 100

8.11.6 Example Row Filters . 103

8.12 Binning or Histogramming Specification . 104

9 Template Files 107

9.1 Detailed Template Line Format . 107

vi CONTENTS

9.2 Auto-indexing of Keywords . 108

9.3 Template Parser Directives . 109

9.4 Formal Template Syntax . 109

9.5 Errors . 110

9.6 Examples . 110

10 Summary of all FITSIO User-Interface Subroutines 113

11 Parameter Definitions 121

12 FITSIO Error Status Codes 127

Chapter 1

Introduction

This document describes the Fortran-callable subroutine interface that is provided as part of the
CFITSIO library (which is written in ANSI C). This is a companion document to the CFITSIO
User’s Guide which should be consulted for further information about the underlying CFITSIO
library. In the remainder of this document, the terms FITSIO and CFITSIO are interchangeable
and refer to the same library.

FITSIO/CFITSIO is a machine-independent library of routines for reading and writing data files
in the FITS (Flexible Image Transport System) data format. It can also read IRAF format image
files and raw binary data arrays by converting them on the fly into a virtual FITS format file.
This library was written to provide a powerful yet simple interface for accessing FITS files which
will run on most commonly used computers and workstations. FITSIO supports all the features
described in the official NOST definition of the FITS format and can read and write all the currently
defined types of extensions, including ASCII tables (TABLE), Binary tables (BINTABLE) and
IMAGE extensions. The FITSIO subroutines insulate the programmer from having to deal with
the complicated formatting details in the FITS file, however, it is assumed that users have a general
knowledge about the structure and usage of FITS files.

The CFITSIO package was initially developed by the HEASARC (High Energy Astrophysics Science
Archive Research Center) at the NASA Goddard Space Flight Center to convert various existing
and newly acquired astronomical data sets into FITS format and to further analyze data already in
FITS format. New features continue to be added to CFITSIO in large part due to contributions of
ideas or actual code from users of the package. The Integral Science Data Center in Switzerland,
and the XMM/ESTEC project in The Netherlands made especially significant contributions that
resulted in many of the new features that appeared in v2.0 of CFITSIO.

The latest version of the CFITSIO source code, documentation, and example programs are available
on the World-Wide Web or via anonymous ftp from:

http://heasarc.gsfc.nasa.gov/fitsio

ftp://legacy.gsfc.nasa.gov/software/fitsio/c

1

2 CHAPTER 1. INTRODUCTION

Any questions, bug reports, or suggested enhancements related to the CFITSIO package should be
sent to the primary author:

Dr. William Pence Telephone: (301) 286-4599

HEASARC, Code 662 E-mail: William.D.Pence@nasa.gov

NASA/Goddard Space Flight Center

Greenbelt, MD 20771, USA

This User’s Guide assumes that readers already have a general understanding of the definition
and structure of FITS format files. Further information about FITS formats is available from the
FITS Support Office at http://fits.gsfc.nasa.gov. In particular, the ’NOST FITS Standard’
gives the authoritative definition of the FITS data format, and the ‘FITS User’s Guide’ provides
additional historical background and practical advice on using FITS files.

CFITSIO users may also be interested in the FTOOLS package of programs that can be used to
manipulate and analyze FITS format files. Information about FTOOLS can be obtained on the
Web or via anonymous ftp at:

http://heasarc.gsfc.nasa.gov/ftools

ftp://legacy.gsfc.nasa.gov/software/ftools/release

Chapter 2

Creating FITSIO/CFITSIO

2.1 Building the Library

To use the FITSIO subroutines one must first build the CFITSIO library, which requires a C
compiler. gcc is ideal, or most other ANSI-C compilers will also work. The CFITSIO code is
contained in about 40 C source files (*.c) and header files (*.h). On VAX/VMS systems 2 assembly-
code files (vmsieeed.mar and vmsieeer.mar) are also needed.

The Fortran interface subroutines to the C CFITSIO routines are located in the f77 wrap1.c,
through f77 wrap4.c files. These are relatively simple ’wrappers’ that translate the arguments in the
Fortran subroutine into the appropriate format for the corresponding C routine. This translation is
performed transparently to the user by a set of C macros located in the cfortran.h file. Unfortunately
cfortran.h does not support every combination of C and Fortran compilers so the Fortran interface
is not supported on all platforms. (see further notes below).

A standard combination of C and Fortran compilers will be assumed by default, but one may also
specify a particular Fortran compiler by doing:

> setenv CFLAGS -DcompilerName=1

(where ’compilerName’ is the name of the compiler) before running the configure command. The
currently recognized compiler names are:

g77Fortran

IBMR2Fortran

CLIPPERFortran

pgiFortran

NAGf90Fortran

f2cFortran

hpuxFortran

apolloFortran

sunFortran

CRAYFortran

3

4 CHAPTER 2. CREATING FITSIO/CFITSIO

mipsFortran

DECFortran

vmsFortran

CONVEXFortran

PowerStationFortran

AbsoftUNIXFortran

AbsoftProFortran

SXFortran

Alternatively, one may edit the CFLAGS line in the Makefile to add the ’-DcompilerName’ flag
after running the ’./configure’ command.

The CFITSIO library is built on Unix systems by typing:

> ./configure [--prefix=/target/installation/path]

> make (or ’make shared’)

> make install (this step is optional)

at the operating system prompt. The configure command customizes the Makefile for the particular
system, then the ‘make’ command compiles the source files and builds the library. Type ‘./configure’
and not simply ‘configure’ to ensure that the configure script in the current directory is run and
not some other system-wide configure script. The optional ’prefix’ argument to configure gives the
path to the directory where the CFITSIO library and include files should be installed via the later
’make install’ command. For example,

> ./configure --prefix=/usr1/local

will cause the ’make install’ command to copy the CFITSIO libcfitsio file to /usr1/local/lib and the
necessary include file to /usr1/local/include (assuming of course that the process has permission
to write to these directories).

By default this also builds the set of Fortran-callable wrapper routines whose calling sequences are
described later in this document.

The ’make shared’ option builds a shared or dynamic version of the CFITSIO library. When using
the shared library the executable code is not copied into your program at link time and instead the
program locates the necessary library code at run time, normally through LD LIBRARY PATH or
some other method. The advantages of using a shared library are:

1. Less disk space if you build more than 1 program

2. Less memory if more than one copy of a program using the shared

library is running at the same time since the system is smart

enough to share copies of the shared library at run time.

3. Possibly easier maintenance since a new version of the shared

library can be installed without relinking all the software

that uses it (as long as the subroutine names and calling

sequences remain unchanged).

4. No run-time penalty.

2.1. BUILDING THE LIBRARY 5

The disadvantages are:

1. More hassle at runtime. You have to either build the programs

specially or have LD_LIBRARY_PATH set right.

2. There may be a slight start up penalty, depending on where you are

reading the shared library and the program from and if your CPU is

either really slow or really heavily loaded.

On HP/UX systems, the environment variable CFLAGS should be set to -Ae before running con-
figure to enable ”extended ANSI” features.

It may not be possible to statically link programs that use CFITSIO on some platforms (namely,
on Solaris 2.6) due to the network drivers (which provide FTP and HTTP access to FITS files). It
is possible to make both a dynamic and a static version of the CFITSIO library, but network file
access will not be possible using the static version.

On VAX/VMS and ALPHA/VMS systems the make gfloat.com command file may be executed to
build the cfitsio.olb object library using the default G-floating point option for double variables.
The make dfloat.com and make ieee.com files may be used instead to build the library with the
other floating point options. Note that the getcwd function that is used in the group.c module may
require that programs using CFITSIO be linked with the ALPHA$LIBRARY:VAXCRTL.OLB
library. See the example link line in the next section of this document.

On Windows IBM-PC type platforms the situation is more complicated because of the wide variety
of Fortran compilers that are available and because of the inherent complexities of calling the
CFITSIO C routines from Fortran. Two different versions of the CFITSIO dll library are available,
compiled with the Borland C++ compiler and the Microsoft Visual C++ compiler, respectively, in
the files cfitsiodll 2xxx borland.zip and cfitsiodll 3xxx vcc.zip, where ’3xxx’ represents the current
release number. Both these dll libraries contain a set of Fortran wrapper routines which may
be compatible with some, but probably not all, available Fortran compilers. To test if they are
compatible, compile the program testf77.f and try linking to these dll libraries. If these libraries do
not work with a particular Fortran compiler, then there are 2 possible solutions. The first solution
would be to modify the file cfortran.h for that particular combination of C and Fortran compilers,
and then rebuild the CFITSIO dll library. This will require, however, a some expertise in mixed
language programming. The other solution is to use the older v5.03 Fortran-77 implementation of
FITSIO that is still available from the FITSIO web-site. This version is no longer supported, but it
does provide the basic functions for reading and writing FITS files and should be compatible with
most Fortran compilers.

CFITSIO has currently been tested on the following platforms:

OPERATING SYSTEM COMPILER

Sun OS gcc and cc (3.0.1)

Sun Solaris gcc and cc

Silicon Graphics IRIX gcc and cc

Silicon Graphics IRIX64 MIPS

Dec Alpha OSF/1 gcc and cc

DECstation Ultrix gcc

6 CHAPTER 2. CREATING FITSIO/CFITSIO

Dec Alpha OpenVMS cc

DEC VAX/VMS gcc and cc

HP-UX gcc

IBM AIX gcc

Linux gcc

MkLinux DR3

Windows 95/98/NT Borland C++ V4.5

Windows 95/98/NT/ME/XP Microsoft/Compaq Visual C++ v5.0, v6.0

Windows 95/98/NT Cygwin gcc

OS/2 gcc + EMX

MacOS 7.1 or greater Metrowerks 10.+

CFITSIO will probably run on most other Unix platforms. Cray supercomputers are currently not
supported.

2.2 Testing the Library

The CFITSIO library should be tested by building and running the testprog.c program that is
included with the release. On Unix systems type:

% make testprog

% testprog > testprog.lis

% diff testprog.lis testprog.out

% cmp testprog.fit testprog.std

On VMS systems, (assuming cc is the name of the C compiler command), type:

$ cc testprog.c

$ link testprog, cfitsio/lib, alpha$library:vaxcrtl/lib

$ run testprog

The testprog program should produce a FITS file called ‘testprog.fit’ that is identical to the ‘test-
prog.std’ FITS file included with this release. The diagnostic messages (which were piped to the file
testprog.lis in the Unix example) should be identical to the listing contained in the file testprog.out.
The ’diff’ and ’cmp’ commands shown above should not report any differences in the files. (There
may be some minor formatting differences, such as the presence or absence of leading zeros, or 3
digit exponents in numbers, which can be ignored).

The Fortran wrappers in CFITSIO may be tested with the testf77 program. On Unix systems the
fortran compilation and link command may be called ’f77’ or ’g77’, depending on the system.

% f77 -o testf77 testf77.f -L. -lcfitsio -lnsl -lsocket

or

% f77 -f -o testf77 testf77.f -L. -lcfitsio (under SUN O/S)

2.2. TESTING THE LIBRARY 7

or

% f77 -o testf77 testf77.f -Wl,-L. -lcfitsio -lm -lnsl -lsocket (HP/UX)

or

% g77 -o testf77 -s testf77.f -lcfitsio -lcc_dynamic -lncurses (Mac OS-X)

% testf77 > testf77.lis

% diff testf77.lis testf77.out

% cmp testf77.fit testf77.std

On machines running SUN O/S, Fortran programs must be compiled with the ’-f’ option to force
double precision variables to be aligned on 8-byte boundaries to make the fortran-declared variables
compatible with C. A similar compiler option may be required on other platforms. Failing to use
this option may cause the program to crash on FITSIO routines that read or write double precision
variables.

On Windows platforms, linking Fortran programs with a C library often depends on the particular
compilers involved. Some users have found the following commands work when using the Intel
Fortran compiler:

ifort /libs.dll cfitsio.lib /MD testf77.f /Gm

or possibly,

ifort /libs:dll cfitsio.lib /MD /fpp /extfpp:cfortran.h,fitsio.h

/iface:cvf testf77.f

Also note that on some systems the output listing of the testf77 program may differ slightly from
the testf77.std template if leading zeros are not printed by default before the decimal point when
using F format.

A few other utility programs are included with CFITSIO:

speed - measures the maximum throughput (in MB per second)

for writing and reading FITS files with CFITSIO

listhead - lists all the header keywords in any FITS file

fitscopy - copies any FITS file (especially useful in conjunction

with the CFITSIO’s extended input filename syntax)

cookbook - a sample program that performs common read and

write operations on a FITS file.

iter_a, iter_b, iter_c - examples of the CFITSIO iterator routine

The first 4 of these utility programs can be compiled and linked by typing

% make program_name

8 CHAPTER 2. CREATING FITSIO/CFITSIO

2.3 Linking Programs with FITSIO

When linking applications software with the FITSIO library, several system libraries usually need
to be specified on the link comman Unix systems, the most reliable way to determine what libraries
are required is to type ’make testprog’ and see what libraries the configure script has added. The
typical libraries that may need to be added are -lm (the math library) and -lnsl and -lsocket (needed
only for FTP and HTTP file access). These latter 2 libraries are not needed on VMS and Windows
platforms, because FTP file access is not currently supported on those platforms.

Note that when upgrading to a newer version of CFITSIO it is usually necessary to recompile, as
well as relink, the programs that use CFITSIO, because the definitions in fitsio.h often change.

2.4 Getting Started with FITSIO

In order to effectively use the FITSIO library as quickly as possible, it is recommended that new
users follow these steps:

1. Read the following ‘FITS Primer’ chapter for a brief overview of the structure of FITS files.
This is especially important for users who have not previously dealt with the FITS table and image
extensions.

2. Write a simple program to read or write a FITS file using the Basic Interface routines.

3. Refer to the cookbook.f program that is included with this release for examples of routines that
perform various common FITS file operations.

4. Read Chapters 4 and 5 to become familiar with the conventions and advanced features of the
FITSIO interface.

5. Scan through the more extensive set of routines that are provided in the ‘Advanced Interface’.
These routines perform more specialized functions than are provided by the Basic Interface routines.

2.5 Example Program

The following listing shows an example of how to use the FITSIO routines in a Fortran program.
Refer to the cookbook.f program that is included with the FITSIO distribution for examples of
other FITS programs.

program writeimage

C Create a FITS primary array containing a 2-D image

integer status,unit,blocksize,bitpix,naxis,naxes(2)

integer i,j,group,fpixel,nelements,array(300,200)

character filename*80

logical simple,extend

2.5. EXAMPLE PROGRAM 9

status=0

C Name of the FITS file to be created:

filename=’ATESTFILE.FITS’

C Get an unused Logical Unit Number to use to create the FITS file

call ftgiou(unit,status)

C create the new empty FITS file

blocksize=1

call ftinit(unit,filename,blocksize,status)

C initialize parameters about the FITS image (300 x 200 16-bit integers)

simple=.true.

bitpix=16

naxis=2

naxes(1)=300

naxes(2)=200

extend=.true.

C write the required header keywords

call ftphpr(unit,simple,bitpix,naxis,naxes,0,1,extend,status)

C initialize the values in the image with a linear ramp function

do j=1,naxes(2)

do i=1,naxes(1)

array(i,j)=i+j

end do

end do

C write the array to the FITS file

group=1

fpixel=1

nelements=naxes(1)*naxes(2)

call ftpprj(unit,group,fpixel,nelements,array,status)

C write another optional keyword to the header

call ftpkyj(unit,’EXPOSURE’,1500,’Total Exposure Time’,status)

C close the file and free the unit number

call ftclos(unit, status)

call ftfiou(unit, status)

end

10 CHAPTER 2. CREATING FITSIO/CFITSIO

2.6 Legal Stuff

Copyright (Unpublished–all rights reserved under the copyright laws of the United States), U.S.
Government as represented by the Administrator of the National Aeronautics and Space Adminis-
tration. No copyright is claimed in the United States under Title 17, U.S. Code.

Permission to freely use, copy, modify, and distribute this software and its documentation without
fee is hereby granted, provided that this copyright notice and disclaimer of warranty appears in all
copies.

DISCLAIMER:

THE SOFTWARE IS PROVIDED ’AS IS’ WITHOUT ANY WARRANTY OF ANY KIND, EI-
THER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO,
ANY WARRANTY THAT THE SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT THE DOC-
UMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE
SOFTWARE WILL BE ERROR FREE. IN NO EVENT SHALL NASA BE LIABLE FOR ANY
DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CON-
SEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CON-
NECTED WITH THIS SOFTWARE, WHETHER OR NOT BASED UPON WARRANTY, CON-
TRACT, TORT , OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PER-
SONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED
FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SER-
VICES PROVIDED HEREUNDER.”

2.7 Acknowledgments

The development of many of the powerful features in CFITSIO was made possible through collab-
orations with many people or organizations from around the world. The following, in particular,
have made especially significant contributions:

Programmers from the Integral Science Data Center, Switzerland (namely, Jurek Borkowski, Bruce
O’Neel, and Don Jennings), designed the concept for the plug-in I/O drivers that was introduced
with CFITSIO 2.0. The use of ‘drivers’ greatly simplified the low-level I/O, which in turn made
other new features in CFITSIO (e.g., support for compressed FITS files and support for IRAF
format image files) much easier to implement. Jurek Borkowski wrote the Shared Memory driver,
and Bruce O’Neel wrote the drivers for accessing FITS files over the network using the FTP, HTTP,
and ROOT protocols.

The ISDC also provided the template parsing routines (written by Jurek Borkowski) and the
hierarchical grouping routines (written by Don Jennings). The ISDC DAL (Data Access Layer)
routines are layered on top of CFITSIO and make extensive use of these features.

Uwe Lammers (XMM/ESA/ESTEC, The Netherlands) designed the high-performance lexical pars-
ing algorithm that is used to do on-the-fly filtering of FITS tables. This algorithm essentially
pre-compiles the user-supplied selection expression into a form that can be rapidly evaluated for

2.7. ACKNOWLEDGMENTS 11

each row. Peter Wilson (RSTX, NASA/GSFC) then wrote the parsing routines used by CFITSIO
based on Lammers’ design, combined with other techniques such as the CFITSIO iterator routine
to further enhance the data processing throughput. This effort also benefited from a much earlier
lexical parsing routine that was developed by Kent Blackburn (NASA/GSFC). More recently, Craig
Markwardt (NASA/GSFC) implemented additional functions (median, average, stddev) and other
enhancements to the lexical parser.

The CFITSIO iterator function is loosely based on similar ideas developed for the XMM Data
Access Layer.

Peter Wilson (RSTX, NASA/GSFC) wrote the complete set of Fortran-callable wrappers for all the
CFITSIO routines, which in turn rely on the CFORTRAN macro developed by Burkhard Burow.

The syntax used by CFITSIO for filtering or binning input FITS files is based on ideas developed
for the AXAF Science Center Data Model by Jonathan McDowell, Antonella Fruscione, Aneta
Siemiginowska and Bill Joye. See http://heasarc.gsfc.nasa.gov/docs/journal/axaf7.html for further
description of the AXAF Data Model.

The file decompression code were taken directly from the gzip (GNU zip) program developed by
Jean-loup Gailly and others.

Doug Mink, SAO, provided the routines for converting IRAF format images into FITS format.

Martin Reinecke (Max Planck Institute, Garching)) provided the modifications to cfortran.h that
are necessary to support 64-bit integer values when calling C routines from fortran programs. The
cfortran.h macros were originally developed by Burkhard Burow (CERN).

In addition, many other people have made valuable contributions to the development of CFITSIO.
These include (with apologies to others that may have inadvertently been omitted):

Steve Allen, Carl Akerlof, Keith Arnaud, Morten Krabbe Barfoed, Kent Blackburn, G Bodammer,
Romke Bontekoe, Lucio Chiappetti, Keith Costorf, Robin Corbet, John Davis, Richard Fink, Ning
Gan, Emily Greene, Joe Harrington, Cheng Ho, Phil Hodge, Jim Ingham, Yoshitaka Ishisaki, Diab
Jerius, Mark Levine, Todd Karakaskian, Edward King, Scott Koch, Claire Larkin, Rob Managan,
Eric Mandel, John Mattox, Carsten Meyer, Emi Miyata, Stefan Mochnacki, Mike Noble, Oliver
Oberdorf, Clive Page, Arvind Parmar, Jeff Pedelty, Tim Pearson, Maren Purves, Scott Randall,
Chris Rogers, Arnold Rots, Barry Schlesinger, Robin Stebbins, Andrew Szymkowiak, Allyn Ten-
nant, Peter Teuben, James Theiler, Doug Tody, Shiro Ueno, Steve Walton, Archie Warnock, Alan
Watson, Dan Whipple, Wim Wimmers, Peter Young, Jianjun Xu, and Nelson Zarate.

12 CHAPTER 2. CREATING FITSIO/CFITSIO

Chapter 3

A FITS Primer

This section gives a brief overview of the structure of FITS files. Users should refer to the documen-
tation available from the NOST, as described in the introduction, for more detailed information on
FITS formats.

FITS was first developed in the late 1970’s as a standard data interchange format between var-
ious astronomical observatories. Since then FITS has become the defacto standard data format
supported by most astronomical data analysis software packages.

A FITS file consists of one or more Header + Data Units (HDUs), where the first HDU is called
the ‘Primary HDU’, or ‘Primary Array’. The primary array contains an N-dimensional array of
pixels, such as a 1-D spectrum, a 2-D image, or a 3-D data cube. Six different primary datatypes
are supported: Unsigned 8-bit bytes, 16, 32, and 64-bit signed integers, and 32 and 64-bit floating
point reals. FITS also has a convention for storing unsigned integers (see the later section entitled
‘Unsigned Integers’ for more details). The primary HDU may also consist of only a header with a
null array containing no data pixels.

Any number of additional HDUs may follow the primary array; these additional HDUs are called
FITS ‘extensions’. There are currently 3 types of extensions defined by the FITS standard:

• Image Extension - a N-dimensional array of pixels, like in a primary array

• ASCII Table Extension - rows and columns of data in ASCII character format

• Binary Table Extension - rows and columns of data in binary representation

In each case the HDU consists of an ASCII Header Unit followed by an optional Data Unit. For
historical reasons, each Header or Data unit must be an exact multiple of 2880 8-bit bytes long.
Any unused space is padded with fill characters (ASCII blanks or zeros).

Each Header Unit consists of any number of 80-character keyword records or ‘card images’ which
have the general form:

KEYNAME = value / comment string

NULLKEY = / comment: This keyword has no value

13

14 CHAPTER 3. A FITS PRIMER

The keyword names may be up to 8 characters long and can only contain uppercase letters, the
digits 0-9, the hyphen, and the underscore character. The keyword name is (usually) followed by an
equals sign and a space character (=) in columns 9 - 10 of the record, followed by the value of the
keyword which may be either an integer, a floating point number, a character string (enclosed in
single quotes), or a boolean value (the letter T or F). A keyword may also have a null or undefined
value if there is no specified value string, as in the second example.

The last keyword in the header is always the ‘END’ keyword which has no value or comment
fields. There are many rules governing the exact format of a keyword record (see the NOST FITS
Standard) so it is better to rely on standard interface software like FITSIO to correctly construct
or to parse the keyword records rather than try to deal directly with the raw FITS formats.

Each Header Unit begins with a series of required keywords which depend on the type of HDU.
These required keywords specify the size and format of the following Data Unit. The header may
contain other optional keywords to describe other aspects of the data, such as the units or scaling
values. Other COMMENT or HISTORY keywords are also frequently added to further document
the data file.

The optional Data Unit immediately follows the last 2880-byte block in the Header Unit. Some
HDUs do not have a Data Unit and only consist of the Header Unit.

If there is more than one HDU in the FITS file, then the Header Unit of the next HDU immediately
follows the last 2880-byte block of the previous Data Unit (or Header Unit if there is no Data Unit).

The main required keywords in FITS primary arrays or image extensions are:

• BITPIX – defines the datatype of the array: 8, 16, 32, 64, -32, -64 for unsigned 8–bit byte,
16–bit signed integer, 32–bit signed integer, 64–bit signed integer, 32–bit IEEE floating point,
and 64–bit IEEE double precision floating point, respectively.

• NAXIS – the number of dimensions in the array, usually 0, 1, 2, 3, or 4.

• NAXISn – (n ranges from 1 to NAXIS) defines the size of each dimension.

FITS tables start with the keyword XTENSION = ‘TABLE’ (for ASCII tables) or XTENSION =
‘BINTABLE’ (for binary tables) and have the following main keywords:

• TFIELDS – number of fields or columns in the table

• NAXIS2 – number of rows in the table

• TTYPEn – for each column (n ranges from 1 to TFIELDS) gives the name of the column

• TFORMn – the datatype of the column

• TUNITn – the physical units of the column (optional)

Users should refer to the FITS Support Office at http://fits.gsfc.nasa.gov for further infor-
mation about the FITS format and related software packages.

Chapter 4

FITSIO Conventions and Guidelines

4.1 CFITSIO Size Limitations

CFITSIO places few restrictions on the size of FITS files that it reads or writes. There are a few
limits, however, which may affect some extreme cases:

1. The maximum number of FITS files that may be simultaneously opened by CFITSIO is set by
NMAXFILES as defined in fitsio2.h. It is currently set = 300 by default. CFITSIO will allocate
about 80 * NMAXFILES bytes of memory for internal use. Note that the underlying C compiler
or operating system, may have a smaller limit on the number of opened files. The C symbolic
constant FOPEN MAX is intended to define the maximum number of files that may open at once
(including any other text or binary files that may be open, not just FITS files). On some systems
it has been found that gcc supports a maximum of 255 opened files.

2. By default, CFITSIO can handle FITS files up to 2.1 GB in size (2**31 bytes). This file size
limit is often imposed by 32-bit operating systems. More recently, as 64-bit operating systems
become more common, an industry-wide standard (at least on Unix systems) has been developed
to support larger sized files (see http://ftp.sas.com/standards/large.file/). Starting with version
2.1 of CFITSIO, larger FITS files up to 6 terabytes in size may be read and written on sup-
ported platforms. In order to support these larger files, CFITSIO must be compiled with the
’-D LARGEFILE SOURCE’ and ‘-D FILE OFFSET BITS=64’ compiler flags. Some platforms
may also require the ‘-D LARGE FILES’ compiler flag. This causes the compiler to allocate 8-
bytes instead of 4-bytes for the ‘off t’ datatype which is used to store file offset positions. It
appears that in most cases it is not necessary to also include these compiler flags when compiling
programs that link to the CFITSIO library.

If CFITSIO is compiled with the -D LARGEFILE SOURCE and -D FILE OFFSET BITS=64 flags
on a platform that supports large files, then it can read and write FITS files that contain up to
2**31 2880-byte FITS records, or approximately 6 terabytes in size. It is still required that the
value of the NAXISn and PCOUNT keywords in each extension be within the range of a signed 4-
byte integer (max value = 2,147,483,648). Thus, each dimension of an image (given by the NAXISn
keywords), the total width of a table (NAXIS1 keyword), the number of rows in a table (NAXIS2
keyword), and the total size of the variable-length array heap in binary tables (PCOUNT keyword)
must be less than this limit.

15

16 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

Currently, support for large files within CFITSIO has been tested on the Linux, Solaris, and IBM
AIX operating systems.

4.2 Multiple Access to the Same FITS File

CFITSIO supports simultaneous read and write access to multiple HDUs in the same FITS file.
Thus, one can open the same FITS file twice within a single program and move to 2 different
HDUs in the file, and then read and write data or keywords to the 2 extensions just as if one were
accessing 2 completely separate FITS files. Since in general it is not possible to physically open the
same file twice and then expect to be able to simultaneously (or in alternating succession) write
to 2 different locations in the file, CFITSIO recognizes when the file to be opened (in the call to
fits open file) has already been opened and instead of actually opening the file again, just logically
links the new file to the old file. (This only applies if the file is opened more than once within the
same program, and does not prevent the same file from being simultaneously opened by more than
one program). Then before CFITSIO reads or writes to either (logical) file, it makes sure that any
modifications made to the other file have been completely flushed from the internal buffers to the
file. Thus, in principle, one could open a file twice, in one case pointing to the first extension and
in the other pointing to the 2nd extension and then write data to both extensions, in any order,
without danger of corrupting the file, There may be some efficiency penalties in doing this however,
since CFITSIO has to flush all the internal buffers related to one file before switching to the other,
so it would still be prudent to minimize the number of times one switches back and forth between
doing I/O to different HDUs in the same file.

4.3 Current Header Data Unit (CHDU)

In general, a FITS file can contain multiple Header Data Units, also called extensions. CFITSIO
only operates within one HDU at any given time, and the currently selected HDU is called the
Current Header Data Unit (CHDU). When a FITS file is first created or opened the CHDU is
automatically defined to be the first HDU (i.e., the primary array). CFITSIO routines are provided
to move to and open any other existing HDU within the FITS file or to append or insert a new
HDU in the FITS file which then becomes the CHDU.

4.4 Subroutine Names

All FITSIO subroutine names begin with the letters ’ft’ to distinguish them from other subroutines
and are 5 or 6 characters long. Users should not name their own subroutines beginning with ’ft’
to avoid conflicts. (The SPP interface routines all begin with ’fs’). Subroutines which read or get
information from the FITS file have names beginning with ’ftg...’. Subroutines which write or put
information into the FITS file have names beginning with ’ftp...’.

4.5. SUBROUTINE FAMILIES AND DATATYPES 17

4.5 Subroutine Families and Datatypes

Many of the subroutines come in families which differ only in the datatype of the associated
parameter(s) . The datatype of these subroutines is indicated by the last letter of the subroutine
name (e.g., ’j’ in ’ftpkyj’) as follows:

x - bit

b - character*1 (unsigned byte)

i - short integer (I*2)

j - integer (I*4, 32-bit integer)

k - long long integer (I*8, 64-bit integer)

e - real exponential floating point (R*4)

f - real fixed-format floating point (R*4)

d - double precision real floating-point (R*8)

g - double precision fixed-format floating point (R*8)

c - complex reals (pairs of R*4 values)

m - double precision complex (pairs of R*8 values)

l - logical (L*4)

s - character string

When dealing with the FITS byte datatype, it is important to remember that the raw values (before
any scaling by the BSCALE and BZERO, or TSCALn and TZEROn keyword values) in byte arrays
(BITPIX = 8) or byte columns (TFORMn = ’B’) are interpreted as unsigned bytes with values
ranging from 0 to 255. Some Fortran compilers support a non-standard byte datatype such as
INTEGER*1, LOGICAL*1, or BYTE, which can sometimes be used instead of CHARACTER*1
variables. Many machines permit passing a numeric datatype (such as INTEGER*1) to the FITSIO
subroutines which are expecting a CHARACTER*1 datatype, but this technically violates the
Fortran-77 standard and is not supported on all machines (e.g., on a VAX/VMS machine one must
use the VAX-specific %DESCR function).

One feature of the CFITSIO routines is that they can operate on a ‘X’ (bit) column in a binary table
as though it were a ‘B’ (byte) column. For example a ‘11X’ datatype column can be interpreted
the same as a ‘2B’ column (i.e., 2 unsigned 8-bit bytes). In some instances, it can be more efficient
to read and write whole bytes at a time, rather than reading or writing each individual bit.

The double precision complex datatype is not a standard Fortran-77 datatype. If a particular
Fortran compiler does not directly support this datatype, then one may instead pass an array of
pairs of double precision values to these subroutines. The first value in each pair is the real part,
and the second is the imaginary part.

4.6 Implicit Data Type Conversion

The FITSIO routines that read and write numerical data can perform implicit data type conversion.
This means that the data type of the variable or array in the program does not need to be the same
as the data type of the value in the FITS file. Data type conversion is supported for numerical and
string data types (if the string contains a valid number enclosed in quotes) when reading a FITS

18 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

header keyword value and for numeric values when reading or writing values in the primary array
or a table column. CFITSIO returns status = NUM OVERFLOW if the converted data value
exceeds the range of the output data type. Implicit data type conversion is not supported within
binary tables for string, logical, complex, or double complex data types.

In addition, any table column may be read as if it contained string values. In the case of numeric
columns the returned string will be formatted using the TDISPn display format if it exists.

4.7 Data Scaling

When reading numerical data values in the primary array or a table column, the values will be
scaled automatically by the BSCALE and BZERO (or TSCALn and TZEROn) header keyword
values if they are present in the header. The scaled data that is returned to the reading program
will have

output value = (FITS value) * BSCALE + BZERO

(a corresponding formula using TSCALn and TZEROn is used when reading from table columns).
In the case of integer output values the floating point scaled value is truncated to an integer (not
rounded to the nearest integer). The ftpscl and fttscl subroutines may be used to override the
scaling parameters defined in the header (e.g., to turn off the scaling so that the program can read
the raw unscaled values from the FITS file).

When writing numerical data to the primary array or to a table column the data values will
generally be automatically inversely scaled by the value of the BSCALE and BZERO (or TSCALn
and TZEROn) header keyword values if they they exist in the header. These keywords must have
been written to the header before any data is written for them to have any effect. Otherwise, one
may use the ftpscl and fttscl subroutines to define or override the scaling keywords in the header
(e.g., to turn off the scaling so that the program can write the raw unscaled values into the FITS
file). If scaling is performed, the inverse scaled output value that is written into the FITS file will
have

FITS value = ((input value) - BZERO) / BSCALE

(a corresponding formula using TSCALn and TZEROn is used when writing to table columns).
Rounding to the nearest integer, rather than truncation, is performed when writing integer datatypes
to the FITS file.

4.8 Error Status Values and the Error Message Stack

The last parameter in nearly every FITSIO subroutine is the error status value which is both an
input and an output parameter. A returned positive value for this parameter indicates an error
was detected. A listing of all the FITSIO status code values is given at the end of this document.

The FITSIO library uses an ‘inherited status’ convention for the status parameter which means that
if a subroutine is called with a positive input value of the status parameter, then the subroutine will

4.9. VARIABLE-LENGTH ARRAY FACILITY IN BINARY TABLES 19

exit immediately without changing the value of the status parameter. Thus, if one passes the status
value returned from each FITSIO routine as input to the next FITSIO subroutine, then whenever
an error is detected all further FITSIO processing will cease. This convention can simplify the
error checking in application programs because it is not necessary to check the value of the status
parameter after every single FITSIO subroutine call. If a program contains a sequence of several
FITSIO calls, one can just check the status value after the last call. Since the returned status values
are generally distinctive, it should be possible to determine which subroutine originally returned
the error status.

FITSIO also maintains an internal stack of error messages (80-character maximum length) which
in many cases provide a more detailed explanation of the cause of the error than is provided by
the error status number alone. It is recommended that the error message stack be printed out
whenever a program detects a FITSIO error. To do this, call the FTGMSG routine repeatedly to
get the successive messages on the stack. When the stack is empty FTGMSG will return a blank
string. Note that this is a ‘First In – First Out’ stack, so the oldest error message is returned first
by ftgmsg.

4.9 Variable-Length Array Facility in Binary Tables

FITSIO provides easy-to-use support for reading and writing data in variable length fields of a
binary table. The variable length columns have TFORMn keyword values of the form ‘1Pt(len)’
or ‘1Qt(len)’ where ‘t’ is the datatype code (e.g., I, J, E, D, etc.) and ‘len’ is an integer specifying
the maximum length of the vector in the table. If the value of ‘len’ is not specified when the table
is created (e.g., if the TFORM keyword value is simply specified as ’1PE’ instead of ’1PE(400)),
then FITSIO will automatically scan the table when it is closed to determine the maximum length
of the vector and will append this value to the TFORMn value.

The same routines which read and write data in an ordinary fixed length binary table extension are
also used for variable length fields, however, the subroutine parameters take on a slightly different
interpretation as described below.

All the data in a variable length field is written into an area called the ‘heap’ which follows the
main fixed-length FITS binary table. The size of the heap, in bytes, is specified with the PCOUNT
keyword in the FITS header. When creating a new binary table, the initial value of PCOUNT should
usually be set to zero. FITSIO will recompute the size of the heap as the data is written and will
automatically update the PCOUNT keyword value when the table is closed. When writing variable
length data to a table, CFITSIO will automatically extend the size of the heap area if necessary,
so that any following HDUs do not get overwritten.

By default the heap data area starts immediately after the last row of the fixed-length table. This
default starting location may be overridden by the THEAP keyword, but this is not recommended.
If additional rows of data are added to the table, CFITSIO will automatically shift the the heap
down to make room for the new rows, but it is obviously be more efficient to initially create the
table with the necessary number of blank rows, so that the heap does not needed to be constantly
moved.

When writing to a variable length field, the entire array of values for a given row of the table
must be written with a single call to FTPCLx. The total length of the array is calculated from

20 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

(NELEM+FELEM-1). One cannot append more elements to an existing field at a later time; any
attempt to do so will simply overwrite all the data which was previously written. Note also that
the new data will be written to a new area of the heap and the heap space used by the previous
write cannot be reclaimed. For this reason it is advised that each row of a variable length field
only be written once. An exception to this general rule occurs when setting elements of an array
as undefined. One must first write a dummy value into the array with FTPCLx, and then call
FTPCLU to flag the desired elements as undefined. (Do not use the FTPCNx family of routines
with variable length fields). Note that the rows of a table, whether fixed or variable length, do not
have to be written consecutively and may be written in any order.

When writing to a variable length ASCII character field (e.g., TFORM = ’1PA’) only a single
character string written. FTPCLS writes the whole length of the input string (minus any trailing
blank characters), thus the NELEM and FELEM parameters are ignored. If the input string is
completely blank then FITSIO will write one blank character to the FITS file. Similarly, FTGCVS
and FTGCFS read the entire string (truncated to the width of the character string argument in
the subroutine call) and also ignore the NELEM and FELEM parameters.

The FTPDES subroutine is useful in situations where multiple rows of a variable length column
have the identical array of values. One can simply write the array once for the first row, and then
use FTPDES to write the same descriptor values into the other rows (use the FTGDES routine
to read the first descriptor value); all the rows will then point to the same storage location thus
saving disk space.

When reading from a variable length array field one can only read as many elements as actually
exist in that row of the table; reading does not automatically continue with the next row of the
table as occurs when reading an ordinary fixed length table field. Attempts to read more than this
will cause an error status to be returned. One can determine the number of elements in each row
of a variable column with the FTGDES subroutine.

4.10 Support for IEEE Special Values

The ANSI/IEEE-754 floating-point number standard defines certain special values that are used to
represent such quantities as Not-a-Number (NaN), denormalized, underflow, overflow, and infinity.
(See the Appendix in the NOST FITS standard or the NOST FITS User’s Guide for a list of these
values). The FITSIO subroutines that read floating point data in FITS files recognize these IEEE
special values and by default interpret the overflow and infinity values as being equivalent to a
NaN, and convert the underflow and denormalized values into zeros. In some cases programmers
may want access to the raw IEEE values, without any modification by FITSIO. This can be done
by calling the FTGPVx or FTGCVx routines while specifying 0.0 as the value of the NULLVAL
parameter. This will force FITSIO to simply pass the IEEE values through to the application
program, without any modification. This does not work for double precision values on VAX/VMS
machines, however, where there is no easy way to bypass the default interpretation of the IEEE
special values. This is also not supported when reading floating-point images that have been
compressed with the FITS tiled image compression convention that is discussed in section 5.6; the
pixels values in tile compressed images are represented by scaled integers, and a reserved integer
value (not a NaN) is used to represent undefined pixels.

4.11. WHEN THE FINAL SIZE OF THE FITS HDU IS UNKNOWN 21

4.11 When the Final Size of the FITS HDU is Unknown

It is not required to know the total size of a FITS data array or table before beginning to write the
data to the FITS file. In the case of the primary array or an image extension, one should initially
create the array with the size of the highest dimension (largest NAXISn keyword) set to a dummy
value, such as 1. Then after all the data have been written and the true dimensions are known, then
the NAXISn value should be updated using the fits update key routine before moving to another
extension or closing the FITS file.

When writing to FITS tables, CFITSIO automatically keeps track of the highest row number that
is written to, and will increase the size of the table if necessary. CFITSIO will also automatically
insert space in the FITS file if necessary, to ensure that the data ’heap’, if it exists, and/or any
additional HDUs that follow the table do not get overwritten as new rows are written to the table.

As a general rule it is best to specify the initial number of rows = 0 when the table is created,
then let CFITSIO keep track of the number of rows that are actually written. The application
program should not manually update the number of rows in the table (as given by the NAXIS2
keyword) since CFITSIO does this automatically. If a table is initially created with more than
zero rows, then this will usually be considered as the minimum size of the table, even if fewer
rows are actually written to the table. Thus, if a table is initially created with NAXIS2 = 20, and
CFITSIO only writes 10 rows of data before closing the table, then NAXIS2 will remain equal to
20. If however, 30 rows of data are written to this table, then NAXIS2 will be increased from 20
to 30. The one exception to this automatic updating of the NAXIS2 keyword is if the application
program directly modifies the value of NAXIS2 (up or down) itself just before closing the table. In
this case, CFITSIO does not update NAXIS2 again, since it assumes that the application program
must have had a good reason for changing the value directly. This is not recommended, however,
and is only provided for backward compatibility with software that initially creates a table with
a large number of rows, than decreases the NAXIS2 value to the actual smaller value just before
closing the table.

4.12 Local FITS Conventions supported by FITSIO

CFITSIO supports several local FITS conventions which are not defined in the official NOST FITS
standard and which are not necessarily recognized or supported by other FITS software packages.
Programmers should be cautious about using these features, especially if the FITS files that are
produced are expected to be processed by other software systems which do not use the CFITSIO
interface.

4.12.1 Support for Long String Keyword Values.

The length of a standard FITS string keyword is limited to 68 characters because it must fit entirely
within a single FITS header keyword record. In some instances it is necessary to encode strings
longer than this limit, so FITSIO supports a local convention in which the string value is continued
over multiple keywords. This continuation convention uses an ampersand character at the end of
each substring to indicate that it is continued on the next keyword, and the continuation keywords
all have the name CONTINUE without an equal sign in column 9. The string value may be

22 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

continued in this way over as many additional CONTINUE keywords as is required. The following
lines illustrate this continuation convention which is used in the value of the STRKEY keyword:

LONGSTRN= ’OGIP 1.0’ / The OGIP Long String Convention may be used.

STRKEY = ’This is a very long string keyword&’ / Optional Comment

CONTINUE ’ value that is continued over 3 keywords in the & ’

CONTINUE ’FITS header.’ / This is another optional comment.

It is recommended that the LONGSTRN keyword, as shown here, always be included in any HDU
that uses this longstring convention. A subroutine called FTPLSW has been provided in CFITSIO
to write this keyword if it does not already exist.

This long string convention is supported by the following FITSIO subroutines that deal with string-
valued keywords:

ftgkys - read a string keyword

ftpkls - write (append) a string keyword

ftikls - insert a string keyword

ftmkls - modify the value of an existing string keyword

ftukls - update an existing keyword, or write a new keyword

ftdkey - delete a keyword

These routines will transparently read, write, or delete a long string value in the FITS file, so
programmers in general do not have to be concerned about the details of the convention that is
used to encode the long string in the FITS header. When reading a long string, one must ensure
that the character string parameter used in these subroutine calls has been declared long enough
to hold the entire string, otherwise the returned string value will be truncated.

Note that the more commonly used FITSIO subroutine to write string valued keywords (FTPKYS)
does NOT support this long string convention and only supports strings up to 68 characters in
length. This has been done deliberately to prevent programs from inadvertently writing keywords
using this non-standard convention without the explicit intent of the programmer or user. The
FTPKLS subroutine must be called instead to write long strings. This routine can also be used to
write ordinary string values less than 68 characters in length.

4.12.2 Arrays of Fixed-Length Strings in Binary Tables

CFITSIO supports 2 ways to specify that a character column in a binary table contains an array of
fixed-length strings. The first way, which is officially supported by the FITS Standard document,
uses the TDIMn keyword. For example, if TFORMn = ’60A’ and TDIMn = ’(12,5)’ then that
column will be interpreted as containing an array of 5 strings, each 12 characters long.

FITSIO also supports a local convention for the format of the TFORMn keyword value of the
form ’rAw’ where ’r’ is an integer specifying the total width in characters of the column, and
’w’ is an integer specifying the (fixed) length of an individual unit string within the vector. For
example, TFORM1 = ’120A10’ would indicate that the binary table column is 120 characters
wide and consists of 12 10-character length strings. This convention is recognized by the FITSIO

4.12. LOCAL FITS CONVENTIONS SUPPORTED BY FITSIO 23

subroutines that read or write strings in binary tables. The Binary Table definition document
specifies that other optional characters may follow the datatype code in the TFORM keyword, so
this local convention is in compliance with the FITS standard, although other FITS readers are
not required to recognize this convention.

The Binary Table definition document that was approved by the IAU in 1994 contains an appendix
describing an alternate convention for specifying arrays of fixed or variable length strings in a binary
table character column (with the form ’rA:SSTRw/nnn)’. This appendix was not officially voted
on by the IAU and hence is still provisional. FITSIO does not currently support this proposal.

4.12.3 Keyword Units Strings

One deficiency of the current FITS Standard is that it does not define a specific convention for
recording the physical units of a keyword value. The TUNITn keyword can be used to specify the
physical units of the values in a table column, but there is no analogous convention for keyword
values. The comment field of the keyword is often used for this purpose, but the units are usually
not specified in a well defined format that FITS readers can easily recognize and extract.

To solve this deficiency, FITSIO uses a local convention in which the keyword units are enclosed in
square brackets as the first token in the keyword comment field; more specifically, the opening square
bracket immediately follows the slash ’/’ comment field delimiter and a single space character. The
following examples illustrate keywords that use this convention:

EXPOSURE= 1800.0 / [s] elapsed exposure time

V_HELIO = 16.23 / [km s**(-1)] heliocentric velocity

LAMBDA = 5400. / [angstrom] central wavelength

FLUX = 4.9033487787637465E-30 / [J/cm**2/s] average flux

In general, the units named in the IAU(1988) Style Guide are recommended, with the main excep-
tion that the preferred unit for angle is ’deg’ for degrees.

The FTPUNT and FTGUNT subroutines in FITSIO write and read, respectively, the keyword unit
strings in an existing keyword.

4.12.4 HIERARCH Convention for Extended Keyword Names

CFITSIO supports the HIERARCH keyword convention which allows keyword names that are
longer then 8 characters and may contain the full range of printable ASCII text characters. This
convention was developed at the European Southern Observatory (ESO) to support hierarchical
FITS keyword such as:

HIERARCH ESO INS FOCU POS = -0.00002500 / Focus position

Basically, this convention uses the FITS keyword ’HIERARCH’ to indicate that this conven-
tion is being used, then the actual keyword name (’ESO INS FOCU POS’ in this example) be-
gins in column 10 and can contain any printable ASCII text characters, including spaces. The

24 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

equals sign marks the end of the keyword name and is followed by the usual value and com-
ment fields just as in standard FITS keywords. Further details of this convention are described at
http://arcdev.hq.eso.org/dicb/dicd/dic-1-1.4.html (search for HIERARCH).

This convention allows a much broader range of keyword names than is allowed by the FITS
Standard. Here are more examples of such keywords:

HIERARCH LongKeyword = 47.5 / Keyword has > 8 characters, and mixed case

HIERARCH XTE$TEMP = 98.6 / Keyword contains the ’$’ character

HIERARCH Earth is a star = F / Keyword contains embedded spaces

CFITSIO will transparently read and write these keywords, so application programs do not in
general need to know anything about the specific implementation details of the HIERARCH con-
vention. In particular, application programs do not need to specify the ‘HIERARCH’ part of the
keyword name when reading or writing keywords (although it may be included if desired). When
writing a keyword, CFITSIO first checks to see if the keyword name is legal as a standard FITS
keyword (no more than 8 characters long and containing only letters, digits, or a minus sign or
underscore). If so it writes it as a standard FITS keyword, otherwise it uses the hierarch con-
vention to write the keyword. The maximum keyword name length is 67 characters, which leaves
only 1 space for the value field. A more practical limit is about 40 characters, which leaves enough
room for most keyword values. CFITSIO returns an error if there is not enough room for both the
keyword name and the keyword value on the 80-character card, except for string-valued keywords
which are simply truncated so that the closing quote character falls in column 80. In the current
implementation, CFITSIO preserves the case of the letters when writing the keyword name, but it
is case-insensitive when reading or searching for a keyword. The current implementation allows any
ASCII text character (ASCII 32 to ASCII 126) in the keyword name except for the ’=’ character.
A space is also required on either side of the equal sign.

4.13 Optimizing Code for Maximum Processing Speed

CFITSIO has been carefully designed to obtain the highest possible speed when reading and writing
FITS files. In order to achieve the best performance, however, application programmers must be
careful to call the CFITSIO routines appropriately and in an efficient sequence; inappropriate usage
of CFITSIO routines can greatly slow down the execution speed of a program.

The maximum possible I/O speed of CFITSIO depends of course on the type of computer system
that it is running on. As a rough guide, the current generation of workstations can achieve speeds
of 2 – 10 MB/s when reading or writing FITS images and similar, or slightly slower speeds with
FITS binary tables. Reading of FITS files can occur at even higher rates (30MB/s or more) if the
FITS file is still cached in system memory following a previous read or write operation on the same
file. To more accurately predict the best performance that is possible on any particular system, a
diagnostic program called “speed.c” is included with the CFITSIO distribution which can be run
to approximately measure the maximum possible speed of writing and reading a test FITS file.

The following 2 sections provide some background on how CFITSIO internally manages the data
I/O and describes some strategies that may be used to optimize the processing speed of software
that uses CFITSIO.

4.13. OPTIMIZING CODE FOR MAXIMUM PROCESSING SPEED 25

4.13.1 Background Information: How CFITSIO Manages Data I/O

Many CFITSIO operations involve transferring only a small number of bytes to or from the FITS file
(e.g, reading a keyword, or writing a row in a table); it would be very inefficient to physically read
or write such small blocks of data directly in the FITS file on disk, therefore CFITSIO maintains
a set of internal Input–Output (IO) buffers in RAM memory that each contain one FITS block
(2880 bytes) of data. Whenever CFITSIO needs to access data in the FITS file, it first transfers the
FITS block containing those bytes into one of the IO buffers in memory. The next time CFITSIO
needs to access bytes in the same block it can then go to the fast IO buffer rather than using a
much slower system disk access routine. The number of available IO buffers is determined by the
NIOBUF parameter (in fitsio2.h) and is currently set to 40.

Whenever CFITSIO reads or writes data it first checks to see if that block of the FITS file is already
loaded into one of the IO buffers. If not, and if there is an empty IO buffer available, then it will
load that block into the IO buffer (when reading a FITS file) or will initialize a new block (when
writing to a FITS file). If all the IO buffers are already full, it must decide which one to reuse
(generally the one that has been accessed least recently), and flush the contents back to disk if it
has been modified before loading the new block.

The one major exception to the above process occurs whenever a large contiguous set of bytes are
accessed, as might occur when reading or writing a FITS image. In this case CFITSIO bypasses
the internal IO buffers and simply reads or writes the desired bytes directly in the disk file with
a single call to a low-level file read or write routine. The minimum threshold for the number of
bytes to read or write this way is set by the MINDIRECT parameter and is currently set to 3
FITS blocks = 8640 bytes. This is the most efficient way to read or write large chunks of data and
can achieve IO transfer rates of 5 – 10MB/s or greater. Note that this fast direct IO process is
not applicable when accessing columns of data in a FITS table because the bytes are generally not
contiguous since they are interleaved by the other columns of data in the table. This explains why
the speed for accessing FITS tables is generally slower than accessing FITS images.

Given this background information, the general strategy for efficiently accessing FITS files should
now be apparent: when dealing with FITS images, read or write large chunks of data at a time
so that the direct IO mechanism will be invoked; when accessing FITS headers or FITS tables, on
the other hand, once a particular FITS block has been loading into one of the IO buffers, try to
access all the needed information in that block before it gets flushed out of the IO buffer. It is
important to avoid the situation where the same FITS block is being read then flushed from a IO
buffer multiple times.

The following section gives more specific suggestions for optimizing the use of CFITSIO.

1. When dealing with a FITS primary array or IMAGE extension, it is more efficient to read or
write large chunks of the image at a time (at least 3 FITS blocks = 8640 bytes) so that the direct
IO mechanism will be used as described in the previous section. Smaller chunks of data are read
or written via the IO buffers, which is somewhat less efficient because of the extra copy operation
and additional bookkeeping steps that are required. In principle it is more efficient to read or write
as big an array of image pixels at one time as possible, however, if the array becomes so large that
the operating system cannot store it all in RAM, then the performance may be degraded because
of the increased swapping of virtual memory to disk.

2. When dealing with FITS tables, the most important efficiency factor in the software design is

26 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

to read or write the data in the FITS file in a single pass through the file. An example of poor
program design would be to read a large, 3-column table by sequentially reading the entire first
column, then going back to read the 2nd column, and finally the 3rd column; this obviously requires
3 passes through the file which could triple the execution time of an I/O limited program. For small
tables this is not important, but when reading multi-megabyte sized tables these inefficiencies can
become significant. The more efficient procedure in this case is to read or write only as many rows
of the table as will fit into the available internal I/O buffers, then access all the necessary columns
of data within that range of rows. Then after the program is completely finished with the data in
those rows it can move on to the next range of rows that will fit in the buffers, continuing in this
way until the entire file has been processed. By using this procedure of accessing all the columns of
a table in parallel rather than sequentially, each block of the FITS file will only be read or written
once.

The optimal number of rows to read or write at one time in a given table depends on the width of
the table row, on the number of I/O buffers that have been allocated in FITSIO, and also on the
number of other FITS files that are open at the same time (since one I/O buffer is always reserved
for each open FITS file). Fortunately, a FITSIO routine is available that will return the optimal
number of rows for a given table: call ftgrsz(unit, nrows, status). It is not critical to use exactly
the value of nrows returned by this routine, as long as one does not exceed it. Using a very small
value however can also lead to poor performance because of the overhead from the larger number
of subroutine calls.

The optimal number of rows returned by ftgrsz is valid only as long as the application program
is only reading or writing data in the specified table. Any other calls to access data in the table
header would cause additional blocks of data to be loaded into the I/O buffers displacing data from
the original table, and should be avoided during the critical period while the table is being read or
written.

3. Use binary table extensions rather than ASCII table extensions for better efficiency when dealing
with tabular data. The I/O to ASCII tables is slower because of the overhead in formatting or
parsing the ASCII data fields, and because ASCII tables are about twice as large as binary tables
with the same information content.

4. Design software so that it reads the FITS header keywords in the same order in which they
occur in the file. When reading keywords, FITSIO searches forward starting from the position of
the last keyword that was read. If it reaches the end of the header without finding the keyword, it
then goes back to the start of the header and continues the search down to the position where it
started. In practice, as long as the entire FITS header can fit at one time in the available internal
I/O buffers, then the header keyword access will be very fast and it makes little difference which
order they are accessed.

5. Avoid the use of scaling (by using the BSCALE and BZERO or TSCAL and TZERO keywords)
in FITS files since the scaling operations add to the processing time needed to read or write the
data. In some cases it may be more efficient to temporarily turn off the scaling (using ftpscl or
fttscl) and then read or write the raw unscaled values in the FITS file.

6. Avoid using the ’implicit datatype conversion’ capability in FITSIO. For instance, when reading
a FITS image with BITPIX = -32 (32-bit floating point pixels), read the data into a single precision
floating point data array in the program. Forcing FITSIO to convert the data to a different datatype
can significantly slow the program.

4.13. OPTIMIZING CODE FOR MAXIMUM PROCESSING SPEED 27

7. Where feasible, design FITS binary tables using vector column elements so that the data are
written as a contiguous set of bytes, rather than as single elements in multiple rows. For example,
it is faster to access the data in a table that contains a single row and 2 columns with TFORM
keywords equal to ’10000E’ and ’10000J’, than it is to access the same amount of data in a table
with 10000 rows which has columns with the TFORM keywords equal to ’1E’ and ’1J’. In the
former case the 10000 floating point values in the first column are all written in a contiguous block
of the file which can be read or written quickly, whereas in the second case each floating point value
in the first column is interleaved with the integer value in the second column of the same row so
CFITSIO has to explicitly move to the position of each element to be read or written.

8. Avoid the use of variable length vector columns in binary tables, since any reading or writing
of these data requires that CFITSIO first look up or compute the starting address of each row of
data in the heap. In practice, this is probably not a significant efficiency issue.

9. When copying data from one FITS table to another, it is faster to transfer the raw bytes instead
of reading then writing each column of the table. The FITSIO subroutines FTGTBS and FTPTBS
(for ASCII tables), and FTGTBB and FTPTBB (for binary tables) will perform low-level reads or
writes of any contiguous range of bytes in a table extension. These routines can be used to read
or write a whole row (or multiple rows) of a table with a single subroutine call. These routines are
fast because they bypass all the usual data scaling, error checking and machine dependent data
conversion that is normally done by FITSIO, and they allow the program to write the data to
the output file in exactly the same byte order. For these same reasons, use of these routines can
be somewhat risky because no validation or machine dependent conversion is performed by these
routines. In general these routines are only recommended for optimizing critical pieces of code and
should only be used by programmers who thoroughly understand the internal byte structure of the
FITS tables they are reading or writing.

10. Another strategy for improving the speed of writing a FITS table, similar to the previous one,
is to directly construct the entire byte stream for a whole table row (or multiple rows) within the
application program and then write it to the FITS file with ftptbb. This avoids all the overhead
normally present in the column-oriented CFITSIO write routines. This technique should only be
used for critical applications, because it makes the code more difficult to understand and maintain,
and it makes the code more system dependent (e.g., do the bytes need to be swapped before writing
to the FITS file?).

11. Finally, external factors such as the type of magnetic disk controller (SCSI or IDE), the size
of the disk cache, the average seek speed of the disk, the amount of disk fragmentation, and the
amount of RAM available on the system can all have a significant impact on overall I/O efficiency.
For critical applications, a system administrator should review the proposed system hardware to
identify any potential I/O bottlenecks.

28 CHAPTER 4. FITSIO CONVENTIONS AND GUIDELINES

Chapter 5

Basic Interface Routines

This section defines a basic set of subroutines that can be used to perform the most common types
of read and write operations on FITS files. New users should start with these subroutines and then,
as needed, explore the more advance routines described in the following chapter to perform more
complex or specialized operations.

A right arrow symbol (>) is used to separate the input parameters from the output parameters in
the definition of each routine. This symbol is not actually part of the calling sequence. Note that
the status parameter is both an input and an output parameter and must be initialized = 0 prior
to calling the FITSIO subroutines.

Refer to Chapter 9 for the definition of all the parameters used by these interface routines.

5.1 FITSIO Error Status Routines

1 Return the current version number of the fitsio library. The version number will be incremented
with each new release of CFITSIO.

FTVERS(> version)

2 Return the descriptive text string corresponding to a FITSIO error status code. The 30-
character length string contains a brief description of the cause of the error.

FTGERR(status, > errtext)

3 Return the top (oldest) 80-character error message from the internal FITSIO stack of error
messages and shift any remaining messages on the stack up one level. Any FITSIO error will
generate one or more messages on the stack. Call this routine repeatedly to get each message
in sequence. The error stack is empty when a blank string is returned.

FTGMSG(> errmsg)

29

30 CHAPTER 5. BASIC INTERFACE ROUTINES

4 The FTPMRK routine puts an invisible marker on the CFITSIO error stack. The FTCMRK
routine can then be used to delete any more recent error messages on the stack, back to
the position of the marker. This preserves any older error messages on the stack. FTCMSG
simply clears the entire error message stack. These routines are called without any arguments.

FTPMRK

FTCMRK

FTCMSG

5 Print out the error message corresponding to the input status value and all the error messages
on the FITSIO stack to the specified file stream (stream can be either the string ’STDOUT’
or ’STDERR’). If the input status value = 0 then this routine does nothing.

FTRPRT (stream, > status)

6 Write an 80-character message to the FITSIO error stack. Application programs should not
normally write to the stack, but there may be some situations where this is desirable.

FTPMSG(errmsg)

5.2 File I/O Routines

1 Open an existing FITS file with readonly or readwrite access. This routine always opens the
primary array (the first HDU) of the file, and does not move to a following extension, if one
was specified as part of the filename. Use the FTNOPN routine to automatically move to the
extension. This routine will also open IRAF images (.imh format files) and raw binary data
arrays with READONLY access by first converting them on the fly into virtual FITS images.
See the ‘Extended File Name Syntax’ chapter for more details. The FTDKOPEN routine
simply opens the specified file without trying to interpret the filename using the extended
filename syntax.

FTOPEN(unit,filename,rwmode, > blocksize,status)

FTDKOPEN(unit,filename,rwmode, > blocksize,status)

2 Open an existing FITS file with readonly or readwrite access and move to a following extension,
if one was specified as part of the filename. (e.g., ’filename.fits+2’ or ’filename.fits[2]’ will
move to the 3rd HDU in the file). Note that this routine differs from FTOPEN in that it
does not have the redundant blocksize argument.

FTNOPN(unit,filename,rwmode, > status)

3 Open an existing FITS file with readonly or readwrite access and then move to the first HDU
containing significant data, if a) an HDU name or number to open was not explicitly specified

5.2. FILE I/O ROUTINES 31

as part of the filename, and b) if the FITS file contains a null primary array (i.e., NAXIS =
0). In this case, it will look for the first IMAGE HDU with NAXIS ¿ 0, or the first table that
does not contain the strings ‘GTI’ (Good Time Interval) or ‘OBSTABLE’ in the EXTNAME
keyword value. FTTOPN is similar, except it will move to the first significant table HDU
(skipping over any image HDUs) in the file if a specific HDU name or number is not specified.
FTIOPN will move to the first non-null image HDU, skipping over any tables.

FTDOPN(unit,filename,rwmode, > status)

FTTOPN(unit,filename,rwmode, > status)

FTIOPN(unit,filename,rwmode, > status)

4 Open and initialize a new empty FITS file. A template file may also be specified to define
the structure of the new file (see section 4.2.4). The FTDKINIT routine simply creates the
specified file without trying to interpret the filename using the extended filename syntax.

FTINIT(unit,filename,blocksize, > status)

FTDKINIT(unit,filename,blocksize, > status)

5 Close a FITS file previously opened with ftopen or ftinit

FTCLOS(unit, > status)

6 Move to a specified (absolute) HDU in the FITS file (nhdu = 1 for the FITS primary array)

FTMAHD(unit,nhdu, > hdutype,status)

7 Create a primary array (if none already exists), or insert a new IMAGE extension immediately
following the CHDU, or insert a new Primary Array at the beginning of the file. Any following
extensions in the file will be shifted down to make room for the new extension. If the CHDU
is the last HDU in the file then the new image extension will simply be appended to the end
of the file. One can force a new primary array to be inserted at the beginning of the FITS
file by setting status = -9 prior to calling the routine. In this case the existing primary array
will be converted to an IMAGE extension. The new extension (or primary array) will become
the CHDU. The FTIIMGLL routine is identical to the FTIIMG routine except that the 4th
parameter (the length of each axis) is an array of 64-bit integers rather than an array of 32-bit
integers.

FTIIMG(unit,bitpix,naxis,naxes, > status)

FTIIMGLL(unit,bitpix,naxis,naxesll, > status)

8 Insert a new ASCII TABLE extension immediately following the CHDU. Any following exten-
sions will be shifted down to make room for the new extension. If there are no other following
extensions then the new table extension will simply be appended to the end of the file. The
new extension will become the CHDU. The FTITABLL routine is identical to the FTITAB

32 CHAPTER 5. BASIC INTERFACE ROUTINES

routine except that the 2nd and 3rd parameters (that give the size of the table) are 64-bit
integers rather than 32-bit integers. Under normal circumstances, the nrows and nrowsll
paramenters should have a value of 0; CFITSIO will automatically update the number of
rows as data is written to the table.

FTITAB(unit,rowlen,nrows,tfields,ttype,tbcol,tform,tunit,extname, >

status)

FTITABLL(unit,rowlenll,nrowsll,tfields,ttype,tbcol,tform,tunit,extname, >

status)

9 Insert a new binary table extension immediately following the CHDU. Any following extensions
will be shifted down to make room for the new extension. If there are no other following
extensions then the new bintable extension will simply be appended to the end of the file.
The new extension will become the CHDU. The FTIBINLL routine is identical to the FTIBIN
routine except that the 2nd parameter (that gives the length of the table) is a 64-bit integer
rather than a 32-bit integer. Under normal circumstances, the nrows and nrowsll paramenters
should have a value of 0; CFITSIO will automatically update the number of rows as data is
written to the table.

FTIBIN(unit,nrows,tfields,ttype,tform,tunit,extname,varidat > status)

FTIBINLL(unit,nrowsll,tfields,ttype,tform,tunit,extname,varidat > status)

5.3 Keyword I/O Routines

1 Put (append) an 80-character record into the CHU.

FTPREC(unit,card, > status)

2 Put (append) a new keyword of the appropriate datatype into the CHU. The E and D versions
of this routine have the added feature that if the ’decimals’ parameter is negative, then the ’G’
display format rather then the ’E’ format will be used when constructing the keyword value,
taking the absolute value of ’decimals’ for the precision. This will suppress trailing zeros, and
will use a fixed format rather than an exponential format, depending on the magnitude of
the value.

FTPKY[JKLS](unit,keyword,keyval,comment, > status)

FTPKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

3 Get the nth 80-character header record from the CHU. The first keyword in the header is at
key no = 1; if key no = 0 then this subroutine simple moves the internal pointer to the
beginning of the header so that subsequent keyword operations will start at the top of the
header; it also returns a blank card value in this case.

5.4. DATA I/O ROUTINES 33

FTGREC(unit,key_no, > card,status)

4 Get a keyword value (with the appropriate datatype) and comment from the CHU

FTGKY[EDJKLS](unit,keyword, > keyval,comment,status)

5 Delete an existing keyword record.

FTDKEY(unit,keyword, > status)

5.4 Data I/O Routines

The following routines read or write data values in the current HDU of the FITS file. Automatic
datatype conversion will be attempted for numerical datatypes if the specified datatype is different
from the actual datatype of the FITS array or table column.

1 Write elements into the primary data array or image extension.

FTPPR[BIJKED](unit,group,fpixel,nelements,values, > status)

2 Read elements from the primary data array or image extension. Undefined array elements will
be returned with a value = nullval, unless nullval = 0 in which case no checks for undefined
pixels will be performed. The anyf parameter is set to true (= .true.) if any of the returned
elements were undefined.

FTGPV[BIJKED](unit,group,fpixel,nelements,nullval, > values,anyf,status)

3 Write elements into an ASCII or binary table column. The ‘felem’ parameter applies only to
vector columns in binary tables and is ignored when writing to ASCII tables.

FTPCL[SLBIJKEDCM](unit,colnum,frow,felem,nelements,values, > status)

4 Read elements from an ASCII or binary table column. Undefined array elements will be returned
with a value = nullval, unless nullval = 0 (or = ’ ’ for ftgcvs) in which case no checking for
undefined values will be performed. The ANYF parameter is set to true if any of the returned
elements are undefined.

Any column, regardless of it’s intrinsic datatype, may be read as a string. It should be noted
however that reading a numeric column as a string is 10 - 100 times slower than reading the
same column as a number due to the large overhead in constructing the formatted strings.
The display format of the returned strings will be determined by the TDISPn keyword, if
it exists, otherwise by the datatype of the column. The length of the returned strings can
be determined with the ftgcdw routine. The following TDISPn display formats are currently
supported:

34 CHAPTER 5. BASIC INTERFACE ROUTINES

Iw.m Integer

Ow.m Octal integer

Zw.m Hexadecimal integer

Fw.d Fixed floating point

Ew.d Exponential floating point

Dw.d Exponential floating point

Gw.d General; uses Fw.d if significance not lost, else Ew.d

where w is the width in characters of the displayed values, m is the minimum number of digits
displayed, and d is the number of digits to the right of the decimal. The .m field is optional.

FTGCV[SBIJKEDCM](unit,colnum,frow,felem,nelements,nullval, >

values,anyf,status)

5 Get the table column number and full name of the column whose name matches the input
template string. See the ‘Advanced Interface Routines’ chapter for a full description of this
routine.

FTGCNN(unit,casesen,coltemplate, > colname,colnum,status)

Chapter 6

Advanced Interface Subroutines

This chapter defines all the available subroutines in the FITSIO user interface. For completeness,
the basic subroutines described in the previous chapter are also repeated here. A right arrow
symbol is used here to separate the input parameters from the output parameters in the definition
of each subroutine. This symbol is not actually part of the calling sequence. An alphabetical list
and definition of all the parameters is given at the end of this section.

6.1 FITS File Open and Close Subroutines:

1 Open an existing FITS file with readonly or readwrite access. The FTDKOPEN routine simply
opens the specified file without trying to interpret the filename using the extended filename
syntax. FTDOPN opens the file and also moves to the first HDU containing significant data,
if no specific HDU is specified as part of the filename. FTTOPN and FTIOPN are similar
except that they will move to the first table HDU or image HDU, respectively, if a HDU name
or number is not specified as part of the filename.

FTOPEN(unit,filename,rwmode, > blocksize,status)

FTDKOPEN(unit,filename,rwmode, > blocksize,status)

FTDOPN(unit,filename,rwmode, > status)

FTTOPN(unit,filename,rwmode, > status)

FTIOPN(unit,filename,rwmode, > status)

2 Open an existing FITS file with readonly or readwrite access and move to a following extension,
if one was specified as part of the filename. (e.g., ’filename.fits+2’ or ’filename.fits[2]’ will
move to the 3rd HDU in the file). Note that this routine differs from FTOPEN in that it
does not have the redundant blocksize argument.

FTNOPN(unit,filename,rwmode, > status)

3 Reopen a FITS file that was previously opened with FTOPEN, FTNOPN, or FTINIT. The
newunit number may then be treated as a separate file, and one may simultaneously read

35

36 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

or write to 2 (or more) different extensions in the same file. The FTOPEN and FTNOPN
routines (above) automatically detects cases where a previously opened file is being opened
again, and then internally call FTREOPEN, so programs should rarely need to explicitly call
this routine.

FTREOPEN(unit, > newunit, status)

4 Open and initialize a new empty FITS file. The FTDKINIT routine simply creates the specified
file without trying to interpret the filename using the extended filename syntax.

FTINIT(unit,filename,blocksize, > status)

FTDKINIT(unit,filename,blocksize, > status)

5 Create a new FITS file, using a template file to define its initial size and structure. The template
may be another FITS HDU or an ASCII template file. If the input template file name is
blank, then this routine behaves the same as FTINIT. The currently supported format of the
ASCII template file is described under the fits parse template routine (in the general Utilities
section), but this may change slightly later releases of CFITSIO.

FTTPLT(unit, filename, tplfilename, > status)

6 Flush internal buffers of data to the output FITS file previously opened with ftopen or ftinit.
The routine usually never needs to be called, but doing so will ensure that if the program
subsequently aborts, then the FITS file will have at least been closed properly.

FTFLUS(unit, > status)

7 Close a FITS file previously opened with ftopen or ftinit

FTCLOS(unit, > status)

8 Close and DELETE a FITS file previously opened with ftopen or ftinit. This routine may be
useful in cases where a FITS file is created, but an error occurs which prevents the complete
file from being written.

FTDELT(unit, > status)

9 Get the value of an unused I/O unit number which may then be used as input to FTOPEN or
FTINIT. This routine searches for the first unused unit number in the range from with 99
down to 50. This routine just keeps an internal list of the allocated unit numbers and does
not physically check that the Fortran unit is available (to be compatible with the SPP version
of FITSIO). Thus users must not independently allocate any unit numbers in the range 50
- 99 if this routine is also to be used in the same program. This routine is provided for
convenience only, and it is not required that the unit numbers used by FITSIO be allocated
by this routine.

6.1. FITS FILE OPEN AND CLOSE SUBROUTINES: 37

FTGIOU(> iounit, status)

10 Free (deallocate) an I/O unit number which was previously allocated with FTGIOU. All pre-
viously allocated unit numbers may be deallocated at once by calling FTFIOU with iounit =
-1.

FTFIOU(iounit, > status)

11 Return the Fortran unit number that corresponds to the C fitsfile pointer value, or vice versa.
These 2 C routines may be useful in mixed language programs where both C and Fortran
subroutines need to access the same file. For example, if a FITS file is opened with unit 12 by
a Fortran subroutine, then a C routine within the same program could get the fitfile pointer
value to access the same file by calling ’fptr = CUnit2FITS(12)’. These routines return a
value of zero if an error occurs.

int CFITS2Unit(fitsfile *ptr);

fitsfile* CUnit2FITS(int unit);

11 Parse the input filename and return the HDU number that would be moved to if the file were
opened with FTNOPN. The returned HDU number begins with 1 for the primary array, so
for example, if the input filename = ‘myfile.fits[2]’ then hdunum = 3 will be returned. FIT-
SIO does not open the file to check if the extension actually exists if an extension number
is specified. If an extension *name* is included in the file name specification (e.g. ‘my-
file.fits[EVENTS]’ then this routine will have to open the FITS file and look for the position
of the named extension, then close file again. This is not possible if the file is being read
from the stdin stream, and an error will be returned in this case. If the filename does not
specify an explicit extension (e.g. ’myfile.fits’) then hdunum = -99 will be returned, which is
functionally equivalent to hdunum = 1. This routine is mainly used for backward compati-
bility in the ftools software package and is not recommended for general use. It is generally
better and more efficient to first open the FITS file with FTNOPN, then use FTGHDN to
determine which HDU in the file has been opened, rather than calling FTEXTN followed by
a call to FTNOPN.

FTEXTN(filename, > nhdu, status)

12 Return the name of the opened FITS file.

FTFLNM(unit, > filename, status)

13 Return the I/O mode of the open FITS file (READONLY = 0, READWRITE = 1).

FTFLMD(unit, > iomode, status)

14 Return the file type of the opened FITS file (e.g. ’file://’, ’ftp://’, etc.).

38 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTURLT(unit, > urltype, status)

15 Parse the input filename or URL into its component parts: the file type (file://, ftp://, http://,
etc), the base input file name, the name of the output file that the input file is to be copied
to prior to opening, the HDU or extension specification, the filtering specifier, the binning
specifier, and the column specifier. Blank strings will be returned for any components that
are not present in the input file name.

FTIURL(filename, > filetype, infile, outfile, extspec, filter,

binspec, colspec, status)

16 Parse the input file name and return the root file name. The root name includes the file
type if specified, (e.g. ’ftp://’ or ’http://’) and the full path name, to the extent that it is
specified in the input filename. It does not include the HDU name or number, or any filtering
specifications.

FTRTNM(filename, > rootname, status)

16 Test if the input file or a compressed version of the file (with a .gz, .Z, .z, or .zip extension)
exists on disk. The returned value of the ’exists’ parameter will have 1 of the 4 following
values:

2: the file does not exist, but a compressed version does exist

1: the disk file does exist

0: neither the file nor a compressed version of the file exist

-1: the input file name is not a disk file (could be a ftp, http,

smem, or mem file, or a file piped in on the STDIN stream)

FTEXIST(filename, > exists, status);

6.2 HDU-Level Operations

When a FITS file is first opened or created, the internal buffers in FITSIO automatically point to
the first HDU in the file. The following routines may be used to move to another HDU in the file.
Note that the HDU numbering convention used in FITSIO denotes the primary array as the first
HDU, the first extension in a FITS file is the second HDU, and so on.

1 Move to a specified (absolute) HDU in the FITS file (nhdu = 1 for the FITS primary array)

FTMAHD(unit,nhdu, > hdutype,status)

2 Move to a new (existing) HDU forward or backwards relative to the CHDU

6.2. HDU-LEVEL OPERATIONS 39

FTMRHD(unit,nmove, > hdutype,status)

3 Move to the (first) HDU which has the specified extension type and EXTNAME (or HDUNAME)
and EXTVER keyword values. The hdutype parameter may have a value of IMAGE HDU
(0), ASCII TBL (1), BINARY TBL (2), or ANY HDU (-1) where ANY HDU means that
only the extname and extver values will be used to locate the correct extension. If the input
value of extver is 0 then the EXTVER keyword is ignored and the first HDU with a matching
EXTNAME (or HDUNAME) keyword will be found. If no matching HDU is found in the file
then the current HDU will remain unchanged and a status = BAD HDU NUM (301) will be
returned.

FTMNHD(unit, hdutype, extname, extver, > status)

4 Get the number of the current HDU in the FITS file (primary array = 1)

FTGHDN(unit, > nhdu)

5 Return the type of the current HDU in the FITS file. The possible values for hdutype are
IMAGE HDU (0), ASCII TBL (1), or BINARY TBL (2).

FTGHDT(unit, > hdutype, status)

6 Return the total number of HDUs in the FITS file. The CHDU remains unchanged.

FTTHDU(unit, > hdunum, status)

7 Create (append) a new empty HDU following the last extension that has been previously ac-
cessed by the program. This will overwrite any extensions in an existing FITS file if the
program has not already moved to that (or a later) extension using the FTMAHD or FTM-
RHD routines. For example, if an existing FITS file contains a primary array and 5 extensions
and a program (1) opens the FITS file, (2) moves to extension 4, (3) moves back to the pri-
mary array, and (4) then calls FTCRHD, then the new extension will be written following
the 4th extension, overwriting the existing 5th extension.

FTCRHD(unit, > status)

8 Create a primary array (if none already exists), or insert a new IMAGE extension immediately
following the CHDU, or insert a new Primary Array at the beginning of the file. Any following
extensions in the file will be shifted down to make room for the new extension. If the CHDU
is the last HDU in the file then the new image extension will simply be appended to the end
of the file. One can force a new primary array to be inserted at the beginning of the FITS
file by setting status = -9 prior to calling the routine. In this case the existing primary array
will be converted to an IMAGE extension. The new extension (or primary array) will become
the CHDU. The FTIIMGLL routine is identical to the FTIIMG routine except that the 4th
parameter (the length of each axis) is an array of 64-bit integers rather than an array of 32-bit
integers.

40 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTIIMG(unit,bitpix,naxis,naxes, > status)

FTIIMGLL(unit,bitpix,naxis,naxesll, > status)

9 Insert a new ASCII TABLE extension immediately following the CHDU. Any following exten-
sions will be shifted down to make room for the new extension. If there are no other following
extensions then the new table extension will simply be appended to the end of the file. The
new extension will become the CHDU. The FTITABLL routine is identical to the FTITAB
routine except that the 2nd and 3rd parameters (that give the size of the table) are 64-bit
integers rather than 32-bit integers.

FTITAB(unit,rowlen,nrows,tfields,ttype,tbcol,tform,tunit,extname, >

status)

FTITABLL(unit,rowlenll,nrowsll,tfields,ttype,tbcol,tform,tunit,extname, >

status)

10 Insert a new binary table extension immediately following the CHDU. Any following extensions
will be shifted down to make room for the new extension. If there are no other following
extensions then the new bintable extension will simply be appended to the end of the file.
The new extension will become the CHDU. The FTIBINLL routine is identical to the FTIBIN
routine except that the 2nd parameter (that gives the length of the table) is a 64-bit integer
rather than a 32-bit integer.

FTIBIN(unit,nrows,tfields,ttype,tform,tunit,extname,varidat > status)

FTIBINLL(unit,nrowsll,tfields,ttype,tform,tunit,extname,varidat > status)

11 Resize an image by modifing the size, dimensions, and/or datatype of the current primary array
or image extension. If the new image, as specified by the input arguments, is larger than the
current existing image in the FITS file then zero fill data will be inserted at the end of the
current image and any following extensions will be moved further back in the file. Similarly, if
the new image is smaller than the current image then any following extensions will be shifted
up towards the beginning of the FITS file and the image data will be truncated to the new
size. This routine rewrites the BITPIX, NAXIS, and NAXISn keywords with the appropriate
values for new image. The FTRSIMLL routine is identical to the FTRSIM routine except
that the 4th parameter (the length of each axis) is an array of 64-bit integers rather than an
array of 32-bit integers.

FTRSIM(unit,bitpix,naxis,naxes,status)

FTRSIMLL(unit,bitpix,naxis,naxesll,status)

12 Delete the CHDU in the FITS file. Any following HDUs will be shifted forward in the file, to
fill in the gap created by the deleted HDU. In the case of deleting the primary array (the
first HDU in the file) then the current primary array will be replace by a null primary array
containing the minimum set of required keywords and no data. If there are more extensions
in the file following the one that is deleted, then the the CHDU will be redefined to point to

6.3. DEFINE OR REDEFINE THE STRUCTURE OF THE CHDU 41

the following extension. If there are no following extensions then the CHDU will be redefined
to point to the previous HDU. The output HDUTYPE parameter indicates the type of the
new CHDU after the previous CHDU has been deleted.

FTDHDU(unit, > hdutype,status)

13 Copy all or part of the input FITS file and append it to the end of the output FITS file. If
’previous’ (an integer parameter) is not equal to 0, then any HDUs preceding the current
HDU in the input file will be copied to the output file. Similarly, ’current’ and ’following’
determine whether the current HDU, and/or any following HDUs in the input file will be
copied to the output file. If all 3 parameters are not equal to zero, then the entire input file
will be copied. On return, the current HDU in the input file will be unchanged, and the last
copied HDU will be the current HDU in the output file.

FTCPFL(iunit, ounit, previous, current, following, > status)

14 Copy the entire CHDU from the FITS file associated with IUNIT to the CHDU of the FITS
file associated with OUNIT. The output HDU must be empty and not already contain any
keywords. Space will be reserved for MOREKEYS additional keywords in the output header
if there is not already enough space.

FTCOPY(iunit,ounit,morekeys, > status)

15 Copy the header (and not the data) from the CHDU associated with inunit to the CHDU asso-
ciated with outunit. If the current output HDU is not completely empty, then the CHDU will
be closed and a new HDU will be appended to the output file. This routine will automatically
transform the necessary keywords when copying a primary array to and image extension, or
an image extension to a primary array. An empty output data unit will be created (all values
= 0).

FTCPHD(inunit, outunit, > status)

16 Copy just the data from the CHDU associated with IUNIT to the CHDU associated with
OUNIT. This will overwrite any data previously in the OUNIT CHDU. This low level routine
is used by FTCOPY, but it may also be useful in certain application programs which want to
copy the data from one FITS file to another but also want to modify the header keywords in
the process. all the required header keywords must be written to the OUNIT CHDU before
calling this routine

FTCPDT(iunit,ounit, > status)

6.3 Define or Redefine the structure of the CHDU

It should rarely be necessary to call the subroutines in this section. FITSIO internally calls these
routines whenever necessary, so any calls to these routines by application programs will likely be
redundant.

42 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

1 This routine forces FITSIO to scan the current header keywords that define the structure of
the HDU (such as the NAXISn, PCOUNT and GCOUNT keywords) so that it can initialize
the internal buffers that describe the HDU structure. This routine may be used instead of
the more complicated calls to ftpdef, ftadef or ftbdef. This routine is also very useful for
reinitializing the structure of an HDU, if the number of rows in a table, as specified by the
NAXIS2 keyword, has been modified from its initial value.

FTRDEF(unit, > status) (DEPRECATED)

2 Define the structure of the primary array or IMAGE extension. When writing GROUPed FITS
files that by convention set the NAXIS1 keyword equal to 0, ftpdef must be called with
naxes(1) = 1, NOT 0, otherwise FITSIO will report an error status=308 when trying to write
data to a group. Note: it is usually simpler to call FTRDEF rather than this routine.

FTPDEF(unit,bitpix,naxis,naxes,pcount,gcount, > status) (DEPRECATED)

3 Define the structure of an ASCII table (TABLE) extension. Note: it is usually simpler to call
FTRDEF rather than this routine.

FTADEF(unit,rowlen,tfields,tbcol,tform,nrows > status) (DEPRECATED)

4 Define the structure of a binary table (BINTABLE) extension. Note: it is usually simpler to
call FTRDEF rather than this routine.

FTBDEF(unit,tfields,tform,varidat,nrows > status) (DEPRECATED)

5 Define the size of the Current Data Unit, overriding the length of the data unit as previously
defined by ftpdef, ftadef, or ftbdef. This is useful if one does not know the total size of the
data unit until after the data have been written. The size (in bytes) of an ASCII or Binary
table is given by NAXIS1 * NAXIS2. (Note that to determine the value of NAXIS1 it is often
more convenient to read the value of the NAXIS1 keyword from the output file, rather than
computing the row length directly from all the TFORM keyword values). Note: it is usually
simpler to call FTRDEF rather than this routine.

FTDDEF(unit,bytlen, > status) (DEPRECATED)

6 Define the zero indexed byte offset of the ’heap’ measured from the start of the binary table data.
By default the heap is assumed to start immediately following the regular table data, i.e., at
location NAXIS1 x NAXIS2. This routine is only relevant for binary tables which contain
variable length array columns (with TFORMn = ’Pt’). This subroutine also automatically
writes the value of theap to a keyword in the extension header. This subroutine must be called
after the required keywords have been written (with ftphbn) and after the table structure has
been defined (with ftbdef) but before any data is written to the table.

FTPTHP(unit,theap, > status)

6.4. FITS HEADER I/O SUBROUTINES 43

6.4 FITS Header I/O Subroutines

6.4.1 Header Space and Position Routines

1 Reserve space in the CHU for MOREKEYS more header keywords. This subroutine may be
called to reserve space for keywords which are to be written at a later time, after the data
unit or subsequent extensions have been written to the FITS file. If this subroutine is not
explicitly called, then the initial size of the FITS header will be limited to the space available
at the time that the first data is written to the associated data unit. FITSIO has the ability to
dynamically add more space to the header if needed, however it is more efficient to preallocate
the required space if the size is known in advance.

FTHDEF(unit,morekeys, > status)

2 Return the number of existing keywords in the CHU (NOT including the END keyword which is
not considered a real keyword) and the remaining space available to write additional keywords
in the CHU. (returns KEYSADD = -1 if the header has not yet been closed). Note that
FITSIO will attempt to dynamically add space for more keywords if required when appending
new keywords to a header.

FTGHSP(iunit, > keysexist,keysadd,status)

3 Return the number of keywords in the header and the current position in the header. This
returns the number of the keyword record that will be read next (or one greater than the
position of the last keyword that was read or written). A value of 1 is returned if the pointer
is positioned at the beginning of the header.

FTGHPS(iunit, > keysexist,key_no,status)

6.4.2 Read or Write Standard Header Routines

These subroutines provide a simple method of reading or writing most of the keyword values that
are normally required in a FITS files. These subroutines are provided for convenience only and are
not required to be used. If preferred, users may call the lower-level subroutines described in the
previous section to individually read or write the required keywords. Note that in most cases, the
required keywords such as NAXIS, TFIELD, TTYPEn, etc, which define the structure of the HDU
must be written to the header before any data can be written to the image or table.

1 Put the primary header or IMAGE extension keywords into the CHU. There are 2 available
routines: The simpler FTPHPS routine is equivalent to calling ftphpr with the default values
of SIMPLE = true, pcount = 0, gcount = 1, and EXTEND = true. PCOUNT, GCOUNT
and EXTEND keywords are not required in the primary header and are only written if pcount
is not equal to zero, gcount is not equal to zero or one, and if extend is TRUE, respectively.
When writing to an IMAGE extension, the SIMPLE and EXTEND parameters are ignored.

44 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTPHPS(unit,bitpix,naxis,naxes, > status)

FTPHPR(unit,simple,bitpix,naxis,naxes,pcount,gcount,extend, > status)

2 Get primary header or IMAGE extension keywords from the CHU. When reading from an
IMAGE extension the SIMPLE and EXTEND parameters are ignored.

FTGHPR(unit,maxdim, > simple,bitpix,naxis,naxes,pcount,gcount,extend,

status)

3 Put the ASCII table header keywords into the CHU. The optional TUNITn and EXTNAME
keywords are written only if the input string values are not blank.

FTPHTB(unit,rowlen,nrows,tfields,ttype,tbcol,tform,tunit,extname, >

status)

4 Get the ASCII table header keywords from the CHU

FTGHTB(unit,maxdim, > rowlen,nrows,tfields,ttype,tbcol,tform,tunit,

extname,status)

5 Put the binary table header keywords into the CHU. The optional TUNITn and EXTNAME
keywords are written only if the input string values are not blank. The pcount parameter,
which specifies the size of the variable length array heap, should initially = 0; FITSIO will
automatically update the PCOUNT keyword value if any variable length array data is written
to the heap. The TFORM keyword value for variable length vector columns should have the
form ’Pt(len)’ or ’1Pt(len)’ where ‘t’ is the data type code letter (A,I,J,E,D, etc.) and ‘len’ is
an integer specifying the maximum length of the vectors in that column (len must be greater
than or equal to the longest vector in the column). If ‘len’ is not specified when the table is
created (e.g., the input TFORMn value is just ’1Pt’) then FITSIO will scan the column when
the table is first closed and will append the maximum length to the TFORM keyword value.
Note that if the table is subsequently modified to increase the maximum length of the vectors
then the modifying program is responsible for also updating the TFORM keyword value.

FTPHBN(unit,nrows,tfields,ttype,tform,tunit,extname,varidat, > status)

6 Get the binary table header keywords from the CHU

FTGHBN(unit,maxdim, > nrows,tfields,ttype,tform,tunit,extname,varidat,

status)

6.4. FITS HEADER I/O SUBROUTINES 45

6.4.3 Write Keyword Subroutines

1 Put (append) an 80-character record into the CHU.

FTPREC(unit,card, > status)

2 Put (append) a COMMENT keyword into the CHU. Multiple COMMENT keywords will be
written if the input comment string is longer than 72 characters.

FTPCOM(unit,comment, > status)

3 Put (append) a HISTORY keyword into the CHU. Multiple HISTORY keywords will be written
if the input history string is longer than 72 characters.

FTPHIS(unit,history, > status)

4 Put (append) the DATE keyword into the CHU. The keyword value will contain the current
system date as a character string in ’dd/mm/yy’ format. If a DATE keyword already exists
in the header, then this subroutine will simply update the keyword value in-place with the
current date.

FTPDAT(unit, > status)

5 Put (append) a new keyword of the appropriate datatype into the CHU. Note that FTPKYS will
only write string values up to 68 characters in length; longer strings will be truncated. The
FTPKLS routine can be used to write longer strings, using a non-standard FITS convention.
The E and D versions of this routine have the added feature that if the ’decimals’ parameter is
negative, then the ’G’ display format rather then the ’E’ format will be used when constructing
the keyword value, taking the absolute value of ’decimals’ for the precision. This will suppress
trailing zeros, and will use a fixed format rather than an exponential format, depending on
the magnitude of the value.

FTPKY[JKLS](unit,keyword,keyval,comment, > status)

FTPKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

6 Put (append) a string valued keyword into the CHU which may be longer than 68 characters
in length. This uses the Long String Keyword convention that is described in the ”Usage
Guidelines and Suggestions” section of this document. Since this uses a non-standard FITS
convention to encode the long keyword string, programs which use this routine should also
call the FTPLSW routine to add some COMMENT keywords to warn users of the FITS file
that this convention is being used. FTPLSW also writes a keyword called LONGSTRN to
record the version of the longstring convention that has been used, in case a new convention
is adopted at some point in the future. If the LONGSTRN keyword is already present in the
header, then FTPLSW will simply return and will not write duplicate keywords.

46 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTPKLS(unit,keyword,keyval,comment, > status)

FTPLSW(unit, > status)

7 Put (append) a new keyword with an undefined, or null, value into the CHU. The value string
of the keyword is left blank in this case.

FTPKYU(unit,keyword,comment, > status)

8 Put (append) a numbered sequence of keywords into the CHU. One may append the same
comment to every keyword (and eliminate the need to have an array of identical comment
strings, one for each keyword) by including the ampersand character as the last non-blank
character in the (first) COMMENTS string parameter. This same string will then be used
for the comment field in all the keywords. (Note that the SPP version of these routines only
supports a single comment string).

FTPKN[JKLS](unit,keyroot,startno,no_keys,keyvals,comments, > status)

FTPKN[EDFG](unit,keyroot,startno,no_keys,keyvals,decimals,comments, >

status)

9 Copy an indexed keyword from one HDU to another, modifying the index number of the keyword
name in the process. For example, this routine could read the TLMIN3 keyword from the
input HDU (by giving keyroot = ”TLMIN” and innum = 3) and write it to the output HDU
with the keyword name TLMIN4 (by setting outnum = 4). If the input keyword does not
exist, then this routine simply returns without indicating an error.

FTCPKY(inunit, outunit, innum, outnum, keyroot, > status)

10 Put (append) a ’triple precision’ keyword into the CHU in F28.16 format. The floating point
keyword value is constructed by concatenating the input integer value with the input double
precision fraction value (which must have a value between 0.0 and 1.0). The FTGKYT routine
should be used to read this keyword value, because the other keyword reading subroutines
will not preserve the full precision of the value.

FTPKYT(unit,keyword,intval,dblval,comment, > status)

11 Write keywords to the CHDU that are defined in an ASCII template file. The format of the
template file is described under the ftgthd routine below.

FTPKTP(unit, filename, > status)

12 Append the physical units string to an existing keyword. This routine uses a local convention,
shown in the following example, in which the keyword units are enclosed in square brackets
in the beginning of the keyword comment field.

VELOCITY= 12.3 / [km/s] orbital speed

FTPUNT(unit,keyword,units, > status)

6.4. FITS HEADER I/O SUBROUTINES 47

6.4.4 Insert Keyword Subroutines

1 Insert a new keyword record into the CHU at the specified position (i.e., immediately preceding
the (keyno)th keyword in the header.) This ’insert record’ subroutine is somewhat less effi-
cient then the ’append record’ subroutine (FTPREC) described above because the remaining
keywords in the header have to be shifted down one slot.

FTIREC(unit,key_no,card, > status)

2 Insert a new keyword into the CHU. The new keyword is inserted immediately following the
last keyword that has been read from the header. The FTIKLS subroutine works the same as
the FTIKYS subroutine, except it also supports long string values greater than 68 characters
in length. These ’insert keyword’ subroutines are somewhat less efficient then the ’append
keyword’ subroutines described above because the remaining keywords in the header have to
be shifted down one slot.

FTIKEY(unit, card, > status)

FTIKY[JKLS](unit,keyword,keyval,comment, > status)

FTIKLS(unit,keyword,keyval,comment, > status)

FTIKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

3 Insert a new keyword with an undefined, or null, value into the CHU. The value string of the
keyword is left blank in this case.

FTIKYU(unit,keyword,comment, > status)

6.4.5 Read Keyword Subroutines

These routines return the value of the specified keyword(s). Wild card characters (*, ?, or #) may
be used when specifying the name of the keyword to be read: a ’?’ will match any single character
at that position in the keyword name and a ’*’ will match any length (including zero) string of
characters. The ’#’ character will match any consecutive string of decimal digits (0 - 9). Note
that when a wild card is used in the input keyword name, the routine will only search for a match
from the current header position to the end of the header. It will not resume the search from the
top of the header back to the original header position as is done when no wildcards are included
in the keyword name. If the desired keyword string is 8-characters long (the maximum length of
a keyword name) then a ’*’ may be appended as the ninth character of the input name to force
the keyword search to stop at the end of the header (e.g., ’COMMENT *’ will search for the next
COMMENT keyword). The ffgrec routine may be used to set the starting position when doing
wild card searches.

1 Get the nth 80-character header record from the CHU. The first keyword in the header is at
key no = 1; if key no = 0 then this subroutine simple moves the internal pointer to the
beginning of the header so that subsequent keyword operations will start at the top of the
header; it also returns a blank card value in this case.

48 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTGREC(unit,key_no, > card,status)

2 Get the name, value (as a string), and comment of the nth keyword in CHU. This routine also
checks that the returned keyword name (KEYWORD) contains only legal ASCII characters.
Call FTGREC and FTPSVC to bypass this error check.

FTGKYN(unit,key_no, > keyword,value,comment,status)

3 Get the 80-character header record for the named keyword

FTGCRD(unit,keyword, > card,status)

4 Get the next keyword whose name matches one of the strings in ’inclist’ but does not match any
of the strings in ’exclist’. The strings in inclist and exclist may contain wild card characters
(*, ?, and #) as described at the beginning of this section. This routine searches from the
current header position to the end of the header, only, and does not continue the search from
the top of the header back to the original position. The current header position may be
reset with the ftgrec routine. Note that nexc may be set = 0 if there are no keywords to be
excluded. This routine returns status = 202 if a matching keyword is not found.

FTGNXK(unit,inclist,ninc,exclist,nexc, > card,status)

5 Get the literal keyword value as a character string. Regardless of the datatype of the keyword,
this routine simply returns the string of characters in the value field of the keyword along
with the comment field.

FTGKEY(unit,keyword, > value,comment,status)

6 Get a keyword value (with the appropriate datatype) and comment from the CHU

FTGKY[EDJKLS](unit,keyword, > keyval,comment,status)

7 Get a sequence of numbered keyword values. These routines do not support wild card characters
in the root name.

FTGKN[EDJKLS](unit,keyroot,startno,max_keys, > keyvals,nfound,status)

8 Get the value of a floating point keyword, returning the integer and fractional parts of the value
in separate subroutine arguments. This subroutine may be used to read any keyword but is
especially useful for reading the ’triple precision’ keywords written by FTPKYT.

FTGKYT(unit,keyword, > intval,dblval,comment,status)

6.4. FITS HEADER I/O SUBROUTINES 49

9 Get the physical units string in an existing keyword. This routine uses a local convention, shown
in the following example, in which the keyword units are enclosed in square brackets in the
beginning of the keyword comment field. A blank string is returned if no units are defined
for the keyword.

VELOCITY= 12.3 / [km/s] orbital speed

FTGUNT(unit,keyword, > units,status)

6.4.6 Modify Keyword Subroutines

Wild card characters, as described in the Read Keyword section, above, may be used when speci-
fying the name of the keyword to be modified.

1 Modify (overwrite) the nth 80-character header record in the CHU

FTMREC(unit,key_no,card, > status)

2 Modify (overwrite) the 80-character header record for the named keyword in the CHU. This
can be used to overwrite the name of the keyword as well as its value and comment fields.

FTMCRD(unit,keyword,card, > status)

3 Modify (overwrite) the name of an existing keyword in the CHU preserving the current value
and comment fields.

FTMNAM(unit,oldkey,keyword, > status)

4 Modify (overwrite) the comment field of an existing keyword in the CHU

FTMCOM(unit,keyword,comment, > status)

5 Modify the value and comment fields of an existing keyword in the CHU. The FTMKLS subrou-
tine works the same as the FTMKYS subroutine, except it also supports long string values
greater than 68 characters in length. Optionally, one may modify only the value field and
leave the comment field unchanged by setting the input COMMENT parameter equal to the
ampersand character (&). The E and D versions of this routine have the added feature that
if the ’decimals’ parameter is negative, then the ’G’ display format rather then the ’E’ format
will be used when constructing the keyword value, taking the absolute value of ’decimals’ for
the precision. This will suppress trailing zeros, and will use a fixed format rather than an
exponential format, depending on the magnitude of the value.

FTMKY[JKLS](unit,keyword,keyval,comment, > status)

FTMKLS(unit,keyword,keyval,comment, > status)

FTMKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

50 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

6 Modify the value of an existing keyword to be undefined, or null. The value string of the keyword
is set to blank. Optionally, one may leave the comment field unchanged by setting the input
COMMENT parameter equal to the ampersand character (&).

FTMKYU(unit,keyword,comment, > status)

6.4.7 Update Keyword Subroutines

1 Update an 80-character record in the CHU. If the specified keyword already exists then that
header record will be replaced with the input CARD string. If it does not exist then the
new record will be added to the header. The FTUKLS subroutine works the same as the
FTUKYS subroutine, except it also supports long string values greater than 68 characters in
length.

FTUCRD(unit,keyword,card, > status)

2 Update the value and comment fields of a keyword in the CHU. The specified keyword is
modified if it already exists (by calling FTMKYx) otherwise a new keyword is created by
calling FTPKYx. The E and D versions of this routine have the added feature that if the
’decimals’ parameter is negative, then the ’G’ display format rather then the ’E’ format will
be used when constructing the keyword value, taking the absolute value of ’decimals’ for
the precision. This will suppress trailing zeros, and will use a fixed format rather than an
exponential format, depending on the magnitude of the value.

FTUKY[JKLS](unit,keyword,keyval,comment, > status)

FTUKLS(unit,keyword,keyval,comment, > status)

FTUKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

3 Update the value of an existing keyword to be undefined, or null, or insert a new undefined-value
keyword if it doesn’t already exist. The value string of the keyword is left blank in this case.

FTUKYU(unit,keyword,comment, > status)

6.4.8 Delete Keyword Subroutines

1 Delete an existing keyword record. The space previously occupied by the keyword is reclaimed
by moving all the following header records up one row in the header. The first routine deletes
a keyword at a specified position in the header (the first keyword is at position 1), whereas
the second routine deletes a specifically named keyword. Wild card characters, as described
in the Read Keyword section, above, may be used when specifying the name of the keyword
to be deleted (be careful!).

FTDREC(unit,key_no, > status)

FTDKEY(unit,keyword, > status)

6.5. DATA SCALING AND UNDEFINED PIXEL PARAMETERS 51

6.5 Data Scaling and Undefined Pixel Parameters

These subroutines define or modify the internal parameters used by FITSIO to either scale the data
or to represent undefined pixels. Generally FITSIO will scale the data according to the values of
the BSCALE and BZERO (or TSCALn and TZEROn) keywords, however these subroutines may
be used to override the keyword values. This may be useful when one wants to read or write the
raw unscaled values in the FITS file. Similarly, FITSIO generally uses the value of the BLANK or
TNULLn keyword to signify an undefined pixel, but these routines may be used to override this
value. These subroutines do not create or modify the corresponding header keyword values.

1 Reset the scaling factors in the primary array or image extension; does not change the BSCALE
and BZERO keyword values and only affects the automatic scaling performed when the data
elements are written/read to/from the FITS file. When reading from a FITS file the returned
data value = (the value given in the FITS array) * BSCALE + BZERO. The inverse formula
is used when writing data values to the FITS file. (NOTE: BSCALE and BZERO must be
declared as Double Precision variables).

FTPSCL(unit,bscale,bzero, > status)

2 Reset the scaling parameters for a table column; does not change the TSCALn or TZEROn
keyword values and only affects the automatic scaling performed when the data elements are
written/read to/from the FITS file. When reading from a FITS file the returned data value
= (the value given in the FITS array) * TSCAL + TZERO. The inverse formula is used
when writing data values to the FITS file. (NOTE: TSCAL and TZERO must be declared
as Double Precision variables).

FTTSCL(unit,colnum,tscal,tzero, > status)

3 Define the integer value to be used to signify undefined pixels in the primary array or image
extension. This is only used if BITPIX = 8, 16, 32. or 64 This does not create or change
the value of the BLANK keyword in the header. FTPNULLL is identical to FTPNUL except
that the blank value is a 64-bit integer instead of a 32-bit integer.

FTPNUL(unit,blank, > status)

FTPNULLL(unit,blankll, > status)

4 Define the string to be used to signify undefined pixels in a column in an ASCII table. This
does not create or change the value of the TNULLn keyword.

FTSNUL(unit,colnum,snull > status)

5 Define the value to be used to signify undefined pixels in an integer column in a binary table
(where TFORMn = ’B’, ’I’, ’J’, or ’K’). This does not create or change the value of the
TNULLn keyword. FTTNULLL is identical to FTTNUL except that the tnull value is a
64-bit integer instead of a 32-bit integer.

52 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTTNUL(unit,colnum,tnull > status)

FTTNULLL(unit,colnum,tnullll > status)

6.6 FITS Primary Array or IMAGE Extension I/O Subroutines

These subroutines put or get data values in the primary data array (i.e., the first HDU in the FITS
file) or an IMAGE extension. The data array is represented as a single one-dimensional array of
pixels regardless of the actual dimensionality of the array, and the FPIXEL parameter gives the
position within this 1-D array of the first pixel to read or write. Automatic data type conversion is
performed for numeric data (except for complex data types) if the data type of the primary array
(defined by the BITPIX keyword) differs from the data type of the array in the calling subroutine.
The data values are also scaled by the BSCALE and BZERO header values as they are being
written or read from the FITS array. The ftpscl subroutine MUST be called to define the scaling
parameters when writing data to the FITS array or to override the default scaling value given in
the header when reading the FITS array.

Two sets of subroutines are provided to read the data array which differ in the way undefined
pixels are handled. The first set of routines (FTGPVx) simply return an array of data elements
in which undefined pixels are set equal to a value specified by the user in the ’nullval’ parameter.
An additional feature of these subroutines is that if the user sets nullval = 0, then no checks for
undefined pixels will be performed, thus increasing the speed of the program. The second set of
routines (FTGPFx) returns the data element array and, in addition, a logical array which defines
whether the corresponding data pixel is undefined. The latter set of subroutines may be more
convenient to use in some circumstances, however, it requires an additional array of logical values
which can be unwieldy when working with large data arrays. Also for programmer convenience,
sets of subroutines to directly read or write 2 and 3 dimensional arrays have been provided, as
well as a set of subroutines to read or write any contiguous rectangular subset of pixels within the
n-dimensional array.

1 Get the data type of the image (= BITPIX value). Possible returned values are: 8, 16, 32,
64, -32, or -64 corresponding to unsigned byte, signed 2-byte integer, signed 4-byte integer,
signed 8-byte integer, real, and double.

The second subroutine is similar to FTGIDT, except that if the image pixel values are scaled,
with non-default values for the BZERO and BSCALE keywords, then this routine will return
the ’equivalent’ data type that is needed to store the scaled values. For example, if BITPIX
= 16 and BSCALE = 0.1 then the equivalent data type is floating point, and -32 will be
returned. There are 2 special cases: if the image contains unsigned 2-byte integer values,
with BITPIX = 16, BSCALE = 1, and BZERO = 32768, then this routine will return a
non-standard value of 20 for the bitpix value. Similarly if the image contains unsigned 4-byte
integers, then bitpix will be returned with a value of 40.

FTGIDT(unit, > bitpix,status)

FTGIET(unit, > bitpix,status)

2 Get the dimension (number of axes = NAXIS) of the image

6.6. FITS PRIMARY ARRAY OR IMAGE EXTENSION I/O SUBROUTINES 53

FTGIDM(unit, > naxis,status)

3 Get the size of all the dimensions of the image. The FTGISZLL routine returns an array of
64-bit integers instead of 32-bit integers.

FTGISZ(unit, maxdim, > naxes,status)

FTGISZLL(unit, maxdim, > naxesll,status)

4 Get the parameters that define the type and size of the image. This routine simply combines
calls to the above 3 routines. The FTGIPRLL routine returns an array of 64-bit integers
instead of 32-bit integers.

FTGIPR(unit, maxdim, > bitpix, naxis, naxes, int *status)

FTGIPRLL(unit, maxdim, > bitpix, naxis, naxesll, int *status)

5 Put elements into the data array

FTPPR[BIJKED](unit,group,fpixel,nelements,values, > status)

6 Put elements into the data array, substituting the appropriate FITS null value for all elements
which are equal to the value of NULLVAL. For integer FITS arrays, the null value defined by
the previous call to FTPNUL will be substituted; for floating point FITS arrays (BITPIX =
-32 or -64) then the special IEEE NaN (Not-a-Number) value will be substituted.

FTPPN[BIJKED](unit,group,fpixel,nelements,values,nullval > status)

7 Set data array elements as undefined

FTPPRU(unit,group,fpixel,nelements, > status)

8 Get elements from the data array. Undefined array elements will be returned with a value =
nullval, unless nullval = 0 in which case no checks for undefined pixels will be performed.

FTGPV[BIJKED](unit,group,fpixel,nelements,nullval, > values,anyf,status)

9 Get elements and nullflags from data array. Any undefined array elements will have the corre-
sponding flagvals element set equal to .TRUE.

FTGPF[BIJKED](unit,group,fpixel,nelements, > values,flagvals,anyf,status)

10 Put values into group parameters

FTPGP[BIJKED](unit,group,fparm,nparm,values, > status)

54 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

11 Get values from group parameters

FTGGP[BIJKED](unit,group,fparm,nparm, > values,status)

The following 4 subroutines transfer FITS images with 2 or 3 dimensions to or from a data array
which has been declared in the calling program. The dimensionality of the FITS image is passed
by the naxis1, naxis2, and naxis3 parameters and the declared dimensions of the program array are
passed in the dim1 and dim2 parameters. Note that the program array does not have to have the
same dimensions as the FITS array, but must be at least as big. For example if a FITS image with
NAXIS1 = NAXIS2 = 400 is read into a program array which is dimensioned as 512 x 512 pixels,
then the image will just fill the lower left corner of the array with pixels in the range 1 - 400 in the
X an Y directions. This has the effect of taking a contiguous set of pixel value in the FITS array
and writing them to a non-contiguous array in program memory (i.e., there are now some blank
pixels around the edge of the image in the program array).

11 Put 2-D image into the data array

FTP2D[BIJKED](unit,group,dim1,naxis1,naxis2,image, > status)

12 Put 3-D cube into the data array

FTP3D[BIJKED](unit,group,dim1,dim2,naxis1,naxis2,naxis3,cube, > status)

13 Get 2-D image from the data array. Undefined pixels in the array will be set equal to the value
of ’nullval’, unless nullval=0 in which case no testing for undefined pixels will be performed.

FTG2D[BIJKED](unit,group,nullval,dim1,naxis1,naxis2, > image,anyf,status)

14 Get 3-D cube from the data array. Undefined pixels in the array will be set equal to the value
of ’nullval’, unless nullval=0 in which case no testing for undefined pixels will be performed.

FTG3D[BIJKED](unit,group,nullval,dim1,dim2,naxis1,naxis2,naxis3, >

cube,anyf,status)

The following subroutines transfer a rectangular subset of the pixels in a FITS N-dimensional
image to or from an array which has been declared in the calling program. The fpixels and lpixels
parameters are integer arrays which specify the starting and ending pixels in each dimension of the
FITS image that are to be read or written. (Note that these are the starting and ending pixels
in the FITS image, not in the declared array). The array parameter is treated simply as a large
one-dimensional array of the appropriate datatype containing the pixel values; The pixel values in
the FITS array are read/written from/to this program array in strict sequence without any gaps; it
is up to the calling routine to correctly interpret the dimensionality of this array. The two families
of FITS reading routines (FTGSVx and FTGSFx subroutines) also have an ’incs’ parameter which
defines the data sampling interval in each dimension of the FITS array. For example, if incs(1)=2

6.7. FITS ASCII AND BINARY TABLE DATA I/O SUBROUTINES 55

and incs(2)=3 when reading a 2-dimensional FITS image, then only every other pixel in the first
dimension and every 3rd pixel in the second dimension will be returned in the ’array’ parameter.
[Note: the FTGSSx family of routines which were present in previous versions of FITSIO have been
superseded by the more general FTGSVx family of routines.]

15 Put an arbitrary data subsection into the data array.

FTPSS[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,array, > status)

16 Get an arbitrary data subsection from the data array. Undefined pixels in the array will be set
equal to the value of ’nullval’, unless nullval=0 in which case no testing for undefined pixels
will be performed.

FTGSV[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,incs,nullval, >

array,anyf,status)

17 Get an arbitrary data subsection from the data array. Any Undefined pixels in the array will
have the corresponding ’flagvals’ element set equal to .TRUE.

FTGSF[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,incs, >

array,flagvals,anyf,status)

6.7 FITS ASCII and Binary Table Data I/O Subroutines

6.7.1 Column Information Subroutines

1 Get the number of rows or columns in the current FITS table. The number of rows is given
by the NAXIS2 keyword and the number of columns is given by the TFIELDS keyword in
the header of the table. The FTGNRWLL routine is identical to FTGNRW except that the
number of rows is returned as a 64-bit integer rather than a 32-bit integer.

FTGNRW(unit, > nrows, status)

FTGNRWLL(unit, > nrowsll, status)

FTGNCL(unit, > ncols, status)

2 Get the table column number (and name) of the column whose name matches an input template
name. The table column names are defined by the TTYPEn keywords in the FITS header. If a
column does not have a TTYPEn keyword, then these routines assume that the name consists
of all blank characters. These 2 subroutines perform the same function except that FTGCNO
only returns the number of the matching column whereas FTGCNN also returns the name of
the column. If CASESEN = .true. then the column name match will be case-sensitive.

The input column name template (COLTEMPLATE) is (1) either the exact name of the
column to be searched for, or (2) it may contain wild cards characters (*, ?, or #), or (3)

56 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

it may contain the number of the desired column (where the number is expressed as ASCII
digits). The first 2 wild cards behave similarly to UNIX filename matching: the ’*’ character
matches any sequence of characters (including zero characters) and the ’?’ character matches
any single character. The # wildcard will match any consecutive string of decimal digits
(0-9). As an example, the template strings ’AB?DE’, ’AB*E’, and ’AB*CDE’ will all match
the string ’ABCDE’. If more than one column name in the table matches the template string,
then the first match is returned and the status value will be set to 237 as a warning that a
unique match was not found. To find the other cases that match the template, simply call
the subroutine again leaving the input status value equal to 237 and the next matching name
will then be returned. Repeat this process until a status = 219 (column name not found) is
returned. If these subroutines fail to match the template to any of the columns in the table,
they lastly check if the template can be interpreted as a simple positive integer (e.g., ’7’, or
’512’) and if so, they return that column number. If no matches are found then a status =
219 error is returned.

Note that the FITS Standard recommends that only letters, digits, and the underscore char-
acter be used in column names (with no embedded spaces in the name). Trailing blank
characters are not significant.

FTGCNO(unit,casesen,coltemplate, > colnum,status)

FTGCNN(unit,casesen,coltemplate, > colname,colnum,status)

3 Get the datatype of a column in an ASCII or binary table. This routine returns an integer
code value corresponding to the datatype of the column. (See the FTBNFM and FTASFM
subroutines in the Utilities section of this document for a list of the code values). The vector
repeat count (which is alway 1 for ASCII table columns) is also returned. If the specified
column has an ASCII character datatype (code = 16) then the width of a unit string in the
column is also returned. Note that this routine supports the local convention for specifying
arrays of strings within a binary table character column, using the syntax TFORM = ’rAw’
where ’r’ is the total number of characters (= the width of the column) and ’w’ is the width
of a unit string within the column. Thus if the column has TFORM = ’60A12’ then this
routine will return datacode = 16, repeat = 60, and width = 12. (The TDIMn keyword may
also be used to specify the unit string length; The pair of keywords TFORMn = ’60A’ and
TDIMn = ’(12,5)’ would have the same effect as TFORMn = ’60A12’).

The second routine, FTEQTY is similar except that in the case of scaled integer columns it
returns the ’equivalent’ data type that is needed to store the scaled values, and not necessarily
the physical data type of the unscaled values as stored in the FITS table. For example if
a ’1I’ column in a binary table has TSCALn = 1 and TZEROn = 32768, then this column
effectively contains unsigned short integer values, and thus the returned value of typecode will
be the code for an unsigned short integer, not a signed short integer. Similarly, if a column
has TTYPEn = ’1I’ and TSCALn = 0.12, then the returned typecode will be the code for a
’real’ column.

FTGTCL(unit,colnum, > datacode,repeat,width,status)

FTEQTY(unit,colnum, > datacode,repeat,width,status)

6.7. FITS ASCII AND BINARY TABLE DATA I/O SUBROUTINES 57

4 Return the display width of a column. This is the length of the string that will be returned when
reading the column as a formatted string. The display width is determined by the TDISPn
keyword, if present, otherwise by the data type of the column.

FTGCDW(unit, colnum, > dispwidth, status)

5 Get information about an existing ASCII table column. (NOTE: TSCAL and TZERO must be
declared as Double Precision variables). All the returned parameters are scalar quantities.

FTGACL(unit,colnum, >

ttype,tbcol,tunit,tform,tscal,tzero,snull,tdisp,status)

6 Get information about an existing binary table column. (NOTE: TSCAL and TZERO must be
declared as Double Precision variables). DATATYPE is a character string which returns the
datatype of the column as defined by the TFORMn keyword (e.g., ’I’, ’J’,’E’, ’D’, etc.). In
the case of an ASCII character column, DATATYPE will have a value of the form ’An’ where
’n’ is an integer expressing the width of the field in characters. For example, if TFORM =
’160A8’ then FTGBCL will return DATATYPE=’A8’ and REPEAT=20. All the returned
parameters are scalar quantities.

FTGBCL(unit,colnum, >

ttype,tunit,datatype,repeat,tscal,tzero,tnull,tdisp,status)

7 Put (append) a TDIMn keyword whose value has the form ’(l,m,n...)’ where l, m, n... are the
dimensions of a multidimensional array column in a binary table.

FTPTDM(unit,colnum,naxis,naxes, > status)

8 Return the number of and size of the dimensions of a table column. Normally this information
is given by the TDIMn keyword, but if this keyword is not present then this routine returns
NAXIS = 1 and NAXES(1) equal to the repeat count in the TFORM keyword.

FTGTDM(unit,colnum,maxdim, > naxis,naxes,status)

9 Decode the input TDIMn keyword string (e.g. ’(100,200)’) and return the number of and size
of the dimensions of a binary table column. If the input tdimstr character string is null, then
this routine returns naxis = 1 and naxes[0] equal to the repeat count in the TFORM keyword.
This routine is called by FTGTDM.

FTDTDM(unit,tdimstr,colnum,maxdim, > naxis,naxes, status)

10 Return the optimal number of rows to read or write at one time for maximum I/O efficiency.
Refer to the “Optimizing Code” section in Chapter 5 for more discussion on how to use this
routine.

FFGRSZ(unit, > nrows,status)

58 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

6.7.2 Low-Level Table Access Subroutines

The following subroutines provide low-level access to the data in ASCII or binary tables and are
mainly useful as an efficient way to copy all or part of a table from one location to another. These
routines simply read or write the specified number of consecutive bytes in an ASCII or binary table,
without regard for column boundaries or the row length in the table. The first two subroutines
read or write consecutive bytes in a table to or from a character string variable, while the last two
subroutines read or write consecutive bytes to or from a variable declared as a numeric data type
(e.g., INTEGER, INTEGER*2, REAL, DOUBLE PRECISION). These routines do not perform
any machine dependent data conversion or byte swapping, except that conversion to/from ASCII
format is performed by the FTGTBS and FTPTBS routines on machines which do not use ASCII
character codes in the internal data representations (e.g., on IBM mainframe computers).

1 Read a consecutive string of characters from an ASCII table into a character variable (spanning
columns and multiple rows if necessary) This routine should not be used with binary tables
because of complications related to passing string variables between C and Fortran.

FTGTBS(unit,frow,startchar,nchars, > string,status)

2 Write a consecutive string of characters to an ASCII table from a character variable (spanning
columns and multiple rows if necessary) This routine should not be used with binary tables
because of complications related to passing string variables between C and Fortran.

FTPTBS(unit,frow,startchar,nchars,string, > status)

3 Read a consecutive array of bytes from an ASCII or binary table into a numeric variable (span-
ning columns and multiple rows if necessary). The array parameter may be declared as any
numerical datatype as long as the array is at least ’nchars’ bytes long, e.g., if nchars = 17,
then declare the array as INTEGER*4 ARRAY(5).

FTGTBB(unit,frow,startchar,nchars, > array,status)

4 Write a consecutive array of bytes to an ASCII or binary table from a numeric variable (span-
ning columns and multiple rows if necessary) The array parameter may be declared as any
numerical datatype as long as the array is at least ’nchars’ bytes long, e.g., if nchars = 17,
then declare the array as INTEGER*4 ARRAY(5).

FTPTBB(unit,frow,startchar,nchars,array, > status)

6.7.3 Edit Rows or Columns

1 Insert blank rows into an existing ASCII or binary table (in the CDU). All the rows FOLLOW-
ING row FROW are shifted down by NROWS rows. If FROW or FROWLL equals 0 then
the blank rows are inserted at the beginning of the table. These routines modify the NAXIS2

6.7. FITS ASCII AND BINARY TABLE DATA I/O SUBROUTINES 59

keyword to reflect the new number of rows in the table. Note that it is *not* necessary to
insert rows in a table before writing data to those rows (indeed, it would be inefficient to do
so). Instead, one may simply write data to any row of the table, whether that row of data
already exists or not.

FTIROW(unit,frow,nrows, > status)

FTIROWLL(unit,frowll,nrowsll, > status)

2 Delete rows from an existing ASCII or binary table (in the CDU). The NROWS (or NROWSLL)
is the number of rows are deleted, starting with row FROW (or FROWLL), and any remaining
rows in the table are shifted up to fill in the space. These routines modify the NAXIS2 keyword
to reflect the new number of rows in the table.

FTDROW(unit,frow,nrows, > status)

FTDROWLL(unit,frowll,nrowsll, > status)

3 Delete a list of rows from an ASCII or binary table (in the CDU). In the first routine, ’rowrange’
is a character string listing the rows or row ranges to delete (e.g., ’2-4, 5, 8-9’). In the second
routine, ’rowlist’ is an integer array of row numbers to be deleted from the table. nrows is
the number of row numbers in the list. The first row in the table is 1 not 0. The list of row
numbers must be sorted in ascending order.

FTDRRG(unit,rowrange, > status)

FTDRWS(unit,rowlist,nrows, > status)

4 Insert a blank column (or columns) into an existing ASCII or binary table (in the CDU).
COLNUM specifies the column number that the (first) new column should occupy in the
table. NCOLS specifies how many columns are to be inserted. Any existing columns from
this position and higher are moved over to allow room for the new column(s). The index
number on all the following keywords will be incremented if necessary to reflect the new
position of the column(s) in the table: TBCOLn, TFORMn, TTYPEn, TUNITn, TNULLn,
TSCALn, TZEROn, TDISPn, TDIMn, TLMINn, TLMAXn, TDMINn, TDMAXn, TCTYPn,
TCRPXn, TCRVLn, TCDLTn, TCROTn, and TCUNIn.

FTICOL(unit,colnum,ttype,tform, > status)

FTICLS(unit,colnum,ncols,ttype,tform, > status)

5 Modify the vector length of a binary table column (e.g., change a column from TFORMn =
’1E’ to ’20E’). The vector length may be increased or decreased from the current value.

FTMVEC(unit,colnum,newveclen, > status)

6 Delete a column from an existing ASCII or binary table (in the CDU). The index number of all
the keywords listed above (for FTICOL) will be decremented if necessary to reflect the new
position of the column(s) in the table. Those index keywords that refer to the deleted column
will also be deleted. Note that the physical size of the FITS file will not be reduced by this
operation, and the empty FITS blocks if any at the end of the file will be padded with zeros.

60 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTDCOL(unit,colnum, > status)

7 Copy a column from one HDU to another (or to the same HDU). If createcol = TRUE, then a
new column will be inserted in the output table, at position ‘outcolumn’, otherwise the existing
output column will be overwritten (in which case it must have a compatible datatype). Note
that the first column in a table is at colnum = 1.

FTCPCL(inunit,outunit,incolnum,outcolnum,createcol, > status);

6.7.4 Read and Write Column Data Routines

These subroutines put or get data values in the current ASCII or Binary table extension. Automatic
data type conversion is performed for numerical data types (B,I,J,E,D) if the data type of the column
(defined by the TFORM keyword) differs from the data type of the calling subroutine. The data
values are also scaled by the TSCALn and TZEROn header values as they are being written to or
read from the FITS array. The fttscl subroutine MUST be used to define the scaling parameters
when writing data to the table or to override the default scaling values given in the header when
reading from the table. Note that it is *not* necessary to insert rows in a table before writing data
to those rows (indeed, it would be inefficient to do so). Instead, one may simply write data to any
row of the table, whether that row of data already exists or not.

In the case of binary tables with vector elements, the ’felem’ parameter defines the starting pixel
within the element vector. This parameter is ignored with ASCII tables. Similarly, in the case
of binary tables the ’nelements’ parameter specifies the total number of vector values read or
written (continuing on subsequent rows if required) and not the number of table elements. Two
sets of subroutines are provided to get the column data which differ in the way undefined pixels
are handled. The first set of routines (FTGCV) simply return an array of data elements in which
undefined pixels are set equal to a value specified by the user in the ’nullval’ parameter. An
additional feature of these subroutines is that if the user sets nullval = 0, then no checks for
undefined pixels will be performed, thus increasing the speed of the program. The second set of
routines (FTGCF) returns the data element array and in addition a logical array of flags which
defines whether the corresponding data pixel is undefined.

Any column, regardless of it’s intrinsic datatype, may be read as a string. It should be noted
however that reading a numeric column as a string is 10 - 100 times slower than reading the same
column as a number due to the large overhead in constructing the formatted strings. The display
format of the returned strings will be determined by the TDISPn keyword, if it exists, otherwise by
the datatype of the column. The length of the returned strings can be determined with the ftgcdw
routine. The following TDISPn display formats are currently supported:

Iw.m Integer

Ow.m Octal integer

Zw.m Hexadecimal integer

Fw.d Fixed floating point

Ew.d Exponential floating point

Dw.d Exponential floating point

Gw.d General; uses Fw.d if significance not lost, else Ew.d

6.7. FITS ASCII AND BINARY TABLE DATA I/O SUBROUTINES 61

where w is the width in characters of the displayed values, m is the minimum number of digits
displayed, and d is the number of digits to the right of the decimal. The .m field is optional.

1 Put elements into an ASCII or binary table column (in the CDU). (The SPP FSPCLS routine
has an additional integer argument after the VALUES character string which specifies the
size of the 1st dimension of this 2-D CHAR array).

The alternate version of these routines, whose names end in ’LL’ after the datatype character,
support large tables with more then 2*31 rows. When calling these routines, the frow and
felem parameters *must* be 64-bit integer*8 variables, instead of normal 4-byte integers.

FTPCL[SLBIJKEDCM](unit,colnum,frow,felem,nelements,values, > status)

FTPCL[LBIJKEDCM]LL(unit,colnum,frow,felem,nelements,values, > status)

2 Put elements into an ASCII or binary table column (in the CDU) substituting the appropriate
FITS null value for any elements that are equal to NULLVAL. For ASCII TABLE extensions,
the null value defined by the previous call to FTSNUL will be substituted; For integer FITS
columns, in a binary table the null value defined by the previous call to FTTNUL will be
substituted; For floating point FITS columns a special IEEE NaN (Not-a-Number) value will
be substituted.

The alternate version of these routines, whose names end in ’LL’ after the datatype character,
support large tables with more then 2*31 rows. When calling these routines, the frow and
felem parameters *must* be 64-bit integer*8 variables, instead of normal 4-byte integers.

FTPCN[SBIJKED](unit,colnum,frow,felem,nelements,values,nullval > status)

FTPCN[SBIJKED]LL(unit,colnum,(I*8) frow,(I*8) felem,nelements,values,

nullval > status)

3 Put bit values into a binary byte (’B’) or bit (’X’) table column (in the CDU). LRAY is an
array of logical values corresponding to the sequence of bits to be written. If LRAY is true
then the corresponding bit is set to 1, otherwise the bit is set to 0. Note that in the case of
’X’ columns, FITSIO will write to all 8 bits of each byte whether they are formally valid or
not. Thus if the column is defined as ’4X’, and one calls FTPCLX with fbit=1 and nbit=8,
then all 8 bits will be written into the first byte (as opposed to writing the first 4 bits into
the first row and then the next 4 bits into the next row), even though the last 4 bits of each
byte are formally not defined.

FTPCLX(unit,colnum,frow,fbit,nbit,lray, > status)

4 Set table elements in a column as undefined

FTPCLU(unit,colnum,frow,felem,nelements, > status)

5 Get elements from an ASCII or binary table column (in the CDU). These routines return the
values of the table column array elements. Undefined array elements will be returned with a

62 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

value = nullval, unless nullval = 0 (or = ’ ’ for ftgcvs) in which case no checking for undefined
values will be performed. The ANYF parameter is set to true if any of the returned elements
are undefined. (Note: the ftgcl routine simple gets an array of logical data values without any
checks for undefined values; use the ftgcfl routine to check for undefined logical elements).
(The SPP FSGCVS routine has an additional integer argument after the VALUES character
string which specifies the size of the 1st dimension of this 2-D CHAR array).

The alternate version of these routines, whose names end in ’LL’ after the datatype character,
support large tables with more then 2*31 rows. When calling these routines, the frow and
felem parameters *must* be 64-bit integer*8 variables, instead of normal 4-byte integers.

FTGCL(unit,colnum,frow,felem,nelements, > values,status)

FTGCV[SBIJKEDCM](unit,colnum,frow,felem,nelements,nullval, >

values,anyf,status)

FTGCV[BIJKEDCM]LL(unit,colnum,(I*8) frow, (I*8) felem, nelements,

nullval, > values,anyf,status)

6 Get elements and null flags from an ASCII or binary table column (in the CHDU). These
routines return the values of the table column array elements. Any undefined array elements
will have the corresponding flagvals element set equal to .TRUE. The ANYF parameter is
set to true if any of the returned elements are undefined. (The SPP FSGCFS routine has an
additional integer argument after the VALUES character string which specifies the size of the
1st dimension of this 2-D CHAR array).

The alternate version of these routines, whose names end in ’LL’ after the datatype character,
support large tables with more then 2*31 rows. When calling these routines, the frow and
felem parameters *must* be 64-bit integer*8 variables, instead of normal 4-byte integers.

FTGCF[SLBIJKEDCM](unit,colnum,frow,felem,nelements, >

values,flagvals,anyf,status)

FTGCF[BIJKED]LL(unit,colnum, (I*8) frow, (I*8) felem,nelements, >

values,flagvals,anyf,status)

7 Get an arbitrary data subsection from an N-dimensional array in a binary table vector column.
Undefined pixels in the array will be set equal to the value of ’nullval’, unless nullval=0 in
which case no testing for undefined pixels will be performed. The first and last rows in the
table to be read are specified by fpixels(naxis+1) and lpixels(naxis+1), and hence are treated
as the next higher dimension of the FITS N-dimensional array. The INCS parameter specifies
the sampling interval in each dimension between the data elements that will be returned.

FTGSV[BIJKED](unit,colnum,naxis,naxes,fpixels,lpixels,incs,nullval, >

array,anyf,status)

8 Get an arbitrary data subsection from an N-dimensional array in a binary table vector column.
Any Undefined pixels in the array will have the corresponding ’flagvals’ element set equal
to .TRUE. The first and last rows in the table to be read are specified by fpixels(naxis+1)

6.7. FITS ASCII AND BINARY TABLE DATA I/O SUBROUTINES 63

and lpixels(naxis+1), and hence are treated as the next higher dimension of the FITS N-
dimensional array. The INCS parameter specifies the sampling interval in each dimension
between the data elements that will be returned.

FTGSF[BIJKED](unit,colnum,naxis,naxes,fpixels,lpixels,incs, >

array,flagvals,anyf,status)

9 Get bit values from a byte (’B’) or bit (‘X‘) table column (in the CDU). LRAY is an array of
logical values corresponding to the sequence of bits to be read. If LRAY is true then the
corresponding bit was set to 1, otherwise the bit was set to 0. Note that in the case of ’X’
columns, FITSIO will read all 8 bits of each byte whether they are formally valid or not.
Thus if the column is defined as ’4X’, and one calls FTGCX with fbit=1 and nbit=8, then
all 8 bits will be read from the first byte (as opposed to reading the first 4 bits from the first
row and then the first 4 bits from the next row), even though the last 4 bits of each byte are
formally not defined.

FTGCX(unit,colnum,frow,fbit,nbit, > lray,status)

10 Read any consecutive set of bits from an ’X’ or ’B’ column and interpret them as an unsigned
n-bit integer. NBIT must be less than or equal to 16 when calling FTGCXI, and less than
or equal to 32 when calling FTGCXJ; there is no limit on the value of NBIT for FTGCXD,
but the returned double precision value only has 48 bits of precision on most 32-bit word
machines. The NBITS bits are interpreted as an unsigned integer unless NBITS = 16 (in
FTGCXI) or 32 (in FTGCXJ) in which case the string of bits are interpreted as 16-bit or
32-bit 2’s complement signed integers. If NROWS is greater than 1 then the same set of
bits will be read from sequential rows in the table starting with row FROW. Note that the
numbering convention used here for the FBIT parameter adopts 1 for the first element of the
vector of bits; this is the Most Significant Bit of the integer value.

FTGCX[IJD](unit,colnum,frow,nrows,fbit,nbit, > array,status)

11 Get the descriptor for a variable length column in a binary table. The descriptor consists of
2 integer parameters: the number of elements in the array and the starting offset relative to
the start of the heap. The first routine returns a single descriptor whereas the second routine
returns the descriptors for a range of rows in the table.

FTGDES(unit,colnum,rownum, > nelements,offset,status)

FTGDESLL(unit,colnum,rownum, > nelementsll,offsetll,status)

FFGDESS(unit,colnum,firstrow,nrows > nelements,offset, status)

FFGDESSLL(unit,colnum,firstrow,nrows > nelementsll,offsetll, status)

12 Write the descriptor for a variable length column in a binary table. These subroutines can be
used in conjunction with FTGDES to enable 2 or more arrays to point to the same storage
location to save storage space if the arrays are identical.

64 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

FTPDES(unit,colnum,rownum,nelements,offset, > status)

FTPDESLL(unit,colnum,rownum,nelementsll,offsetll, > status)

6.8 Row Selection and Calculator Routines

These routines all parse and evaluate an input string containing a user defined arithmetic expression.
The first 3 routines select rows in a FITS table, based on whether the expression evaluates to true
(not equal to zero) or false (zero). The other routines evaluate the expression and calculate a value
for each row of the table. The allowed expression syntax is described in the row filter section in
the earlier ‘Extended File Name Syntax’ chapter of this document. The expression may also be
written to a text file, and the name of the file, prepended with a ’@’ character may be supplied for
the ’expr’ parameter (e.g. ’@filename.txt’). The expression in the file can be arbitrarily complex
and extend over multiple lines of the file. Lines that begin with 2 slash characters (’//’) will be
ignored and may be used to add comments to the file.

1 Evaluate a boolean expression over the indicated rows, returning an array of flags indicating
which rows evaluated to TRUE/FALSE

FTFROW(unit,expr,firstrow, nrows, > n_good_rows, row_status, status)

2 Find the first row which satisfies the input boolean expression

FTFFRW(unit, expr, > rownum, status)

3 Evaluate an expression on all rows of a table. If the input and output files are not the same,
copy the TRUE rows to the output file; if the output table is not empty, then this routine
will append the new selected rows after the existing rows. If the files are the same, delete the
FALSE rows (preserve the TRUE rows).

FTSROW(inunit, outunit, expr, > status)

4 Calculate an expression for the indicated rows of a table, returning the results, cast as datatype
(TSHORT, TDOUBLE, etc), in array. If nulval==NULL, UNDEFs will be zeroed out. For
vector results, the number of elements returned may be less than nelements if nelements is
not an even multiple of the result dimension. Call FTTEXP to obtain the dimensions of the
results.

FTCROW(unit,datatype,expr,firstrow,nelements,nulval, >

array,anynul,status)

5 Evaluate an expression and write the result either to a column (if the expression is a function
of other columns in the table) or to a keyword (if the expression evaluates to a constant and
is not a function of other columns in the table). In the former case, the parName parameter

6.9. CELESTIAL COORDINATE SYSTEM SUBROUTINES 65

is the name of the column (which may or may not already exist) into which to write the
results, and parInfo contains an optional TFORM keyword value if a new column is being
created. If a TFORM value is not specified then a default format will be used, depending on
the expression. If the expression evaluates to a constant, then the result will be written to
the keyword name given by the parName parameter, and the parInfo parameter may be used
to supply an optional comment for the keyword. If the keyword does not already exist, then
the name of the keyword must be preceded with a ’#’ character, otherwise the result will be
written to a column with that name.

FTCALC(inunit, expr, outunit, parName, parInfo, > status)

6 This calculator routine is similar to the previous routine, except that the expression is only
evaluated over the specified row ranges. nranges specifies the number of row ranges, and
firstrow and lastrow give the starting and ending row number of each range.

FTCALC_RNG(inunit, expr, outunit, parName, parInfo,

nranges, firstrow, lastrow, > status)

7 Evaluate the given expression and return dimension and type information on the result. The
returned dimensions correspond to a single row entry of the requested expression, and are
equivalent to the result of fits read tdim(). Note that strings are considered to be one element
regardless of string length. If maxdim == 0, then naxes is optional.

FTTEXP(unit, expr, maxdim > datatype, nelem, naxis, naxes, status)

6.9 Celestial Coordinate System Subroutines

The FITS community has adopted a set of keyword conventions that define the transformations
needed to convert between pixel locations in an image and the corresponding celestial coordinates
on the sky, or more generally, that define world coordinates that are to be associated with any pixel
location in an n-dimensional FITS array. CFITSIO is distributed with a couple of self-contained
World Coordinate System (WCS) routines, however, these routines DO NOT support all the latest
WCS conventions, so it is STRONGLY RECOMMENDED that software developers use a more
robust external WCS library. Several recommended libraries are:

WCSLIB - supported by Mark Calabretta

WCSTools - supported by Doug Mink

AST library - developed by the U.K. Starlink project

More information about the WCS keyword conventions and links to all of these WCS libraries can
be found on the FITS Support Office web site at http://fits.gsfc.nasa.gov under the WCS link.

The functions provided in these external WCS libraries will need access to the WCS information
contained in the FITS file headers. One convenient way to pass this information to the external

66 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

library is to use FITSIO to copy the header keywords into one long character string, and then
pass this string to an interface routine in the external library that will extract the necessary WCS
information (e.g., see the astFitsChan and astPutCards routines in the Starlink AST library).

The following FITSIO routines DO NOT support the more recent WCS conventions that have been
approved as part of the FITS standard. Consequently, the following routines ARE NOW DEP-
RECATED. It is STRONGLY RECOMMENDED that software developers not use these routines,
and instead use an external WCS library, as described above.

These routines are included mainly for backward compatibility with existing software. They support
the following standard map projections: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, and -AIT (these
are the legal values for the coordtype parameter). These routines are based on similar functions in
Classic AIPS. All the angular quantities are given in units of degrees.

1 Get the values of all the standard FITS celestial coordinate system keywords from the header of a
FITS image (i.e., the primary array or an image extension). These values may then be passed
to the subroutines that perform the coordinate transformations. If any or all of the WCS
keywords are not present, then default values will be returned. If the first coordinate axis is
the declination-like coordinate, then this routine will swap them so that the longitudinal-like
coordinate is returned as the first axis.

If the file uses the newer ’CDj i’ WCS transformation matrix keywords instead of old style
’CDELTn’ and ’CROTA2’ keywords, then this routine will calculate and return the values
of the equivalent old-style keywords. Note that the conversion from the new-style keywords
to the old-style values is sometimes only an approximation, so if the approximation is larger
than an internally defined threshold level, then CFITSIO will still return the approximate
WCS keyword values, but will also return with status = 506, to warn the calling program
that approximations have been made. It is then up to the calling program to decide whether
the approximations are sufficiently accurate for the particular application, or whether more
precise WCS transformations must be performed using new-style WCS keywords directly.

FTGICS(unit, > xrval,yrval,xrpix,yrpix,xinc,yinc,rot,coordtype,status)

2 Get the values of all the standard FITS celestial coordinate system keywords from the header
of a FITS table where the X and Y (or RA and DEC coordinates are stored in 2 separate
columns of the table. These values may then be passed to the subroutines that perform the
coordinate transformations.

FTGTCS(unit,xcol,ycol, >

xrval,yrval,xrpix,yrpix,xinc,yinc,rot,coordtype,status)

3 Calculate the celestial coordinate corresponding to the input X and Y pixel location in the
image.

FTWLDP(xpix,ypix,xrval,yrval,xrpix,yrpix,xinc,yinc,rot,

coordtype, > xpos,ypos,status)

6.10. FILE CHECKSUM SUBROUTINES 67

4 Calculate the X and Y pixel location corresponding to the input celestial coordinate in the
image.

FTXYPX(xpos,ypos,xrval,yrval,xrpix,yrpix,xinc,yinc,rot,

coordtype, > xpix,ypix,status)

6.10 File Checksum Subroutines

The following routines either compute or validate the checksums for the CHDU. The DATASUM
keyword is used to store the numerical value of the 32-bit, 1’s complement checksum for the data
unit alone. If there is no data unit then the value is set to zero. The numerical value is stored as an
ASCII string of digits, enclosed in quotes, because the value may be too large to represent as a 32-bit
signed integer. The CHECKSUM keyword is used to store the ASCII encoded COMPLEMENT of
the checksum for the entire HDU. Storing the complement, rather than the actual checksum, forces
the checksum for the whole HDU to equal zero. If the file has been modified since the checksums
were computed, then the HDU checksum will usually not equal zero. These checksum keyword
conventions are based on a paper by Rob Seaman published in the proceedings of the ADASS IV
conference in Baltimore in November 1994 and a later revision in June 1995.

1 Compute and write the DATASUM and CHECKSUM keyword values for the CHDU into the
current header. The DATASUM value is the 32-bit checksum for the data unit, expressed as a
decimal integer enclosed in single quotes. The CHECKSUM keyword value is a 16-character
string which is the ASCII-encoded value for the complement of the checksum for the whole
HDU. If these keywords already exist, their values will be updated only if necessary (i.e., if
the file has been modified since the original keyword values were computed).

FTPCKS(unit, > status)

2 Update the CHECKSUM keyword value in the CHDU, assuming that the DATASUM keyword
exists and already has the correct value. This routine calculates the new checksum for the
current header unit, adds it to the data unit checksum, encodes the value into an ASCII
string, and writes the string to the CHECKSUM keyword.

FTUCKS(unit, > status)

3 Verify the CHDU by computing the checksums and comparing them with the keywords. The
data unit is verified correctly if the computed checksum equals the value of the DATASUM
keyword. The checksum for the entire HDU (header plus data unit) is correct if it equals
zero. The output DATAOK and HDUOK parameters in this subroutine are integers which
will have a value = 1 if the data or HDU is verified correctly, a value = 0 if the DATASUM or
CHECKSUM keyword is not present, or value = -1 if the computed checksum is not correct.

FTVCKS(unit, > dataok,hduok,status)

68 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

4 Compute and return the checksum values for the CHDU (as double precision variables) without
creating or modifying the CHECKSUM and DATASUM keywords. This routine is used
internally by FTVCKS, but may be useful in other situations as well.

FTGCKS(unit, > datasum,hdusum,status)

5 Encode a checksum value (stored in a double precision variable) into a 16-character string. If
COMPLEMENT = .true. then the 32-bit sum value will be complemented before encoding.

FTESUM(sum,complement, > checksum)

6 Decode a 16 character checksum string into a double precision value. If COMPLEMENT =
.true. then the 32-bit sum value will be complemented after decoding.

FTDSUM(checksum,complement, > sum)

6.11 Date and Time Utility Routines

The following routines help to construct or parse the FITS date/time strings. Starting in the year
2000, the FITS DATE keyword values (and the values of other ‘DATE-’ keywords) must have the
form ’YYYY-MM-DD’ (date only) or ’YYYY-MM-DDThh:mm:ss.ddd...’ (date and time) where
the number of decimal places in the seconds value is optional. These times are in UTC. The older
’dd/mm/yy’ date format may not be used for dates after 01 January 2000.

1 Get the current system date. The returned year has 4 digits (1999, 2000, etc.)

FTGSDT(> day, month, year, status)

2 Get the current system date and time string (’YYYY-MM-DDThh:mm:ss’). The time will be
in UTC/GMT if available, as indicated by a returned timeref value = 0. If the returned value
of timeref = 1 then this indicates that it was not possible to convert the local time to UTC,
and thus the local time was returned.

FTGSTM(> datestr, timeref, status)

3 Construct a date string from the input date values. If the year is between 1900 and 1998, inclu-
sive, then the returned date string will have the old FITS format (’dd/mm/yy’), otherwise
the date string will have the new FITS format (’YYYY-MM-DD’). Use FTTM2S instead to
always return a date string using the new FITS format.

FTDT2S(year, month, day, > datestr, status)

6.12. GENERAL UTILITY SUBROUTINES 69

4 Construct a new-format date + time string (’YYYY-MM-DDThh:mm:ss.ddd...’). If the year,
month, and day values all = 0 then only the time is encoded with format ’hh:mm:ss.ddd...’.
The decimals parameter specifies how many decimal places of fractional seconds to include
in the string. If ‘decimals’ is negative, then only the date will be return (’YYYY-MM-DD’).

FTTM2S(year, month, day, hour, minute, second, decimals,

> datestr, status)

5 Return the date as read from the input string, where the string may be in either the old
(’dd/mm/yy’) or new (’YYYY-MM-DDThh:mm:ss’ or ’YYYY-MM-DD’) FITS format.

FTS2DT(datestr, > year, month, day, status)

6 Return the date and time as read from the input string, where the string may be in either the
old or new FITS format. The returned hours, minutes, and seconds values will be set to zero
if the input string does not include the time (’dd/mm/yy’ or ’YYYY-MM-DD’) . Similarly,
the returned year, month, and date values will be set to zero if the date is not included in
the input string (’hh:mm:ss.ddd...’).

FTS2TM(datestr, > year, month, day, hour, minute, second, status)

6.12 General Utility Subroutines

The following utility subroutines may be useful for certain applications:

1 Return the starting byte address of the CHDU and the next HDU.

FTGHAD(iunit, > curaddr, nextaddr)

2 Convert a character string to uppercase (operates in place).

FTUPCH(string)

3 Compare the input template string against the reference string to see if they match. The
template string may contain wildcard characters: ’*’ will match any sequence of characters
(including zero characters) and ’?’ will match any single character in the reference string.
The ’#’ character will match any consecutive string of decimal digits (0 - 9). If CASESN =
.true. then the match will be case sensitive. The returned MATCH parameter will be .true.
if the 2 strings match, and EXACT will be .true. if the match is exact (i.e., if no wildcard
characters were used in the match). Both strings must be 68 characters or less in length.

FTCMPS(str_template, string, casesen, > match, exact)

70 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

4 Test that the keyword name contains only legal characters: A-Z,0-9, hyphen, and underscore.

FTTKEY(keyword, > status)

5 Test that the keyword record contains only legal printable ASCII characters

FTTREC(card, > status)

6 Test whether the current header contains any NULL (ASCII 0) characters. These characters are
illegal in the header, but they will go undetected by most of the CFITSIO keyword header
routines, because the null is interpreted as the normal end-of-string terminator. This routine
returns the position of the first null character in the header, or zero if there are no nulls. For
example a returned value of 110 would indicate that the first NULL is located in the 30th
character of the second keyword in the header (recall that each header record is 80 characters
long). Note that this is one of the few FITSIO routines in which the returned value is not
necessarily equal to the status value).

FTNCHK(unit, > status)

7 Parse a header keyword record and return the name of the keyword and the length of the name.
The keyword name normally occupies the first 8 characters of the record, except under the
HIERARCH convention where the name can be up to 70 characters in length.

FTGKNM(card, > keyname, keylength, staThe ’\#’ character will match any consecutive string

of decimal digits (0 - 9). tus)

8 Parse a header keyword record. This subroutine parses the input header record to return the
value (as a character string) and comment strings. If the keyword has no value (columns 9-10
not equal to ’= ’), then the value string is returned blank and the comment string is set equal
to column 9 - 80 of the input string.

FTPSVC(card, > value,comment,status)

9 Construct a sequence keyword name (ROOT + nnn). This subroutine appends the sequence
number to the root string to create a keyword name (e.g., ’NAXIS’ + 2 = ’NAXIS2’)

FTKEYN(keyroot,seq_no, > keyword,status)

10 Construct a sequence keyword name (n + ROOT). This subroutine concatenates the sequence
number to the front of the root string to create a keyword name (e.g., 1 + ’CTYP’ = ’1CTYP’)

FTNKEY(seq_no,keyroot, > keyword,status)

6.12. GENERAL UTILITY SUBROUTINES 71

11 Determine the datatype of a keyword value string. This subroutine parses the keyword value
string (usually columns 11-30 of the header record) to determine its datatype.

FTDTYP(value, > dtype,status)

11 Return the class of input header record. The record is classified into one of the following
categories (the class values are defined in fitsio.h). Note that this is one of the few FITSIO
routines that does not return a status value.

Class Value Keywords

TYP_STRUC_KEY 10 SIMPLE, BITPIX, NAXIS, NAXISn, EXTEND, BLOCKED,

GROUPS, PCOUNT, GCOUNT, END

XTENSION, TFIELDS, TTYPEn, TBCOLn, TFORMn, THEAP,

and the first 4 COMMENT keywords in the primary array

that define the FITS format.

TYP_CMPRS_KEY 20 The experimental keywords used in the compressed

image format ZIMAGE, ZCMPTYPE, ZNAMEn, ZVALn,

ZTILEn, ZBITPIX, ZNAXISn, ZSCALE, ZZERO, ZBLANK

TYP_SCAL_KEY 30 BSCALE, BZERO, TSCALn, TZEROn

TYP_NULL_KEY 40 BLANK, TNULLn

TYP_DIM_KEY 50 TDIMn

TYP_RANG_KEY 60 TLMINn, TLMAXn, TDMINn, TDMAXn, DATAMIN, DATAMAX

TYP_UNIT_KEY 70 BUNIT, TUNITn

TYP_DISP_KEY 80 TDISPn

TYP_HDUID_KEY 90 EXTNAME, EXTVER, EXTLEVEL, HDUNAME, HDUVER, HDULEVEL

TYP_CKSUM_KEY 100 CHECKSUM, DATASUM

TYP_WCS_KEY 110 CTYPEn, CUNITn, CRVALn, CRPIXn, CROTAn, CDELTn

CDj_is, PVj_ms, LONPOLEs, LATPOLEs

TCTYPn, TCTYns, TCUNIn, TCUNns, TCRVLn, TCRVns, TCRPXn,

TCRPks, TCDn_k, TCn_ks, TPVn_m, TPn_ms, TCDLTn, TCROTn

jCTYPn, jCTYns, jCUNIn, jCUNns, jCRVLn, jCRVns, iCRPXn,

iCRPns, jiCDn, jiCDns, jPVn_m, jPn_ms, jCDLTn, jCROTn

(i,j,m,n are integers, s is any letter)

TYP_REFSYS_KEY 120 EQUINOXs, EPOCH, MJD-OBSs, RADECSYS, RADESYSs

TYP_COMM_KEY 130 COMMENT, HISTORY, (blank keyword)

TYP_CONT_KEY 140 CONTINUE

TYP_USER_KEY 150 all other keywords

class = FTGKCL (char *card)

12 Parse the ’TFORM’ binary table column format string. This subroutine parses the input
TFORM character string and returns the integer datatype code, the repeat count of the field,
and, in the case of character string fields, the length of the unit string. The following datatype
codes are returned (the negative of the value is returned if the column contains variable-length
arrays):

72 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

Datatype DATACODE value

bit, X 1

byte, B 11

logical, L 14

ASCII character, A 16

short integer, I 21

integer, J 41

real, E 42

double precision, D 82

complex 83

double complex 163

FTBNFM(tform, > datacode,repeat,width,status)

13 Parse the ’TFORM’ keyword value that defines the column format in an ASCII table. This
routine parses the input TFORM character string and returns the datatype code, the width
of the column, and (if it is a floating point column) the number of decimal places to the
right of the decimal point. The returned datatype codes are the same as for the binary table,
listed above, with the following additional rules: integer columns that are between 1 and
4 characters wide are defined to be short integers (code = 21). Wider integer columns are
defined to be regular integers (code = 41). Similarly, Fixed decimal point columns (with
TFORM = ’Fw.d’) are defined to be single precision reals (code = 42) if w is between 1 and
7 characters wide, inclusive. Wider ’F’ columns will return a double precision data code (=
82). ’Ew.d’ format columns will have datacode = 42, and ’Dw.d’ format columns will have
datacode = 82.

FTASFM(tform, > datacode,width,decimals,status)

14 Calculate the starting column positions and total ASCII table width based on the input array
of ASCII table TFORM values. The SPACE input parameter defines how many blank spaces
to leave between each column (it is recommended to have one space between columns for
better human readability).

FTGABC(tfields,tform,space, > rowlen,tbcol,status)

15 Parse a template string and return a formatted 80-character string suitable for appending to
(or deleting from) a FITS header file. This subroutine is useful for parsing lines from an
ASCII template file and reformatting them into legal FITS header records. The formatted
string may then be passed to the FTPREC, FTMCRD, or FTDKEY subroutines to append
or modify a FITS header record.

FTGTHD(template, > card,hdtype,status)

The input TEMPLATE character string generally should contain 3 tokens: (1) the KEYNAME, (2)
the VALUE, and (3) the COMMENT string. The TEMPLATE string must adhere to the following
format:

6.12. GENERAL UTILITY SUBROUTINES 73

- The KEYNAME token must begin in columns 1-8 and be a maximum of 8 characters long. If the
first 8 characters of the template line are blank then the remainder of the line is considered
to be a FITS comment (with a blank keyword name). A legal FITS keyword name may
only contain the characters A-Z, 0-9, and ’-’ (minus sign) and underscore. This subroutine
will automatically convert any lowercase characters to uppercase in the output string. If
KEYNAME = ’COMMENT’ or ’HISTORY’ then the remainder of the line is considered to
be a FITS COMMENT or HISTORY record, respectively.

- The VALUE token must be separated from the KEYNAME token by one or more spaces and/or
an ’=’ character. The datatype of the VALUE token (numeric, logical, or character string) is
automatically determined and the output CARD string is formatted accordingly. The value
token may be forced to be interpreted as a string (e.g. if it is a string of numeric digits) by
enclosing it in single quotes.

- The COMMENT token is optional, but if present must be separated from the VALUE token
by at least one blank space. A leading ’/’ character may be used to mark the beginning
of the comment field, otherwise the comment field begins with the first non-blank character
following the value token.

- One exception to the above rules is that if the first non-blank character in the template string
is a minus sign (’-’) followed by a single token, or a single token followed by an equal sign,
then it is interpreted as the name of a keyword which is to be deleted from the FITS header.

- The second exception is that if the template string starts with a minus sign and is followed
by 2 tokens then the second token is interpreted as the new name for the keyword specified
by first token. In this case the old keyword name (first token) is returned in characters 1-8
of the returned CARD string, and the new keyword name (the second token) is returned in
characters 41-48 of the returned CARD string. These old and new names may then be passed
to the FTMNAM subroutine which will change the keyword name.

The HDTYPE output parameter indicates how the returned CARD string should be interpreted:

hdtype interpretation

------ ---

-2 Modify the name of the keyword given in CARD(1:8)

to the new name given in CARD(41:48)

-1 CARD(1:8) contains the name of a keyword to be deleted

from the FITS header.

0 append the CARD string to the FITS header if the

keyword does not already exist, otherwise update

the value/comment if the keyword is already present

in the header.

74 CHAPTER 6. ADVANCED INTERFACE SUBROUTINES

1 simply append this keyword to the FITS header (CARD

is either a HISTORY or COMMENT keyword).

2 This is a FITS END record; it should not be written

to the FITS header because FITSIO automatically

appends the END record when the header is closed.

EXAMPLES: The following lines illustrate valid input template strings:

INTVAL 7 This is an integer keyword

RVAL 34.6 / This is a floating point keyword

EVAL=-12.45E-03 This is a floating point keyword in exponential notation

lval F This is a boolean keyword

This is a comment keyword with a blank keyword name

SVAL1 = ’Hello world’ / this is a string keyword

SVAL2 ’123.5’ this is also a string keyword

sval3 123+ / this is also a string keyword with the value ’123+ ’

the following template line deletes the DATE keyword

- DATE

the following template line modifies the NAME keyword to OBJECT

- NAME OBJECT

16 Parse the input string containing a list of rows or row ranges, and return integer arrays con-
taining the first and last row in each range. For example, if rowlist = ”3-5, 6, 8-9” then it will
return numranges = 3, rangemin = 3, 6, 8 and rangemax = 5, 6, 9. At most, ’maxranges’
number of ranges will be returned. ’maxrows’ is the maximum number of rows in the table;
any rows or ranges larger than this will be ignored. The rows must be specified in increasing
order, and the ranges must not overlap. A minus sign may be use to specify all the rows to
the upper or lower bound, so ”50-” means all the rows from 50 to the end of the table, and
”-” means all the rows in the table, from 1 - maxrows.

FTRWRG(rowlist, maxrows, maxranges, >

numranges, rangemin, rangemax, status)

Chapter 7

The CFITSIO Iterator Function

The fits iterate data function in CFITSIO provides a unique method of executing an arbitrary
user-supplied ‘work’ function that operates on rows of data in FITS tables or on pixels in FITS
images. Rather than explicitly reading and writing the FITS images or columns of data, one instead
calls the CFITSIO iterator routine, passing to it the name of the user’s work function that is to
be executed along with a list of all the table columns or image arrays that are to be passed to the
work function. The CFITSIO iterator function then does all the work of allocating memory for
the arrays, reading the input data from the FITS file, passing them to the work function, and then
writing any output data back to the FITS file after the work function exits. Because it is often
more efficient to process only a subset of the total table rows at one time, the iterator function
can determine the optimum amount of data to pass in each iteration and repeatedly call the work
function until the entire table been processed.

For many applications this single CFITSIO iterator function can effectively replace all the other
CFITSIO routines for reading or writing data in FITS images or tables. Using the iterator has
several important advantages over the traditional method of reading and writing FITS data files:

• It cleanly separates the data I/O from the routine that operates on the data. This leads to
a more modular and ‘object oriented’ programming style.

• It simplifies the application program by eliminating the need to allocate memory for the data
arrays and eliminates most of the calls to the CFITSIO routines that explicitly read and write
the data.

• It ensures that the data are processed as efficiently as possible. This is especially important
when processing tabular data since the iterator function will calculate the most efficient
number of rows in the table to be passed at one time to the user’s work function on each
iteration.

• Makes it possible for larger projects to develop a library of work functions that all have a
uniform calling sequence and are all independent of the details of the FITS file format.

There are basically 2 steps in using the CFITSIO iterator function. The first step is to design the
work function itself which must have a prescribed set of input parameters. One of these parameters

75

76 CHAPTER 7. THE CFITSIO ITERATOR FUNCTION

is a structure containing pointers to the arrays of data; the work function can perform any desired
operations on these arrays and does not need to worry about how the input data were read from
the file or how the output data get written back to the file.

The second step is to design the driver routine that opens all the necessary FITS files and initializes
the input parameters to the iterator function. The driver program calls the CFITSIO iterator
function which then reads the data and passes it to the user’s work function.

Further details on using the iterator function can be found in the companion CFITSIO User’s
Guide, and in the iter a.f, iter b.f and iter c.f example programs.

Chapter 8

Extended File Name Syntax

8.1 Overview

CFITSIO supports an extended syntax when specifying the name of the data file to be opened or
created that includes the following features:

• CFITSIO can read IRAF format images which have header file names that end with the
’.imh’ extension, as well as reading and writing FITS files, This feature is implemented in
CFITSIO by first converting the IRAF image into a temporary FITS format file in memory,
then opening the FITS file. Any of the usual CFITSIO routines then may be used to read
the image header or data. Similarly, raw binary data arrays can be read by converting them
on the fly into virtual FITS images.

• FITS files on the Internet can be read (and sometimes written) using the FTP, HTTP, or
ROOT protocols.

• FITS files can be piped between tasks on the stdin and stdout streams.

• FITS files can be read and written in shared memory. This can potentially achieve much better
data I/O performance compared to reading and writing the same FITS files on magnetic disk.

• Compressed FITS files in gzip or Unix COMPRESS format can be directly read.

• Output FITS files can be written directly in compressed gzip format, thus saving disk space.

• FITS table columns can be created, modified, or deleted ’on-the-fly’ as the table is opened by
CFITSIO. This creates a virtual FITS file containing the modifications that is then opened
by the application program.

• Table rows may be selected, or filtered out, on the fly when the table is opened by CFITSIO,
based on an arbitrary user-specified expression. Only rows for which the expression evaluates
to ’TRUE’ are retained in the copy of the table that is opened by the application program.

• Histogram images may be created on the fly by binning the values in table columns, resulting
in a virtual N-dimensional FITS image. The application program then only sees the FITS
image (in the primary array) instead of the original FITS table.

77

78 CHAPTER 8. EXTENDED FILE NAME SYNTAX

The latter 3 features in particular add very powerful data processing capabilities directly into
CFITSIO, and hence into every task that uses CFITSIO to read or write FITS files. For example,
these features transform a very simple program that just copies an input FITS file to a new output
file (like the ‘fitscopy’ program that is distributed with CFITSIO) into a multipurpose FITS file
processing tool. By appending fairly simple qualifiers onto the name of the input FITS file, the user
can perform quite complex table editing operations (e.g., create new columns, or filter out rows
in a table) or create FITS images by binning or histogramming the values in table columns. In
addition, these functions have been coded using new state-of-the art algorithms that are, in some
cases, 10 - 100 times faster than previous widely used implementations.

Before describing the complete syntax for the extended FITS file names in the next section, here
are a few examples of FITS file names that give a quick overview of the allowed syntax:

• ’myfile.fits’: the simplest case of a FITS file on disk in the current directory.

• ’myfile.imh’: opens an IRAF format image file and converts it on the fly into a temporary
FITS format image in memory which can then be read with any other CFITSIO routine.

• rawfile.dat[i512,512]: opens a raw binary data array (a 512 x 512 short integer array in
this case) and converts it on the fly into a temporary FITS format image in memory which
can then be read with any other CFITSIO routine.

• myfile.fits.gz: if this is the name of a new output file, the ’.gz’ suffix will cause it to be
compressed in gzip format when it is written to disk.

• ’myfile.fits.gz[events, 2]’: opens and uncompresses the gzipped file myfile.fits then
moves to the extension which has the keywords EXTNAME = ’EVENTS’ and EXTVER =
2.

• ’-’: a dash (minus sign) signifies that the input file is to be read from the stdin file stream,
or that the output file is to be written to the stdout stream.

• ’ftp://legacy.gsfc.nasa.gov/test/vela.fits’: FITS files in any ftp archive site on the
Internet may be directly opened with read-only access.

• ’http://legacy.gsfc.nasa.gov/software/test.fits’: any valid URL to a FITS file on
the Web may be opened with read-only access.

• ’root://legacy.gsfc.nasa.gov/test/vela.fits’: similar to ftp access except that it pro-
vides write as well as read access to the files across the network. This uses the root protocol
developed at CERN.

• ’shmem://h2[events]’: opens the FITS file in a shared memory segment and moves to the
EVENTS extension.

• ’mem://’: creates a scratch output file in core computer memory. The resulting ’file’ will
disappear when the program exits, so this is mainly useful for testing purposes when one does
not want a permanent copy of the output file.

• ’myfile.fits[3; Images(10)]’: opens a copy of the image contained in the 10th row of
the ’Images’ column in the binary table in the 3th extension of the FITS file. The application
just sees this single image as the primary array.

8.1. OVERVIEW 79

• ’myfile.fits[1:512:2, 1:512:2]’: opens a section of the input image ranging from the
1st to the 512th pixel in X and Y, and selects every second pixel in both dimensions, resulting
in a 256 x 256 pixel image in this case.

• ’myfile.fits[EVENTS][col Rad = sqrt(X**2 + Y**2)]’: creates and opens a temporary
file on the fly (in memory or on disk) that is identical to myfile.fits except that it will contain
a new column in the EVENTS extension called ’Rad’ whose value is computed using the
indicated expression which is a function of the values in the X and Y columns.

• ’myfile.fits[EVENTS][PHA > 5]’: creates and opens a temporary FITS files that is identi-
cal to ’myfile.fits’ except that the EVENTS table will only contain the rows that have values
of the PHA column greater than 5. In general, any arbitrary boolean expression using a C or
Fortran-like syntax, which may combine AND and OR operators, may be used to select rows
from a table.

• ’myfile.fits[EVENTS][bin (X,Y)=1,2048,4]’: creates a temporary FITS primary array
image which is computed on the fly by binning (i.e, computing the 2-dimensional histogram)
of the values in the X and Y columns of the EVENTS extension. In this case the X and Y
coordinates range from 1 to 2048 and the image pixel size is 4 units in both dimensions, so
the resulting image is 512 x 512 pixels in size.

• The final example combines many of these feature into one complex expression (it is broken
into several lines for clarity):

’ftp://legacy.gsfc.nasa.gov/data/sample.fits.gz[EVENTS]

[col phacorr = pha * 1.1 - 0.3][phacorr >= 5.0 && phacorr <= 14.0]

[bin (X,Y)=32]’

In this case, CFITSIO (1) copies and uncompresses the FITS file from the ftp site on the
legacy machine, (2) moves to the ’EVENTS’ extension, (3) calculates a new column called
’phacorr’, (4) selects the rows in the table that have phacorr in the range 5 to 14, and finally
(5) bins the remaining rows on the X and Y column coordinates, using a pixel size = 32 to
create a 2D image. All this processing is completely transparent to the application program,
which simply sees the final 2-D image in the primary array of the opened file.

The full extended CFITSIO FITS file name can contain several different components depending on
the context. These components are described in the following sections:

When creating a new file:

filetype://BaseFilename(templateName)

When opening an existing primary array or image HDU:

filetype://BaseFilename(outName)[HDUlocation][ImageSection]

When opening an existing table HDU:

filetype://BaseFilename(outName)[HDUlocation][colFilter][rowFilter][binSpec]

80 CHAPTER 8. EXTENDED FILE NAME SYNTAX

The filetype, BaseFilename, outName, HDUlocation, and ImageSection components, if present,
must be given in that order, but the colFilter, rowFilter, and binSpec specifiers may follow in any
order. Regardless of the order, however, the colFilter specifier, if present, will be processed first by
CFITSIO, followed by the rowFilter specifier, and finally by the binSpec specifier.

8.2 Filetype

The type of file determines the medium on which the file is located (e.g., disk or network) and,
hence, which internal device driver is used by CFITSIO to read and/or write the file. Currently
supported types are

file:// - file on local magnetic disk (default)

ftp:// - a readonly file accessed with the anonymous FTP protocol.

It also supports ftp://username:password@hostname/...

for accessing password-protected ftp sites.

http:// - a readonly file accessed with the HTTP protocol. It

supports username:password just like the ftp driver.

Proxy HTTP servers are supported using the http_proxy

environment variable (see following note).

stream:// - special driver to read an input FITS file from the stdin

stream, and/or write an output FITS file to the stdout

stream. This driver is fragile and has limited

functionality (see the following note).

gsiftp:// - access files on a computational grid using the gridftp

protocol in the Globus toolkit (see following note).

root:// - uses the CERN root protocol for writing as well as

reading files over the network.

shmem:// - opens or creates a file which persists in the computer’s

shared memory.

mem:// - opens a temporary file in core memory. The file

disappears when the program exits so this is mainly

useful for test purposes when a permanent output file

is not desired.

If the filetype is not specified, then type file:// is assumed. The double slashes ’//’ are optional
and may be omitted in most cases.

8.2.1 Notes about HTTP proxy servers

A proxy HTTP server may be used by defining the address (URL) and port number of the proxy
server with the http proxy environment variable. For example

setenv http_proxy http://heasarc.gsfc.nasa.gov:3128

8.2. FILETYPE 81

will cause CFITSIO to use port 3128 on the heasarc proxy server whenever reading a FITS file
with HTTP.

8.2.2 Notes about the stream filetype driver

The stream driver can be used to efficiently read a FITS file from the stdin file stream or write
a FITS to the stdout file stream. However, because these input and output streams must be
accessed sequentially, the FITS file reading or writing application must also read and write the file
sequentially, at least within the tolerances described below.

CFITSIO supports 2 different methods for accessing FITS files on the stdin and stdout streams.
The original method, which is invoked by specifying a dash character, ”-”, as the name of the file
when opening or creating it, works by storing a complete copy of the entire FITS file in memory.
In this case, when reading from stdin, CFITSIO will copy the entire stream into memory before
doing any processing of the file. Similarly, when writing to stdout, CFITSIO will create a copy of
the entire FITS file in memory, before finally flushing it out to the stdout stream when the FITS
file is closed. Buffering the entire FITS file in this way allows the application to randomly access
any part of the FITS file, in any order, but it also requires that the user have sufficient available
memory (or virtual memory) to store the entire file, which may not be possible in the case of very
large files.

The newer stream filetype provides a more memory-efficient method of accessing FITS files on the
stdin or stdout streams. Instead of storing a copy of the entire FITS file in memory, CFITSIO
only uses a set of internal buffer which by default can store 40 FITS blocks, or about 100K bytes
of the FITS file. The application program must process the FITS file sequentially from beginning
to end, within this 100K buffer. Generally speaking the application program must conform to the
following restrictions:

• The program must finish reading or writing the header keywords before reading or writing
any data in the HDU.

• The HDU can contain at most about 1400 header keywords. This is the maximum that can fit
in the nominal 40 FITS block buffer. In principle, this limit could be increased by recompiling
CFITSIO with a larger buffer limit, which is set by the NIOBUF parameter in fitsio2.h.

• The program must read or write the data in a sequential manner from the beginning to the
end of the HDU. Note that CFITSIO’s internal 100K buffer allows a little latitude in meeting
this requirement.

• The program cannot move back to a previous HDU in the FITS file.

• Reading or writing of variable length array columns in binary tables is not supported on
streams, because this requires moving back and forth between the fixed-length portion of the
binary table and the following heap area where the arrays are actually stored.

• Reading or writing of tile-compressed images is not supported on streams, because the images
are internally stored using variable length arrays.

82 CHAPTER 8. EXTENDED FILE NAME SYNTAX

8.2.3 Notes about the gsiftp filetype

DEPENDENCIES: Globus toolkit (2.4.3 or higher) (GT) should be installed. There are two dif-
ferent ways to install GT:

1) goto the globus toolkit web page www.globus.org and follow the download and compilation
instructions;

2) goto the Virtual Data Toolkit web page http://vdt.cs.wisc.edu/ and follow the instructions
(STRONGLY SUGGESTED);

Once a globus client has been installed in your system with a specific flavour it is possible to compile
and install the CFITSIO libraries. Specific configuration flags must be used:

1) –with-gsiftp[[=PATH]] Enable Globus Toolkit gsiftp protocol support PATH=GLOBUS LOCATION
i.e. the location of your globus installation

2) –with-gsiftp-flavour[[=PATH] defines the specific Globus flavour ex. gcc32

Both the flags must be used and it is mandatory to set both the PATH and the flavour.

USAGE: To access files on a gridftp server it is necessary to use a gsiftp prefix:

example: gsiftp://remote server fqhn/directory/filename

The gridftp driver uses a local buffer on a temporary file the file is located in the /tmp direc-
tory. If you have special permissions on /tmp or you do not have a /tmp directory, it is pos-
sible to force another location setting the GSIFTP TMPFILE environment variable (ex. export
GSIFTP TMPFILE=/your/location/yourtmpfile).

Grid FTP supports multi channel transfer. By default a single channel transmission is available.
However, it is possible to modify this behavior setting the GSIFTP STREAMS environment vari-
able (ex. export GSIFTP STREAMS=8).

8.2.4 Notes about the root filetype

The original rootd server can be obtained from: ftp://root.cern.ch/root/rootd.tar.gz but, for
it to work correctly with CFITSIO one has to use a modified version which supports a command
to return the length of the file. This modified version is available in rootd subdirectory in the
CFITSIO ftp area at

ftp://legacy.gsfc.nasa.gov/software/fitsio/c/root/rootd.tar.gz.

This small server is started either by inetd when a client requests a connection to a rootd server
or by hand (i.e. from the command line). The rootd server works with the ROOT TNetFile class.
It allows remote access to ROOT database files in either read or write mode. By default TNetFile
assumes port 432 (which requires rootd to be started as root). To run rootd via inetd add the
following line to /etc/services:

rootd 432/tcp

and to /etc/inetd.conf, add the following line:

8.2. FILETYPE 83

rootd stream tcp nowait root /user/rdm/root/bin/rootd rootd -i

Force inetd to reread its conf file with ”kill -HUP ¡pid inetd¿”. You can also start rootd by hand
running directly under your private account (no root system privileges needed). For example to
start rootd listening on port 5151 just type: rootd -p 5151 Notice: no & is needed. Rootd will
go into background by itself.

Rootd arguments:

-i says we were started by inetd

-p port# specifies a different port to listen on

-d level level of debug info written to syslog

0 = no debug (default)

1 = minimum

2 = medium

3 = maximum

Rootd can also be configured for anonymous usage (like anonymous ftp). To setup rootd to accept
anonymous logins do the following (while being logged in as root):

- Add the following line to /etc/passwd:

rootd:*:71:72:Anonymous rootd:/var/spool/rootd:/bin/false

where you may modify the uid, gid (71, 72) and the home directory

to suite your system.

- Add the following line to /etc/group:

rootd:*:72:rootd

where the gid must match the gid in /etc/passwd.

- Create the directories:

mkdir /var/spool/rootd

mkdir /var/spool/rootd/tmp

chmod 777 /var/spool/rootd/tmp

Where /var/spool/rootd must match the rootd home directory as

specified in the rootd /etc/passwd entry.

- To make writeable directories for anonymous do, for example:

mkdir /var/spool/rootd/pub

chown rootd:rootd /var/spool/rootd/pub

84 CHAPTER 8. EXTENDED FILE NAME SYNTAX

That’s all. Several additional remarks: you can login to an anonymous server either with the
names ”anonymous” or ”rootd”. The password should be of type user@host.do.main. Only the @
is enforced for the time being. In anonymous mode the top of the file tree is set to the rootd home
directory, therefore only files below the home directory can be accessed. Anonymous mode only
works when the server is started via inetd.

8.2.5 Notes about the shmem filetype:

Shared memory files are currently supported on most Unix platforms, where the shared memory
segments are managed by the operating system kernel and ‘live’ independently of processes. They
are not deleted (by default) when the process which created them terminates, although they will
disappear if the system is rebooted. Applications can create shared memory files in CFITSIO by
calling:

fit_create_file(&fitsfileptr, "shmem://h2", &status);

where the root ‘file’ names are currently restricted to be ’h0’, ’h1’, ’h2’, ’h3’, etc., up to a maximum
number defined by the the value of SHARED MAXSEG (equal to 16 by default). This is a prototype
implementation of the shared memory interface and a more robust interface, which will have fewer
restrictions on the number of files and on their names, may be developed in the future.

When opening an already existing FITS file in shared memory one calls the usual CFITSIO routine:

fits_open_file(&fitsfileptr, "shmem://h7", mode, &status)

The file mode can be READWRITE or READONLY just as with disk files. More than one process
can operate on READONLY mode files at the same time. CFITSIO supports proper file locking
(both in READONLY and READWRITE modes), so calls to fits open file may be locked out until
another other process closes the file.

When an application is finished accessing a FITS file in a shared memory segment, it may close it
(and the file will remain in the system) with fits close file, or delete it with fits delete file. Phys-
ical deletion is postponed until the last process calls ffclos/ffdelt. fits delete file tries to obtain a
READWRITE lock on the file to be deleted, thus it can be blocked if the object was not opened
in READWRITE mode.

A shared memory management utility program called ‘smem’, is included with the CFITSIO dis-
tribution. It can be built by typing ‘make smem’; then type ‘smem -h’ to get a list of valid options.
Executing smem without any options causes it to list all the shared memory segments currently
residing in the system and managed by the shared memory driver. To get a list of all the shared
memory objects, run the system utility program ‘ipcs [-a]’.

8.3 Base Filename

The base filename is the name of the file optionally including the director/subdirectory path, and
in the case of ‘ftp’, ‘http’, and ‘root’ filetypes, the machine identifier. Examples:

8.3. BASE FILENAME 85

myfile.fits

!data.fits

/data/myfile.fits

fits.gsfc.nasa.gov/ftp/sampledata/myfile.fits.gz

When creating a new output file on magnetic disk (of type file://) if the base filename begins with
an exclamation point (!) then any existing file with that same basename will be deleted prior to
creating the new FITS file. Otherwise if the file to be created already exists, then CFITSIO will
return an error and will not overwrite the existing file. Note that the exclamation point, ’ !’, is a
special UNIX character, so if it is used on the command line rather than entered at a task prompt,
it must be preceded by a backslash to force the UNIX shell to pass it verbatim to the application
program.

If the output disk file name ends with the suffix ’.gz’, then CFITSIO will compress the file using the
gzip compression algorithm before writing it to disk. This can reduce the amount of disk space used
by the file. Note that this feature requires that the uncompressed file be constructed in memory
before it is compressed and written to disk, so it can fail if there is insufficient available memory.

An input FITS file may be compressed with the gzip or Unix compress algorithms, in which
case CFITSIO will uncompress the file on the fly into a temporary file (in memory or on disk).
Compressed files may only be opened with read-only permission. When specifying the name of a
compressed FITS file it is not necessary to append the file suffix (e.g., ‘.gz’ or ‘.Z’). If CFITSIO
cannot find the input file name without the suffix, then it will automatically search for a compressed
file with the same root name. In the case of reading ftp and http type files, CFITSIO generally
looks for a compressed version of the file first, before trying to open the uncompressed file. By
default, CFITSIO copies (and uncompressed if necessary) the ftp or http FITS file into memory
on the local machine before opening it. This will fail if the local machine does not have enough
memory to hold the whole FITS file, so in this case, the output filename specifier (see the next
section) can be used to further control how CFITSIO reads ftp and http files.

If the input file is an IRAF image file (*.imh file) then CFITSIO will automatically convert it on
the fly into a virtual FITS image before it is opened by the application program. IRAF images can
only be opened with READONLY file access.

Similarly, if the input file is a raw binary data array, then CFITSIO will convert it on the fly into
a virtual FITS image with the basic set of required header keywords before it is opened by the
application program (with READONLY access). In this case the data type and dimensions of the
image must be specified in square brackets following the filename (e.g. rawfile.dat[ib512,512]). The
first character (case insensitive) defines the datatype of the array:

b 8-bit unsigned byte

i 16-bit signed integer

u 16-bit unsigned integer

j 32-bit signed integer

r or f 32-bit floating point

d 64-bit floating point

An optional second character specifies the byte order of the array values: b or B indicates big
endian (as in FITS files and the native format of SUN UNIX workstations and Mac PCs) and

86 CHAPTER 8. EXTENDED FILE NAME SYNTAX

l or L indicates little endian (native format of DEC OSF workstations and IBM PCs). If this
character is omitted then the array is assumed to have the native byte order of the local machine.
These datatype characters are then followed by a series of one or more integer values separated by
commas which define the size of each dimension of the raw array. Arrays with up to 5 dimensions
are currently supported. Finally, a byte offset to the position of the first pixel in the data file may
be specified by separating it with a ’:’ from the last dimension value. If omitted, it is assumed that
the offset = 0. This parameter may be used to skip over any header information in the file that
precedes the binary data. Further examples:

raw.dat[b10000] 1-dimensional 10000 pixel byte array

raw.dat[rb400,400,12] 3-dimensional floating point big-endian array

img.fits[ib512,512:2880] reads the 512 x 512 short integer array in

a FITS file, skipping over the 2880 byte header

One special case of input file is where the filename = ‘-’ (a dash or minus sign) or ’stdin’ or ’stdout’,
which signifies that the input file is to be read from the stdin stream, or written to the stdout stream
if a new output file is being created. In the case of reading from stdin, CFITSIO first copies the
whole stream into a temporary FITS file (in memory or on disk), and subsequent reading of the
FITS file occurs in this copy. When writing to stdout, CFITSIO first constructs the whole file in
memory (since random access is required), then flushes it out to the stdout stream when the file
is closed. In addition, if the output filename = ’-.gz’ or ’stdout.gz’ then it will be gzip compressed
before being written to stdout.

This ability to read and write on the stdin and stdout steams allows FITS files to be piped between
tasks in memory rather than having to create temporary intermediate FITS files on disk. For
example if task1 creates an output FITS file, and task2 reads an input FITS file, the FITS file may
be piped between the 2 tasks by specifying

task1 - | task2 -

where the vertical bar is the Unix piping symbol. This assumes that the 2 tasks read the name of
the FITS file off of the command line.

8.4 Output File Name when Opening an Existing File

An optional output filename may be specified in parentheses immediately following the base file
name to be opened. This is mainly useful in those cases where CFITSIO creates a temporary copy
of the input FITS file before it is opened and passed to the application program. This happens by
default when opening a network FTP or HTTP-type file, when reading a compressed FITS file on
a local disk, when reading from the stdin stream, or when a column filter, row filter, or binning
specifier is included as part of the input file specification. By default this temporary file is created
in memory. If there is not enough memory to create the file copy, then CFITSIO will exit with an
error. In these cases one can force a permanent file to be created on disk, instead of a temporary
file in memory, by supplying the name in parentheses immediately following the base file name.
The output filename can include the ’ !’ clobber flag.

8.4. OUTPUT FILE NAME WHEN OPENING AN EXISTING FILE 87

Thus, if the input filename to CFITSIO is: file1.fits.gz(file2.fits) then CFITSIO will
uncompress ‘file1.fits.gz’ into the local disk file ‘file2.fits’ before opening it. CFITSIO does not
automatically delete the output file, so it will still exist after the application program exits.

In some cases, several different temporary FITS files will be created in sequence, for instance, if
one opens a remote file using FTP, then filters rows in a binary table extension, then create an
image by binning a pair of columns. In this case, the remote file will be copied to a temporary
local file, then a second temporary file will be created containing the filtered rows of the table,
and finally a third temporary file containing the binned image will be created. In cases like this
where multiple files are created, the outfile specifier will be interpreted the name of the final file as
described below, in descending priority:

• as the name of the final image file if an image within a single binary table cell is opened or if
an image is created by binning a table column.

• as the name of the file containing the filtered table if a column filter and/or a row filter are
specified.

• as the name of the local copy of the remote FTP or HTTP file.

• as the name of the uncompressed version of the FITS file, if a compressed FITS file on local
disk has been opened.

• otherwise, the output filename is ignored.

The output file specifier is useful when reading FTP or HTTP-type FITS files since it can be used
to create a local disk copy of the file that can be reused in the future. If the output file name =
‘*’ then a local file with the same name as the network file will be created. Note that CFITSIO
will behave differently depending on whether the remote file is compressed or not as shown by the
following examples:

• ‘ftp://remote.machine/tmp/myfile.fits.gz(*)’ - the remote compressed file is copied to the
local compressed file ‘myfile.fits.gz’, which is then uncompressed in local memory before being
opened and passed to the application program.

• ‘ftp://remote.machine/tmp/myfile.fits.gz(myfile.fits)’ - the remote compressed file is copied
and uncompressed into the local file ‘myfile.fits’. This example requires less local memory
than the previous example since the file is uncompressed on disk instead of in memory.

• ‘ftp://remote.machine/tmp/myfile.fits(myfile.fits.gz)’ - this will usually produce an error since
CFITSIO itself cannot compress files.

The exact behavior of CFITSIO in the latter case depends on the type of ftp server running on
the remote machine and how it is configured. In some cases, if the file ‘myfile.fits.gz’ exists on the
remote machine, then the server will copy it to the local machine. In other cases the ftp server
will automatically create and transmit a compressed version of the file if only the uncompressed
version exists. This can get rather confusing, so users should use a certain amount of caution when
using the output file specifier with FTP or HTTP file types, to make sure they get the behavior
that they expect.

88 CHAPTER 8. EXTENDED FILE NAME SYNTAX

8.5 Template File Name when Creating a New File

When a new FITS file is created with a call to fits create file, the name of a template file may
be supplied in parentheses immediately following the name of the new file to be created. This
template is used to define the structure of one or more HDUs in the new file. The template file may
be another FITS file, in which case the newly created file will have exactly the same keywords in
each HDU as in the template FITS file, but all the data units will be filled with zeros. The template
file may also be an ASCII text file, where each line (in general) describes one FITS keyword record.
The format of the ASCII template file is described below.

8.6 Image Tile-Compression Specification

When specifying the name of the output FITS file to be created, the user can indicate that images
should be written in tile-compressed format (see section 5.5, “Primary Array or IMAGE Extension
I/O Routines”) by enclosing the compression parameters in square brackets following the root disk
file name. Here are some examples of the syntax for specifying tile-compressed output images:

myfile.fit[compress] - use Rice algorithm and default tile size

myfile.fit[compress GZIP] - use the specified compression algorithm;

myfile.fit[compress Rice] only the first letter of the algorithm

myfile.fit[compress PLIO] name is required.

myfile.fit[compress Rice 100,100] - use 100 x 100 pixel tile size

myfile.fit[compress Rice 100,100;2] - as above, and use noisebits = 2

8.7 HDU Location Specification

The optional HDU location specifier defines which HDU (Header-Data Unit, also known as an
‘extension’) within the FITS file to initially open. It must immediately follow the base file name
(or the output file name if present). If it is not specified then the first HDU (the primary array)
is opened. The HDU location specifier is required if the colFilter, rowFilter, or binSpec specifiers
are present, because the primary array is not a valid HDU for these operations. The HDU may be
specified either by absolute position number, starting with 0 for the primary array, or by reference
to the HDU name, and optionally, the version number and the HDU type of the desired extension.
The location of an image within a single cell of a binary table may also be specified, as described
below.

The absolute position of the extension is specified either by enclosed the number in square brackets
(e.g., ‘[1]’ = the first extension following the primary array) or by preceded the number with a plus
sign (‘+1’). To specify the HDU by name, give the name of the desired HDU (the value of the
EXTNAME or HDUNAME keyword) and optionally the extension version number (value of the
EXTVER keyword) and the extension type (value of the XTENSION keyword: IMAGE, ASCII or
TABLE, or BINTABLE), separated by commas and all enclosed in square brackets. If the value

8.8. IMAGE SECTION 89

of EXTVER and XTENSION are not specified, then the first extension with the correct value of
EXTNAME is opened. The extension name and type are not case sensitive, and the extension
type may be abbreviated to a single letter (e.g., I = IMAGE extension or primary array, A or T =
ASCII table extension, and B = binary table BINTABLE extension). If the HDU location specifier
is equal to ‘[PRIMARY]’ or ‘[P]’, then the primary array (the first HDU) will be opened.

FITS images are most commonly stored in the primary array or an image extension, but images
can also be stored as a vector in a single cell of a binary table (i.e. each row of the vector column
contains a different image). Such an image can be opened with CFITSIO by specifying the desired
column name and the row number after the binary table HDU specifier as shown in the following
examples. The column name is separated from the HDU specifier by a semicolon and the row
number is enclosed in parentheses. In this case CFITSIO copies the image from the table cell into
a temporary primary array before it is opened. The application program then just sees the image
in the primary array, without any extensions. The particular row to be opened may be specified
either by giving an absolute integer row number (starting with 1 for the first row), or by specifying
a boolean expression that evaluates to TRUE for the desired row. The first row that satisfies the
expression will be used. The row selection expression has the same syntax as described in the Row
Filter Specifier section, below.

Examples:

myfile.fits[3] - open the 3rd HDU following the primary array

myfile.fits+3 - same as above, but using the FTOOLS-style notation

myfile.fits[EVENTS] - open the extension that has EXTNAME = ’EVENTS’

myfile.fits[EVENTS, 2] - same as above, but also requires EXTVER = 2

myfile.fits[events,2,b] - same, but also requires XTENSION = ’BINTABLE’

myfile.fits[3; images(17)] - opens the image in row 17 of the ’images’

column in the 3rd extension of the file.

myfile.fits[3; images(exposure > 100)] - as above, but opens the image

in the first row that has an ’exposure’ column value

greater than 100.

8.8 Image Section

A virtual file containing a rectangular subsection of an image can be extracted and opened by
specifying the range of pixels (start:end) along each axis to be extracted from the original image.
One can also specify an optional pixel increment (start:end:step) for each axis of the input image.
A pixel step = 1 will be assumed if it is not specified. If the start pixel is larger then the end pixel,
then the image will be flipped (producing a mirror image) along that dimension. An asterisk, ’*’,
may be used to specify the entire range of an axis, and ’-*’ will flip the entire axis. The input
image can be in the primary array, in an image extension, or contained in a vector cell of a binary
table. In the later 2 cases the extension name or number must be specified before the image section
specifier.

Examples:

myfile.fits[1:512:2, 2:512:2] - open a 256x256 pixel image

90 CHAPTER 8. EXTENDED FILE NAME SYNTAX

consisting of the odd numbered columns (1st axis) and

the even numbered rows (2nd axis) of the image in the

primary array of the file.

myfile.fits[*, 512:256] - open an image consisting of all the columns

in the input image, but only rows 256 through 512.

The image will be flipped along the 2nd axis since

the starting pixel is greater than the ending pixel.

myfile.fits[*:2, 512:256:2] - same as above but keeping only

every other row and column in the input image.

myfile.fits[-*, *] - copy the entire image, flipping it along

the first axis.

myfile.fits[3][1:256,1:256] - opens a subsection of the image that

is in the 3rd extension of the file.

myfile.fits[4; images(12)][1:10,1:10] - open an image consisting

of the first 10 pixels in both dimensions. The original

image resides in the 12th row of the ’images’ vector

column in the table in the 4th extension of the file.

When CFITSIO opens an image section it first creates a temporary file containing the image section
plus a copy of any other HDUs in the file. This temporary file is then opened by the application
program, so it is not possible to write to or modify the input file when specifying an image section.
Note that CFITSIO automatically updates the world coordinate system keywords in the header
of the image section, if they exist, so that the coordinate associated with each pixel in the image
section will be computed correctly.

8.9 Image Transform Filters

CFITSIO can apply a user-specified mathematical function to the value of every pixel in a FITS
image, thus creating a new virtual image in computer memory that is then opened and read by the
application program. The original FITS image is not modified by this process.

The image transformation specifier is appended to the input FITS file name and is enclosed in square
brackets. It begins with the letters ’PIX’ to distinguish it from other types of FITS file filters that
are recognized by CFITSIO. The image transforming function may use any of the mathematical
operators listed in the following ’Row Filtering Specification’ section of this document. Some
examples of image transform filters are:

[pix X * 2.0] - multiply each pixel by 2.0

[pix sqrt(X)] - take the square root of each pixel

[pix X + #ZEROPT - add the value of the ZEROPT keyword

8.9. IMAGE TRANSFORM FILTERS 91

[pix X>0 ? log10(X) : -99.] - if the pixel value is greater

than 0, compute the base 10 log,

else set the pixel = -99.

Use the letter ’X’ in the expression to represent the current pixel value in the image. The expression
is evaluated independently for each pixel in the image and may be a function of 1) the original
pixel value, 2) the value of other pixels in the image at a given relative offset from the position of
the pixel that is being evaluated, and 3) the value of any header keywords. Header keyword values
are represented by the name of the keyword preceded by the ’#’ sign.

To access the the value of adjacent pixels in the image, specify the (1-D) offset from the current
pixel in curly brackets. For example

[pix (x{-1} + x + x{+1}) / 3]

will replace each pixel value with the running mean of the values of that pixel and it’s 2 neighboring
pixels. Note that in this notation the image is treated as a 1-D array, where each row of the image
(or higher dimensional cube) is appended one after another in one long array of pixels. It is possible
to refer to pixels in the rows above or below the current pixel by using the value of the NAXIS1
header keyword. For example

[pix (x{-#NAXIS1} + x + x{#NAXIS1}) / 3]

will compute the mean of each image pixel and the pixels immediately above and below it in the
adjacent rows of the image. The following more complex example creates a smoothed virtual image
where each pixel is a 3 x 3 boxcar average of the input image pixels:

[pix (X + X{-1} + X{+1}

+ X{-#NAXIS1} + X{-#NAXIS1 - 1} + X{-#NAXIS1 + 1}

+ X{#NAXIS1} + X{#NAXIS1 - 1} + X{#NAXIS1 + 1}) / 9.]

If the pixel offset extends beyond the first or last pixel in the image, the function will evaluate to
undefined, or NULL.

For complex or commonly used image filtering operations, one can write the expression into an
external text file and then import it into the filter using the syntax ’[pix @filename.txt]’. The
mathematical expression can extend over multiple lines of text in the file. Any lines in the external
text file that begin with 2 slash characters (’//’) will be ignored and may be used to add comments
into the file.

By default, the datatype of the resulting image will be the same as the original image, but one may
force a different datatype by appended a code letter to the ’pix’ keyword:

pixb - 8-bit byte image with BITPIX = 8

pixi - 16-bit integer image with BITPIX = 16

pixj - 32-bit integer image with BITPIX = 32

pixr - 32-bit float image with BITPIX = -32

pixd - 64-bit float image with BITPIX = -64

92 CHAPTER 8. EXTENDED FILE NAME SYNTAX

Also by default, any other HDUs in the input file will be copied without change to the output virtual
FITS file, but one may discard the other HDUs by adding the number ’1’ to the ’pix’ keyword (and
following any optional datatype code letter). For example:

myfile.fits[3][pixr1 sqrt(X)]

will create a virtual FITS file containing only a primary array image with 32-bit floating point pixels
that have a value equal to the square root of the pixels in the image that is in the 3rd extension of
the ’myfile.fits’ file.

8.10 Column and Keyword Filtering Specification

The optional column/keyword filtering specifier is used to modify the column structure and/or the
header keywords in the HDU that was selected with the previous HDU location specifier. This
filtering specifier must be enclosed in square brackets and can be distinguished from a general
row filter specifier (described below) by the fact that it begins with the string ’col ’ and is not
immediately followed by an equals sign. The original file is not changed by this filtering operation,
and instead the modifications are made on a copy of the input FITS file (usually in memory),
which also contains a copy of all the other HDUs in the file. This temporary file is passed to the
application program and will persist only until the file is closed or until the program exits, unless
the outfile specifier (see above) is also supplied.

The column/keyword filter can be used to perform the following operations. More than one oper-
ation may be specified by separating them with semi-colons.

• Copy only a specified list of columns columns to the filtered input file. The list of column
name should be separated by semi-colons. Wild card characters may be used in the column
names to match multiple columns. If the expression contains both a list of columns to be
included and columns to be deleted, then all the columns in the original table except the
explicitly deleted columns will appear in the filtered table (i.e., there is no need to explicitly
list the columns to be included if any columns are being deleted).

• Delete a column or keyword by listing the name preceded by a minus sign or an exclamation
mark (!), e.g., ’-TIME’ will delete the TIME column if it exists, otherwise the TIME keyword.
An error is returned if neither a column nor keyword with this name exists. Note that the
exclamation point, ’ !’, is a special UNIX character, so if it is used on the command line rather
than entered at a task prompt, it must be preceded by a backslash to force the UNIX shell
to ignore it.

• Rename an existing column or keyword with the syntax ’NewName == OldName’. An error
is returned if neither a column nor keyword with this name exists.

• Append a new column or keyword to the table. To create a column, give the new name,
optionally followed by the datatype in parentheses, followed by a single equals sign and an
expression to be used to compute the value (e.g., ’newcol(1J) = 0’ will create a new 32-bit
integer column called ’newcol’ filled with zeros). The datatype is specified using the same

8.10. COLUMN AND KEYWORD FILTERING SPECIFICATION 93

syntax that is allowed for the value of the FITS TFORMn keyword (e.g., ’I’, ’J’, ’E’, ’D’, etc.
for binary tables, and ’I8’, F12.3’, ’E20.12’, etc. for ASCII tables). If the datatype is not
specified then an appropriate datatype will be chosen depending on the form of the expression
(may be a character string, logical, bit, long integer, or double column). An appropriate vector
count (in the case of binary tables) will also be added if not explicitly specified.

When creating a new keyword, the keyword name must be preceded by a pound sign ’#’, and
the expression must evaluate to a scalar (i.e., cannot have a column name in the expression).
The comment string for the keyword may be specified in parentheses immediately following
the keyword name (instead of supplying a datatype as in the case of creating a new column).
If the keyword name ends with a pound sign ’#’, then cfitsio will substitute the number of the
most recently referenced column for the # character . This is especially useful when writing
a column-related keyword like TUNITn for a newly created column, as shown in the following
examples.

• Recompute (overwrite) the values in an existing column or keyword by giving the name
followed by an equals sign and an arithmetic expression.

The expression that is used when appending or recomputing columns or keywords can be arbitrarily
complex and may be a function of other header keyword values and other columns (in the same
row). The full syntax and available functions for the expression are described below in the row
filter specification section.

If the expression contains both a list of columns to be included and columns to be deleted, then all
the columns in the original table except the explicitly deleted columns will appear in the filtered
table. If no columns to be deleted are specified, then only the columns that are explicitly listed will
be included in the filtered output table. To include all the columns, add the ’*’ wildcard specifier
at the end of the list, as shown in the examples.

For complex or commonly used operations, one can also place the operations into an external text
file and import it into the column filter using the syntax ’[col @filename.txt]’. The operations can
extend over multiple lines of the file, but multiple operations must still be separated by semicolons.
Any lines in the external text file that begin with 2 slash characters (’//’) will be ignored and may
be used to add comments into the file.

Examples:

[col Time;rate] - only the Time and rate columns will

appear in the filtered input file.

[col Time;*raw] - include the Time column and any other

columns whose name ends with ’raw’.

[col -TIME; Good == STATUS] - deletes the TIME column and

renames the status column to ’Good’

[col PI=PHA * 1.1 + 0.2; #TUNIT#(column units) = ’counts’;*]

- creates new PI column from PHA values

and also writes the TUNITn keyword

94 CHAPTER 8. EXTENDED FILE NAME SYNTAX

for the new column. The final ’*’

expression means preserve all the

columns in the input table in the

virtual output table; without the ’*’

the output table would only contain

the single ’PI’ column.

[col rate = rate/exposure; TUNIT#(&) = ’counts/s’;*]

- recomputes the rate column by dividing

it by the EXPOSURE keyword value. This

also modifies the value of the TUNITn

keyword for this column. The use of the

’&’ character for the keyword comment

string means preserve the existing

comment string for that keyword. The

final ’*’ preserves all the columns

in the input table in the virtual

output table.

8.11 Row Filtering Specification

When entering the name of a FITS table that is to be opened by a program, an optional row filter
may be specified to select a subset of the rows in the table. A temporary new FITS file is created
on the fly which contains only those rows for which the row filter expression evaluates to true. (The
primary array and any other extensions in the input file are also copied to the temporary file). The
original FITS file is closed and the new virtual file is opened by the application program. The row
filter expression is enclosed in square brackets following the file name and extension name (e.g.,
’file.fits[events][GRADE==50]’ selects only those rows where the GRADE column value equals 50).
When dealing with tables where each row has an associated time and/or 2D spatial position, the
row filter expression can also be used to select rows based on the times in a Good Time Intervals
(GTI) extension, or on spatial position as given in a SAO-style region file.

8.11.1 General Syntax

The row filtering expression can be an arbitrarily complex series of operations performed on con-
stants, keyword values, and column data taken from the specified FITS TABLE extension. The
expression must evaluate to a boolean value for each row of the table, where a value of FALSE
means that the row will be excluded.

For complex or commonly used filters, one can place the expression into a text file and import it
into the row filter using the syntax ’[@filename.txt]’. The expression can be arbitrarily complex
and extend over multiple lines of the file. Any lines in the external text file that begin with 2 slash
characters (’//’) will be ignored and may be used to add comments into the file.

Keyword and column data are referenced by name. Any string of characters not surrounded by
quotes (ie, a constant string) or followed by an open parentheses (ie, a function name) will be

8.11. ROW FILTERING SPECIFICATION 95

initially interpreted as a column name and its contents for the current row inserted into the ex-
pression. If no such column exists, a keyword of that name will be searched for and its value used,
if found. To force the name to be interpreted as a keyword (in case there is both a column and
keyword with the same name), precede the keyword name with a single pound sign, ’#’, as in
’#NAXIS2’. Due to the generalities of FITS column and keyword names, if the column or keyword
name contains a space or a character which might appear as an arithmetic term then enclose the
name in ’$’ characters as in $MAX PHA$ or #$MAX-PHA$. Names are case insensitive.

To access a table entry in a row other than the current one, follow the column’s name with a row
offset within curly braces. For example, ’PHA{-3}’ will evaluate to the value of column PHA, 3
rows above the row currently being processed. One cannot specify an absolute row number, only a
relative offset. Rows that fall outside the table will be treated as undefined, or NULLs.

Boolean operators can be used in the expression in either their Fortran or C forms. The following
boolean operators are available:

"equal" .eq. .EQ. == "not equal" .ne. .NE. !=

"less than" .lt. .LT. < "less than/equal" .le. .LE. <= =<

"greater than" .gt. .GT. > "greater than/equal" .ge. .GE. >= =>

"or" .or. .OR. || "and" .and. .AND. &&

"negation" .not. .NOT. ! "approx. equal(1e-7)" ~

Note that the exclamation point, ’ !’, is a special UNIX character, so if it is used on the command
line rather than entered at a task prompt, it must be preceded by a backslash to force the UNIX
shell to ignore it.

The expression may also include arithmetic operators and functions. Trigonometric functions use
radians, not degrees. The following arithmetic operators and functions can be used in the expression
(function names are case insensitive). A null value will be returned in case of illegal operations
such as divide by zero, sqrt(negative) log(negative), log10(negative), arccos(.gt. 1), arcsin(.gt. 1).

"addition" + "subtraction" -

"multiplication" * "division" /

"negation" - "exponentiation" ** ^

"absolute value" abs(x) "cosine" cos(x)

"sine" sin(x) "tangent" tan(x)

"arc cosine" arccos(x) "arc sine" arcsin(x)

"arc tangent" arctan(x) "arc tangent" arctan2(y,x)

"hyperbolic cos" cosh(x) "hyperbolic sin" sinh(x)

"hyperbolic tan" tanh(x) "round to nearest int" round(x)

"round down to int" floor(x) "round up to int" ceil(x)

"exponential" exp(x) "square root" sqrt(x)

"natural log" log(x) "common log" log10(x)

"modulus" x % y "random # [0.0,1.0)" random()

"random Gaussian" randomn() "random Poisson" randomp(x)

"minimum" min(x,y) "maximum" max(x,y)

"cumulative sum" accum(x) "sequential difference" seqdiff(x)

"if-then-else" b?x:y

96 CHAPTER 8. EXTENDED FILE NAME SYNTAX

"angular separation" angsep(ra1,dec1,ra2,de2) (all in degrees)

"substring" strmid(s,p,n) "string search" strstr(s,r)

Three different random number functions are provided: random(), with no arguments, produces a
uniform random deviate between 0 and 1; randomn(), also with no arguments, produces a normal
(Gaussian) random deviate with zero mean and unit standard deviation; randomp(x) produces a
Poisson random deviate whose expected number of counts is X. X may be any positive real number
of expected counts, including fractional values, but the return value is an integer.

When the random functions are used in a vector expression, by default the same random value will
be used when evaluating each element of the vector. If different random numbers are desired, then
the name of a vector column should be supplied as the single argument to the random function
(e.g., ”flux + 0.1 * random(flux)”, where ”flux’ is the name of a vector column). This will create a
vector of random numbers that will be used in sequence when evaluating each element of the vector
expression.

An alternate syntax for the min and max functions has only a single argument which should be a
vector value (see below). The result will be the minimum/maximum element contained within the
vector.

The accum(x) function forms the cumulative sum of x, element by element. Vector columns are
supported simply by performing the summation process through all the values. Null values are
treated as 0. The seqdiff(x) function forms the sequential difference of x, element by element. The
first value of seqdiff is the first value of x. A single null value in x causes a pair of nulls in the
output. The seqdiff and accum functions are functional inverses, i.e., seqdiff(accum(x)) == x as
long as no null values are present.

In the if-then-else expression, ”b?x:y”, b is an explicit boolean value or expression. There is no
automatic type conversion from numeric to boolean values, so one needs to use ”iVal!=0” instead
of merely ”iVal” as the boolean argument. x and y can be any scalar data type (including string).

The angsep function computes the angular separation in degrees between 2 celestial positions, where
the first 2 parameters give the RA-like and Dec-like coordinates (in decimal degrees) of the first
position, and the 3rd and 4th parameters give the coordinates of the second position.

The substring function strmid(S,P,N) extracts a substring from S, starting at string position P,
with a substring length N. The first character position in S is labeled as 1. If P is 0, or refers to
a position beyond the end of S, then the extracted substring will be NULL. S, P, and N may be
functions of other columns.

The string search function strstr(S,R) searches for the first occurrence of the substring R in S.
The result is an integer, indicating the character position of the first match (where 1 is the first
character position of S). If no match is found, then strstr() returns a NULL value.

The following type casting operators are available, where the enclosing parentheses are required
and taken from the C language usage. Also, the integer to real casts values to double precision:

"real to integer" (int) x (INT) x

"integer to real" (float) i (FLOAT) i

In addition, several constants are built in for use in numerical expressions:

8.11. ROW FILTERING SPECIFICATION 97

#pi 3.1415... #e 2.7182...

#deg #pi/180 #row current row number

#null undefined value #snull undefined string

A string constant must be enclosed in quotes as in ’Crab’. The ”null” constants are useful for
conditionally setting table values to a NULL, or undefined, value (eg., ”col1==-99 ? #NULL :
col1”).

There is also a function for testing if two values are close to each other, i.e., if they are ”near” each
other to within a user specified tolerance. The arguments, value 1 and value 2 can be integer or real
and represent the two values who’s proximity is being tested to be within the specified tolerance,
also an integer or real:

near(value_1, value_2, tolerance)

When a NULL, or undefined, value is encountered in the FITS table, the expression will evaluate to
NULL unless the undefined value is not actually required for evaluation, e.g. ”TRUE .or. NULL”
evaluates to TRUE. The following two functions allow some NULL detection and handling:

"a null value?" ISNULL(x)

"define a value for null" DEFNULL(x,y)

The former returns a boolean value of TRUE if the argument x is NULL. The later ”defines” a
value to be substituted for NULL values; it returns the value of x if x is not NULL, otherwise it
returns the value of y.

8.11.2 Bit Masks

Bit masks can be used to select out rows from bit columns (TFORMn = #X) in FITS files. To
represent the mask, binary, octal, and hex formats are allowed:

binary: b0110xx1010000101xxxx0001

octal: o720x1 -> (b111010000xxx001)

hex: h0FxD -> (b00001111xxxx1101)

In all the representations, an x or X is allowed in the mask as a wild card. Note that the x represents
a different number of wild card bits in each representation. All representations are case insensitive.

To construct the boolean expression using the mask as the boolean equal operator described above
on a bit table column. For example, if you had a 7 bit column named flags in a FITS table and
wanted all rows having the bit pattern 0010011, the selection expression would be:

flags == b0010011

or

flags .eq. b10011

98 CHAPTER 8. EXTENDED FILE NAME SYNTAX

It is also possible to test if a range of bits is less than, less than equal, greater than and greater
than equal to a particular boolean value:

flags <= bxxx010xx

flags .gt. bxxx100xx

flags .le. b1xxxxxxx

Notice the use of the x bit value to limit the range of bits being compared.

It is not necessary to specify the leading (most significant) zero (0) bits in the mask, as shown in
the second expression above.

Bit wise AND, OR and NOT operations are also possible on two or more bit fields using the
’&’(AND), ’|’(OR), and the ’ !’(NOT) operators. All of these operators result in a bit field which
can then be used with the equal operator. For example:

(!flags) == b1101100

(flags & b1000001) == bx000001

Bit fields can be appended as well using the ’+’ operator. Strings can be concatenated this way,
too.

8.11.3 Vector Columns

Vector columns can also be used in building the expression. No special syntax is required if one
wants to operate on all elements of the vector. Simply use the column name as for a scalar
column. Vector columns can be freely intermixed with scalar columns or constants in virtually all
expressions. The result will be of the same dimension as the vector. Two vectors in an expression,
though, need to have the same number of elements and have the same dimensions. The only places
a vector column cannot be used (for now, anyway) are the SAO region functions and the NEAR
boolean function.

Arithmetic and logical operations are all performed on an element by element basis. Comparing two
vector columns, eg ”COL1 == COL2”, thus results in another vector of boolean values indicating
which elements of the two vectors are equal.

Eight functions are available that operate on a vector and return a scalar result:

"minimum" MIN(V) "maximum" MAX(V)

"average" AVERAGE(V) "median" MEDIAN(V)

"summation" SUM(V) "standard deviation" STDDEV(V)

"# of values" NELEM(V) "# of non-null values" NVALID(V)

where V represents the name of a vector column or a manually constructed vector using curly
brackets as described below. The first 6 of these functions ignore any null values in the vector when
computing the result. The STDDEV() function computes the sample standard deviation, i.e. it is
proportional to 1/SQRT(N-1) instead of 1/SQRT(N), where N is NVALID(V).

8.11. ROW FILTERING SPECIFICATION 99

The SUM function literally sums all the elements in x, returning a scalar value. If x is a boolean
vector, SUM returns the number of TRUE elements. The NELEM function returns the number
of elements in vector x whereas NVALID return the number of non-null elements in the vector.
(NELEM also operates on bit and string columns, returning their column widths.) As an example,
to test whether all elements of two vectors satisfy a given logical comparison, one can use the
expression

SUM(COL1 > COL2) == NELEM(COL1)

which will return TRUE if all elements of COL1 are greater than their corresponding elements in
COL2.

To specify a single element of a vector, give the column name followed by a comma-separated list
of coordinates enclosed in square brackets. For example, if a vector column named PHAS exists in
the table as a one dimensional, 256 component list of numbers from which you wanted to select the
57th component for use in the expression, then PHAS[57] would do the trick. Higher dimensional
arrays of data may appear in a column. But in order to interpret them, the TDIMn keyword
must appear in the header. Assuming that a (4,4,4,4) array is packed into each row of a column
named ARRAY4D, the (1,2,3,4) component element of each row is accessed by ARRAY4D[1,2,3,4].
Arrays up to dimension 5 are currently supported. Each vector index can itself be an expression,
although it must evaluate to an integer value within the bounds of the vector. Vector columns
which contain spaces or arithmetic operators must have their names enclosed in ”$” characters as
with $ARRAY-4D$[1,2,3,4].

A more C-like syntax for specifying vector indices is also available. The element used in the
preceding example alternatively could be specified with the syntax ARRAY4D[4][3][2][1]. Note the
reverse order of indices (as in C), as well as the fact that the values are still ones-based (as in
Fortran – adopted to avoid ambiguity for 1D vectors). With this syntax, one does not need to
specify all of the indices. To extract a 3D slice of this 4D array, use ARRAY4D[4].

Variable-length vector columns are not supported.

Vectors can be manually constructed within the expression using a comma-separated list of elements
surrounded by curly braces (’{}’). For example, ’{1,3,6,1}’ is a 4-element vector containing the
values 1, 3, 6, and 1. The vector can contain only boolean, integer, and real values (or expressions).
The elements will be promoted to the highest datatype present. Any elements which are themselves
vectors, will be expanded out with each of its elements becoming an element in the constructed
vector.

8.11.4 Good Time Interval Filtering

A common filtering method involves selecting rows which have a time value which lies within
what is called a Good Time Interval or GTI. The time intervals are defined in a separate FITS
table extension which contains 2 columns giving the start and stop time of each good interval.
The filtering operation accepts only those rows of the input table which have an associated time
which falls within one of the time intervals defined in the GTI extension. A high level function,
gtifilter(a,b,c,d), is available which evaluates each row of the input table and returns TRUE or
FALSE depending whether the row is inside or outside the good time interval. The syntax is

100 CHAPTER 8. EXTENDED FILE NAME SYNTAX

gtifilter(["gtifile" [, expr [, "STARTCOL", "STOPCOL"]]])

where each ”[]” demarks optional parameters. Note that the quotes around the gtifile and START/STOP
column are required. Either single or double quotes may be used. In cases where this expression
is entered on the Unix command line, enclose the entire expression in double quotes, and then use
single quotes within the expression to enclose the ’gtifile’ and other terms. It is also usually possible
to do the reverse, and enclose the whole expression in single quotes and then use double quotes
within the expression. The gtifile, if specified, can be blank (””) which will mean to use the first
extension with the name ”*GTI*” in the current file, a plain extension specifier (eg, ”+2”, ”[2]”,
or ”[STDGTI]”) which will be used to select an extension in the current file, or a regular filename
with or without an extension specifier which in the latter case will mean to use the first extension
with an extension name ”*GTI*”. Expr can be any arithmetic expression, including simply the
time column name. A vector time expression will produce a vector boolean result. STARTCOL
and STOPCOL are the names of the START/STOP columns in the GTI extension. If one of them
is specified, they both must be.

In its simplest form, no parameters need to be provided – default values will be used. The expression
”gtifilter()” is equivalent to

gtifilter("", TIME, "*START*", "*STOP*")

This will search the current file for a GTI extension, filter the TIME column in the current table,
using START/STOP times taken from columns in the GTI extension with names containing the
strings ”START” and ”STOP”. The wildcards (’*’) allow slight variations in naming conventions
such as ”TSTART” or ”STARTTIME”. The same default values apply for unspecified parame-
ters when the first one or two parameters are specified. The function automatically searches for
TIMEZERO/I/F keywords in the current and GTI extensions, applying a relative time offset, if
necessary.

8.11.5 Spatial Region Filtering

Another common filtering method selects rows based on whether the spatial position associated
with each row is located within a given 2-dimensional region. The syntax for this high-level filter
is

regfilter("regfilename" [, Xexpr, Yexpr [, "wcs cols"]])

where each ”[]” demarks optional parameters. The region file name is required and must be enclosed
in quotes. The remaining parameters are optional. There are 2 supported formats for the region
file: ASCII file or FITS binary table. The region file contains a list of one or more geometric
shapes (circle, ellipse, box, etc.) which defines a region on the celestial sphere or an area within a
particular 2D image. The region file is typically generated using an image display program such
as fv/POW (distribute by the HEASARC), or ds9 (distributed by the Smithsonian Astrophysical
Observatory). Users should refer to the documentation provided with these programs for more
details on the syntax used in the region files. The FITS region file format is defined in a document
available from the FITS Support Office at http://fits.gsfc.nasa.gov/ registry/ region.html

8.11. ROW FILTERING SPECIFICATION 101

In its simplest form, (e.g., regfilter(”region.reg”)) the coordinates in the default ’X’ and ’Y’ columns
will be used to determine if each row is inside or outside the area specified in the region file.
Alternate position column names, or expressions, may be entered if needed, as in

regfilter("region.reg", XPOS, YPOS)

Region filtering can be applied most unambiguously if the positions in the region file and in the
table to be filtered are both give in terms of absolute celestial coordinate units. In this case the
locations and sizes of the geometric shapes in the region file are specified in angular units on the sky
(e.g., positions given in R.A. and Dec. and sizes in arcseconds or arcminutes). Similarly, each row
of the filtered table will have a celestial coordinate associated with it. This association is usually
implemented using a set of so-called ’World Coordinate System’ (or WCS) FITS keywords that
define the coordinate transformation that must be applied to the values in the ’X’ and ’Y’ columns
to calculate the coordinate.

Alternatively, one can perform spatial filtering using unitless ’pixel’ coordinates for the regions and
row positions. In this case the user must be careful to ensure that the positions in the 2 files are
self-consistent. A typical problem is that the region file may be generated using a binned image,
but the unbinned coordinates are given in the event table. The ROSAT events files, for example,
have X and Y pixel coordinates that range from 1 - 15360. These coordinates are typically binned
by a factor of 32 to produce a 480x480 pixel image. If one then uses a region file generated from
this image (in image pixel units) to filter the ROSAT events file, then the X and Y column values
must be converted to corresponding pixel units as in:

regfilter("rosat.reg", X/32.+.5, Y/32.+.5)

Note that this binning conversion is not necessary if the region file is specified using celestial
coordinate units instead of pixel units because CFITSIO is then able to directly compare the
celestial coordinate of each row in the table with the celestial coordinates in the region file without
having to know anything about how the image may have been binned.

The last ”wcs cols” parameter should rarely be needed. If supplied, this string contains the names
of the 2 columns (space or comma separated) which have the associated WCS keywords. If not
supplied, the filter will scan the X and Y expressions for column names. If only one is found in
each expression, those columns will be used, otherwise an error will be returned.

These region shapes are supported (names are case insensitive):

Point (X1, Y1) <- One pixel square region

Line (X1, Y1, X2, Y2) <- One pixel wide region

Polygon (X1, Y1, X2, Y2, ...) <- Rest are interiors with

Rectangle (X1, Y1, X2, Y2, A) | boundaries considered

Box (Xc, Yc, Wdth, Hght, A) V within the region

Diamond (Xc, Yc, Wdth, Hght, A)

Circle (Xc, Yc, R)

Annulus (Xc, Yc, Rin, Rout)

Ellipse (Xc, Yc, Rx, Ry, A)

102 CHAPTER 8. EXTENDED FILE NAME SYNTAX

Elliptannulus (Xc, Yc, Rinx, Riny, Routx, Routy, Ain, Aout)

Sector (Xc, Yc, Amin, Amax)

where (Xc,Yc) is the coordinate of the shape’s center; (X#,Y#) are the coordinates of the shape’s
edges; Rxxx are the shapes’ various Radii or semi-major/minor axes; and Axxx are the angles of
rotation (or bounding angles for Sector) in degrees. For rotated shapes, the rotation angle can be
left off, indicating no rotation. Common alternate names for the regions can also be used: rotbox
= box; rotrectangle = rectangle; (rot)rhombus = (rot)diamond; and pie = sector. When a shape’s
name is preceded by a minus sign, ’-’, the defined region is instead the area *outside* its boundary
(ie, the region is inverted). All the shapes within a single region file are OR’d together to create
the region, and the order is significant. The overall way of looking at region files is that if the first
region is an excluded region then a dummy included region of the whole detector is inserted in the
front. Then each region specification as it is processed overrides any selections inside of that region
specified by previous regions. Another way of thinking about this is that if a previous excluded
region is completely inside of a subsequent included region the excluded region is ignored.

The positional coordinates may be given either in pixel units, decimal degrees or hh:mm:ss.s,
dd:mm:ss.s units. The shape sizes may be given in pixels, degrees, arcminutes, or arcseconds. Look
at examples of region file produced by fv/POW or ds9 for further details of the region file format.

There are three functions that are primarily for use with SAO region files and the FSAOI task,
but they can be used directly. They return a boolean true or false depending on whether a two
dimensional point is in the region or not:

"point in a circular region"

circle(xcntr,ycntr,radius,Xcolumn,Ycolumn)

"point in an elliptical region"

ellipse(xcntr,ycntr,xhlf_wdth,yhlf_wdth,rotation,Xcolumn,Ycolumn)

"point in a rectangular region"

box(xcntr,ycntr,xfll_wdth,yfll_wdth,rotation,Xcolumn,Ycolumn)

where

(xcntr,ycntr) are the (x,y) position of the center of the region

(xhlf_wdth,yhlf_wdth) are the (x,y) half widths of the region

(xfll_wdth,yfll_wdth) are the (x,y) full widths of the region

(radius) is half the diameter of the circle

(rotation) is the angle(degrees) that the region is rotated with

respect to (xcntr,ycntr)

(Xcoord,Ycoord) are the (x,y) coordinates to test, usually column

names

NOTE: each parameter can itself be an expression, not merely a

column name or constant.

8.11. ROW FILTERING SPECIFICATION 103

8.11.6 Example Row Filters

[binary && mag <= 5.0] - Extract all binary stars brighter

than fifth magnitude (note that

the initial space is necessary to

prevent it from being treated as a

binning specification)

[#row >= 125 && #row <= 175] - Extract row numbers 125 through 175

[IMAGE[4,5] .gt. 100] - Extract all rows that have the

(4,5) component of the IMAGE column

greater than 100

[abs(sin(theta * #deg)) < 0.5] - Extract all rows having the

absolute value of the sine of theta

less than a half where the angles

are tabulated in degrees

[SUM(SPEC > 3*BACKGRND)>=1] - Extract all rows containing a

spectrum, held in vector column

SPEC, with at least one value 3

times greater than the background

level held in a keyword, BACKGRND

[VCOL=={1,4,2}] - Extract all rows whose vector column

VCOL contains the 3-elements 1, 4, and

2.

[@rowFilter.txt] - Extract rows using the expression

contained within the text file

rowFilter.txt

[gtifilter()] - Search the current file for a GTI

extension, filter the TIME

column in the current table, using

START/STOP times taken from

columns in the GTI extension

[regfilter("pow.reg")] - Extract rows which have a coordinate

(as given in the X and Y columns)

within the spatial region specified

in the pow.reg region file.

[regfilter("pow.reg", Xs, Ys)] - Same as above, except that the

Xs and Ys columns will be used to

104 CHAPTER 8. EXTENDED FILE NAME SYNTAX

determine the coordinate of each

row in the table.

8.12 Binning or Histogramming Specification

The optional binning specifier is enclosed in square brackets and can be distinguished from a general
row filter specification by the fact that it begins with the keyword ’bin’ not immediately followed
by an equals sign. When binning is specified, a temporary N-dimensional FITS primary array
is created by computing the histogram of the values in the specified columns of a FITS table
extension. After the histogram is computed the input FITS file containing the table is then closed
and the temporary FITS primary array is opened and passed to the application program. Thus,
the application program never sees the original FITS table and only sees the image in the new
temporary file (which has no additional extensions). Obviously, the application program must be
expecting to open a FITS image and not a FITS table in this case.

The data type of the FITS histogram image may be specified by appending ’b’ (for 8-bit byte), ’i’
(for 16-bit integers), ’j’ (for 32-bit integer), ’r’ (for 32-bit floating points), or ’d’ (for 64-bit double
precision floating point) to the ’bin’ keyword (e.g. ’[binr X]’ creates a real floating point image). If
the datatype is not explicitly specified then a 32-bit integer image will be created by default, unless
the weighting option is also specified in which case the image will have a 32-bit floating point data
type by default.

The histogram image may have from 1 to 4 dimensions (axes), depending on the number of columns
that are specified. The general form of the binning specification is:

[bin{bijrd} Xcol=min:max:binsize, Ycol= ..., Zcol=..., Tcol=...; weight]

in which up to 4 columns, each corresponding to an axis of the image, are listed. The column
names are case insensitive, and the column number may be given instead of the name, preceded by
a pound sign (e.g., [bin #4=1:512]). If the column name is not specified, then CFITSIO will first
try to use the ’preferred column’ as specified by the CPREF keyword if it exists (e.g., ’CPREF
= ’DETX,DETY’), otherwise column names ’X’, ’Y’, ’Z’, and ’T’ will be assumed for each of
the 4 axes, respectively. In cases where the column name could be confused with an arithmetic
expression, enclose the column name in parentheses to force the name to be interpreted literally.

Each column name may be followed by an equals sign and then the lower and upper range of the
histogram, and the size of the histogram bins, separated by colons. Spaces are allowed before and
after the equals sign but not within the ’min:max:binsize’ string. The min, max and binsize values
may be integer or floating point numbers, or they may be the names of keywords in the header of
the table. If the latter, then the value of that keyword is substituted into the expression.

Default values for the min, max and binsize quantities will be used if not explicitly given in the
binning expression as shown in these examples:

[bin x = :512:2] - use default minimum value

[bin x = 1::2] - use default maximum value

[bin x = 1:512] - use default bin size

8.12. BINNING OR HISTOGRAMMING SPECIFICATION 105

[bin x = 1:] - use default maximum value and bin size

[bin x = :512] - use default minimum value and bin size

[bin x = 2] - use default minimum and maximum values

[bin x] - use default minimum, maximum and bin size

[bin 4] - default 2-D image, bin size = 4 in both axes

[bin] - default 2-D image

CFITSIO will use the value of the TLMINn, TLMAXn, and TDBINn keywords, if they exist, for
the default min, max, and binsize, respectively. If they do not exist then CFITSIO will use the
actual minimum and maximum values in the column for the histogram min and max values. The
default binsize will be set to 1, or (max - min) / 10., whichever is smaller, so that the histogram
will have at least 10 bins along each axis.

A shortcut notation is allowed if all the columns/axes have the same binning specification. In
this case all the column names may be listed within parentheses, followed by the (single) binning
specification, as in:

[bin (X,Y)=1:512:2]

[bin (X,Y) = 5]

The optional weighting factor is the last item in the binning specifier and, if present, is separated
from the list of columns by a semi-colon. As the histogram is accumulated, this weight is used
to incremented the value of the appropriated bin in the histogram. If the weighting factor is not
specified, then the default weight = 1 is assumed. The weighting factor may be a constant integer or
floating point number, or the name of a keyword containing the weighting value. Or the weighting
factor may be the name of a table column in which case the value in that column, on a row by row
basis, will be used.

In some cases, the column or keyword may give the reciprocal of the actual weight value that is
needed. In this case, precede the weight keyword or column name by a slash ’/’ to tell CFITSIO
to use the reciprocal of the value when constructing the histogram.

For complex or commonly used histograms, one can also place its description into a text file and
import it into the binning specification using the syntax ’[bin @filename.txt]’. The file’s con-
tents can extend over multiple lines, although it must still conform to the no-spaces rule for the
min:max:binsize syntax and each axis specification must still be comma-separated. Any lines in
the external text file that begin with 2 slash characters (’//’) will be ignored and may be used to
add comments into the file.

Examples:

[bini detx, dety] - 2-D, 16-bit integer histogram

of DETX and DETY columns, using

default values for the histogram

range and binsize

[bin (detx, dety)=16; /exposure] - 2-D, 32-bit real histogram of DETX

and DETY columns with a bin size = 16

106 CHAPTER 8. EXTENDED FILE NAME SYNTAX

in both axes. The histogram values

are divided by the EXPOSURE keyword

value.

[bin time=TSTART:TSTOP:0.1] - 1-D lightcurve, range determined by

the TSTART and TSTOP keywords,

with 0.1 unit size bins.

[bin pha, time=8000.:8100.:0.1] - 2-D image using default binning

of the PHA column for the X axis,

and 1000 bins in the range

8000. to 8100. for the Y axis.

[bin @binFilter.txt] - Use the contents of the text file

binFilter.txt for the binning

specifications.

Chapter 9

Template Files

When a new FITS file is created with a call to fits create file, the name of a template file may
be supplied in parentheses immediately following the name of the new file to be created. This
template is used to define the structure of one or more HDUs in the new file. The template file may
be another FITS file, in which case the newly created file will have exactly the same keywords in
each HDU as in the template FITS file, but all the data units will be filled with zeros. The template
file may also be an ASCII text file, where each line (in general) describes one FITS keyword record.
The format of the ASCII template file is described in the following sections.

9.1 Detailed Template Line Format

The format of each ASCII template line closely follows the format of a FITS keyword record:

KEYWORD = KEYVALUE / COMMENT

except that free format may be used (e.g., the equals sign may appear at any position in the line) and
TAB characters are allowed and are treated the same as space characters. The KEYVALUE and
COMMENT fields are optional. The equals sign character is also optional, but it is recommended
that it be included for clarity. Any template line that begins with the pound ’#’ character is
ignored by the template parser and may be use to insert comments into the template file itself.

The KEYWORD name field is limited to 8 characters in length and only the letters A-Z, digits 0-9,
and the hyphen and underscore characters may be used, without any embedded spaces. Lowercase
letters in the template keyword name will be converted to uppercase. Leading spaces in the template
line preceding the keyword name are generally ignored, except if the first 8 characters of a template
line are all blank, then the entire line is treated as a FITS comment keyword (with a blank keyword
name) and is copied verbatim into the FITS header.

The KEYVALUE field may have any allowed FITS data type: character string, logical, integer,
real, complex integer, or complex real. The character string values need not be enclosed in single
quote characters unless they are necessary to distinguish the string from a different data type (e.g.
2.0 is a real but ’2.0’ is a string). The keyword has an undefined (null) value if the template record
only contains blanks following the ”=” or between the ”=” and the ”/” comment field delimiter.

107

108 CHAPTER 9. TEMPLATE FILES

String keyword values longer than 68 characters (the maximum length that will fit in a single FITS
keyword record) are permitted using the CFITSIO long string convention. They can either be
specified as a single long line in the template, or by using multiple lines where the continuing lines
contain the ’CONTINUE’ keyword, as in this example:

LONGKEY = ’This is a long string value that is contin&’

CONTINUE ’ued over 2 records’ / comment field goes here

The format of template lines with CONTINUE keyword is very strict: 3 spaces must follow CON-
TINUE and the rest of the line is copied verbatim to the FITS file.

The start of the optional COMMENT field must be preceded by ”/”, which is used to separate it
from the keyword value field. Exceptions are if the KEYWORD name field contains COMMENT,
HISTORY, CONTINUE, or if the first 8 characters of the template line are blanks.

More than one Header-Data Unit (HDU) may be defined in the template file. The start of an HDU
definition is denoted with a SIMPLE or XTENSION template line:

1) SIMPLE begins a Primary HDU definition. SIMPLE may only appear as the first keyword in
the template file. If the template file begins with XTENSION instead of SIMPLE, then a default
empty Primary HDU is created, and the template is then assumed to define the keywords starting
with the first extension following the Primary HDU.

2) XTENSION marks the beginning of a new extension HDU definition. The previous HDU will
be closed at this point and processing of the next extension begins.

9.2 Auto-indexing of Keywords

If a template keyword name ends with a ”#” character, it is said to be ’auto-indexed’. Each ”#”
character will be replaced by the current integer index value, which gets reset = 1 at the start of
each new HDU in the file (or 7 in the special case of a GROUP definition). The FIRST indexed
keyword in each template HDU definition is used as the ’incrementor’; each subsequent occurrence
of this SAME keyword will cause the index value to be incremented. This behavior can be rather
subtle, as illustrated in the following examples in which the TTYPE keyword is the incrementor in
both cases:

TTYPE# = TIME

TFORM# = 1D

TTYPE# = RATE

TFORM# = 1E

will create TTYPE1, TFORM1, TTYPE2, and TFORM2 keywords. But if the template looks like,

TTYPE# = TIME

TTYPE# = RATE

TFORM# = 1D

TFORM# = 1E

9.3. TEMPLATE PARSER DIRECTIVES 109

this results in a FITS files with TTYPE1, TTYPE2, TFORM2, and TFORM2, which is probably
not what was intended!

9.3 Template Parser Directives

In addition to the template lines which define individual keywords, the template parser recognizes
3 special directives which are each preceded by the backslash character: \include, \group, and
\end.

The ’include’ directive must be followed by a filename. It forces the parser to temporarily stop
reading the current template file and begin reading the include file. Once the parser reaches the
end of the include file it continues parsing the current template file. Include files can be nested,
and HDU definitions can span multiple template files.

The start of a GROUP definition is denoted with the ’group’ directive, and the end of a GROUP
definition is denoted with the ’end’ directive. Each GROUP contains 0 or more member blocks
(HDUs or GROUPs). Member blocks of type GROUP can contain their own member blocks.
The GROUP definition itself occupies one FITS file HDU of special type (GROUP HDU), so if a
template specifies 1 group with 1 member HDU like:

\group

grpdescr = ’demo’

xtension bintable

this bintable has 0 cols, 0 rows

\end

then the parser creates a FITS file with 3 HDUs :

1) dummy PHDU

2) GROUP HDU (has 1 member, which is bintable in HDU number 3)

3) bintable (member of GROUP in HDU number 2)

Technically speaking, the GROUP HDU is a BINTABLE with 6 columns. Applications can define
additional columns in a GROUP HDU using TFORMn and TTYPEn (where n is 7, 8,) keywords
or their auto-indexing equivalents.

For a more complicated example of a template file using the group directives, look at the sample.tpl
file that is included in the CFITSIO distribution.

9.4 Formal Template Syntax

The template syntax can formally be defined as follows:

TEMPLATE = BLOCK [BLOCK ...]

110 CHAPTER 9. TEMPLATE FILES

BLOCK = { HDU | GROUP }

GROUP = \GROUP [BLOCK ...] \END

HDU = XTENSION [LINE ...] { XTENSION | \GROUP | \END | EOF }

LINE = [KEYWORD [=]] [VALUE] [/ COMMENT]

X ... - X can be present 1 or more times

{ X | Y } - X or Y

[X] - X is optional

At the topmost level, the template defines 1 or more template blocks. Blocks can be either HDU
(Header Data Unit) or a GROUP. For each block the parser creates 1 (or more for GROUPs) FITS
file HDUs.

9.5 Errors

In general the fits execute template() function tries to be as atomic as possible, so either everything
is done or nothing is done. If an error occurs during parsing of the template, fits execute template()
will (try to) delete the top level BLOCK (with all its children if any) in which the error occurred,
then it will stop reading the template file and it will return with an error.

9.6 Examples

1. This template file will create a 200 x 300 pixel image, with 4-byte integer pixel values, in the
primary HDU:

SIMPLE = T

BITPIX = 32

NAXIS = 2 / number of dimensions

NAXIS1 = 100 / length of first axis

NAXIS2 = 200 / length of second axis

OBJECT = NGC 253 / name of observed object

The allowed values of BITPIX are 8, 16, 32, -32, or -64, representing, respectively, 8-bit integer,
16-bit integer, 32-bit integer, 32-bit floating point, or 64 bit floating point pixels.

2. To create a FITS table, the template first needs to include XTENSION = TABLE or BINTABLE
to define whether it is an ASCII or binary table, and NAXIS2 to define the number of rows in the
table. Two template lines are then needed to define the name (TTYPEn) and FITS data format
(TFORMn) of the columns, as in this example:

xtension = bintable

9.6. EXAMPLES 111

naxis2 = 40

ttype# = Name

tform# = 10a

ttype# = Npoints

tform# = j

ttype# = Rate

tunit# = counts/s

tform# = e

The above example defines a null primary array followed by a 40-row binary table extension with 3
columns called ’Name’, ’Npoints’, and ’Rate’, with data formats of ’10A’ (ASCII character string),
’1J’ (integer) and ’1E’ (floating point), respectively. Note that the other required FITS keywords
(BITPIX, NAXIS, NAXIS1, PCOUNT, GCOUNT, TFIELDS, and END) do not need to be ex-
plicitly defined in the template because their values can be inferred from the other keywords in
the template. This example also illustrates that the templates are generally case-insensitive (the
keyword names and TFORMn values are converted to upper-case in the FITS file) and that string
keyword values generally do not need to be enclosed in quotes.

112 CHAPTER 9. TEMPLATE FILES

Chapter 10

Summary of all FITSIO
User-Interface Subroutines

Error Status Routines page 29

FTVERS(> version)

FTGERR(status, > errtext)

FTGMSG(> errmsg)

FTRPRT (stream, > status)

FTPMSG(errmsg)

FTPMRK

FTCMSG

FTCMRK

FITS File Open and Close Subroutines: page 35

FTOPEN(unit,filename,rwmode, > blocksize,status)

FTDKOPEN(unit,filename,rwmode, > blocksize,status)

FTNOPN(unit,filename,rwmode, > status)

FTDOPN(unit,filename,rwmode, > status)

FTTOPN(unit,filename,rwmode, > status)

FTIOPN(unit,filename,rwmode, > status)

FTREOPEN(unit, > newunit, status)

FTINIT(unit,filename,blocksize, > status)

FTDKINIT(unit,filename,blocksize, > status)

FTTPLT(unit, filename, tplfilename, > status)

FTFLUS(unit, > status)

FTCLOS(unit, > status)

FTDELT(unit, > status)

FTGIOU(> iounit, status)

FTFIOU(iounit, > status)

CFITS2Unit(fitsfile *ptr) (C routine)

113

114 CHAPTER 10. SUMMARY OF ALL FITSIO USER-INTERFACE SUBROUTINES

CUnit2FITS(int unit) (C routine)

FTEXTN(filename, > nhdu, status)

FTFLNM(unit, > filename, status)

FTFLMD(unit, > iomode, status)

FFURLT(unit, > urltype, status)

FTIURL(filename, > filetype, infile, outfile, extspec, filter,

binspec, colspec, status)

FTRTNM(filename, > rootname, status)

FTEXIST(filename, > exist, status)

HDU-Level Operations: page 38

FTMAHD(unit,nhdu, > hdutype,status)

FTMRHD(unit,nmove, > hdutype,status)

FTGHDN(unit, > nhdu)

FTMNHD(unit, hdutype, extname, extver, > status)

FTGHDT(unit, > hdutype, status)

FTTHDU(unit, > hdunum, status)

FTCRHD(unit, > status)

FTIIMG(unit,bitpix,naxis,naxes, > status)

FTITAB(unit,rowlen,nrows,tfields,ttype,tbcol,tform,tunit,extname, >

status)

FTIBIN(unit,nrows,tfields,ttype,tform,tunit,extname,varidat > status)

FTRSIM(unit,bitpix,naxis,naxes,status)

FTDHDU(unit, > hdutype,status)

FTCPFL(iunit,ounit,previous, current, following, > status)

FTCOPY(iunit,ounit,morekeys, > status)

FTCPHD(inunit, outunit, > status)

FTCPDT(iunit,ounit, > status)

Subroutines to specify or modify the structure of the CHDU: page 41

FTRDEF(unit, > status) (DEPRECATED)

FTPDEF(unit,bitpix,naxis,naxes,pcount,gcount, > status) (DEPRECATED)

FTADEF(unit,rowlen,tfields,tbcol,tform,nrows > status) (DEPRECATED)

FTBDEF(unit,tfields,tform,varidat,nrows > status) (DEPRECATED)

FTDDEF(unit,bytlen, > status) (DEPRECATED)

FTPTHP(unit,theap, > status)

Header Space and Position Subroutines: page 43

FTHDEF(unit,morekeys, > status)

FTGHSP(iunit, > keysexist,keysadd,status)

FTGHPS(iunit, > keysexist,key_no,status)

Read or Write Standard Header Subroutines: page 43

115

FTPHPS(unit,bitpix,naxis,naxes, > status)

FTPHPR(unit,simple,bitpix,naxis,naxes,pcount,gcount,extend, > status)

FTGHPR(unit,maxdim, > simple,bitpix,naxis,naxes,pcount,gcount,extend,

status)

FTPHTB(unit,rowlen,nrows,tfields,ttype,tbcol,tform,tunit,extname, >

status)

FTGHTB(unit,maxdim, > rowlen,nrows,tfields,ttype,tbcol,tform,tunit,

extname,status)

FTPHBN(unit,nrows,tfields,ttype,tform,tunit,extname,varidat > status)

FTGHBN(unit,maxdim, > nrows,tfields,ttype,tform,tunit,extname,varidat,

status)

Write Keyword Subroutines: page 45

FTPREC(unit,card, > status)

FTPCOM(unit,comment, > status)

FTPHIS(unit,history, > status)

FTPDAT(unit, > status)

FTPKY[JKLS](unit,keyword,keyval,comment, > status)

FTPKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

FTPKLS(unit,keyword,keyval,comment, > status)

FTPLSW(unit, > status)

FTPKYU(unit,keyword,comment, > status)

FTPKN[JKLS](unit,keyroot,startno,no_keys,keyvals,comments, > status)

FTPKN[EDFG](unit,keyroot,startno,no_keys,keyvals,decimals,comments, >

status)

FTCPKYinunit, outunit, innum, outnum, keyroot, > status)

FTPKYT(unit,keyword,intval,dblval,comment, > status)

FTPKTP(unit, filename, > status)

FTPUNT(unit,keyword,units, > status)

Insert Keyword Subroutines: page 47

FTIREC(unit,key_no,card, > status)

FTIKY[JKLS](unit,keyword,keyval,comment, > status)

FTIKLS(unit,keyword,keyval,comment, > status)

FTIKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

FTIKYU(unit,keyword,comment, > status)

Read Keyword Subroutines: page 47

FTGREC(unit,key_no, > card,status)

FTGKYN(unit,key_no, > keyword,value,comment,status)

FTGCRD(unit,keyword, > card,status)

FTGNXK(unit,inclist,ninc,exclist,nexc, > card,status)

116 CHAPTER 10. SUMMARY OF ALL FITSIO USER-INTERFACE SUBROUTINES

FTGKEY(unit,keyword, > value,comment,status)

FTGKY[EDJKLS](unit,keyword, > keyval,comment,status)

FTGKN[EDJKLS](unit,keyroot,startno,max_keys, > keyvals,nfound,status)

FTGKYT(unit,keyword, > intval,dblval,comment,status)

FTGUNT(unit,keyword, > units,status)

Modify Keyword Subroutines: page 49

FTMREC(unit,key_no,card, > status)

FTMCRD(unit,keyword,card, > status)

FTMNAM(unit,oldkey,keyword, > status)

FTMCOM(unit,keyword,comment, > status)

FTMKY[JKLS](unit,keyword,keyval,comment, > status)

FTMKLS(unit,keyword,keyval,comment, > status)

FTMKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

FTMKYU(unit,keyword,comment, > status)

Update Keyword Subroutines: page 50

FTUCRD(unit,keyword,card, > status)

FTUKY[JKLS](unit,keyword,keyval,comment, > status)

FTUKLS(unit,keyword,keyval,comment, > status)

FTUKY[EDFG](unit,keyword,keyval,decimals,comment, > status)

FTUKYU(unit,keyword,comment, > status)

Delete Keyword Subroutines: page 50

FTDREC(unit,key_no, > status)

FTDKEY(unit,keyword, > status)

Define Data Scaling Parameters and Undefined Pixel Flags: page 51

FTPSCL(unit,bscale,bzero, > status)

FTTSCL(unit,colnum,tscal,tzero, > status)

FTPNUL(unit,blank, > status)

FTSNUL(unit,colnum,snull > status)

FTTNUL(unit,colnum,tnull > status)

FITS Primary Array or IMAGE Extension I/O Subroutines: page 52

FTGIDT(unit, > bitpix,status)

FTGIET(unit, > bitpix,status)

FTGIDM(unit, > naxis,status)

FTGISZ(unit, maxdim, > naxes,status)

117

FTGIPR(unit, maxdim, > bitpix,naxis,naxes,status)

FTPPR[BIJKED](unit,group,fpixel,nelements,values, > status)

FTPPN[BIJKED](unit,group,fpixel,nelements,values,nullval > status)

FTPPRU(unit,group,fpixel,nelements, > status)

FTGPV[BIJKED](unit,group,fpixel,nelements,nullval, > values,anyf,status)

FTGPF[BIJKED](unit,group,fpixel,nelements, > values,flagvals,anyf,status)

FTPGP[BIJKED](unit,group,fparm,nparm,values, > status)

FTGGP[BIJKED](unit,group,fparm,nparm, > values,status)

FTP2D[BIJKED](unit,group,dim1,naxis1,naxis2,image, > status)

FTP3D[BIJKED](unit,group,dim1,dim2,naxis1,naxis2,naxis3,cube, > status)

FTG2D[BIJKED](unit,group,nullval,dim1,naxis1,naxis2, > image,anyf,status)

FTG3D[BIJKED](unit,group,nullval,dim1,dim2,naxis1,naxis2,naxis3, >

cube,anyf,status)

FTPSS[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,array, > status)

FTGSV[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,incs,nullval, >

array,anyf,status)

FTGSF[BIJKED](unit,group,naxis,naxes,fpixels,lpixels,incs, >

array,flagvals,anyf,status)

Table Column Information Subroutines: page 55

FTGNRW(unit, > nrows, status)

FTGNCL(unit, > ncols, status)

FTGCNO(unit,casesen,coltemplate, > colnum,status)

FTGCNN(unit,casesen,coltemplate, > colnam,colnum,status)

FTGTCL(unit,colnum, > datacode,repeat,width,status)

FTEQTY(unit,colnum, > datacode,repeat,width,status)

FTGCDW(unit,colnum, > dispwidth,status)

FTGACL(unit,colnum, >

ttype,tbcol,tunit,tform,tscal,tzero,snull,tdisp,status)

FTGBCL(unit,colnum, >

ttype,tunit,datatype,repeat,tscal,tzero,tnull,tdisp,status)

FTPTDM(unit,colnum,naxis,naxes, > status)

FTGTDM(unit,colnum,maxdim, > naxis,naxes,status)

FTDTDM(unit,tdimstr,colnum,maxdim, > naxis,naxes, status)

FFGRSZ(unit, > nrows,status)

Low-Level Table Access Subroutines: page 58

FTGTBS(unit,frow,startchar,nchars, > string,status)

FTPTBS(unit,frow,startchar,nchars,string, > status)

FTGTBB(unit,frow,startchar,nchars, > array,status)

FTPTBB(unit,frow,startchar,nchars,array, > status)

Edit Rows or Columns page 58

118 CHAPTER 10. SUMMARY OF ALL FITSIO USER-INTERFACE SUBROUTINES

FTIROW(unit,frow,nrows, > status)

FTDROW(unit,frow,nrows, > status)

FTDRRG(unit,rowrange, > status)

FTDRWS(unit,rowlist,nrows, > status)

FTICOL(unit,colnum,ttype,tform, > status)

FTICLS(unit,colnum,ncols,ttype,tform, > status)

FTMVEC(unit,colnum,newveclen, > status)

FTDCOL(unit,colnum, > status)

FTCPCL(inunit,outunit,incolnum,outcolnum,createcol, > status);

Read and Write Column Data Routines page 60

FTPCL[SLBIJKEDCM](unit,colnum,frow,felem,nelements,values, > status)

FTPCN[BIJKED](unit,colnum,frow,felem,nelements,values,nullval > status)

FTPCLX(unit,colnum,frow,fbit,nbit,lray, > status)

FTPCLU(unit,colnum,frow,felem,nelements, > status)

FTGCL(unit,colnum,frow,felem,nelements, > values,status)

FTGCV[SBIJKEDCM](unit,colnum,frow,felem,nelements,nullval, >

values,anyf,status)

FTGCF[SLBIJKEDCM](unit,colnum,frow,felem,nelements, >

values,flagvals,anyf,status)

FTGSV[BIJKED](unit,colnum,naxis,naxes,fpixels,lpixels,incs,nullval, >

array,anyf,status)

FTGSF[BIJKED](unit,colnum,naxis,naxes,fpixels,lpixels,incs, >

array,flagvals,anyf,status)

FTGCX(unit,colnum,frow,fbit,nbit, > lray,status)

FTGCX[IJD](unit,colnum,frow,nrows,fbit,nbit, > array,status)

FTGDES(unit,colnum,rownum, > nelements,offset,status)

FTPDES(unit,colnum,rownum,nelements,offset, > status)

Row Selection and Calculator Routines: page 64

FTFROW(unit,expr,firstrow, nrows, > n_good_rows, row_status, status)

FTFFRW(unit, expr, > rownum, status)

FTSROW(inunit, outunit, expr, > status)

FTCROW(unit,datatype,expr,firstrow,nelements,nulval, >

array,anynul,status)

FTCALC(inunit, expr, outunit, parName, parInfo, > status)

FTCALC_RNG(inunit, expr, outunit, parName, parInfo,

nranges, firstrow, lastrow, > status)

FTTEXP(unit, expr, > datatype, nelem, naxis, naxes, status)

Celestial Coordinate System Subroutines: page 65

FTGICS(unit, > xrval,yrval,xrpix,yrpix,xinc,yinc,rot,coordtype,status)

119

FTGTCS(unit,xcol,ycol, >

xrval,yrval,xrpix,yrpix,xinc,yinc,rot,coordtype,status)

FTWLDP(xpix,ypix,xrval,yrval,xrpix,yrpix,xinc,yinc,rot,

coordtype, > xpos,ypos,status)

FTXYPX(xpos,ypos,xrval,yrval,xrpix,yrpix,xinc,yinc,rot,

coordtype, > xpix,ypix,status)

File Checksum Subroutines: page 67

FTPCKS(unit, > status)

FTUCKS(unit, > status)

FTVCKS(unit, > dataok,hduok,status)

FTGCKS(unit, > datasum,hdusum,status)

FTESUM(sum,complement, > checksum)

FTDSUM(checksum,complement, > sum)

Time and Date Utility Subroutines: page 68

FTGSDT(> day, month, year, status)

FTGSTM(> datestr, timeref, status)

FTDT2S(year, month, day, > datestr, status)

FTTM2S(year, month, day, hour, minute, second, decimals,

> datestr, status)

FTS2DT(datestr, > year, month, day, status)

FTS2TM(datestr, > year, month, day, hour, minute, second, status)

General Utility Subroutines: page 69

FTGHAD(unit, > curaddr,nextaddr)

FTUPCH(string)

FTCMPS(str_template,string,casesen, > match,exact)

FTTKEY(keyword, > status)

FTTREC(card, > status)

FTNCHK(unit, > status)

FTGKNM(unit, > keyword, keylength, status)

FTPSVC(card, > value,comment,status)

FTKEYN(keyroot,seq_no, > keyword,status)

FTNKEY(seq_no,keyroot, > keyword,status)

FTDTYP(value, > dtype,status)

class = FTGKCL(card)

FTASFM(tform, > datacode,width,decimals,status)

FTBNFM(tform, > datacode,repeat,width,status)

FTGABC(tfields,tform,space, > rowlen,tbcol,status)

FTGTHD(template, > card,hdtype,status)

FTRWRG(rowlist, maxrows, maxranges, > numranges, rangemin,

rangemax, status)

120 CHAPTER 10. SUMMARY OF ALL FITSIO USER-INTERFACE SUBROUTINES

Chapter 11

Parameter Definitions

anyf - (logical) set to TRUE if any of the returned data values are undefined

array - (any datatype except character) array of bytes to be read or written.

bitpix - (integer) bits per pixel: 8, 16, 32, -32, or -64

blank - (integer) value used for undefined pixels in integer primary array

blank - (integer*8) value used for undefined pixels in integer primary array

blocksize - (integer) 2880-byte logical record blocking factor

(if 0 < blocksize < 11) or the actual block size in bytes

(if 10 < blocksize < 28800). As of version 3.3 of FITSIO,

blocksizes greater than 2880 are no longer supported.

bscale - (double precision) scaling factor for the primary array

bytlen - (integer) length of the data unit, in bytes

bzero - (double precision) zero point for primary array scaling

card - (character*80) header record to be read or written

casesen - (logical) will string matching be case sensitive?

checksum - (character*16) encoded checksum string

colname - (character) ASCII name of the column

colnum - (integer) number of the column (first column = 1)

coltemplate - (character) template string to be matched to column names

comment - (character) the keyword comment field

comments - (character array) keyword comment fields

compid - (integer) the type of computer that the program is running on

complement - (logical) should the checksum be complemented?

coordtype - (character) type of coordinate projection (-SIN, -TAN, -ARC,

-NCP, -GLS, -MER, or -AIT)

cube - 3D data cube of the appropriate datatype

curaddr - (integer) starting address (in bytes) of the CHDU

current - (integer) if not equal to 0, copy the current HDU

datacode - (integer) symbolic code of the binary table column datatype

dataok - (integer) was the data unit verification successful (=1) or

not (= -1). Equals zero if the DATASUM keyword is not present.

datasum - (double precision) 32-bit 1’s complement checksum for the data unit

datatype - (character) datatype (format) of the binary table column

121

122 CHAPTER 11. PARAMETER DEFINITIONS

datestr - (string) FITS date/time string: ’YYYY-MM-DDThh:mm:ss.ddd’,

’YYYY-MM-dd’, or ’dd/mm/yy’

day - (integer) current day of the month

dblval - (double precision) fractional part of the keyword value

decimals - (integer) number of decimal places to be displayed

dim1 - (integer) actual size of the first dimension of the image or cube array

dim2 - (integer) actual size of the second dimension of the cube array

dispwidth - (integer) - the display width (length of string) for a column

dtype - (character) datatype of the keyword (’C’, ’L’, ’I’, or ’F’)

C = character string

L = logical

I = integer

F = floating point number

errmsg - (character*80) oldest error message on the internal stack

errtext - (character*30) descriptive error message corresponding to error number

casesen - (logical) true if column name matching is case sensitive

exact - (logical) do the strings match exactly, or were wildcards used?

exclist (character array) list of names to be excluded from search

exists - flag indicating whether the file or compressed file exists on disk

extend - (logical) true if there may be extensions following the primary data

extname - (character) value of the EXTNAME keyword (if not blank)

fbit - (integer) first bit in the field to be read or written

felem - (integer) first pixel of the element vector (ignored for ASCII tables)

filename - (character) name of the FITS file

flagvals - (logical array) True if corresponding data element is undefined

following - (integer) if not equal to 0, copy all following HDUs in the input file

fparm - (integer) sequence number of the first group parameter to read or write

fpixel - (integer) the first pixel position

fpixels - (integer array) the first included pixel in each dimension

frow - (integer) beginning row number (first row of table = 1)

frowll - (integer*8) beginning row number (first row of table = 1)

gcount - (integer) value of the GCOUNT keyword (usually = 1)

group - (integer) sequence number of the data group (=0 for non-grouped data)

hdtype - (integer) header record type: -1=delete; 0=append or replace;

1=append; 2=this is the END keyword

hduok - (integer) was the HDU verification successful (=1) or

not (= -1). Equals zero if the CHECKSUM keyword is not present.

hdusum - (double precision) 32 bit 1’s complement checksum for the entire CHDU

hdutype - (integer) type of HDU: 0 = primary array or IMAGE, 1 = ASCII table,

2 = binary table, -1 = any HDU type or unknown type

history - (character) the HISTORY keyword comment string

hour - (integer) hour from 0 - 23

image - 2D image of the appropriate datatype

inclist (character array) list of names to be included in search

incs - (integer array) sampling interval for pixels in each FITS dimension

intval - (integer) integer part of the keyword value

123

iounit - (integer) value of an unused I/O unit number

iunit - (integer) logical unit number associated with the input FITS file, 1-199

key_no - (integer) sequence number (starting with 1) of the keyword record

keylength - (integer) length of the keyword name

keyroot - (character) root string for the keyword name

keysadd -(integer) number of new keyword records which can fit in the CHU

keysexist - (integer) number of existing keyword records in the CHU

keyval - value of the keyword in the appropriate datatype

keyvals - (array) value of the keywords in the appropriate datatype

keyword - (character*8) name of a keyword

lray - (logical array) array of logical values corresponding to the bit array

lpixels - (integer array) the last included pixel in each dimension

match - (logical) do the 2 strings match?

maxdim - (integer) dimensioned size of the NAXES, TTYPE, TFORM or TUNIT arrays

max_keys - (integer) maximum number of keywords to search for

minute - (integer) minute of an hour (0 - 59)

month - (integer) current month of the year (1 - 12)

morekeys - (integer) will leave space in the header for this many more keywords

naxes - (integer array) size of each dimension in the FITS array

naxesll - (integer*8 array) size of each dimension in the FITS array

naxis - (integer) number of dimensions in the FITS array

naxis1 - (integer) length of the X/first axis of the FITS array

naxis2 - (integer) length of the Y/second axis of the FITS array

naxis3 - (integer) length of the Z/third axis of the FITS array

nbit - (integer) number of bits in the field to read or write

nchars - (integer) number of characters to read and return

ncols - (integer) number of columns

nelements - (integer) number of data elements to read or write

nelementsll - (integer*8) number of data elements to read or write

nexc (integer) number of names in the exclusion list (may = 0)

nhdu - (integer) absolute number of the HDU (1st HDU = 1)

ninc (integer) number of names in the inclusion list

nmove - (integer) number of HDUs to move (+ or -), relative to current position

nfound - (integer) number of keywords found (highest keyword number)

no_keys - (integer) number of keywords to write in the sequence

nparm - (integer) number of group parameters to read or write

nrows - (integer) number of rows in the table

nrowsll - (integer*8) number of rows in the table

nullval - value to represent undefined pixels, of the appropriate datatype

nextaddr - (integer) starting address (in bytes) of the HDU following the CHDU

offset - (integer) byte offset in the heap to the first element of the array

offsetll - (integer*8) byte offset in the heap to the first element of the array

oldkey - (character) old name of keyword to be modified

ounit - (integer) logical unit number associated with the output FITS file 1-199

pcount - (integer) value of the PCOUNT keyword (usually = 0)

previous - (integer) if not equal to 0, copy all previous HDUs in the input file

124 CHAPTER 11. PARAMETER DEFINITIONS

repeat - (integer) length of element vector (e.g. 12J); ignored for ASCII table

rot - (double precision) celestial coordinate rotation angle (degrees)

rowlen - (integer) length of a table row, in characters or bytes

rowlenll - (integer*8) length of a table row, in characters or bytes

rowlist - (integer array) list of row numbers to be deleted in increasing order

rownum - (integer) number of the row (first row = 1)

rowrange- (string) list of rows or row ranges to be deleted

rwmode - (integer) file access mode: 0 = readonly, 1 = readwrite

second (double)- second within minute (0 - 60.9999999999) (leap second!)

seq_no - (integer) the sequence number to append to the keyword root name

simple - (logical) does the FITS file conform to all the FITS standards

snull - (character) value used to represent undefined values in ASCII table

space - (integer) number of blank spaces to leave between ASCII table columns

startchar - (integer) first character in the row to be read

startno - (integer) value of the first keyword sequence number (usually 1)

status - (integer) returned error status code (0 = OK)

str_template (character) template string to be matched to reference string

stream - (character) output stream for the report: either ’STDOUT’ or ’STDERR’

string - (character) character string

sum - (double precision) 32 bit unsigned checksum value

tbcol - (integer array) column number of the first character in the field(s)

tdisp - (character) Fortran type display format for the table column

template-(character) template string for a FITS header record

tfields - (integer) number of fields (columns) in the table

tform - (character array) format of the column(s); allowed values are:

For ASCII tables: Iw, Aw, Fww.dd, Eww.dd, or Dww.dd

For binary tables: rL, rX, rB, rI, rJ, rA, rAw, rE, rD, rC, rM

where ’w’=width of the field, ’d’=no. of decimals, ’r’=repeat count

Note that the ’rAw’ form is non-standard extension to the

TFORM keyword syntax that is not specifically defined in the

Binary Tables definition document.

theap - (integer) zero indexed byte offset of starting address of the heap

relative to the beginning of the binary table data

tnull - (integer) value used to represent undefined values in binary table

tnullll - (integer*8) value used to represent undefined values in binary table

ttype - (character array) label for table column(s)

tscal - (double precision) scaling factor for table column

tunit - (character array) physical unit for table column(s)

tzero - (double precision) scaling zero point for table column

unit - (integer) logical unit number associated with the FITS file (1-199)

units - (character) the keyword units string (e.g., ’km/s’)

value - (character) the keyword value string

values - array of data values of the appropriate datatype

varidat - (integer) size in bytes of the ’variable length data area’

following the binary table data (usually = 0)

version - (real) current revision number of the library

125

width - (integer) width of the character string field

xcol - (integer) number of the column containing the X coordinate values

xinc - (double precision) X axis coordinate increment at reference pixel (deg)

xpix - (double precision) X axis pixel location

xpos - (double precision) X axis celestial coordinate (usually RA) (deg)

xrpix - (double precision) X axis reference pixel array location

xrval - (double precision) X axis coordinate value at the reference pixel (deg)

ycol - (integer) number of the column containing the X coordinate values

year - (integer) last 2 digits of the year (00 - 99)

yinc - (double precision) Y axis coordinate increment at reference pixel (deg)

ypix - (double precision) y axis pixel location

ypos - (double precision) y axis celestial coordinate (usually DEC) (deg)

yrpix - (double precision) Y axis reference pixel array location

yrval - (double precision) Y axis coordinate value at the reference pixel (deg)

126 CHAPTER 11. PARAMETER DEFINITIONS

Chapter 12

FITSIO Error Status Codes

Status codes in the range -99 to -999 and 1 to 999 are reserved for future

FITSIO use.

0 OK, no error

101 input and output files are the same

103 too many FITS files open at once; all internal buffers full

104 error opening existing file

105 error creating new FITS file; (does a file with this name already exist?)

106 error writing record to FITS file

107 end-of-file encountered while reading record from FITS file

108 error reading record from file

110 error closing FITS file

111 internal array dimensions exceeded

112 Cannot modify file with readonly access

113 Could not allocate memory

114 illegal logical unit number; must be between 1 - 199, inclusive

115 NULL input pointer to routine

116 error seeking position in file

121 invalid URL prefix on file name

122 tried to register too many IO drivers

123 driver initialization failed

124 matching driver is not registered

125 failed to parse input file URL

126 parse error in range list

151 bad argument in shared memory driver

152 null pointer passed as an argument

153 no more free shared memory handles

154 shared memory driver is not initialized

155 IPC error returned by a system call

156 no memory in shared memory driver

127

128 CHAPTER 12. FITSIO ERROR STATUS CODES

157 resource deadlock would occur

158 attempt to open/create lock file failed

159 shared memory block cannot be resized at the moment

201 header not empty; can’t write required keywords

202 specified keyword name was not found in the header

203 specified header record number is out of bounds

204 keyword value field is blank

205 keyword value string is missing the closing quote character

206 illegal indexed keyword name (e.g. ’TFORM1000’)

207 illegal character in keyword name or header record

208 keyword does not have expected name. Keyword out of sequence?

209 keyword does not have expected integer value

210 could not find the required END header keyword

211 illegal BITPIX keyword value

212 illegal NAXIS keyword value

213 illegal NAXISn keyword value: must be 0 or positive integer

214 illegal PCOUNT keyword value

215 illegal GCOUNT keyword value

216 illegal TFIELDS keyword value

217 negative ASCII or binary table width value (NAXIS1)

218 negative number of rows in ASCII or binary table (NAXIS2)

219 column name (TTYPE keyword) not found

220 illegal SIMPLE keyword value

221 could not find the required SIMPLE header keyword

222 could not find the required BITPIX header keyword

223 could not find the required NAXIS header keyword

224 could not find all the required NAXISn keywords in the header

225 could not find the required XTENSION header keyword

226 the CHDU is not an ASCII table extension

227 the CHDU is not a binary table extension

228 could not find the required PCOUNT header keyword

229 could not find the required GCOUNT header keyword

230 could not find the required TFIELDS header keyword

231 could not find all the required TBCOLn keywords in the header

232 could not find all the required TFORMn keywords in the header

233 the CHDU is not an IMAGE extension

234 illegal TBCOL keyword value; out of range

235 this operation only allowed for ASCII or BINARY table extension

236 column is too wide to fit within the specified width of the ASCII table

237 the specified column name template matched more than one column name

241 binary table row width is not equal to the sum of the field widths

251 unrecognizable type of FITS extension

252 unrecognizable FITS record

253 END keyword contains non-blank characters in columns 9-80

129

254 Header fill area contains non-blank characters

255 Data fill area contains non-blank on non-zero values

261 unable to parse the TFORM keyword value string

262 unrecognizable TFORM datatype code

263 illegal TDIMn keyword value

301 illegal HDU number; less than 1 or greater than internal buffer size

302 column number out of range (1 - 999)

304 attempt to move to negative file record number

306 attempted to read or write a negative number of bytes in the FITS file

307 illegal starting row number for table read or write operation

308 illegal starting element number for table read or write operation

309 attempted to read or write character string in non-character table column

310 attempted to read or write logical value in non-logical table column

311 illegal ASCII table TFORM format code for attempted operation

312 illegal binary table TFORM format code for attempted operation

314 value for undefined pixels has not been defined

317 attempted to read or write descriptor in a non-descriptor field

320 number of array dimensions out of range

321 first pixel number is greater than the last pixel number

322 attempt to set BSCALE or TSCALn scaling parameter = 0

323 illegal axis length less than 1

340 NOT_GROUP_TABLE 340 Grouping function error

341 HDU_ALREADY_MEMBER

342 MEMBER_NOT_FOUND

343 GROUP_NOT_FOUND

344 BAD_GROUP_ID

345 TOO_MANY_HDUS_TRACKED

346 HDU_ALREADY_TRACKED

347 BAD_OPTION

348 IDENTICAL_POINTERS

349 BAD_GROUP_ATTACH

350 BAD_GROUP_DETACH

360 NGP_NO_MEMORY malloc failed

361 NGP_READ_ERR read error from file

362 NGP_NUL_PTR null pointer passed as an argument.

Passing null pointer as a name of

template file raises this error

363 NGP_EMPTY_CURLINE line read seems to be empty (used

internally)

364 NGP_UNREAD_QUEUE_FULL cannot unread more then 1 line (or single

line twice)

365 NGP_INC_NESTING too deep include file nesting (infinite

loop, template includes itself ?)

130 CHAPTER 12. FITSIO ERROR STATUS CODES

366 NGP_ERR_FOPEN fopen() failed, cannot open template file

367 NGP_EOF end of file encountered and not expected

368 NGP_BAD_ARG bad arguments passed. Usually means

internal parser error. Should not happen

369 NGP_TOKEN_NOT_EXPECT token not expected here

401 error attempting to convert an integer to a formatted character string

402 error attempting to convert a real value to a formatted character string

403 cannot convert a quoted string keyword to an integer

404 attempted to read a non-logical keyword value as a logical value

405 cannot convert a quoted string keyword to a real value

406 cannot convert a quoted string keyword to a double precision value

407 error attempting to read character string as an integer

408 error attempting to read character string as a real value

409 error attempting to read character string as a double precision value

410 bad keyword datatype code

411 illegal number of decimal places while formatting floating point value

412 numerical overflow during implicit datatype conversion

413 error compressing image

414 error uncompressing image

420 error in date or time conversion

431 syntax error in parser expression

432 expression did not evaluate to desired type

433 vector result too large to return in array

434 data parser failed not sent an out column

435 bad data encounter while parsing column

436 parse error: output file not of proper type

501 celestial angle too large for projection

502 bad celestial coordinate or pixel value

503 error in celestial coordinate calculation

504 unsupported type of celestial projection

505 required celestial coordinate keywords not found

506 approximate wcs keyword values were returned

